Part I.A -Fundamentals of Fluid Dynamics

download Part I.A -Fundamentals of Fluid Dynamics

of 15

Transcript of Part I.A -Fundamentals of Fluid Dynamics

  • 8/8/2019 Part I.A -Fundamentals of Fluid Dynamics

    1/38

    FLUID DYNAMICS

    PART 1 FUNDAMENTALS OF FLUID DYNAMICS

    1.Basic Equations of Flui D!na"ics#a$ CONTINUITY E%UATION & T'( )*inci)l( of cons(*+ation of "ass

    "a! ,( stat( as follo-s& t'( "ass of /ui )assin0 an! s(ction )(* unit ti"( isconstant. T'( (quation -'ic' *(sults f*o" t'is a))lication is 2no-n as t'(equation of continuity or continuity equation.

    a.1 Fo* co")*(ssi,l( /ui #0as$3 (quation of continuit! is3

    41A151 6 47A757 # 208s$ o* 91A151 6 97A757 #N8s$

    -'(*(& 4 : (nsit! of /ui #208";$

    9 : s)(ci

  • 8/8/2019 Part I.A -Fundamentals of Fluid Dynamics

    2/38

    a.7 Fo* Inco")*(ssi,l( /ui #liqui$3 (quation ofcontinuit! is

      *(uc( to3

     A151 6 A757 #";8s$

    sinc( 4 an 9 "a! ,( assu"( constants.

      Fo* an! s(ction&

     

     RT 

     pg =γ  

    ='(*(&

    an RT 

     p= ρ 

    Not(& Un(* a.1 an a.73 fo* ci*cula* )i)(s3

    2

    2

    21

    2

    144

    V  DV  D  π π =

    o*   2

    2

    1

    21

      V  D

     DV    

     

      

     =

    t consQV  A   tan==⋅ Q is discharge or flow rate

  • 8/8/2019 Part I.A -Fundamentals of Fluid Dynamics

    3/38

    #,$ ENER>Y E%UATION& T'( (n(*0! of t'( /o-in0 st*(a" of

    /ui )(* unit

    ti"( )assin0 an! u)st*(a" s(ction is t'( sa"( as t'((n(*0! )(* unit ti"(

    )assin0 an! o-nst*(a" s(ction )lus t'( loss of (n(*0!,(t-((n t'( t-o

    s(ctions.

    ,.1 Fo* inco")*(ssi,l( /ui #liqui$3 t'( (quation is3

    21,22

    2

    21

    1

    2

    1

    22  −+++=++   L H  Z 

     p

     g 

    V  Z 

     p

     g 

    γ  γ  

    ='(*(& g V 2

    2

    ? 5(locit! '(a # " o* N?"8N$

    γ  

     p? P*(ssu*( '(a #" o* N?"8N$

     Z  ? El(+ation '(a #" o* N?"8N$

     g 

    2

    2

    ? T'( 2in(tic (n(*0! )(* unit -(i0't

    γ  

     p Z an ? Constitut( t'( )ot(ntial (n(*0! )(* unit -(i0't

     L H  ? T'( '(a loss ,(t-((n s(ctions 1 an 7

  • 8/8/2019 Part I.A -Fundamentals of Fluid Dynamics

    4/38

    b.2 For compressible fluid (gas) under isothermal conditions, the equation is,

    21,22

    1

    1

    2

    211

    1

    1

    2

    1 ln2

    ln2

      −+++=++   L H  Z  p p

     g 

    V  Z  p

     p

     g 

    γ  γ  

    Where: p – absolute pressure ( !m2 )

    "#$: #he %oncept of $nerg& $quation was originall& formulated b&

    'aniel ernoulli in *+: #he ernoulli-s rinciple state that as the

    speed of a mo/ing fluid (liquid or gas) increases, the pressure withinthat fluid decreases. asicall&, the concept states that the total

    energ& in a steadil& flowing fluid s&stem is a constant along the flow

    path. 0n increase in the fluid-s speed must therefore be matched b&

    a decrease in its pressure.

    1n mathematical equation

    constant=+   ....   E  K  E  P 

    1

    2

    2

    1k mV mgh   =+   V 

    mv

    mgh 1

    2

    2

    1

    =+

    'i/iding b& constant olume,

  • 8/8/2019 Part I.A -Fundamentals of Fluid Dynamics

    5/38

    mv

    mgh 1

    2

    2

    1

    =+

    k v gh   =+   22

    1 ρ  ρ 

    k vh   =+   22

    1 ρ γ  

    k v p   =+   22

    1 ρ 

    k v pv pv p   =+=+=+  2

    22

    2

    11

    2

    2

    1

    2

    1

    2

    1 ρ  ρ  ρ 

    We can write,

    Where: p 3 pressure

      / 3 /elocit&

    4 3 densit&

    ote: 1n the ernoulli-s concept, it is clear that if

    /elocit& increases at one end, it must be

      matched b& a decrease in pressure.

  • 8/8/2019 Part I.A -Fundamentals of Fluid Dynamics

    6/38

    #c$ If (@t(*nal (n(*0! is a( to t'( st*(a" ,(t-((n )oints 1

    an 7 as fo* instanc( ,! a )u")3 t'( co")l(t( (n(*0!(quation ,(co"(s&

    21,22

    2

    211

    2

    1

    22  −+++=+++   L p   H  Z 

     p

     g 

    V  E  Z 

     p

     g 

    γ  γ  

     where: $p 3 e5ternal energ& head added

    (d) If (n(*0! is 0i+(n u) ,! t'( s!st(" to a tu*,in( ,(t-((n)oints 1 an 73 t'( *i0't si( of t'( (n(*0! (quation"ust inclu( a t(*" E T to *()*(s(nt

      t'( '(a 0i+(n u).

    21,22

    2

    21

    1

    2

    1

    22  −++++=++   LT    H  E  Z  p

     g 

    V  Z 

     p

     g 

    γ  γ  

    where: $# 3 energ& gi/en up

  • 8/8/2019 Part I.A -Fundamentals of Fluid Dynamics

    7/38

    ( e ) 16789$6"6$#76 $Q70#1" : #he impulse of a force is

      equal to the change in the momentum of the mass.

    ( )   ( )V  M V V  M  Ft  o f     ∆=−=

    Where: Ft – impulse

    6f  – final momentum

    6o – initial momentum

  • 8/8/2019 Part I.A -Fundamentals of Fluid Dynamics

    8/38

    2. 1mportant 'efinitions in Fluid Flow

    (a) ath line is a line made b& a single particle as it mo/es

    during a period of time

    (a) 9treamline: an imaginar& line within the flow for which the

    tangent at an& point gi/es the direction of flow at that point.

    (b) 9tream tube: an element of fluid bounded b& streamlines

    which enclose or confine the flow.

    (c) 9tead& Flow: when the /elocit&, pressure, discharge or

    flow rate at a gi/en point in flowing stream of the fluid

    remains constant with time or dQ!dt 3 ;.

    •P

    1

    V1   •

    P2

    V2

    •P3V

    3

    •P

    4

    V4

      •P

    5

    V5 •P6

    V6

    Path Line and Streamline

    http://../Streamlines%20around%20bodies.ppthttp://../Streamlines%20around%20bodies.ppt

  • 8/8/2019 Part I.A -Fundamentals of Fluid Dynamics

    9/38

    (d) 7niform Flow: if, at a gi/en instant, the /elocit& remains constant

      with respect to a stretch or distance in the flowing stream of

    fluid or d!ds 3 ;.

    (e) 'ischarge or Flow ead 8oss: the energ& per unit weight lost due to friction (ma?or 

      loss) or total disturbances (minor loss).

    (g) ower is obtained b& multipl&ing the total energ& head  (@.$. A .$.), which ma& be in m! b& QB to obtain m!s.

      'i/iding b& *CD gi/es the horsepower, or 

    746.

      E Q P  H 

      ⋅⋅

    =

    γ   

  • 8/8/2019 Part I.A -Fundamentals of Fluid Dynamics

    10/38

    $5ample . 0 fluid in a pipe 2;; mm in diameter with a mean /elocit& of 

    +.;E m!s. #he pressure at the center of the pipe is +E a, and the

    ele/ation of the pipe abo/e a reference datum is C.D; m. %ompute

    the total head in meters if the liquid is (a) water, (b) molasses (s 3.E;),

    ( c) gas (B3D.EC !m+).

    9olution:

    3 +.;E m!s2;; mm

    'atum

    p3 +E a

     Z  p

     g 

    V  E    ++=

    γ  2

    2

    (a)

    ( )

    ( )  mm N 

    m N  x

     sm

     sm E    60.4

    /9810

    /1035

    /81.92

    /05.33

    23

    2

    2

    ++=

    C.D; m

    m E    642.8= (water)

  • 8/8/2019 Part I.A -Fundamentals of Fluid Dynamics

    11/38

    ( b)  Z  p

     g 

    V  E    ++=

    γ  2

    2

    ( )( )  mm N  xm N  x

     sm sm E    60.4

    /98105.1/1035

    /81.92/05.3

    3

    23

    2

    2

    ++=

    m E    453.7=

    (c ) ( )( )

      mm N 

    m N  x

     sm

     sm E    60.4

    /54.6

    /1035

    /81.92

    /05.33

    23

    2

    2

    ++=

    m E    76.356,5= (gas)

    (molasses)

  • 8/8/2019 Part I.A -Fundamentals of Fluid Dynamics

    12/38

    $5ample 2. 0 liquid ( s32.;;) is flowing in a E; mm diameter pipe. #he total

    energ& at a gi/en point is *.C* m!. #he ele/ation of the pipe

    abo/e the datum is +.; m and the pressure in the pipe is DE.E a.

    %ompute the /elocit& of flow and the >.. of the stream at thatpoint.

    9olution:

    E; mm

    'atum

    +.; m

    p 3 DE.E a

    (a)   Z  p

     g 

    V  E    ++=

    γ  2

    2

    ( )  mm N 

    m N  x

     sm

    V m   0.3

    )/9810(2

    /105.65

    /81.9247.7

    3

    23

    2

    2

    ++=

     smV    /712.4=

  • 8/8/2019 Part I.A -Fundamentals of Fluid Dynamics

    13/38

    (b)   AV Q =

    ( ) ( ) smmQ   /712.4050.042π 

    =

     sm xQ   /10252.9   33−=

    ( c) HP watts

     E Q P  H 

    /746.

      ⋅⋅=  γ  

    ( )( )( ) HP watts

    mm N  x sm x

     P  H  /746

    47.7/98102/10252.9.

    333−

    =

    horspowr  P  H    82.1.   =

  • 8/8/2019 Part I.A -Fundamentals of Fluid Dynamics

    14/38

    E@a")l( ;. At a )oint A -'(*( t'( suction )i)( l(ain0 to a )u") is1.7 " ,(lo- t'( )u") an o)(n "ano"(t(* inicat(s a +acuu" of1 "" of "(*cu*!. T'( )i)( is

    1 "" in ia"(t(*3 an t'( isc'a*0( is .; ";8s of oil #s 6

    .$. Co")ut( t'(total '(a at )oint A -it' *(s)(ct to a atu" at t'( )u").

    Solution&

    • 0

    'atum

    .2; m

    (a)  A

    QV  =

    ( ) 2

    3

    10.04

    /030.0

    m

     sm

    π =   sm /82.3=

     Z  p

     g 

    V  E    ++=

    γ  2

    2

    (b)  ( )

    ( )  m

    m N  x

    m N  x

     sm x

     sm20.1

    /981085.0

    /10015.24

    /81.92

    /82.33

    23

    2

    2

    −−

    +=   N m N    /33.3   −−=

    p 3 Bmhm 3 (+.D 5 G; !m+)(;. m) 3 2C.;E a

  • 8/8/2019 Part I.A -Fundamentals of Fluid Dynamics

    15/38

    E@a")l( . A +(*tical ci*cula* stac2 ; " 'i0' con+(*0(s unifo*"l!f*o" a ia"(t(*

    of " at t'( ,otto" to . " at t'( to). Coal 0as -it' a unit-(i0't of .1

    N8"; (nt(*s at t'( ,otto" of t'( stac2 -it' a +(locit! of ;. "8s. T'( unit

    -(i0't of t'( 0as inc*(as(s unifo*"l! to .G N8"; at t'( to).Co")ut( t'(

    "(an +(locit! (+(*! . " u) t'( stac2.

    Solution&

    *.E m

    *.E m

    *.E m

    *.E m

    D m

    E.; m

    coal gas

    (a) %hanges in the diameter 3

    30

    56−

    2

    +

    C

    E

    mm   5.7/25.0=

    #herefore for e/er& *.E m height, the change

    1n diameter is ;.2E m. 9tarting from the bottom

    #he diameters changes as follows:

    ' 3 D.;; m

    '2 3 E.*E m

    '+ 3 E.E; m

    'C 3 E.2E m'E 3 E.;; m

  • 8/8/2019 Part I.A -Fundamentals of Fluid Dynamics

    16/38

    #,$ T'( C'an0( in s)(ci

  • 8/8/2019 Part I.A -Fundamentals of Fluid Dynamics

    17/38

    ( )   52

    4

    2

    3

    2

    2

    22 54

    59.625.54

    12.650.54

    65.575.54

    18.505.364

    71.4   V  xV  xV  xV  x x      

      = 

      

      = 

      

      = 

      

      = 

      

         π π π π π 

     smV    /02.32 =

     smV    /026.33 =

     smV    /066.34 =

     smV    /139.35 =

  • 8/8/2019 Part I.A -Fundamentals of Fluid Dynamics

    18/38

    $5ample E. 0 +;; mm pipe is connected b& a reducer to a ;; mm pipe.

    oints and 2 are at the same ele/ation. #he pressure at is 2;*

    a. #he flow is ;.;2 m+!s and the energ& lost between and 2 is

    equi/alent to 2;.D a. %ompute the pressure at 2 if the liquid isoil (s 3 ;.;).

    9olution:+;; mm dia.

    ;; mm dia.

    •   •2 2

    'atum

    (a)1

    1 A

    QV   =

    ( ) 2

    3

    30.04

    /028.0

    m

     sm

    π =   sm /396.0=

    2

    2 A

    QV   =

    ( ) 2

    3

    10.04

    /028.0

    m

     sm

    π =   sm /565.3=

    (b)γ  

     p H  L   =−21,

    3

    23

    21, /981080.0/1068.20m N  xm N  x H  L   =−

    m635.2=

  • 8/8/2019 Part I.A -Fundamentals of Fluid Dynamics

    19/38

    21,22

    2

    21

    1

    2

    1

    22  −+++=++   L H  Z  p g V  Z  p g V  γ  γ  

    ( c) #he energ& equation ( – 2)

    635.2

    98108.081.92

    565.3

    98108.0

    10207

    81.92

    396.02

    2

    2

    1

    32

    +++=++   Z 

     x

     p

     x

     Z 

     x

     x

     x

    22  56.299,181

    m

     N  p   =   or    orkPa

    m

    kN  p

    22  299.181=

    E l C t t' l it ' f t' H t ' if D1

  • 8/8/2019 Part I.A -Fundamentals of Fluid Dynamics

    20/38

    E@a")l( . Co")ut( t'( +(locit! '(a of t'( H(t3 as s'o-n3 if D16 ""3

    D7 6 7 ""3 t'( )*(ssu*( '(a at 1 is ; " of t'( liqui/o-in03 an t'( '(a lost ,(t-((n 1 an 7 is of t'(

    +(locit! '(a at 7.

    •   •

    1 2

    m p

    301 =γ    ?et

    'atum

    *E mm dia. 2E mm dia.

    (a) 7sing the continuit& equation:

    2211   V  AV  A   =

    ( ) ( )   2212 025.04075.04 V V   π π  =

    2

    2

    1075.0

    025.0V V     

      

      =

    219

    1V V   =

    Solution

  • 8/8/2019 Part I.A -Fundamentals of Fluid Dynamics

    21/38

    #,$ T'( (n(*0! (quation #1 : 7$

    21,22

    2

    211

    2

    1

    22  −+++=++   L H  Z 

     p

     g 

    V  Z 

     p

     g 

    γ  γ  

    ; (atm.)

     g 

     g 

     g 

    205.0

    230

    2

    9

    12

    2

    2

    2

    2

    2

    +=+

       

      

    302

    5.1281

    1  2

    2

    2

    2 −=−−⋅ g 

     g 

    302

    0376.12

    2 −=−− g 

    m g 

    V 913.28

    2

    2

    2 =−

  • 8/8/2019 Part I.A -Fundamentals of Fluid Dynamics

    22/38

    $5ample *. 1n the figure, a E; mm pipe line leads downhill from a reser/oir

    and discharges into air. 1f the loss of head between 0 and is CC m,

    compute the discharge.

    $le/. CD mAW.9

    B

     ?et$le/. ; ('atum)

    E; mm dia.

    9olution:

    $nerg& equation (0 – )

     ! A L ! ! !

     A A A  H  Z 

     p

     g 

    V  Z 

     p

     g 

    V −+++=++   ,

    22

    22   γ  γ  

    negl. ; (atm.) ; (atm.)

    m g 

    V m   ! 44

    246

    2

    +=

    m g 

    V  ! 22

    2

    =

     s

    mV  !   264.6=

  • 8/8/2019 Part I.A -Fundamentals of Fluid Dynamics

    23/38

    #hen,  ! !V  AQ =

    ( )      

      =

     smmQ   264.6050.0

    42π 

     s

    mQ

    3

    012.0=

    ote:

     g 

    V  A

    2

    2

    is negligible since the water surface in the large reser/oir

    will drop down /er& slowl&.

    $le/. CD mAW.9

    $le/. ; ('atum)

    E; mm dia.

    B

     ?et

  • 8/8/2019 Part I.A -Fundamentals of Fluid Dynamics

    24/38

    $5ample . 0 pump draws water from a 2;; mm suction pipe and

    discharging through a E; mm pipe in which the /elocit& is

    +.DE m!s. #he pressure is +C.C* a at 0. #he E; mm pipe

    discharges into the air at %. #o what height h abo/e can the water 

    be raised, 1f is .; m abo/e 0 and 2; > is deli/ered to thepumpI 0ssume that the pump operates at *;J efficienc& and the

    frictional loss between 0 and % is +.; m.

    C

    B

    A

    •2;; mm

    E; mm

    W.9.'atum

    .; m

    h

    9olution

    (a) 7sing %ontinuit& $q.

     ! ! A A   V  AV  A   =

    ( ) ( ) ( )658.315.0

    4

    20.0

    4

    22   π π  = AV 

    ( )658.320.0

    15.0  2

       

      = AV 

     s

    mV  A   058.2=

  • 8/8/2019 Part I.A -Fundamentals of Fluid Dynamics

    25/38

     A AV  AQ =   ! !V  A=

    ( )058.220.04

    2   

      

     =   xπ 

     s

    m3065.0=

    (b) 7sing the energ& equation (0 – %)

    "  A L" " " 

     p A A A  H  Z 

     p

     g 

    V  E  Z 

     p

     g 

    V −+++=+++   ,

    22

    22   γ  γ  

    ( ) ( )( )   0.380.1081.92

    658.309810

    1047.34

    81.92

    058.2  232

    ++++=++−+   h x E  x

     x  p

    ; (atm.)

     p E h   +−=   78.8

    C

    B

    A

    E; mm

    'atum.; m

    h

    2;; mm

  • 8/8/2019 Part I.A -Fundamentals of Fluid Dynamics

    26/38

    Where:

    J eff. (> of pump)746

     p E Q   ⋅⋅=

    γ   

    ( )  ( ) ( )

    746

    9810065.02070.0

      p E =

    m E  p   38.16= ( $nerg& added b& the pump  to the s&stem)

    therefore

    38.1678.8   +−=h

    mh   60.7=

    $5ample G #he D; mm pipe conducts water from reser/oir 0 to a pressure

  • 8/8/2019 Part I.A -Fundamentals of Fluid Dynamics

    27/38

    $5ample G. #he D; mm pipe conducts water from reser/oir 0 to a pressure

    turbine, which discharges through another D; mm pipe into tailrace

    . #he head losses are:

    From 0 – : E2!2g

    From 2 – : ;.22!2g

    1f the discharge is ;.*; m+!s, what > is being gi/en up b& the

    water turbine.

    $le/. CD mAW.9

    $le/. ; ('atum)

    D; mm dia.

    BW.9

    D; mm dia.

  • 8/8/2019 Part I.A -Fundamentals of Fluid Dynamics

    28/38

    $le/. D; mAW.9

    D; mm dia.

    $le/. ; ('atum)BW.9

    D; mm dia.

    (a) 7sing $nerg& $quation (0 – )

     ! A L ! ! !

    T  A A A  H  Z 

     p

     g 

    V  E  Z 

     p

     g 

    V −+++=−++   ,

    22

    22   γ  γ  

    negl. ; negl. ;

       

      

     ++=−  g 

     g 

    V  E T  22.025060

    22

    Where:

     A

    QV   =

    ( ) 2610.0

    4

    708.0

    π =

     s

    m423.2=

       

      

     −=

     g 

    V  E T 

    22.560

    2

    #hen,

       

      

     −=

    81.92

    423.22.560

    2

     x E T    m444.58=

  • 8/8/2019 Part I.A -Fundamentals of Fluid Dynamics

    29/38

    #herefore

    746

     E Q

     HP 

      ⋅⋅

    =

      γ  

    ( )

    hp s

    m N 

    mm

     N 

     s

    m

     HP −

       

      

       

      

     

    =

    746

    444.589810708.03

    3

    hp HP    131.544=

    ote : s

    m N  − s

     # =   $atts=

  • 8/8/2019 Part I.A -Fundamentals of Fluid Dynamics

    30/38

    $5ample ;. 1n a test to determine the discharge coefficient of a E; mm b&

    2 mm enturi 6eter the total weight of water passing through the

    meter in E minutes was +;; . 0 mercur&water differential gage

    connected to inlet and throat showed an a/erage mercur& difference

    of +D; mm. 'etermine the meter coefficient.

    9olution:

    (a) 6eter coefficient,

    .

    .

    th

    act 

    Q

    Q"  =

    (b) 0ctual 'ischarge,

    t%m

    Vo&'mQact   =.

    Qact γ  =.

    min/60min5

    /98103100 3

    . s x

    m N  N 

    Qact   =

     s

    m xQact 

    33

    .   10053.1  −=

    E; mm dia.

    2 mm

    +D; mm>g

    H2O

    • •

    1 2

  • 8/8/2019 Part I.A -Fundamentals of Fluid Dynamics

    31/38

    E; mm dia.

    2 mm

    +D; mm>g

    H2O

    • •

    1 2

    (c ) $nerg& equation ( – 2), >8 neglected (theoretical /alues)

    21,22

    2

    21

    1

    2

    1

    22  −+++=++   L H  Z 

     p

     g 

    V  Z 

     p

     g 

    γ  γ  

    γ  γ  

    21

    2

    1

    2

    2

    22

     p p

     g 

     g 

    −=−

    ;

    where :

    2211   V  AV  A   =

    ( ) ( )   22

    1

    2012.0

    4050.0

    4V V 

      π π =

    2

    2

    1015.0

    012.0V V     

      

      =

    21   0576.0   V V   =

  • 8/8/2019 Part I.A -Fundamentals of Fluid Dynamics

    32/38

    and   ( ) ( ) ( ) ( )γ  γ  

    21 6.13360.00.1360.0  p p

    =−+

    ( ) ( ) ( ) ( )γ  γ  

    21 6.13360.00.1360.0  p p

    =−+

    m p p

    536.421 =−γ  γ  

    #herefore,

    m g V 

     g V  536.4

    22

    2

    1

    2

    2 =−

    ( )m

     g 

     g 

    V 536.4

    2

    0576.0

    2

    2

    2

    2

    2 =−

    m g 

    V 536.4

    2997.0

    2

    2 =

     s

    mV    45.9

    2 =

    9o,   22V  AQth =

    ( ) ( )45.9012.04

    2π =thQ

     s

    m xQth

    3

    310069.1

      −=

    Finall&,

    3

    3

    10069.1

    10053.1−

    = x

     x" 

    985.0=" 

  • 8/8/2019 Part I.A -Fundamentals of Fluid Dynamics

    33/38

    $5ample . 0 pitot tube in a pipe in which air (Ba 3 2 !m+) is flowing is

    connected to a manometer containing water as in the figure shown.

    1f the difference in water le/els in the manometer is G; mm, what is the

      /elocit& of flow in the pipe, assuming a tube coef. %p 3 ;.GGI

    9olution:

    21,22

    2

    21

    1

    2

    1

    22  −+++=++   L H  Z  p

     g 

    V  Z 

     p

     g 

    γ  γ  

    (a) $nerg& equation ( – 2), >8 3 ; ( for theoretical /alues)

    • •• 2 +

    G; mm

    >2"

    air 

    ;

    ;

  • 8/8/2019 Part I.A -Fundamentals of Fluid Dynamics

    34/38

    • •• 2 +

    G; mm

    >2"

    air 

    21,22

    2

    211

    2

    122

      −+++=++   Laa

     H  Z  p

     g 

    V  Z 

     p

     g 

    γ  γ  

    ; ;

    aa

     p p

     g 

    γ  γ  

    12

    2

    1

    2−=

    %onsidering the manometer reading starting from point 2 proceeding to point +

    aa

    w

    a

     p p

    γ  γ  

    γ  

    γ  

    32 0090.0

    0   =+−−a

     p

    γ  

    1=

  • 8/8/2019 Part I.A -Fundamentals of Fluid Dynamics

    35/38

    • •• 2 +

    G; mm

    >2"

    air 

    aa

    w

    a

     p pγ  γ  

    γ  γ  

    32 0090.00   =+−−

    a

    w

    aa

     p p

    γ  

    γ  

    γ  γ  

    090.012 =−

    a

     pγ  

    1=

     0ssuming the specific weight of air, Ba 3 2 !m+

    ( )

    12

    9810090.012 =−aa

     p p

    γ  γ  m575.73=

    then,aa

     p p g V 

    γ  γ  

    12

    2

    1

    2 −=

    575.732

    2

    1 = g 

     s

    mV    994.371 =

    Finall&,

     s

    m xV act    994.3799.0=

    1 xV " V   pact  =

     s

    mV act    614.37=

    EXERCISE PROBLEMS

  • 8/8/2019 Part I.A -Fundamentals of Fluid Dynamics

    36/38

    EXERCISE PROBLEMS

    .0 Fluid flowing in a pipe +; cm in diameter has a uniform /elocit& of

    C m!s. #he pressure at the center of the pipe is C; a, and the ele/ation

      of the pipe-s center line abo/e an assumed datum is C.E m. %ompute the  total energ& per unit weight of the flowing fluid if it is (a) oil (s 3 ;;)

      (b) gas (B 3 .E; !m+).

    2.0 liquid of specific gra/it& .*E flows in a *E mm pipe. #he total energ&

      at a point in the flowing liquid is ;; K!. #he ele/ation of the pipe abo/e

      a fi5ed datum is +.; m and the pressure in the pipe is G; a. 'etermine

      the /elocit& of flow and the power a/ailable at that point.

    +.oint 0 in the suction pipe is m below the pump. 1t is mounted with an

      open manometer which reads a /acuum of 2; cm of mercur&. #he pipe is

      ; cm in diameter and the flow is +E liters!s of water. %ompute the total  energ& at point 0 with respect to a datum through the pump.

  • 8/8/2019 Part I.A -Fundamentals of Fluid Dynamics

    37/38

    C. 0 cit& requires a flow of .E m+!s for its water suppl&. 'etermine the

    diameter of the pipe if the /elocit& of flow is to be .; m!s.

    E. 0 pipe line consists of three successi/e lengths of E;; mm, C;; mm,

      and +;; mm pipes. With continuous discharge of +;; liters!s of oil

    (;.*E) compute the mean /elocit& in each pipe.

    D. 0 +;; mm pipe is connected b& a reducer to a ;; mm pipe. oints and

      2 are along the same ele/ation. #he pressure at point is 2;; a. #he

      flow is +; liters!s and the energ& lost between and 2 is equi/alent to  2; a. %ompute the pressure at point 2 if the liquid flowing is water.

    *.%ompute the /elocit& of the ?et if the larger diameter is ;; mm and the

      smaller diameter is +; mm. #he pressure head at point is +; m of the

      flowing water and the head lost between points and 2 is E J of the  /elocit& head of the ?et.

    1 mm 3 mm   • V2

    • V1

    1n figure C; liters!s of sea water (s3 ;+) is flowing from

  • 8/8/2019 Part I.A -Fundamentals of Fluid Dynamics

    38/38

    . 1n figure, C; liters!s of sea water (s3.;+) is flowing from

      to 2, and the pressure at is GE a while at 2 the pressure

      is – 2; a. oint 2 is D m higher than . %ompute the

    energ& lost in a between and 2 if ' 3 +;; mm and

      '2 3 ;; mm.

    !1

    !2

    V2

    V1

    1

    2

    D m