Part IV – Multiferroic RMnO3 - UCSB...SH = 2.52 eV 0 10 20 30 40 50 60 70 80 0 0 o 60 o 120 o 180...

34
Part IV – Multiferroic RMnO 3 Ferroelectric & magnetic ordering SHG spectroscopy SHG topography Identification of multiferroic interactions

Transcript of Part IV – Multiferroic RMnO3 - UCSB...SH = 2.52 eV 0 10 20 30 40 50 60 70 80 0 0 o 60 o 120 o 180...

Page 1: Part IV – Multiferroic RMnO3 - UCSB...SH = 2.52 eV 0 10 20 30 40 50 60 70 80 0 0 o 60 o 120 o 180 o 240 300 0 o 60 o 120 o 180 o 240 300 o χ yyy T N T R SH intensity Temperature

Part IV – Multiferroic RMnO3

• Ferroelectric & magnetic ordering• SHG spectroscopy• SHG topography• Identification of multiferroic interactions

Page 2: Part IV – Multiferroic RMnO3 - UCSB...SH = 2.52 eV 0 10 20 30 40 50 60 70 80 0 0 o 60 o 120 o 180 o 240 300 0 o 60 o 120 o 180 o 240 300 o χ yyy T N T R SH intensity Temperature

Multiferroic Hexagonal Manganites RMnO3

Hexagonal manganites RMnO3 (R = Sc, Y, In, Dy, Ho, Er, Tm, Yb, Lu)

T < TC ≈ 600-1000 K ⇒ ferroelectric (FEL) + paramagnetic (PM)

T < TN ≈ 65-130 K ⇒ ferroelectric (FEL) + antiferromagnetic (AFM)

T < TRE ≈ 5 K ⇒ FM or AFM order of R3+-spins for R = Ho - Yb

Page 3: Part IV – Multiferroic RMnO3 - UCSB...SH = 2.52 eV 0 10 20 30 40 50 60 70 80 0 0 o 60 o 120 o 180 o 240 300 0 o 60 o 120 o 180 o 240 300 o χ yyy T N T R SH intensity Temperature

Ferroelectric order of RMnO3

B.B

. van

Ake

n, N

atur

e M

ater

. 3, 1

64 (2

004)

PEL

R 3+

Mn3+

O 2-

z

x

FELFerroelectric phase transition at TC ≈ 900 K

Breaking of inversion symmetry I

PG: 6/mmm → 6mm

Order parameter P ↔ ferroelectric polarization P = (0, 0, Pz)

Page 4: Part IV – Multiferroic RMnO3 - UCSB...SH = 2.52 eV 0 10 20 30 40 50 60 70 80 0 0 o 60 o 120 o 180 o 240 300 0 o 60 o 120 o 180 o 240 300 o χ yyy T N T R SH intensity Temperature

Ferroelectric SHG contributions

Point group 6mm → broken inversion symmetry → ED-SHG

⇒ zCijkzCEDijk TTTT P)()( >=< χχ

Allowed components of χED: χzzz, χxxz(3) = χyyz(3)

( )

++∝

)()()()()()()(

)(ωχωωχ

ωωχωωχ

ω222

22

2

zzzzyxzxx

zyxxz

zxxxz

EEEEEEE

P

No SHG for k||z!

Page 5: Part IV – Multiferroic RMnO3 - UCSB...SH = 2.52 eV 0 10 20 30 40 50 60 70 80 0 0 o 60 o 120 o 180 o 240 300 0 o 60 o 120 o 180 o 240 300 o χ yyy T N T R SH intensity Temperature

Ferroelectric SHG contributions

1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.00

10

0

1

0

1

60°120°

180°

240° 300°

Pz ∝ ExEx

SH-energy (eV)

Pz ∝ EzEz

SH-in

tens

ity

YMnO3

T = 6 Kk || y

Px ∝ ExEz

|| x

|| zϕ

( )

++∝

)()()()()()()(

)(ωχωωχ

ωωχωωχ

ω222

22

2

zzzzyxzxx

zyxxz

zxxxz

EEEEEEE

P

• All expected SH contributions detectible

• Leading contribution χzxx

• No dependence on the R-ion

Page 6: Part IV – Multiferroic RMnO3 - UCSB...SH = 2.52 eV 0 10 20 30 40 50 60 70 80 0 0 o 60 o 120 o 180 o 240 300 0 o 60 o 120 o 180 o 240 300 o χ yyy T N T R SH intensity Temperature

Antiferromagnetic order of RMnO3

In-plane triangular spin structure

⇒ geometric frustration

⇒ 120°-spin structure

+ inter-plane ordering

+ sublattice interaction Mn ↔ R

⇒ complex magnetic system!

Page 7: Part IV – Multiferroic RMnO3 - UCSB...SH = 2.52 eV 0 10 20 30 40 50 60 70 80 0 0 o 60 o 120 o 180 o 240 300 0 o 60 o 120 o 180 o 240 300 o χ yyy T N T R SH intensity Temperature

Antiferromagnetic α- and β-order

Mn-Ion at z = 0Mn-Ion at z = c/2

• Ferromagnetic interplane coupling

• Spin lattice is inversion symmetric

• Antiferromagnetic interplane coupling

• Spin lattice is not inversion symmetric

α and β structures not distinguishable with diffraction techniques!

Page 8: Part IV – Multiferroic RMnO3 - UCSB...SH = 2.52 eV 0 10 20 30 40 50 60 70 80 0 0 o 60 o 120 o 180 o 240 300 0 o 60 o 120 o 180 o 240 300 o χ yyy T N T R SH intensity Temperature

Anitferromagnetic α-order

ϕ

x

y

Mn-Ion bei z = 0Mn-Ion bei z = c/2

Three different spin-orders depending on the spin-angle ϕ distinguishable:

αx (ϕ=0°): PG 6mmED: -χyyy=χyxx=χxxy=χxyx

αy (ϕ=90°): PG 6mmED: -χxxx=χxyy=χyxy=χyyx

αϕ (ϕ=0°…90°): PG 6ED: αx ⊕ αy

Spin order distinguishable by SHG polarization!

Page 9: Part IV – Multiferroic RMnO3 - UCSB...SH = 2.52 eV 0 10 20 30 40 50 60 70 80 0 0 o 60 o 120 o 180 o 240 300 0 o 60 o 120 o 180 o 240 300 o χ yyy T N T R SH intensity Temperature

Anitferromagnetic β-order

x

y

Mn-Ion bei z = 0Mn-Ion bei z = c/2

Three different spin-orders depending on the spin-angle ϕ distinguishable:

βx (ϕ=0°): PG 6mmED: χxyz=χxzy=-χyxz=-χyzx

βy (ϕ=90°): PG 6mmED: χzzz, χxxz(3) = χyyz(3)

βϕ (ϕ=0°…90°): PG 6ED: βx ⊕ βy

No SHG for k||z!

Page 10: Part IV – Multiferroic RMnO3 - UCSB...SH = 2.52 eV 0 10 20 30 40 50 60 70 80 0 0 o 60 o 120 o 180 o 240 300 0 o 60 o 120 o 180 o 240 300 o χ yyy T N T R SH intensity Temperature

Magnetic Structure and SHG Selection RulesAt least 8 different in-plane spinstructures with different symmetries anddifferent selection rules for SHG

α structures β structuresx

y

6mm : Ex(ω) → Px(2ω) ~ χxxx

6mm : Ex(ω) → Py(2ω) ~ χyyy

6 : Ex(ω) → Px(2ω) ⊕Py(2ω)

6 . . : Ex(ω) → 0

etc.

Polarization of ingoing andoutgoing light reveals themagnetic symmetry

Pi(2ω) ∝ χijk Ej(ω)Ek(ω)6mm

6

6mm

6mm

6

6mm3m

3m

Page 11: Part IV – Multiferroic RMnO3 - UCSB...SH = 2.52 eV 0 10 20 30 40 50 60 70 80 0 0 o 60 o 120 o 180 o 240 300 0 o 60 o 120 o 180 o 240 300 o χ yyy T N T R SH intensity Temperature

Symmetry determination by SHG spectroscopy

1,6 1,8 2,0 2,2 2,4 2,6 2,8 3,0

0

0

60120

180

240 300

0

60120

180

240 300

×3 ×1

×3 ×1 ErMnO3

Px ∝ ExEx

SH-energy (eV)

k || zT = 6 K

YMnO3

Py ∝ EyEy

2.46 eV

SH-in

tens

ity

TN

|| y

|| xϕ

20 800

T (K)

TN

2.56 eV

|| y

ϕ|| x

αx order

αy order

y polarized SHG 6mm ∝ |χyyy|2

x polarized SHG 6mm ∝ |χxxx|2

Page 12: Part IV – Multiferroic RMnO3 - UCSB...SH = 2.52 eV 0 10 20 30 40 50 60 70 80 0 0 o 60 o 120 o 180 o 240 300 0 o 60 o 120 o 180 o 240 300 o χ yyy T N T R SH intensity Temperature

Symmetry determination by SHG spectroscopyx-component of P(2ω)⇒ Symmetry 6mm

2.0 2.2 2.4 2.6 2.8 3.00

2.0 2.2 2.4 2.6 2.8 3.0

0

0

0

0

0

0

70 K

SHG-energy (eV)

Lu

SHG

-inte

nsity

6 KLu

6 KY

6 KY

6 KEr

6 KEr

6 KHo

50 KHo

1.5 KSc

1.5 KSc

5 KTm

5 KTm

5 KYb

5 KYb

y-component of P(2ω)⇒ Symmetry 6mm Spin || x-axis (Symmetry 6mm)

⇒ Intensity maximum at 2.46 eV

Spin || y-axis (Symmetry 6mm)

⇒ Intensity minimum at 2.46 eV

Just by using the spectraldegree of freedom the magneticsymmetry can be determined!

Page 13: Part IV – Multiferroic RMnO3 - UCSB...SH = 2.52 eV 0 10 20 30 40 50 60 70 80 0 0 o 60 o 120 o 180 o 240 300 0 o 60 o 120 o 180 o 240 300 o χ yyy T N T R SH intensity Temperature

Phase Transitions in RMnO3 (R = Sc, Ho, Lu)

χxxx

ESH = 2.52 eV

0 10 20 30 40 50 60 70 800

0o

60o

120o

180o240o

300o

0o

60o

120o

180o240o

300o

χyyy

TNTRSH

inte

nsity

Temperature (K)

χxxx

ESH = 2.44 eV0 20 40 60 80 100 120 140

0

0o

60o

120o

180o240o

300o0o

60o

120o

180o240o

300o

χyyy

TN

SH in

tens

ity

Temperature (K)

ESH = 2.47 eV

χxxx

ESH = 2.44 eV

0 10 20 30 40 50 60 70 80 900

0o

60o

120o

180o240o

300o

0o

60o

120o

180o240o

300o χyyy

TN

SH in

tens

ity

Temperature (K)

ScMnO3

HoMnO3

LuMnO3

Temperature depended change of symmetry:

High T: 6mm

Low T: 6mm

In addition temperature ranges with coexisting phases and reduced symmetry!

Page 14: Part IV – Multiferroic RMnO3 - UCSB...SH = 2.52 eV 0 10 20 30 40 50 60 70 80 0 0 o 60 o 120 o 180 o 240 300 0 o 60 o 120 o 180 o 240 300 o χ yyy T N T R SH intensity Temperature

Phase Coexistence in ScMnO3

0 20 40 60 80 100 1200

TN6mm6

Temperature (K)

SHG

-inte

nsity xxx yyy

66mm

6mm

Temperature depended Spatial resolved

Page 15: Part IV – Multiferroic RMnO3 - UCSB...SH = 2.52 eV 0 10 20 30 40 50 60 70 80 0 0 o 60 o 120 o 180 o 240 300 0 o 60 o 120 o 180 o 240 300 o χ yyy T N T R SH intensity Temperature

Geometric Model for Spin-Angle Calculation

From symmetry: PG ϕspin χxxx χyyy

6mm 0° 0 ≠0

6mm 90° ≠0 0

6 0°…90° ≠0 ≠0

Geometric model: Calculating spin-angle from SHG intensities

χxxx(ϕspin)=χ0xxxsin(ϕspin)

χyyy(ϕspin)=χ0yyycos(ϕspin)

Page 16: Part IV – Multiferroic RMnO3 - UCSB...SH = 2.52 eV 0 10 20 30 40 50 60 70 80 0 0 o 60 o 120 o 180 o 240 300 0 o 60 o 120 o 180 o 240 300 o χ yyy T N T R SH intensity Temperature

Phase Coexistence & Spin Topography (ScMnO3)

2.1 2.2 2.3 2.4 2.5 2.6 2.70

6T = 1.5 K

|χxxx|2

|χyyy|2

SH energy (eV)

SH in

tens

ity

2.1 2.2 2.3 2.4 2.5 2.6 2.70

6mmT = 1.5 K

|χxxx|2

|χyyy|2

SH energy (eV)

SH in

tens

ity

ϕspin (x axis = 0°)0

102030405060708090

2.1 2.2 2.3 2.4 2.5 2.6 2.70

P63cmT = 1.5 K

|χxxx|2

|χyyy|2

SH energy (eV)

SH in

tens

ity

χxxx

Spin - angle topography

1.0 mm

χyyy

Page 17: Part IV – Multiferroic RMnO3 - UCSB...SH = 2.52 eV 0 10 20 30 40 50 60 70 80 0 0 o 60 o 120 o 180 o 240 300 0 o 60 o 120 o 180 o 240 300 o χ yyy T N T R SH intensity Temperature

Spin Rotation in HoMnO3

Phase transition at ≈41 K:

T < TR: Symmetry 6mm

T > TR: Symmetry 6mm

⇒ 90° spin rotation at TR = 41 K

1.0 mm

xy

ϕ

0 10 20 30 40 50 60 70 800

TN

~ χxxx

~ χyyy

SH in

tens

ity

Temperature (K)

Page 18: Part IV – Multiferroic RMnO3 - UCSB...SH = 2.52 eV 0 10 20 30 40 50 60 70 80 0 0 o 60 o 120 o 180 o 240 300 0 o 60 o 120 o 180 o 240 300 o χ yyy T N T R SH intensity Temperature

Spin-Rotation Domains in HoMnO3

Inside AFM domain walls reduced local symmetry 2 due to uncompensated magnetic moment.

2 allows ME contribution Pz ∝ αzx,y Mx,y

⇒ Local ME effect

ϕx

Sx∼ Iy

y

Sy∼ Ix

0.5

0.5S

0

0 20 40 60 0 20 40 60

0 1 2 3 4 50

0 1 2 3 4 5

Ix

(b)(a)

TN

Temperature (K)

SH in

tens

ity

0 T

P63cm

Iy

Temperature (K)

0 T

P63cm

Magnetic field (T)

(d)(c)

SH in

tens

ity

20 K

Magnetic field (T)

20 K

ϕx

Sx∼ Iy

y

Sy∼ Ix

0.5

0.5Sϕ

x

Sx∼ Iy

y

Sy∼ Ix

0.5

0.5Sϕ

x

Sx∼ Iy

y

Sy∼ Ix

0.5

0.5S

0

0 20 40 60 0 20 40 60

0 1 2 3 4 50

0 1 2 3 4 5

Ix

(b)(a)

TN

Temperature (K)

SH in

tens

ity

0 T

P63cm

Iy

Temperature (K)

0 T

P63cm

Magnetic field (T)

(d)(c)

SH in

tens

ity

20 K

Magnetic field (T)

20 K

6mm 6mm

6 66mm

Page 19: Part IV – Multiferroic RMnO3 - UCSB...SH = 2.52 eV 0 10 20 30 40 50 60 70 80 0 0 o 60 o 120 o 180 o 240 300 0 o 60 o 120 o 180 o 240 300 o χ yyy T N T R SH intensity Temperature

Magnetic Phase Diagram of Hexagonal RMnO3

Sc In Lu Yb Tm Er Ho Y6.155 Å5.833 Å In-plane lattice constant

Tem

pera

ture

(K)

20

40

60

80

100

120RMnO3

αx (P 63cm)αρ (P 63) αy (P 63cm)

αx (6mm)αϕ (6)αy (6mm)

Page 20: Part IV – Multiferroic RMnO3 - UCSB...SH = 2.52 eV 0 10 20 30 40 50 60 70 80 0 0 o 60 o 120 o 180 o 240 300 0 o 60 o 120 o 180 o 240 300 o χ yyy T N T R SH intensity Temperature

Magnetic Phase Diagram of ErMnO3

0

10

20

30

40

50

60

70

80

0 1 2 3 4

6mm

TN(Mn) paramagnetic

6mm

-- or --

6mm

6mm

Magnetic field (T)

Tem

pera

ture

(K)

Reorientation of Mn3+ sublattice inmagnetic field along hexagonal axis

Phys. Rev. Lett. 88, 027203 (2002)

Magnetoelectric effect:forbidden allowed

0

0 1 2 3 4

50 K

Magnetic field (T)

SH in

tens

ityMagnetic field0 T

α-order β-order6mm3m6mm

Page 21: Part IV – Multiferroic RMnO3 - UCSB...SH = 2.52 eV 0 10 20 30 40 50 60 70 80 0 0 o 60 o 120 o 180 o 240 300 0 o 60 o 120 o 180 o 240 300 o χ yyy T N T R SH intensity Temperature

H/T Phase Diagram of Hexagonal RMnO3

0 1 2 3 40

10

20

30

40

50

60

70

80

TmMnO3

A2

B2

Tem

pera

ture

(K)

Magnetic field µ0Hz (T)

ErMnO3

A2

B2

0

10

20

30

40

50

60

70

80

HoMnO3

A1

B2

A2B1

Tem

pera

ture

(K)

0 1 2 3 4

YbMnO3

B2

A2

Magnetic field µ0Hz (T)

Sc In Lu Yb Tm Er Ho Y

Tem

pera

ture

(K)

0

20

40

60

80

100

120

140

RMnO3 (H = 0) (none)(hyst.)

2

1B

A

Repres. indexRepresentation

J. A

ppl.

Phys

. 83,

819

4 (2

003)

ME effectallowed

6mm (αy) 6mm (βx)

6mm (αx) 6mm (βy)

T

H

ME effectforbidden

αy

αy

αyαy

βyαx

βx

βx

βx

βx

α

β

x

yx/y

Page 22: Part IV – Multiferroic RMnO3 - UCSB...SH = 2.52 eV 0 10 20 30 40 50 60 70 80 0 0 o 60 o 120 o 180 o 240 300 0 o 60 o 120 o 180 o 240 300 o χ yyy T N T R SH intensity Temperature

So far…

• Detection of obviously FEL/AFM induced SHG

• Analysis of magnetic ordering

• Phase diagrams depending on temperature & magnetic field

But what about the multiferroic nature of RMnO3?

Page 23: Part IV – Multiferroic RMnO3 - UCSB...SH = 2.52 eV 0 10 20 30 40 50 60 70 80 0 0 o 60 o 120 o 180 o 240 300 0 o 60 o 120 o 180 o 240 300 o χ yyy T N T R SH intensity Temperature

SHG in a Multiferroic Compound

[ ] )()(...)(ˆ)(ˆ)(ˆ)0(ˆ)2( 0 ωω+℘χ+χ+℘χ+χε=ω EEPNL

χ(0): Paraelectric paramagnetic contribution always allowedχ(P ): Ferroelectric contribution allowed belowχ( ): Antiferromagnetic contribution the respectiveχ(P ): Ferroelectromagnetic contribution ordering temperature

ED contribution for magnetic ferroelectrics:

Analog for MD and EQ ⇒ in total 12 possible contributions!

But later ones only taken into account if ED not allowed.

Page 24: Part IV – Multiferroic RMnO3 - UCSB...SH = 2.52 eV 0 10 20 30 40 50 60 70 80 0 0 o 60 o 120 o 180 o 240 300 0 o 60 o 120 o 180 o 240 300 o χ yyy T N T R SH intensity Temperature

Symmetry analysis

OrderedSublattice

Point group

Parity - typesymmetry operation

Order parameter

(para) 6/mmm I, T, IT ---FEL 6mm T P

AFM 6/mmm I

FEL + AFM 6mm --- P

• Only αx order taken into account • FEL, AFM & FEL+AFM as separated sublattices

x

y

Page 25: Part IV – Multiferroic RMnO3 - UCSB...SH = 2.52 eV 0 10 20 30 40 50 60 70 80 0 0 o 60 o 120 o 180 o 240 300 0 o 60 o 120 o 180 o 240 300 o χ yyy T N T R SH intensity Temperature

SHG contributions

k || xSy 2i1EyEz --- --- e1Ey

2

Sz i2Ey2 + i3Ez

2 --- --- ---

k || ySx 2i1ExEz --- -2q1ExEz ---Sz i2Ex

2 + i3Ez2 m1Ex

2 -q2Ex2 ---

k || zSx --- -2m1ExEy -2q3ExEy -2e1ExEy

Sy --- m1(Ey2 – Ex

2) q3(Ey2 – Ex

2) e1(Ey2 – Ex

2)

Lowest order non-zero contributions to SHG:

Zero order: Electric dipole (ED): and

First order: Magnetic dipole (MD):

First order: Electric quadrupole (EQ):

321 iiiED ,,)(ˆ =Pχ 1eED =⋅ )(ˆ Pχ

1mMD =)(ˆ χ

321 qqqEQ ,,)(ˆ =χ

Page 26: Part IV – Multiferroic RMnO3 - UCSB...SH = 2.52 eV 0 10 20 30 40 50 60 70 80 0 0 o 60 o 120 o 180 o 240 300 0 o 60 o 120 o 180 o 240 300 o χ yyy T N T R SH intensity Temperature

Magnetoelectric SHG

Identical magnetic spectrafor k||z and k||x indicatebilinear coupling to P, .

Unarbitrary evidence forthe observation of"magnetoelectric SHG"

2.0 2.2 2.4 2.6 2.82.0 2.2 2.4 2.6 2.80

×10

χyyy

×1

χyyy

χzzz

χyyz

χzyy

×10

×2500

SH energy (eV)

k || z k || x

SH in

tens

ity

SH energy (eV)

Source term SED(P) SMD,EQ() SED(P)Sublattice sym. 6mm 6/mmm 6mmSHG for k || z = 0 ≠ 0

≠ 0SHG for k || x ≠ 0 = 0

Page 27: Part IV – Multiferroic RMnO3 - UCSB...SH = 2.52 eV 0 10 20 30 40 50 60 70 80 0 0 o 60 o 120 o 180 o 240 300 0 o 60 o 120 o 180 o 240 300 o χ yyy T N T R SH intensity Temperature

What about domains?Ferroelectric domains

Ferroelectromagnetic domains

Antiferromagnetic domains

Ferroelectric and ferroelectromagnetic SHG contribution allow three experiments:

Ferroelectric domains

Ferroelectromagnetic domains

Antiferromagnetic domains

⊗ ⇒

⊗ ⇒

⊗ ⇒

+ −

+

+ −

+

+ −

+

+ −

+

+ −

++ −

+ −

+ −

+

Page 28: Part IV – Multiferroic RMnO3 - UCSB...SH = 2.52 eV 0 10 20 30 40 50 60 70 80 0 0 o 60 o 120 o 180 o 240 300 0 o 60 o 120 o 180 o 240 300 o χ yyy T N T R SH intensity Temperature

Ferroelectromagnetic Domains

0,5

mm

Model

Experiment

Ferroelectric domains

Ferroelectromagnetic domains

Antiferromagnetic domains

Ferroelectric domains

Ferroelectromagnetic domains

Antiferromagnetic domains

+ −

+

+ −

+

Page 29: Part IV – Multiferroic RMnO3 - UCSB...SH = 2.52 eV 0 10 20 30 40 50 60 70 80 0 0 o 60 o 120 o 180 o 240 300 0 o 60 o 120 o 180 o 240 300 o χ yyy T N T R SH intensity Temperature

Clamping of Antiferromagnetic DomainsCoexisting domains in YMnO3:

Ferroelectric domains: ∝P

Antiferromagnetic domains: ∝

"Magnetoelectric" domains: ∝PP = +1 for P = ±1, = ±1

P = -1 for P = ±1, = 1

Any reversal of FEL order parameterclamped to reversal of the AFM orderparameter → local ME effect

Coexistence of "free" and "clamped"AFM walls

AFM

FEL

FEL&

AFM0.5

mm −+

+−

−−

++

free

clamped

Page 30: Part IV – Multiferroic RMnO3 - UCSB...SH = 2.52 eV 0 10 20 30 40 50 60 70 80 0 0 o 60 o 120 o 180 o 240 300 0 o 60 o 120 o 180 o 240 300 o χ yyy T N T R SH intensity Temperature

E-Field induced ME effect

+

0 10 20 30 40 50 60 70 80 900

1

2

3

4 χxxx

χyyy

χxxx

χyyy

SH-In

tens

ity (a

.u.)

Temperature (K)

unpoled

poled

Applying an electric field(= ferroelectric poling) above themagnetic phase transitiontemperature leads to quenchingof the magnetic SHG signal!

Magnetic SHG image

unpoled poled

Transition from α to β order?

Page 31: Part IV – Multiferroic RMnO3 - UCSB...SH = 2.52 eV 0 10 20 30 40 50 60 70 80 0 0 o 60 o 120 o 180 o 240 300 0 o 60 o 120 o 180 o 240 300 o χ yyy T N T R SH intensity Temperature

Magnetic Phase Control by Electric Field

Nat

ure

430,

541

(200

4)

6mm 6mm

Page 32: Part IV – Multiferroic RMnO3 - UCSB...SH = 2.52 eV 0 10 20 30 40 50 60 70 80 0 0 o 60 o 120 o 180 o 240 300 0 o 60 o 120 o 180 o 240 300 o χ yyy T N T R SH intensity Temperature

Magnetic Phase Control by Electric Field

Electric field suppresses magnetic SHG and leads to additional field depended contribution to Faraday rotation

⇒ Induction of magnetic phase transition!

Page 33: Part IV – Multiferroic RMnO3 - UCSB...SH = 2.52 eV 0 10 20 30 40 50 60 70 80 0 0 o 60 o 120 o 180 o 240 300 0 o 60 o 120 o 180 o 240 300 o χ yyy T N T R SH intensity Temperature

Summary

Nonlinear optics is based on symmetry: χijk ↔ symmetry ↔ structure

Simultaneous study of all ferroic structures with the same technique

Nonlinear optics on multiferroics:

Access to:

Electric-magnetic phase diagrams

Magnetoelectric interactions

Multiferroic domain topology

Ultrafast dynamics

Etc. etc.

Page 34: Part IV – Multiferroic RMnO3 - UCSB...SH = 2.52 eV 0 10 20 30 40 50 60 70 80 0 0 o 60 o 120 o 180 o 240 300 0 o 60 o 120 o 180 o 240 300 o χ yyy T N T R SH intensity Temperature

AcknowledgementsBonn:

Manfred FiebigDennis MeierTim HoffmannAnne ZimmermannMichael MaringerTobias KordelChristian Wehrenfennig

Cologne:

Ladislav BohatýPetra Becker

Dortmund:

Dietmar FröhlichStefan LeuteMartin KneipCarsten DegenhardSenta KallenbachThorsten KieferMatthias MaatClaudia Reimpell

Russia:

Roman PisarevVictor Pavlov

Japan:

Kai Kohn