Part II: Population Models

72
Part II: Population Models BOOK: Spiking Neuron Models, W. Gerstner and W. Kistler Cambridge University Press, 2002 Chapters 6-9 aboratory of Computational Neuroscience, LCN, CH 1015 Lausann Swiss Federal Institute of Technology Lausanne, EPFL

description

Swiss Federal Institute of Technology Lausanne, EPFL. Laboratory of Computational Neuroscience, LCN, CH 1015 Lausanne. Part II: Population Models. BOOK: Spiking Neuron Models, W. Gerstner and W. Kistler Cambridge University Press, 2002 Chapters 6-9. - PowerPoint PPT Presentation

Transcript of Part II: Population Models

Page 1: Part II: Population Models

Part II: Population Models

BOOK: Spiking Neuron Models, W. Gerstner and W. Kistler Cambridge University Press, 2002

Chapters 6-9

Laboratory of Computational Neuroscience, LCN, CH 1015 LausanneSwiss Federal Institute of Technology Lausanne, EPFL

Page 2: Part II: Population Models

Chapter 6: Population Equations

BOOK: Spiking Neuron Models, W. Gerstner and W. Kistler Cambridge University Press, 2002

Chapter 6

Page 3: Part II: Population Models

10 000 neurons3 km wires

1mm

Signal:action potential (spike)

action potential

Page 4: Part II: Population Models

Spike Response Model

iuij

fjtt

Spike reception: EPSP

fjtt

Spike reception: EPSP

^itt

^itt

Spike emission: AP

fjtt ^

itt tui j f

ijw

tui Firing: tti ^

linear

threshold

Spike emission

Last spike of i All spikes, all neurons

Page 5: Part II: Population Models

Integrate-and-fire Model

iui

fjtt

Spike reception: EPSP

)(tRIuudtd

ii

tui Fire+reset

linear

threshold

Spike emission

resetI

j

Page 6: Part II: Population Models

escape process (fast noise)

parameter changes (slow noise)

stochastic spike arrival (diffusive noise)

Noise models

A B C

u(t)

noise

white(fast noise)

synapse(slow noise)

(Brunel et al., 2001)

t

t

dttt^

)')'(exp()( )¦( ^ttPI

: first passagetime problem

)¦( ^ttPI Interval distribution

^t ^t ^tt

Survivor functionescape rate

)(t

))(()( tuftescape rate stochastic reset

)¦( ^ttPI )( fttG

Interval distribution

Gaussian about ft

)(tRIudtdu

ii

noisy integration

ft

Page 7: Part II: Population Models

Homogeneous Population

Page 8: Part II: Population Models

populations of spiking neurons

I(t)

?

population dynamics? t

t

tNtttntA

);()(population

activity

Page 9: Part II: Population Models

Homogenous network (SRM)

NJwij

0

Spike reception: EPSP

Spike emission: AP

fjtt ^

itt tui j f

ijwLast spike of i All spikes, all neurons

fjtt

^itt

Synaptic coupling

potential

fullyconnected N >> 1

dsstIs )( external input

Page 10: Part II: Population Models

NJwij

0

fjtt ^

itt tui j f

ijwLast spike of i All spikes, all neuronspotential

dsstIs )( external input

dsstIs )( tui ^itt dsstAsJ )(0

potential

^tt ^| ttu )(thinput potential

fullyconnected

refractory potential

Page 11: Part II: Population Models

Homogenous network

Response to current pulse

Spike emission: AP

s

^itt

potential

^tt ^| ttu )(thinput potential

itt ˆ tui

Last spike of ipotential

dsstIsJ )(0 external input

dsstAs )( Population activity

All neurons receive the same input

Page 12: Part II: Population Models

Assumption of Stochastic spike arrival: network of exc. neurons, total spike arrival rate A(t)

)()(,

0 fk

fkrest tt

Cq

NJ

uuudtd

u

0u

EPSC

Synaptic current pulses

Homogeneous network (I&F)

)()( tIRuuudtd

rest

)()( 0 tAqJtI

Page 13: Part II: Population Models

Density equations

Page 14: Part II: Population Models

Stochastic spike arrival: network of exc. neurons, total spike arrival rate A(t)

)()()(,

0 f

feext

fk

fk

erest tt

Cq

JttCq

NJ

uuudtd

u

0u

EPSC

Synaptic current pulses

Density equation (stochastic spike arrival)

)()()( ttIRuuudtd

rest Langenvin equation,Ornstein Uhlenbeck process

fqJtAqJtI ext )()( 0

Page 15: Part II: Population Models

u

p(u)

Density equation (stochastic spike arrival)

u

Membrane potential density

)()(),()],()([),( 2

22

21 tAuutup

utupuV

utup

t r

Fokker-Planck

drift diffusionAqJuuV 0)(

kkk w22

spike arrival rate

source term at reset

A(t)=flux across threshold

utupu

tA ),()(

Page 16: Part II: Population Models

Integral equations

Page 17: Part II: Population Models

tdtAttPtA I

t

ˆ)ˆ(ˆ|)(

Population Dynamics

tdtAttSI

t

ˆ)ˆ(ˆ|1

Derived from normalization

Page 18: Part II: Population Models

Escape Noise (noisy threshold)

)(t

I&F with reset, constant input, exponential escape rate

Interval distribution

)ˆ(0 ttP )')ˆ'(exp()ˆ()ˆ( ̂t

t

dtttttttP

)exp())ˆ(()ˆ()ˆ(u

ttuttuftt

escape rate

Page 19: Part II: Population Models

tdtAttPtA I

t

ˆ)ˆ(ˆ|)(

Population Dynamics

Page 20: Part II: Population Models

Wilson-Cowan

population equation

Page 21: Part II: Population Models

escape process (fast noise)

Wilson-Cowan model

h(t)

^t t

)(t

))(()( thftescape rate

(i) noisy firing(ii) absolute refractory time

abs

))(()( thftA

population activity

t

t abs

dttA

]')'(1[

(iii) optional: temporal averaging

))(()()( thgtAtAdtd

abs

abs

ttfor

ttforthftuft

)ˆ(00

)ˆ())(())(()(

escape rate

Page 22: Part II: Population Models

escape process (fast noise)

Wilson-Cowan model

h(t)

^t t

)(t

(i) noisy firing(ii) absolute refractory time

abs

))(()( thftA

population activity

t

t abs

dttA

]')'(1[

abs

abs

ttfor

ttforthftuft

)ˆ(00

)ˆ())(())(()(

escape rate

tdtAttPtA I

t

ˆ)ˆ(ˆ|)(

Page 23: Part II: Population Models

Population activity in spiking neurons (an incomplete history)

1972 - Wilson&Cowan; Knight Amari

1992/93 - Abbott&vanVreeswijk Gerstner&vanHemmen

Treves et al.; Tsodyks et al. Bauer&Pawelzik

1997/98 - vanVreeswijk&Sompoolinsky Amit&Brunel Pham et al.; Senn et al.

1999/00 - Brunel&Hakim; Fusi&Mattia Nykamp&Tranchina Omurtag et al.

Fast transientsKnight (1972), Treves (1992,1997), Tsodyks&Sejnowski (1995)Gerstner (1998,2000), Brunel et al. (2001), Bethge et al. (2001)

Integral equation

Mean field equationsdensity (voltage, phase)

Heterogeneous netsstochastic connectivity

(Heterogeneous, non-spiking)

Page 24: Part II: Population Models

Chapter 7: Signal Transmission and Neuronal Coding

BOOK: Spiking Neuron Models, W. Gerstner and W. Kistler Cambridge University Press, 2002

Chapter 7

Page 25: Part II: Population Models

Coding Properties of Spiking Neuron ModelsCourse (Neural Networks and Biological Modeling) session 7 and 8

Laboratory of Computational Neuroscience, LCN, CH 1015 LausanneSwiss Federal Institute of Technology Lausanne, EPFL

PSTH(t)

500 trials

I(t)

forward correlationfluctuating input

I(t)reverse correlationProbability of

output spike ?

I(t) A(t)?0t

Page 26: Part II: Population Models

Theoretical Approach

- population dynamics

- response to single input spike (forward correlation)

- reverse correlations

A(t)

500 neurons

PSTH(t)

500 trials

I(t) I(t)

Page 27: Part II: Population Models

Population of neurons

h(t)

I(t) ?0t

))(()( thgtA

A(t)

A(t)

A(t)

))(()( tIgtA

))('),(()( tItIgtA

potential

A(t) ))(()()( thgtAtAdtd

t

tNtttntA

);()(population

activity

N neurons,- voltage threshold, (e.g. IF neurons)- same type (e.g., excitatory) ---> population response ?

Page 28: Part II: Population Models

Coding Properties of Spiking Neurons:

Laboratory of Computational Neuroscience, LCN, CH 1015 LausanneSwiss Federal Institute of Technology Lausanne, EPFL

- forward correlations- reverse correlations

1. Transients in Population Dynamics - rapid transmission2. Coding Properties

Page 29: Part II: Population Models

Example: noise-free

tdtAttPtA I

t

ˆ)ˆ(ˆ|)(

))ˆ(ˆ(ˆ| tTttttPI

)(tA )( TtA

''1

uh

Population Dynamics

I(t) h’>0h(t)

T(t^)

higher activity

Page 30: Part II: Population Models

noise-free

Theory of transients

)(tA )( TtA

''1

uh

I(t)h(t)

I(t) ?0t

potential dsstIs )( ^tt ^| ttu

)(thinput potential 0)(' ttth

)()( 00 ttAAtA A(t)

External input.No lateral coupling

Page 31: Part II: Population Models

Theory of transients A(t)

no noise

I(t)h(t)

noise-free

noise model B

slow noise

I(t)h(t)

(reset noise)

Page 32: Part II: Population Models

u

p(u)

u

Membrane potential density

Hypothetical experiment: voltage step

u

p(u)

Immediate responseVanishes linearly

Page 33: Part II: Population Models

Transients with noise

Page 34: Part II: Population Models

escape process (fast noise)

parameter changes (slow noise)

stochastic spike arrival (diffusive noise)

Noise models

A B C

u(t)

noise

white(fast noise)

synapse(slow noise)

(Brunel et al., 2001)

t

t

dttt^

)')'(exp()(

)¦( ^ttPI Interval distribution

^t ^t ^tt

Survivor functionescape rate

)(t

))(()( tuftescape rate stochastic reset

)¦( ^ttPI )( fttG

Interval distribution

Gaussian about ft

)(tRIudtdu

ii

noisy integration

ft

Page 35: Part II: Population Models

Transients with noise:Escape noise (noisy threshold)

Page 36: Part II: Population Models

linearize

tdtAttPtA I

t

ˆ)ˆ(ˆ|)(

)()( 0 tAAtA

Theory with noise A(t)

)()( 0 thhth

I(t)h(t)

0A

dsstIsth )()()(

sA 1

0 inverse mean interval

I

Llow noiselow noise: transient prop to h’

high noise: transient prop to h

h: input potential

high noise

Page 37: Part II: Population Models

Theory of transients A(t)

low noise

I(t)h(t)

noise-free

(escape noise/fast noise) noise model A

low noise

fast

noise model A

I(t)h(t)

(escape noise/fast noise)

high noise

slow

Page 38: Part II: Population Models

Transients with noise:Diffusive noise (stochastic spike arrival)

Page 39: Part II: Population Models

escape process (fast noise)

parameter changes (slow noise)

stochastic spike arrival (diffusive noise)

Noise models

A B C

u(t)

noise

white(fast noise)

synapse(slow noise)

(Brunel et al., 2001)

t

t

dttt^

)')'(exp()(

)¦( ^ttPI Interval distribution

^t ^t ^tt

Survivor functionescape rate

)(t

))(()( tuftescape rate stochastic reset

)¦( ^ttPI )( fttG

Interval distribution

Gaussian about ft

)(tRIudtdu

ii

noisy integration

ft

Page 40: Part II: Population Models

u

p(u)

Diffusive noiseu

Membrane potential density

p(u)

Hypothetical experiment: voltage step

Immediate responsevanishes quadratically

),(

)],()([

),(

2

22

21 tup

u

tupuAu

tupt

Fokker-Planck

Page 41: Part II: Population Models

u

p(u)

SLOW Diffusive noiseu

Membrane potential density

Hypothetical experiment: voltage step

Immediate responsevanishes linearly

p(u)

Page 42: Part II: Population Models

Signal transmission in populations of neurons

Connections4000 external4000 within excitatory1000 within inhibitory

Population- 50 000 neurons- 20 percent inhibitory- randomly connected

-low rate-high rate

input

Page 43: Part II: Population Models

Population- 50 000 neurons- 20 percent inhibitory- randomly connected

Signal transmission in populations of neurons

100 200time [ms]

Neuron # 32374

50

u [mV]

100

0

10A [Hz]

Neu

ron

#

32340

32440

100 200time [ms]50

-low rate-high rate

input

Page 44: Part II: Population Models

Signal transmission - theory

- no noise

- slow noise (noise in parameters)

- strong stimulus

- fast noise (escape noise) prop. h(t) (potential)

prop. h’(t) (current)

See also: Knight (1972), Brunel et al. (2001)

fast

slow

Page 45: Part II: Population Models

Transients with noise: relation to experiments

Page 46: Part II: Population Models

Experiments to transients A(t)

V1 - transient response

V4 - transient response

Marsalek et al., 1997

delayed by 64 ms

delayed by 90 ms

V1 - single neuron PSTH

stimulus switched on

Experiments

Page 47: Part II: Population Models

input A(t)

A(t)

A(t)

A(t)

See also: Diesmann et al.

Page 48: Part II: Population Models

How fast is neuronal signal processing?

animal -- no animalSimon ThorpeNature, 1996

Visual processing Memory/association Output/movement

eye

Reaction time experiment

Page 49: Part II: Population Models
Page 50: Part II: Population Models

How fast is neuronal signal processing?

animal -- no animalSimon ThorpeNature, 1996

Reaction time

Reaction time

# ofimages

400 msVisual processing Memory/association Output/movement

Recognition time 150ms

eye

Page 51: Part II: Population Models

Coding properties of spiking neurons

Page 52: Part II: Population Models

Coding properties of spiking neurons

- response to single input spike

(forward correlations)

A(t)

500 neurons

PSTH(t)

500 trials

I(t)I(t)

Page 53: Part II: Population Models

Coding properties of spiking neurons

- response to single input spike

(forward correlations)

I(t) Spike ?Two simple arguments1)

2)

Experiments: Fetz and Gustafsson, 1983 Poliakov et al. 1997

(Moore et al., 1970)

PSTH=EPSP

(Kirkwood and Sears, 1978)

PSTH=EPSP’

Page 54: Part II: Population Models

Forward-Correlation Experiments A(t)

Poliakov et al., 1997

I(t) PSTH(t)

1000 repetitionsnoise

high noise low noiseprop. EPSP prop. EPSP

ddt

Page 55: Part II: Population Models

^^^ )(|)( dttAttPtA I

t

Population Dynamics

)()( 0 thhth h: input potential dsstIsth )()()(

A(t) PSTH(t)I(t)I(t)

full theory

linear theory

Page 56: Part II: Population Models

Forward-Correlation Experiments A(t)

Theory: Herrmann and Gerstner, 2001

high noise low noisePoliakov et al., 1997

high noise low noise

blue: full theoryred: linearized theory

blue: full theoryred: linearized theory

Page 57: Part II: Population Models

Forward-Correlation Experiments A(t)

Poliakov et al., 1997

I(t) PSTH(t)

1000 repetitionsnoise

high noise low noiseprop. EPSP prop. EPSP

ddt

prop. EPSP

prop. EPSPddt

Page 58: Part II: Population Models

Reverse Correlations

Laboratory of Computational Neuroscience, LCN, CH 1015 LausanneSwiss Federal Institute of Technology Lausanne, EPFL

fluctuating input

I(t)

Page 59: Part II: Population Models

Reverse-Correlation Experiments

after 1000 spikes

)(tI

Page 60: Part II: Population Models

)()( 0 thhth h: input potential dsstIsth )()()(

Linear Theory

Fourier Transform

)(~)(~)(~ IGA

0

)()()( dsstIsGtA

Inverse Fourier Transform

)(~1)(~)(~

)(~ 0

PLAiG

Page 61: Part II: Population Models

Signal transmissionI(t) A(t)

)()()(

fIfAfG T=1/f

(escape noise/fast noise) noise model A

low noise

high noise

noise model B (reset noise/slow noise)

high noiseno cut-off

low noise

Page 62: Part II: Population Models

Reverse-Correlation Experiments (simulations)

after 1000 spikes

0

)()()( dsstIsGtA

theory:G(-s)

)(tI

after 25000 spikes

Page 63: Part II: Population Models

Laboratory of Computational Neuroscience, EPFL, CH 1015 Lausanne

Coding Properties of spiking neurons

I(t)

?

- spike dynamics -> population dynamics- noise is important - fast neurons for slow noise - slow neurons for fast noise

- implications for - role of spontaneous activity - rapid signal transmission - neural coding - Hebbian learning

Page 64: Part II: Population Models

Chapter 8: Oscillations and Synchrony

BOOK: Spiking Neuron Models, W. Gerstner and W. Kistler Cambridge University Press, 2002

Chapter 8

Page 65: Part II: Population Models

Stability of Asynchronous State

Page 66: Part II: Population Models

Stability of Asynchronous State

Search for bifurcation points

linearize

^^^ )(|)( dttAttPtA I

t

)()( 0 tAAtA )()( 0 thhth dsstAsJth )()()(

h: input potential

A(t)

ttieAtA 1)(0

fully connected coupling J/N

Page 67: Part II: Population Models

Stability of Asynchronous State A(t)

delayperiod

)()( sess0 for

stable0

03

02

noise

T

)(s

s

)(s

Page 68: Part II: Population Models

Stability of Asynchronous State s

)(s

ms0.1

ms2.1

4.1

ms0.2

ms0.3

ms4.0

06

05

04

03

02

T 2

0

Page 69: Part II: Population Models

Chapter 9: Spatially structured networks

BOOK: Spiking Neuron Models, W. Gerstner and W. Kistler Cambridge University Press, 2002

Chapter 9

Page 70: Part II: Population Models

Continuous Networks

Page 71: Part II: Population Models

)(tAi

Several populations

i k

Continuum

Page 72: Part II: Population Models

)(),( AtA

Continuum: stationary profile