Parasites and Pathogens of Insects. Parasites

368
Parasites and Pathogens of Insects Volume 1: Parasites Edited by Ν. E. Beckage S. N. Thompson B. A. Federici Department of Entomology University of California Riverside, California Academic Press, Inc. A Division of Harcourt Brace & Company San Dieao New York Boston London Svdnev Tokvo Toronto

Transcript of Parasites and Pathogens of Insects. Parasites

Page 1: Parasites and Pathogens of Insects. Parasites

Parasites and Pathogens of Insects

Volume 1: Parasites

E d i t e d by

Ν. E. Beckage S. N. Thompson B. A. Federici Department of Entomology University of California Riverside, California

A c a d e m i c P r e s s , I n c . A Division of H a r c o u r t Brace & Company

San Dieao New York Boston London Svdnev Tokvo Toronto

Page 2: Parasites and Pathogens of Insects. Parasites

T h i s b o o k is p r i n t e d o n ac id - f r ee p a p e r . ©

Copyright © 1993 by ACADEMIC PRESS, INC. All Rights Reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher.

Academic Press, Inc. 1 2 5 0 S i x t h A v e n u e , S a n D i e g o , C a l i f o r n i a 9 2 1 0 1 - 4 3 1 1

United Kingdom Edition published by Academic Press Limited 2 4 - 2 8 O v a l R o a d , L o n d o n N W 1 7 D X

L i b r a r y o f C o n g r e s s C a t a l o g i n g - i n - P u b l i c a t i o n D a t a

P a r a s i t e s a n d p a t h o g e n s o f i n s e c t s / e d i t e d b y Ν . E . B e c k a g e , S . N .

T h o m p s o n , B . A . F e d e r i c i .

p . c m .

I n c l u d e s b i b l i o g r a p h i c a l r e f e r e n c e s a n d i n d e x .

I S B N 0 - 1 2 - 0 8 4 4 4 1 - 9 (v . 1) . - I S B N 0 - 1 2 - 0 8 4 4 4 2 - 7 (v . 2 )

1. I n s e c t s — P a r a s i t e s . 2 . I n s e c t s — P a t h o g e n s . 3 . H o s t — p a r a s i t e s

r e l a t i o n s h i p s . I. B e c k a g e , Ν . E . ( N a n c y Ε . ) Π. T h o m p s o n , S . N .

I I I . F e d e r i c i , B r i a n A .

Q L 4 9 5 . P 2 6 5 1 9 9 3

595 .7O23-K1C20 9 2 - 4 5 0 3 4

CDP

PRINTED IN THE UNITED STATES OF AMERICA

93 94 95 96 97 98 EB 9 8 7 6 5 4 3 2 1

Page 3: Parasites and Pathogens of Insects. Parasites

Contents o f Vo lume 2

Chapter 1 Tripartite Interactions between Symbiotically Associated Entomopathogenic Bacteria, Nematodes, and Their Insect Hosts

Ray J. Akhurst and Gary B. Dunphy

Chapter 2 The Insect Immune Proteins and the Regulation of Their Genes

Ingrid Faye and Dan Hultmark

Chapter 3 Interactions of Bacillus thuringiensis Endotoxins with the Insect Midgut Epithelium

Patricia V. Pietrantonio, Brian A. Federici, and Sarjeet S. Gil l

Chapter 4 Viral Pathobiology in Relation to Insect Control

Brian A. Federici

Chapter 5 Baculoviruses, Vertebrate Viruses, and Cytoskeletons

Carol A. Charlton and Loy E. Volkman

Chapter 6 Baculovirus Enhancing Proteins as Determinants of Viral Pathogenesis

Bartholomew G. Corsaro, Mark Gijzen, Ping Wang, and Robert R. Granados

Chapter 7 Invertebrate Transposable Elements in the Baculovirus Genome: Characterization and Significance

Paul D. Friesen

xi

Page 4: Parasites and Pathogens of Insects. Parasites

Contents of Volume 2

Genetic Manipulation of the Baculovirus Genome for Insect Pest Control

R. E. Hawtin and R. D. Possee

Insect Resistance to Viruses

James R. Fuxa

Biology and Mechanisms of Insect-Cuticle Invasion by Deuteromycete Fungal Pathogens

Raymond St. Leger

Host—Parasitoid—Pathogen Interactions

Wayne M. Brooks

xii

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Page 5: Parasites and Pathogens of Insects. Parasites

Contributors

Numbers in parentheses indicate the pages on which the authors' contributions begin.

Nancy E. Beckage (25) , D e p a r t m e n t of E n t o m o l o g y , U n i v e r s i t y of Cal ifor­n ia , R ive r s ide , Ca l i fo rn ia 92521

Bruce M. Christensen (245) , D e p a r t m e n t of A n i m a l H e a l t h a n d B i o m e d i c a l Sc iences , U n i v e r s i t y of W i s c o n s i n , M a d i s o n , W i s c o n s i n 53706

Thomas Coudron (227) , Biological C o n t r o l of In sec t s L a b , U S D A - A R S , C o ­l u m b i a , M i s s o u r i 65205

Douglas L Dahlman (145) , D e p a r t m e n t of En tomology , U n i v e r s i t y of K e n ­tucky, L e x i n g t o n , K e n t u c k y 40546

Jo-Ann G. W. Fleming (189) , D e p a r t m e n t of En tomology , T e x a s A & M U n i ­versity, Co l l ege S t a t i on , T e x a s 77843

David R. Horton (107) , Y a k i m a A g r i c u l t u r a l L a b , U S D A - A R S , Y a k i m a , W a s h i n g t o n 98902

Hilary Hurd (87) , D e p a r t m e n t of Biological Sc iences , U n i v e r s i t y of Kee le , S taf fordshi re , S T 5 5 B G U n i t e d K i n g d o m

Davy Jones (227) , G r a d u a t e C e n t e r for Toxicology, U n i v e r s i t y of K e n t u c k y , L e x i n g t o n , K e n t u c k y 40506

Michael R. Kanost (317) , D e p a r t m e n t of B iochemis t ry , K a n s a s S t a t e U n i v e r ­sity, M a n h a t t a n , K a n s a s 66506

Richard D. Karp (305) , D e p a r t m e n t of Biological Sc iences , U n i v e r s i t y of C i n c i n n a t i , C i n c i n n a t i , O h i o 45221

Peter J. Krell (189) , D e p a r t m e n t of Microb io logy , U n i v e r s i t y of G u e l p h , G u e l p h , O n t a r i o N I T 2 W 1 , C a n a d a

Beatrice Lanzrein (59) , Div i s ion of D e v e l o p m e n t a l Biology, Zoo log ica l I n s t i ­t u t e , U n i v e r s i t y of B e r n e , 3012 B e r n e , S w i t z e r l a n d

xiii

Page 6: Parasites and Pathogens of Insects. Parasites

xiv Contributors

Pauline O. Lawrence (59), D e p a r t m e n t of Zoology, U n i v e r s i t y of F l o r i d a , Ga inesv i l l e , F l o r i d a 32611

M. Mackauer (1), C e n t r e for Pest M a n a g e m e n t , D e p a r t m e n t of Bio logica l Sc iences , S i m o n F r a s e r Univers i ty , B u r n a b y , Br i t i sh C o l u m b i a , C a n a d a V 5 A 1S6

Janice Moore (107) , D e p a r t m e n t of Biology, C o l o r a d o S t a t e Univers i ty , Fo r t Col l ins , C o l o r a d o 80523

Norman A. Ratcliffe (267) , B i o m e d i c a l a n d Phys io log ica l R e s e a r c h G r o u p , School of Biological Sc iences , U n i v e r s i t y Col lege of S w a n s e a , S ing le ton Pa rk , S w a n s e a , SA2 8 P P Wales , U n i t e d K i n g d o m

R. Sequeira (1), School of Biological Sc iences , U n i v e r s i t y of E a s t A n g l i a , N o r w i c h N R 4 7 T G , E n g l a n d

David W. Severson (245), D e p a r t m e n t of A n i m a l H e a l t h a n d B i o m e d i c a l Sc iences , U n i v e r s i t y of W i s c o n s i n , M a d i s o n , W i s c o n s i n 53706

Donald B. Stoltz (167) , D e p a r t m e n t of Microb io logy , D a l h o u s i e Univers i ty , Ha l i fax , N o v a Scot ia , B 3 H 4 H 7 C a n a d a

Manickam Sugumaran (317) , D e p a r t m e n t of Biology, U n i v e r s i t y of M a s s a ­chuse t t s a t Bos ton , Bos ton , M a s s a c h u s e t t s 02125

S. N. Thompson (125) , D e p a r t m e n t of En tomology , U n i v e r s i t y of Ca l i fo rn ia , R ive r s ide , Ca l i fo rn ia 92521

S. Bradleigh Vinson (145) , D e p a r t m e n t of En tomology , T e x a s A & M U n i v e r ­sity, Col lege S t a t i on , Texas 77843

Page 7: Parasites and Pathogens of Insects. Parasites

Preface

T h e focus of this t w o - v o l u m e set is t h e interface b e t w e e n insec ts a n d the i r a s soc i a t ed p a r a s i t e s a n d p a t h o g e n s , w i t h p a r t i c u l a r e m p h a s i s p l aced o n t h e bas i c biology, b iochemis t ry , a n d m o l e c u l a r b io logy of t hese i n t i m a t e a n d i n t r i g u i n g r e l a t i o n s h i p s . T h e in i t ia l i n s p i r a t i o n for th is book w a s t h e r ecogn i ­t ion t h a t a l t h o u g h t h e p o t e n t i a l u se as b io logica l con t ro l a g e n t s of m a n y p a r a s i t e s a n d p a t h o g e n s of insec ts h a s b e e n in tens ive ly inves t iga t ed , few r ecen t works have a t t e m p t e d to a d d r e s s t h e b i o c h e m i c a l a n d m o l e c u l a r in te r ­ac t ions o c c u r r i n g b e t w e e n insec t hos t s a n d the i r i n v a d e r s . Yet t hese i n t e r ac ­t ions c lear ly a r e cr i t ica l to t h e u l t i m a t e o u t c o m e of t he con f ron ta t i on b e t w e e n a n y i n v a d e r a n d its hos t . T h e p a r a s i t e o r p a t h o g e n m u s t e v a d e o r s u p p r e s s t h e hos t i m m u n e r e s p o n s e a n d , wh i l e u l t i m a t e l y c o m p l e t i n g i ts d e v e l o p m e n t in t h e hos t , m u s t n o t s t ress it p r e m a t u r e l y s u c h t h a t t h e su rv iva l of b o t h p a r t n e r s is c o m p r o m i s e d . I n a d d i t i o n , t he hos t e n v i r o n m e n t m u s t satisfy t h e p a r a s i t e s ' n u t r i t i o n a l a n d m e t a b o l i c n e e d s .

O u r i n t e n t is to s u m m a r i z e d e v e l o p m e n t s a n d t echno log ica l a p p r o a c h e s c u r r e n t l y b e i n g exp lo i t ed to m o n i t o r t h e b i o c h e m i c a l , i m m u n o l o g i c a l , m e t a ­bol ic , a n d b e h a v i o r a l a l t e r a t i o n s in insec ts infected w i t h p a r a s i t e s a n d p a t h o ­gens , w i t h p a r t i c u l a r e m p h a s i s on i n t e r ac t i ons o c c u r r i n g a t t h e m o l e c u l a r level. Add i t iona l ly , o u r a u t h o r s p r e s e n t severa l novel ideas for exp lo i t a t i on of this i n f o r m a t i o n in t h e m a n i p u l a t i o n of insec t pes t s .

P r e s s u r e to m i n i m i z e s y n t h e t i c c h e m i c a l insec t ic ides in insec t c o n t r o l p r o ­g r a m s h a s led to i n c r e a s e d in t e re s t in t h e use a n d s t u d y of p a r a s i t e s a n d p a t h o g e n s c a p a b l e of l imi t ing insec t p o p u l a t i o n s . T h i s in te res t , in c o m b i n a ­t ion w i t h r a p i d a d v a n c e s in t h e t e c h n i q u e s n o w ava i l ab le to s t u d y b io logica l s y s t e m s , h a s r e su l t ed in a n e n o r m o u s i nc rea se in k n o w l e d g e a b o u t t h e b io ­c h e m i s t r y a n d phys io logy of t h e p a r a s i t e s a n d p a t h o g e n s t h a t a t t a c k insec t s , as well as the i r i n t e r ac t i ons w i t h t h e hos t . T h i s k n o w l e d g e is so d iverse a n d ex tens ive t h a t m o s t j o u r n a l rev iews d e a l on ly w i t h h igh ly spec ia l i zed a s p e c t s of t h e overa l l field. W h i l e s u c h rev iews a r e of g r e a t v a l u e , o u r i n t e n t for t he se two v o l u m e s w a s to a s s e m b l e a m o r e ex tens ive su rvey of th is r a p i d l y d e v e l o p ­ing field b y p u b l i s h i n g rev iews on se lec ted topics d e a l i n g w i t h i n t e r ac t i ons w i t h p a r a s i t e s ( V o l u m e 1) a n d p a t h o g e n s ( V o l u m e 2) of insec t s . I t w o u l d be

xv

Page 8: Parasites and Pathogens of Insects. Parasites

xvi Preface

imposs ib l e , even in two v o l u m e s , to rev iew all of t h e r ecen t findings cons id ­e red m a j o r a d v a n c e s . T h e r e f o r e , in se lec t ing o u r top ics , we chose to focus o n sub jec t a r e a s of l o n g - s t a n d i n g in te res t (e.g. , insec t a n t i b a c t e r i a l p r o t e i n s a n d p a r a s i t e - h o s t d e v e l o p m e n t a l in t e rac t ions ) a n d those d e a l i n g w i t h r e c e n t b r e a k t h r o u g h s t h a t a p p e a r s ignif icant a n d likely to b e of v a l u e in con t ro l l i ng insec ts (e.g. , d e v e l o p m e n t of r e c o m b i n a n t bacu lov i ruses a n d f o r m u l a t i o n of " s u p e r " p a t h o g e n s ) .

T h e i n t e n d e d a u d i e n c e for these v o l u m e s i nc ludes upper - l eve l u n d e r ­g r a d u a t e s w i t h spec ia l ty in te res t s in pa r a s i t o logy a n d en tomology , g r a d u a t e s t u d e n t s , a n d p o s t - g r a d u a t e r e s ea r che r s w h o m a y use th is i n f o r m a t i o n to dev ise n e w technolog ies for m a n i p u l a t i o n of insec ts of i m p o r t a n c e to ag r i cu l ­t u r e a n d h u m a n h e a l t h . We h o p e these v o l u m e s will find a n i c h e o n book­shelves in m a n y p e r s o n a l a n d profess ional l ib ra r ies focusing o n paras i to logy , en tomology , i m m u n o l o g y , ep idemiology , phys io log ica l ecology, e v o l u t i o n a r y biology, a n d o t h e r a r e a s d e a l i n g w i th va r ious a spec t s of h o s t - p a r a s i t e re la ­t i onsh ips .

I n sec t p a r a s i t o l o g y a n d p a t h o l o g y have c lear ly b e c o m e m u l t i d i s c i p l i n a r y fields. For e x a m p l e , t he d e v e l o p m e n t of n e w technolog ies for g e n e t rans fe r a n d a r t h r o p o d t r a n s f o r m a t i o n m a y benefi t f rom t h e exp lo i t a t i on of n a t u r a l l y o c c u r r i n g t r a n s p o s a b l e e l e m e n t s in insec t v i rus g e n o m e s . Useful t a r g e t genes for m a n i p u l a t i o n m i g h t i n c l u d e those t h a t a r e cr i t ica l to t h e n o r m a l func t ion­ing of t he i m m u n e sys t em as well as those pa r a s i t e - a s s o c i a t ed factors invok­ing d e v e l o p m e n t a l d i s r u p t i o n o r s ter i l i ty of insec t pes t s ( i .e. , e n d o c r i n e r e g u ­la to r s ) . G e n e s a s soc ia t ed w i t h ref ractor iness in vec to r a r t h r o p o d s a r e a lso i m p o r t a n t a n d a r e u n d e r s c ru t iny as poss ib le m e a n s for g e n e r a t i n g eng i ­n e e r e d vec tors w i t h r e d u c e d capac i ty to t r a n s m i t p a r a s i t e s .

I n c o n t r a s t to t h e re la t ively l imi ted i n fo rma t ion ava i l ab le o n m o l e c u l a r h o s t - p a r a s i t e a n d h o s t - p a t h o g e n in t e r ac t ions in insec t hos t s , a w e a l t h of r ecen t ly p u b l i s h e d m a t e r i a l desc r ibes t he r e l a t i onsh ips b e t w e e n p a r a s i t e s a n d p a t h o g e n s of m a m m a l s w i t h the i r r espec t ive hos t s . I n p a r t , th i s differ­ence reflects i n t ense r e s e a r c h efforts d i r ec t ed t o w a r d d e v e l o p i n g n e w t h e r a ­p e u t i c t r e a t m e n t s for d i sease b a s e d on these i n t e r ac t i ons in t h e h o p e of ident i fy ing cr i t ica l po in t s of vu lne rab i l i t y t h a t m a y b e m a n i p u l a t e d b y d r u g s o r o t h e r a g e n t s . A s imi l a r ex tens ive l i t e r a tu r e d e s c r i b i n g t h e m o l e c u l a r in te r ­ac t ions of p l a n t s w i t h p a t h o g e n s a n d p a r a s i t e s a l so n o w exis ts . O u r knowl ­edge of t h e m o l e c u l a r m e c h a n i s m s of i n t e r ac t ions b e t w e e n p l a n t s a n d p l a n t p a t h o g e n s is t h u s m u c h m o r e soph i s t i ca t ed t h a n o u r u n d e r s t a n d i n g of t h e m o l e c u l a r m e c h a n i s m s o p e r a t i n g in insec ts as they confront i n v a d e r s . W h i l e we have yet to identify v i ru l ence genes o r av i ru l en t m u t a n t s of t hose genes in species t h a t a t t a c k insec ts , for e x a m p l e , s u c h genes a l r e a d y h a v e b e e n iso­l a t ed in species t h a t a r e p a t h o g e n i c to p l a n t s a n d m a m m a l s . M o r e o v e r ,

Page 9: Parasites and Pathogens of Insects. Parasites

Preface xvii

t h o u g h m e c h a n i s m s of v i rus r e s i s t ance have b e e n p i n p o i n t e d in p l a n t s a n d m a m m a l s , o u r i n f o r m a t i o n a b o u t insect an t i v i r a l defenses r e m a i n s r u d i m e n ­tary. I n d u c t i o n of r e s i s t ance h a s b e e n d o c u m e n t e d , b u t its m e c h a n i s m s re ­m a i n to be ident i f ied.

N e v e r t h e l e s s , we d o have s ignif icant i n fo rma t ion a b o u t t h e c o m p l e x i t y of s o m e p rocesses , s u c h as t h e a n t i b a c t e r i a l defenses of insec t s , a n d h o w they pa ra l l e l s imi l a r p rocesses in m a m m a l i a n hos t s . H o r m o n a l h o s t - p a r a s i t e re la ­t i onsh ips have b e e n in tens ive ly s c ru t in i zed in severa l i n v e r t e b r a t e species , i n c l u d i n g m a n y insec ts , w h i c h a p p e a r to be p a r t i c u l a r l y a p p r o p r i a t e m o d e l s for s t u d y i n g e n d o c r i n e i n t e r ac t i ons . M o r e o v e r , t he a s soc ia t ion of t h i r d - p a r t y e l e m e n t s w i t h p a r a s i t e s is p e r h a p s bes t i l l u s t r a t ed by species t h a t a t t a c k insec ts ; for i n s t a n c e , b o t h w a s p a n d n e m a t o d e p a r a s i t e s s h o w i n t i m a t e re la­t i onsh ips w i t h v i ruses a n d bac t e r i a , respect ively, d u r i n g p a r a s i t i s m of insec t hos t s .

I n t h e s h o r t t e r m , these v o l u m e s a r e d i r ec t ed a t filling a void in t h e l i t e r a t u r e by e m p h a s i z i n g bas i c i n t e r ac t i ons a t t he b i o c h e m i c a l a n d m o l e c u ­l a r levels. I n t h e long t e r m , we expec t t h a t m a n y of these i n t e r ac t i ons will p r o v i d e a v e n u e s for exp lo i t a t ion to e i the r e n h a n c e t he r a t e s of "bene f i c i a l " p a r a s i t i s m (in b io logica l con t ro l , for e x a m p l e ) o r r e d u c e t h e r a t e of d i sease t r a n s m i s s i o n a n d the r a t e of infect ion of v e r t e b r a t e hos t s . O u r h o p e is t h a t t h e i n f o r m a t i o n a s s e m b l e d h e r e will have s ignif icant i m p a c t o n a g r i c u l t u r e a n d h u m a n h e a l t h a n d t h a t these v o l u m e s will s t i m u l a t e fresh a p p r o a c h e s to t h e inves t iga t ion of these fasc ina t ing a n d in t r i ca t e i n t e r ac t i ons .

We expres s t h a n k s to t h e a u t h o r s for t he i r t ime ly c o n t r i b u t i o n s . I n a d d i ­t ion , t h e scope a n d d e p t h of th is w o r k d e m a n d e d t h a t we enl is t t h e a s s i s t ance of m a n y sc ient i s t s to rev iew the c h a p t e r s . Fo r the i r t i m e a n d o u t s t a n d i n g efforts in th is endeavor , we s incere ly t h a n k the following i n d i v i d u a l s : D r s . T h e o d o r e A n d r e a d i s , C h r i s t o p h e r B a y n e , G a r y Bl i s sa rd , D r i o n B o u c i a s , J o h n B r o w n , Pe te r B r y a n t , J o h n B u r a n d , T h o m a s C o u d r o n , S a m u e l D a l e s , R o b i n D e n e l l , D o u g l a s D a h l m a n , G o r d o n G o r d h , R o b e r t G r a n a d o s , Pa t r i ck G r e a n y , L e a h H a i m o , Alfred H a n d l e r , K i y o s h i H i r u m a , H i l a r y H u r d , D a v y J o n e s , M i c h a e l K a n o s t , J a m e s K e r w i n , K a r l K r a m e r , Lesl ie Lewis , M i c h a e l Locke , R o b e r t L u c k , Lois Mi l le r , Lou i s Mi l le r , E d P la tze r , J o h n Pos t l e th -wa i t , L y n n Ridd i fo rd , J u s t i n S c h m i d t , D o n Stol tz , M i c h a e l S t r a n d , J u s t V l a k , B r u c e W e b b , J o h n Webs te r , A l a n W o o d , T i m o t h y Yosh ino , Rolf Z ieg-ler, a n d M a r l e n e Z u k .

I n a d d i t i o n , we a c k n o w l e d g e t h e excel lent sec re ta r i a l staff of t h e E n ­t o m o l o g y D e p a r t m e n t of t h e U n i v e r s i t y of Ca l i fo rn ia , R ive r s ide . We ex­p re s s spec ia l t h a n k s to M s , D i a n a H a n s o n a n d M s . P a m H o a t s o n for the i r efficient efforts in p roces s ing m a n u s c r i p t s a n d c o r r e s p o n d i n g w i t h o u r a u t h o r s .

Page 10: Parasites and Pathogens of Insects. Parasites

xviii Preface

Last ly, b u t m o s t i m p o r t a n t l y , t he ed i to r s express d e e p a p p r e c i a t i o n to Dr . Phyl l is B . M o s e s of A c a d e m i c Press for h e r u n w a v e r i n g e n t h u s i a s m for this pro jec t . H e r scientific i n p u t a n d ed i to r ia l adv ice w e r e i n v a l u a b l e to us first in deve lop ing the idea of a s s e m b l i n g these v o l u m e s a n d s u b s e q u e n t l y in oversee ing the pro jec t to frui t ion. We a lso acknowledge A c a d e m i c Press for i ts s p o n s o r s h i p .

Ν. E. Beckage S. N. Thompson

B. A. Federici

Page 11: Parasites and Pathogens of Insects. Parasites

Chapter 1

Patterns of Development in Insect Parasites M. Mackauer Centre for Pest Management Department of Biological Sciences Simon Fraser University Burnaby, British Columbia, Canada

R. Sequeira1

Centre for Pest Management Department of Biological Sciences Simon Fraser University Burnaby, British Columbia, Canada

I. Introduction

II. The Idiobiont-Koinobiont Dichotomy

III. Patterns of Parasite Development and Growth A. Idiobionts B. Koinobionts

IV. Parasite Development and Host Ecology A. Seasonal Adaptations B. Influence of Host Nutrition

V. Developmental Strategies

VI. Conclusions Acknowledgment References

I. Introduction

Successful p a r a s i t i s m by insec t p a r a s i t o i d s 2 r equ i r e s t he so lu t ion of t h r e e k i n d s of g e n e r a l p r o b l e m s : (1) w h i c h hos t to select; (2) h o w to i n t e g r a t e d e v e l o p m e n t a n d g r o w t h w i t h those of t he hos t ; a n d (3) w h a t l i fe-history tac t ics to a d o p t . T h e first p r o b l e m c o n c e r n s b e h a v i o r a l a d a p t a t i o n s r e l a t i n g to hos t se lec t ion a n d p r o g e n y a l loca t ion b y the a d u l t female ( C h a r n o v a n d Sk inner , 1985; W a a g e a n d Godfray, 1985; v a n A l p h e n a n d Vet , 1986; W a a g e , 1986) a n d will no t b e c o n s i d e r e d h e r e for th is r e a s o n . I n s t e a d we will focus m a i n l y o n t h e t h i r d a n d , to a lesser ex ten t , t he second p r o b l e m , b o t h of w h i c h c o n c e r n p a r a s i t e g r o w t h a n d d e v e l o p m e n t .

M o s t ea r ly s tud ie s have e m p h a s i z e d m e c h a n i s m s of p a r a s i t e g r o w t h a n d d e v e l o p m e n t , w i t h less a t t e n t i o n p a i d to t h e a d a p t i v e s ignif icance of t hese m e c h -

^urrent address: School of Biological Sciences, University of East Anglia, Norwich NR4 7TG, England.

2Henceforth we use the term parasite to mean parasitoid. These protelean parasites include a large group of mostly hymenopteran and dipteran species that, as immatures, are obligate parasites of insects and other arthropods and are free-living as adults. Hymenopterous parasites often are called parasitic wasps as opposed to the nonparasitic, aculeate wasps and bees.

Parasites and Pathogens of Insects Volume 1: Parasites 1

Copyright © 1993 by Academic Press, Inc. All rights of reproduction in any form reserved.

Page 12: Parasites and Pathogens of Insects. Parasites

2 Μ. Mackauer and R. Sequeira

a n i s m s . I n a c a u s a l a p p r o a c h , p a r a s i t e d e v e l o p m e n t a n d g r o w t h m a y b e c h a r a c t e r i z e d in t e r m s e i the r of t he effects of p a r a s i t i s m o n t h e hos t (e.g. , D o u t t , 1963; Sal t , 1964; Smi lowi tz a n d I w a n t s c h , 1973; C l o u t i e r a n d M a c k ­aue r , 1979, 1980; L a w r e n c e , 1982; T h o m p s o n , 1982, 1983; Beckage a n d T e m p l e t o n , 1985, 1986; S t r a n d , 1986; G u n a s e n a et al., 1989; V i n s o n , 1990; S t r a n d a n d Dover , 1991) or of t he pa ra s i t e ' s r e s p o n s e to v a r i a t i o n s in t h e n u t r i ­t iona l s t a t e a n d phys io logy of t he hos t (e.g. , C o r b e t , 1968; Wese loh , 1984; H e b e r t a n d C lou t i e r , 1990; L a w r e n c e , 1990; K o u a m e a n d M a c k a u e r , 1991 ; S t r a n d etal., 1991; S e q u e i r a a n d M a c k a u e r , 1992a ,b) . I n th is r e g a r d , L a w r e n c e (1986, 1990) cons ide r ed hos t r egu l a t i on ( V i n s o n , 1975; V i n s o n a n d I w a n t s c h , 1980a) a n d flexibility of p a r a s i t e d e v e l o p m e n t ( C o r b e t , 1968; Wese loh , 1984) as a l t e r n a t e d e v e l o p m e n t a l s t ra teg ies . T h i s v i e w p o i n t s t resses p r o x i m a t e m e c h a ­n i s m s of p a r a s i t e surv iva l b a s e d on qua l i t a t i ve d e s c r i p t i o n s of t h e phys io log ica l a n d b i o c h e m i c a l i n t e r ac t ions b e t w e e n the p a r a s i t e s a n d the i r hos t s .

Howeve r , func t iona l c o n s t r a i n t s o n t he pa r a s i t e ' s g r o w t h a n d d e v e l o p m e n t on o r in different hos t s c a n a lso b e cons ide red as va r i ab l e s w i t h i n a b r o a d e r evo lu t i ona ry f r amework . T h i s a p p r o a c h e m p h a s i z e s q u e s t i o n s a b o u t t he fit­ness va lue of d e v e l o p m e n t a l cha rac te r i s t i c s a n d p a t t e r n s of hos t u t i l i za t ion . B e c a u s e p r o t e l e a n p a r a s i t e s d e p e n d exclusively o n hos t -de r ived n u t r i e n t s for the i r l a rva l d e v e l o p m e n t a n d g r o w t h , n a t u r a l se lect ion w o u l d b e e x p e c t e d to favor m e c h a n i s m s t h a t m a x i m i z e t h e efficient u t i l i za t ion of t hese r e sou rce s . O p t i m a l r e sou rce a l loca t ion to a d u l t b o d y size, cons ide r ed t h e p e r h a p s m o s t i m p o r t a n t c o m p o n e n t of D a r w i n i a n fitness in p a r a s i t i c w a s p s ( K i n g , 1987), d e p e n d s on the insec t ' s g r o w t h r a t e a n d d e v e l o p m e n t t i m e . T h e a l loca t ion of l imi ted (hos t ) r e sources to c o m p e t i n g fitness funct ions m a y resu l t in t r a d e ­offs t h a t d e t e r m i n e a n " o p t i m a l c h a r a c t e r s e t " a n d , in d o i n g so , m a y s h a p e the evo lu t ion of a species ' l ife-history s t r a t egy (Sibly a n d Calow, 1986).

We use t he t e r m strategy in a c c o r d a n c e w i t h D o m i n e y (1984) to refer to a set of g e n e r a l ru les t h a t specify w h i c h a l t e r n a t i v e p a t t e r n of r e sponses will b e a d o p t e d in a p a r t i c u l a r s i tua t ion ; these ru les a r e typ ica l for each species a n d d e t e r m i n e its a d a p t e d n e s s to t he e n v i r o n m e n t , h e r e t h e hos t . Tac t i cs , b y c o n t r a s t , refer to severa l a l t e rna t i ve o p t i o n s o r m e c h a n i s m s b y w h i c h these e v o l u t i o n a r y object ives a r e ach ieved ; these o p t i o n sets m a y v a r y a m o n g dif­ferent i n d i v i d u a l s o r p h e n o t y p e s . Also , we d i s t i ngu i sh b e t w e e n h o s t su i t ­ab i l i ty (Sal t , 1938; V i n s o n a n d I w a n t s c h , 1980b) a n d h o s t qua l i ty , two t e r m s often u sed synonymous ly . A hos t species is su i t ab l e if it n o r m a l l y s u p p o r t s t h e successful d e v e l o p m e n t of p a r a s i t e offspring; consequen t ly , su i t ab i l i ty is a cha rac t e r i s t i c of t he hos t species a n d is gene t ica l ly d e t e r m i n e d , o r l a rge ly so . I n c o m p a r i s o n , we use t he t e r m q u a l i t y to de sc r ibe v a r i a t i o n s in t h e s t a t e o r c o n d i t i o n of t h e hos t t h a t affect p rocess d y n a m i c s , s u c h as t h e r a t e s of p a r a ­si te g r o w t h a n d d e v e l o p m e n t . S u c h s t a t e va r i ab l e s i n c l u d e , o r m a y b e co r r e ­l a t ed w i t h , hos t age , s t age of d e v e l o p m e n t , size, sex, a n d n u t r i t i o n a l s t a t u s .

Page 13: Parasites and Pathogens of Insects. Parasites

1. Patterns of Development in Insect Parasites 3

T h e c h a p t e r is o r g a n i z e d as follows. F i r s t , we i n t r o d u c e t h e i d i o b i o n t -k o i n o b i o n t d i c h o t o m y , w h i c h we use as a ( m a c r o e v o l u t i o n a r y ) o r g a n i z i n g s c h e m e . S e c o n d , we d e s c r i b e severa l d e v e l o p m e n t a l p a t t e r n s t h a t c h a r a c t e r ­ize b r o a d differences b e t w e e n i d i o b i o n t a n d k o i n o b i o n t p a r a s i t e s . N e x t , we d i scuss s ea sona l a d a p t a t i o n s a n d t h e inf luence of hos t n u t r i t i o n o n p a r a s i t e d e v e l o p m e n t , i n c l u d i n g s u p e r p a r a s i t i s m a n d s t a r v a t i o n . Final ly , we p r o p o s e t h r e e m o d e l s of p a r a s i t e d e v e l o p m e n t in r e s p o n s e to hos t c o n s t r a i n t s . We sugges t t h a t t h e essen t ia l c o m p o n e n t s of a n y d e v e l o p m e n t a l s t r a t e g y a r e t h e p a r a s i t e ' s g r o w t h r a t e , d e v e l o p m e n t t ime , a n d a d u l t b i o m a s s , w h i c h a r e c o n s t r a i n e d by h o s t q u a l i t y in a n associa t ion-speci f ic m a n n e r .

II. The Idiobiont—Koinobiont Dichotomy

H a e s e l b a r t h (1979) first d r e w a t t e n t i o n to a n i m p o r t a n t m a c r o e v o l u t i o n a r y d iv i s ion b e t w e e n p a r a s i t e s d e v e l o p i n g in hos t s t h a t c o n t i n u e to g r o w a n d m e t a m o r p h o s e d u r i n g t h e in i t ia l s t ages of p a r a s i t i s m (cal led k o i n o p h y t e s ) a n d those t h a t deve lop in n o n g r o w i n g a n d p a r a l y z e d hos t s (ca l led id-i ophy t e s ) . A s k e w a n d S h a w (1986) i n t r o d u c e d t h e t e r m s k o i n o b i o n t a n d i d i o b i o n t to d e s c r i b e these a l t e r n a t i v e hos t - exp lo i t a t i on s t r a t eg ie s .

B e c a u s e t h e h o s t of a n i d i o b i o n t does n o t feed, grow, o r m e t a m o r p h o s e d u r i n g t h e c o u r s e of t h e i n t e r ac t i on , it c o n t a i n s a fixed a m o u n t of r e sou rces for t h e p a r a s i t e l a rva , w i t h l a rge hos t s b e i n g a s s u m e d of h i g h e r q u a l i t y t h a n s m a l l h o s t s . H o w e v e r , un less t h e hos t is ki l led by t h e female a t ov ipos i t ion , age - r e l a t ed v a r i a t i o n s in q u a l i t y m a y resu l t f rom d e v e l o p m e n t a l c h a n g e s w i t h i n a p a r t i c u l a r hos t s t age , s u c h as eggs a n d p u p a e ( S t r a n d , 1986; K i n g , 1990a) . By c o n t r a s t , hos t s p a r a s i t i z e d b y a k o i n o b i o n t c o n t i n u e to feed, grow, a n d d e v e l o p d u r i n g m u c h of t h e i n t e r ac t i on . C o n s e q u e n t l y , hos t q u a l i t y a s a r e s o u r c e for t h e p a r a s i t e l a r v a is in f luenced by fu ture h o s t g r o w t h , w h i c h d e p e n d s o n t h e hos t ' s a g e a n d s t a g e of d e v e l o p m e n t , r a t h e r t h a n o n its s ize, a t t h e t i m e of p a r a s i t i z a t i o n ( M a c k a u e r , 1986; K i n g , 1989; K o u a m e a n d M a c k -aue r , 1991; S e q u e i r a a n d M a c k a u e r , 1992a) .

B l a c k b u r n (1991) n o t e d t h a t k o i n o b i o n t s h a v e longe r p u p a l p e r i o d s a n d p r e a d u l t life s p a n s t h a n id iob ion t s , sugges t i ng t h a t these t w o g r o u p s h a v e p r o b a b l y evolved u n d e r different c o n s t r a i n t s w i t h r e g a r d to r e s o u r c e u s a g e . A s k e w a n d S h a w (1986) c o m p a r e d i d i o b i o n t a n d k o i n o b i o n t s t r a t eg ies as a co r r e l a t e of h o s t r a n g e . T h e y p r o p o s e d t h a t k o i n o b i o n t s a r e m o r e likely to s h o w a n a r r o w spec ia l i za t ion b e c a u s e of t he i r g r e a t e r d e p e n d e n c e o n hos t phys io logy a n d d e v e l o p m e n t . G a u l d a n d Bo l ton (1988) n o t e d t h a t i d iob ion t s typ ica l ly a r e synovigen ic (i .e. , females m a t u r e eggs c o n t i n u o u s l y t h r o u g h o u t life), p r o d u c e re la t ive ly l a rge , l ec i tha l (or a n h y d r o p i c ) eggs c o n t a i n i n g suffi­c ien t r e sou rces for ea r ly e m b r y o n i c d e v e l o p m e n t , a n d d e v e l o p as ec to -

Page 14: Parasites and Pathogens of Insects. Parasites

4 Μ. Mackauer and R. Sequeira

p a r a s i t e s on concea l ed hos t s . K o i n o b i o n t s , b y c o n t r a s t , a r e typ ica l ly e n d o -p a r a s i t e s , p r o d u c e sma l l n u t r i e n t - p o o r , a l ec i tha l (or h y d r o p i c ) eggs , a n d a t t a ck f ree-moving hos t s .

I d i o b i o n t a n d k o i n o b i o n t s t ra teg ies show p o o r co r r e l a t i on w i t h so l i t a ry a n d g r e g a r i o u s d e v e l o p m e n t (Askew a n d Shaw, 1986). T h e o r e t i c a l r esu l t s (Godfray, 1987), a n d s o m e e x p e r i m e n t a l ev idence ( C r u z , 1981), sugges t t h a t so l i ta ry a n d g r e g a r i o u s d e v e l o p m e n t r e p r e s e n t d i s t inc t r e p r o d u c t i v e a n d / o r d e v e l o p m e n t a l s t ra teg ies (Waage , 1986). However , m a n y g r o u p s of p a r a s i t e s , i n c l u d i n g severa l g e n e r a such as Cotesia, c o n t a i n b o t h so l i t a ry a n d g r e g a r i o u s species . I n m o s t cases it is n o t c lear w h e t h e r s u c h d e v e l o p m e n t a l v a r i a t i o n s a r e d u e to hos t - r e l a t ed cond i t i ons (le M a s u r i e r , 1987, 1991) o r reflect phy -logene t ic c o n s t r a i n t s ( G a u l d , 1988; G a u l d a n d Bo l ton , 1988), o r b o t h .

III. Patterns of Parasite Development and Growth

A species ' l ife-history s t r a t egy r e p r e s e n t s a u n i q u e c o m b i n a t i o n of r e sponses ( tact ics) t h a t a r e s h a p e d by n a t u r a l se lect ion from a n o p t i o n se t a s soc i a t ed w i t h each p h e n o t y p i c cha rac t e r . O p t i o n sets m a y b e empi r i ca l l y def ined as t he q u a n t i t a t i v e r e sponses of the i r c o r r e s p o n d i n g l ife-history c h a r a c t e r s . W i t h r e g a r d to h o s t - p a r a s i t e i n t e r ac t ions , it is c o n v e n i e n t to d i s t i n g u i s h b e t w e e n two r e s p o n s e ca tegor ies : t h e inf luence of t he hos t ' s p h e n o t y p e o n t h e p a r a s i t e ' s p h e n o t y p e , a n d the fitness c o n s e q u e n c e s of v a r i a t i o n s in t h e p a r a ­si te 's p h e n o t y p i c a t t r i b u t e s . T h e first c a t ego ry inc ludes t h e inf luence of t h e species of hos t , of its s t age of d e v e l o p m e n t , a n d of i ts n u t r i t i o n a l s t a t u s o n t h e p a r a s i t e ' s g r o w t h r a t e , d e v e l o p m e n t , a n d size a t m a t u r i t y .

I n this a n d the following sec t ion , we use se lec ted host—paras i te assoc ia ­t ions to identify va r i ab l e s t h a t a r e likely to r e p r e s e n t m a j o r c o m p o n e n t s of m i c r o e v o l u t i o n a r y s t r a t eg ies .

A. Idiobionts

1. E g g Paras i t e s (Trichogramma)

T h e genera l i s t egg p a r a s i t e s of t h e g e n u s Trichogramma a r e a m o n g t h e m o s t t h o r o u g h l y s t u d i e d id iob ion t s . T h e s e species a r e easi ly r e a r e d in t h e l a b o r a ­to ry o n the i r h a b i t u a l as well as on va r ious fact i t ious hos t s (Bigler et al.} 1987; S c h m i d t a n d S m i t h , 1987). I n his s e m i n a l s tud ie s , Sa l t (1940) d e m o n s t r a t e d a close co r re l a t ion b e t w e e n the size of hos t eggs a n d t h e a d u l t size of t h e p a r a s i t e . Eggs t h a t were too sma l l to satisfy all t he n u t r i t i o n a l r e q u i r e m e n t s of t he deve lop ing p a r a s i t e l a rva p r o d u c e d " r u n t s " w i t h s t r u c t u r a l p e c u -

Page 15: Parasites and Pathogens of Insects. Parasites

1. Patterns of Development in Insect Parasites 5

l iar i t ies cha rac t e r i s t i c of s t a r v a t i o n . Also , d e v e l o p m e n t t i m e va r i ed w i t h t h e egg 's size a n d t h e th ickness of i ts cho r ion .

A l t h o u g h species of Trichogramma exh ib i t d i s t inc t p a t t e r n s of hos t - s ize a n d species u s a g e ( H i n t z a n d Andow, 1990), a c c u r a t e a s s e s s m e n t of a d a p t i v e life-h i s to ry v a r i a t i o n a n d d e v e l o p m e n t a l s t r a t eg ies is m a d e difficult b y facul ta t ive g r e g a r i o u s d e v e l o p m e n t . Pak (1986) r ecogn ized six d i s t inc t p a t t e r n s in t h e r e l a t i o n s h i p b e t w e e n hos t age a t p a r a s i t i z a t i o n a n d d e v e l o p m e n t a l success in Trichogramma. F ive of t hese p a t t e r n s w e r e n o n l i n e a r , a fact i n d i c a t i n g t h a t h o s t q u a l i t y for p a r a s i t e d e v e l o p m e n t is a n o n l i n e a r func t ion of hos t age a n d , m o r e i m p o r t a n t p e r h a p s , t h a t these q u a n t i t a t i v e r e l a t i o n s h i p s a r e associa t ion-speci f ic . W h i l e p a r a s i t e size a n d fecundi ty i n c r e a s e d w i t h h o s t size (Rezn ik a n d U m a r o v a , 1990), d e v e l o p m e n t t i m e va r i ed n o n l i n e a r l y w i t h hos t s ize, poss ib ly ref lect ing differences in re la t ive hos t q u a l i t y r a t h e r t h a n in a b s o l u t e hos t size o r age . B a r r e t t a n d S c h m i d t (1991) sugges t ed t h a t , in s m a l l hos t eggs , t h e p a r a s i t o i d ' s size is r e s t r i c t ed b y the n u t r i e n t s a n d space avai l ­a b l e . H o w e v e r , in hos t s above a t h r e s h o l d v o l u m e , t h e size of t h e r e su l t i ng w a s p s d e p e n d s o n t h e n u m b e r of eggs a l loca t ed b y t h e female a t ov ipos i t ion .

E g g s m a y be cons ide r ed as t r a n s i t o r y hos t s t ages in t h a t r a p i d e m b r y -ogenes is c a n qu ick ly d e p l e t e t h e a m o u n t a n d the ava i lab i l i ty of s t o r ed re ­sources ( A n d e r s o n , 1972). T h u s , egg p a r a s i t e s a r e u n d e r se lec t ion to m i n i ­m i z e d e v e l o p m e n t t i m e a n d to m a x i m i z e g r o w t h r a t e ( S t r a n d , 1986). S t r a n d (1986) sugges t ed t h a t , in Trichogramma spec ies , p o l y p h a g y m a y b e a conse ­q u e n c e of t h e phys io log ica l un i fo rmi ty of insec t eggs as a food r e s o u r c e , especia l ly b e c a u s e eggs lack s ignif icant ce l lu la r defenses a n d a r e often u n ­p r o t e c t e d . I f th is h y p o t h e s i s is in fact cor rec t , we w o u l d expec t l i t t le v a r i a t i o n in t h e g r o w t h r a t e s of gene ra l i s t (egg) p a r a s i t e s . H o w e v e r , m o r e d e t a i l e d s tud i e s of t h e g r o w t h , d e v e l o p m e n t , a n d b i o n o m i c s of egg p a r a s i t e s m a y well revea l s u b s t a n t i a l hos t - r e l a t ed v a r i a t i o n in p a r a s i t e p e r f o r m a n c e ( M a r s t o n a n d E r t l e , 1973; Bigler et al, 1987; Rezn ik a n d U m a r o v a , 1990; B a r r e t t a n d S c h m i d t , 1991).

2 . P u p a l Paras i t e s (Pimpla, Coccygomimus)

T h e g r o w t h a n d d e v e l o p m e n t of p u p a l e n d o p a r a s i t e s a n d of t hose t h a t kill t he h o s t a t o r sho r t ly after ov ipos i t ion is less well s t u d i e d . A r t h u r a n d Wyl ie (1959) s h o w e d t h a t , in t h e i c h n e u m o n i d Pimpla turionellae, b o d y size i n c r e a s e d w i t h t h e p u p a l size of different hos t spec ies , whi le d e v e l o p m e n t t i m e w a s gene ra l l y l onge r in l a rge t h a n in sma l l p u p a e . S a n d l a n (1982) found t h a t t h e a d u l t size of Coccygomimus turionellae d e c r e a s e d w i t h a n i nc r ea se in hos t a g e w i t h i n a h o s t species b u t w a s n o t co r r e l a t ed w i t h size differences b e t w e e n h o s t species ; however , p a r a s i t e d e v e l o p m e n t t i m e i n c r e a s e d w i t h p u p a l a g e .

H o s t size-, age- , a n d spec ies -usage p a t t e r n s in p u p a l p a r a s i t e s , i n d e x e d b y the p e r c e n t a g e of p a r a s i t i s m , m a y v a r y w i t h i n a n d b e t w e e n hos t species

Page 16: Parasites and Pathogens of Insects. Parasites

6 Μ. Mackauer and R. Sequeira

( H a l l a n d Fischer , 1988; K i n g , 1990b) . F u r t h e r m o r e , L e g n e r (1969) r e p o r t e d t h a t p a r a s i t e d e v e l o p m e n t t i m e was co r r e l a t ed , in a n associa t ion-speci f ic m a n n e r , w i t h hos t size a t p a r a s i t i z a t i o n in p u p a l e n d o - b u t n o t e c t o p a r a s i t e s .

B. Koinobionts

M o s t of t he l i t e r a tu r e o n h o s t - p a r a s i t e d e v e l o p m e n t a l i n t e r ac t i ons is con­c e r n e d w i th ko inob ion t s , especia l ly so l i ta ry e n d o p a r a s i t e s . I n these spec ies , t he d y n a m i c s of p a r a s i t i s m is d e t e r m i n e d by the m e c h a n i s m s t h a t con t ro l t h e g r o w t h a n d d e v e l o p m e n t of t he p a r a s i t e i m m a t u r e s in r e s p o n s e to hos t c o n d i ­t ions , w h i c h in t u r n m a y be a l t e red in r e sponse to p a r a s i t i s m . S u c h a " c o u n ­t e r b a l a n c e d s t a t e of o p p o s i n g c o n d i t i o n s " was t e r m e d enantiostasis by M a n -g u m a n d Towle (1977) .

1. A p h i d i i d W a s p s (Aphidius, Ephedras)

T h e p e a a p h i d , Acyrthosiphon pisum, s u p p o r t s a b r o a d r a n g e of so l i t a ry e n d o p a r a s i t e s be long ing to two h y m e n o p t e r a n famil ies , A p h i d i i d a e a n d A p h -e l in idae . A l t h o u g h m a n y of these p a r a s i t e s c a n successfully d e v e l o p in all t h e n y m p h a l s tages a n d in a d u l t a p h i d s , p a r a s i t i s m of different hos t s t ages a n d m o r p h s h a s v a r i a b l e c o n s e q u e n c e s for p a r a s i t e l a rva l on togeny .

S e q u e i r a a n d M a c k a u e r (1992a) c o m p a r e d the g r o w t h t ra jec tor ies of Aphidius ervi d eve lop ing in different n y m p h a l i n s t a r s of a p t e r o u s v i r g i n o p a r a e . P a r a s i t e g r o w t h r a t e s va r i ed n o n l i n e a r l y w i t h t he hos t ins ta r , w i t h t h e g r o w t h of ea r ly l a rvae b e i n g h ighes t in second in s t a r s a n d lowest in t h i r d i n s t a r s of t h e p e a a p h i d . U s i n g p a r a s i t e g r o w t h as a m e a s u r e of hos t qua l i ty , S e q u e i r a a n d M a c k a u e r (1992a) r a n k e d the four n y m p h a l i n s t a r s in t h e o r d e r L 2 > L 4

> L j > L 3 . T h i s r a n k i n g o r d e r w a s cons i s t en t w i t h differences in r e p r o d u c ­t ive a c h i e v e m e n t (as i n d e x e d by the in t r ins ic r a t e of i nc rease , r m ) b e t w e e n A. ervi females r e a r e d on these i n s t a r s ( S e q u e i r a a n d M a c k a u e r , 1992b) . C h a n g e s in p a r a s i t e fitness a t t r i b u t e s in r e spon s e to v a r i a t i o n in hos t re ­sources a r e ind ica t ive of t he pa ra s i t e ' s l ife-history s t ra tegy. F i r s t - a n d four th -i n s t a r p e a a p h i d s differ in b i o m a s s by o n e o r d e r of m a g n i t u d e o r m o r e . I n A. ervi, a d u l t d r y m a s s w a s co r re l a t ed w i t h m a x i m u m la rva l m a s s ach ieved j u s t p r i o r to p u p a t i o n (Seque i r a a n d M a c k a u e r , 1992a) . P a r a s i t e m a s s a n d deve l ­o p m e n t t i m e were co r r e l a t ed w i t h hos t size ( S e q u e i r a a n d M a c k a u e r , 1992b) . D r y m a s s a n d d e v e l o p m e n t t i m e were posi t ively co r r e l a t ed in L j - L ^ a p h i d s b u t n o t co r r e l a t ed in l a rge L 4 a p h i d s . T h e pe r iod f rom ovipos i t ion to p u p a ­t ion w a s i n d e p e n d e n t of hos t size a t p a r a s i t i z a t i o n . T h e s e resu l t s c lear ly show t h a t t h e p a r a s i t e r e s p o n d s to a d y n a m i c n u t r i t i o n a l a n d phys io log ica l h o s t e n v i r o n m e n t t h r o u g h va r i a t i ons in t he l a rva l g r o w t h t ra jec tor ies . T h u s , in A. ervi d eve lop ing in hos t s be low a ce r t a in size t h r e s h o l d ( L j - L ^ ) , t he o p t i m i z a ­t ion of b o d y size took p r e c e d e n c e over t h e m i n i m i z a t i o n of d e v e l o p m e n t t i m e . However , p a r a s i t e s deve lop ing in hos t s above a t h r e s h o l d size u t i l ized t h e

Page 17: Parasites and Pathogens of Insects. Parasites

1. Patterns of Development in Insect Parasites 7

a d d i t i o n a l r e sou rces b o t h to i nc rea se b o d y m a s s a n d to d e c r e a s e d e v e l o p ­m e n t t i m e .

Similar ly , in Ephedras californicus, a d u l t b o d y size i n c r e a s e d w i t h p e a a p h i d size u p to a t h r e s h o l d v a l u e . O n c e t h e l a rva h a d ach ieved th is t h r e s h o l d in d r y m a s s , a d d i t i o n a l hos t r e sou rces w e r e a l loca ted t o w a r d t h e s i m u l t a n e o u s m i n i m i z a t i o n of d e v e l o p m e n t t i m e a n d m a x i m i z a t i o n of b o d y m a s s . I n con­t r a s t to A. ervi, t h e t i m e - t o - p u p a t i o n w a s l onge r in L 2 t h a n in L j a n d L 4 hos t s , a difference i n d i c a t i n g t h a t E. californicus d i d n o t ad jus t t h e l a rva l g r o w t h t ra jec to ry to hos t c o n d i t i o n s ( S e q u e i r a a n d M a c k a u e r , 1993).

R e p r o d u c t i v e success in a p h i d p a r a s i t e s is f r equen t ly a s s u m e d to b e co r r e ­l a t ed w i t h a d u l t size (C lou t i e r et al., 1981; L iu , 1985; I r v i n e , 1991). A l t h o u g h b o d y size c a n b e a useful i n d e x of a w a s p ' s p o t e n t i a l fecundi ty , s u c h r e l a t ion ­sh ips m a y b e n o n l i n e a r a n d h e n c e m u s t b e i n t e r p r e t e d w i t h c a u t i o n , poss ib ly b e i n g a n ar t i fact of t h e s tep-s ize se lec ted for t h e va r i ab l e s ( L e a t h e r , 1988). Fo r e x a m p l e , in A. ervi, t he in t r in s i c r a t e of i nc rease for c o h o r t s of females r e a r e d o n different a p h i d i n s t a r s w a s a q u a d r a t i c func t ion of b o d y d r y m a s s (R. S e q u e i r a a n d M . M a c k a u e r , u n p u b l i s h e d ) . I t is w o r t h n o t i n g t h a t a d u l t size is h igh ly p l a s t i c in a p h i d i i d w a s p s . I n Aphidius smithi, ve ry s m a l l b u t v i ab l e a n d fertile offspring d e v e l o p e d from eggs d e p o s i t e d in a p h i d e m b r y o s wh i l e still i n s ide the i r m o t h e r ( M a c k a u e r a n d K a m b h a m p a t i , 1988). T h i s f inding sugges t s t h a t t h e l a rva l d e v e l o p m e n t of this p a r a s i t e m a y n o t b e c o n s t r a i n e d b y t h e n e e d to ach ieve a cr i t ica l size for m o l t i n g o r p u p a t i o n .

Different ia l d e v e l o p m e n t r a t e s m a y have a p r o f o u n d effect o n c o m p e t i t i v e i n t e r ac t i ons a m o n g different species of p a r a s i t e s t h a t explo i t t h e s a m e h o s t r e sou rce , i n d e p e n d e n t of e n v i r o n m e n t a l c o n d i t i o n s . Fo r e x a m p l e , d e v e l o p i n g in t h i r d n y m p h a l i n s t a r s of t h e p e a a p h i d , Praon pequodorum r e q u i r e d m o r e t i m e to c o m p l e t e t he e m b r y o n i c s t age , a n d showed g r e a t e r d e v e l o p m e n t a l v a r i a t i o n , t h a n A. smithi; however , b o t h p a r a s i t e s m o l t e d to t h e s e c o n d l a rva l ins t a r a t a p p r o x i m a t e l y t h e s a m e t i m e ( C h o w a n d M a c k a u e r , 1984). B e c a u s e P. pequodorum phys ica l ly a t t a cks a n d kills p o t e n t i a l c o m p e t i t o r s d u r i n g t h e ea r ly first l a rva l s t age , a slow e m b r y o n i c d e v e l o p m e n t i n c r e a s e d t h e p r o b a ­bi l i ty of i ts su rv iva l in hos t s a l r e a d y p a r a s i t i z e d by A. smithi over a b r o a d r a n g e of a g e differences.

2 . Hyposoter exiguae

T h e i c h n e u m o n i d H. exiguae deve lops as a so l i ta ry e n d o p a r a s i t e in l a rvae of v a r i o u s l e p i d o p t e r a n spec ies . T h e ov ipos i t iona l a n d d e v e l o p m e n t a l success of t h e p a r a s i t e a p p e a r s to v a r y w i t h t he species a n d t h e s t age of h o s t se lec ted . Fo r e x a m p l e , P u t t i e r (1961) r e p o r t e d t h a t w a s p s d e p o s i t e d the i r eggs in t h e first t h r e e i n s t a r s of Peridroma saucia, a l t h o u g h l a rva l d e v e l o p m e n t w a s often i n h i b i t e d in t h i rd - in s t a r hos t s . By c o m p a r i s o n , Heliothis zea w a s successful ly p a r a s i t i z e d in i n s t a r s 1-4, b u t t h e p a r a s i t o i d w a s gene ra l ly u n a b l e to ovipos i t in fifth i n s t a r s b e c a u s e of the i r aggress iveness ( C a m p b e l l a n d Duffey, 1979).

Page 18: Parasites and Pathogens of Insects. Parasites

8 Μ. Mackauer and R. Sequeira

T h e in t e r ac t ions b e t w e e n H. exiguae a n d its va r i ous hos t species a r e cha r ­ac te r ized by hos t d e v e l o p m e n t a l a r r e s t m e n t , w h i c h m a y v a r y w i t h t h e species of hos t ( T h o m p s o n , 1982, 1983, 1985a ,b ; Beckage a n d T e m p l e t o n , 1985). I n Trichoplusia ni, t he p a r a s i t e l a rva e m e r g e d from the four th o r t h e fifth hos t ins ta r , r ega rd le s s of t h e hos t s t age a t p a r a s i t i z a t i o n . I n c o n t r a s t , p a r a s i t e e m e r g e n c e from Manduca sexta l a rvae va r i ed w i th hos t age a t p a r a s i t i z a t i o n (Beckage a n d T e m p l e t o n , 1985). T h e s e differences in hos t exp lo i t a t i on a p ­p e a r to b e r e l a t ed to hos t species-specif ic n u t r i t i o n a l a n d phys io log ica l in te r ­ac t ions (Beckage a n d T e m p l e t o n , 1985), i n c l u d i n g effects m e d i a t e d by p o l y d -n a v i r u s a n d o t h e r pa r a s i t e -de r i ved p r o d u c t s injected a t ov ipos i t ion ( V i n s o n , 1990; F l e m i n g , 1992).

I n c o m p a r i s o n w i t h phys io log ica l a n d b i o c h e m i c a l i n t e r ac t i ons , t h e re la­t i o n s h i p b e t w e e n a d u l t l ife-history a t t r i b u t e s a n d the l a rva l o n t o g e n y of H. exiguae, especia l ly as inf luenced b y v a r i a t i o n in hos t size (or q u a l i t y ) , h a s rece ived less a t t e n t i o n . To ta l d e v e l o p m e n t t i m e from egg to a d u l t ec los ion a p p e a r s to d e c r e a s e ( a n d b o d y size a p p e a r s to inc rease ) w i t h hos t size o r age a t p a r a s i t i z a t i o n (Pu t t i e r , 1961; Smi lowi tz a n d I w a n t s c h , 1973; C a m p b e l l a n d Duffey, 1979). W h a t ev idence is ava i lab le sugges t s t h a t H. exiguae r e ­qu i r e s a cr i t ica l hos t b i o m a s s to m a t u r e o r m o l t to t h e n e x t l a rva l s t age (Beckage a n d T e m p l e t o n , 1985; B l o e m a n d Duffey, 1990), a l t h o u g h l a rva l o n ­togeny a p p e a r s n o t to b e d i rec t ly inf luenced by the hos t ' s e n d o c r i n e s y s t e m .

3· Microplitis S p e c i e s

T h e in t e r ac t ions b e t w e e n sol i ta ry b r a c o n i d w a s p s a n d the i r l e p i d o p t e r a n hos t s a r e well exempl i f ied by species of Microplitis ( J o n e s a n d Lewis , 1971; W e b b a n d D a h l m a n , 1985, 1986; S t r a n d a n d Dover , 1991). S t r a n d et al (1988) c o m p a r e d the r e sponses oiHeliothis virescens l a rvae to p a r a s i t i s m b y M. croceipes a n d M. demolitor. U n l i k e H. exiguae, these p a r a s i t e s feed exclus ively o n hos t h e m o l y m p h t h r o u g h o u t the i r l a rva l d e v e l o p m e n t . T h e g r o w t h t ra jec to ry of u n p a r a s i t i z e d H. virescens is s igmoid ; however , in l a rvae p a r a s i t i z e d by M. demolitor a n d M. croceipes, t he g r o w t h r a t e is l inea r a n d severely d e p r e s s e d . I n c o m p a r i s o n , p a r a s i t i s m of H. zea l a rvae by M. croceipes r e su l t s in a g r o w t h t ra jec tory s imi la r in s h a p e , b u t r e d u c e d in m a g n i t u d e , to t h a t of u n p a r ­as i t ized l a rvae ( J o n e s a n d Lewis , 1971). S t r a n d et al. (1988) c o n c l u d e d t h a t t he pa ra s i t e ' s g r o w t h r a t e is d e t e r m i n e d by the hos t i n s t a r a t p a r a s i t i z a t i o n .

Different Microplitis species exh ib i t d i s t inc t p a t t e r n s of hos t -s ize p re fe rence ( R a j a p a k s e a n d Ashley, 1985; T i l l m a n a n d Powell, 1989). Fo r e x a m p l e , M. croceipes p re fe r red t h i r d - i n s t a r l a rvae of Heliothis species , w i t h t he a c c e p t a n c e r a t e of o t h e r i n s t a r s dec l i n ing s y m m e t r i c a l l y a b o u t t he t h i rd i n s t a r (Lewis , 1970; H o p p e r a n d K i n g , 1984). D e v e l o p m e n t t i m e w a s co r r e l a t ed w i t h i n s t a r p re fe rence ; p a r a s i t e s deve lop ing in t h i r d - i n s t a r hos t s deve loped fastest ( H o p ­p e r a n d K i n g , 1984) a n d ach ieved the l a rges t b o d y size ( H o p p e r , 1986).

Page 19: Parasites and Pathogens of Insects. Parasites

1. Patterns of Development in Insect Parasites 9

IV. Parasite Development and Host Ecology

A. Seasonal Adaptations

M a n y insec ts e n t e r a s t a t e of a r r e s t e d d e v e l o p m e n t a n d r e p r o d u c t i o n to su rv ive d u r i n g pe r iods of un favorab le c o n d i t i o n s , s u c h as low a n d h i g h t e m ­p e r a t u r e s . T a u b e r et al. (1984) d i s t i n g u i s h e d b e t w e e n two k i n d s of a d a p t a ­t ions to h a z a r d o u s s ea sona l cond i t i ons : qu i e scence , a p e r i o d d u r i n g w h i c h g r o w t h a n d d e v e l o p m e n t a r e on ly de l ayed un t i l c o n d i t i o n s a r e favorab le a g a i n , a n d d o r m a n c y , d u r i n g w h i c h g r o w t h a n d r e p r o d u c t i o n a r e s u p p r e s s e d b y d i a p a u s e .

1. T e m p e r a t u r e R e q u i r e m e n t s for D e v e l o p m e n t

O b l i g a t e p a r a s i t e s c a n n o t su rv ive in t he a b s e n c e of the i r hos t s a n d , t h u s , m u s t s y n c h r o n i z e the i r d e v e l o p m e n t a n d r e p r o d u c t i o n w i t h hos t a b u n d a n c e . S y n c h r o n y r e q u i r e s t h a t t w o c o n d i t i o n s b e satisfied: (1) t h e p a r a s i t e m u s t in i t i a t e d e v e l o p m e n t in r e s p o n s e to t he s a m e , o r to a closely c o r r e l a t e d , set of c o n d i t i o n s as t he hos t ; a n d (2) t h e p a r a s i t e m u s t cease d e v e l o p m e n t w h e n h o s t a b u n d a n c e dec l ines or, a l te rna t ive ly , shift to a different h o s t spec ies . I n v a r i a b l e c l ima t e s , ea r ly -season s y n c h r o n y is p a r t i c u l a r l y i m p o r t a n t . C a m p ­bell et al. (1974) c o m p a r e d t h e t e m p e r a t u r e r e q u i r e m e n t s of severa l species of a p h i d p a r a s i t e s w i t h those of the i r hos t s . Pa ra s i t e s h a d a h i g h e r t e m p e r a t u r e t h r e s h o l d t h a n the a p h i d s , a difference t h a t e n s u r e s the i r e m e r g e n c e f rom d i a p a u s e after hos t s b e c o m e ava i l ab le in sp r i ng . In te res t ing ly , t h e p r i m a r y p a r a s i t e s h a d a c o n s i d e r a b l y lower t h r e s h o l d t h a n t h e h y p e r p a r a s i t e Asaphes lucens, cons i s t en t w i th this species ' re la t ive l a te a p p e a r a n c e in t h e s ea son . V a r i a t i o n s in t he t e m p e r a t u r e r e q u i r e m e n t s b e t w e e n different p o p u l a t i o n s i n d i c a t e t h a t p o p u l a t i o n s a r e local ly a d a p t e d ( C a m p b e l l et al., 1974; K a -m b h a m p a t i a n d M a c k a u e r , 1989). A p p a r e n t l y hos t size m a y inf luence a p a r a s i t e ' s t e m p e r a t u r e t h r e s h o l d for d e v e l o p m e n t . Al len a n d Ke l l e r (1991) found t h a t Cotesia urabae, w h i c h is a so l i ta ry k o i n o b i o n t e n d o p a r a s i t e , h a d a h i g h e r t h r e s h o l d for egg- la rva l d e v e l o p m e n t w h e n d e v e l o p i n g in s m a l l r a t h e r t h a n in mid - s i ze l a rvae of its hos t , t he n o c t u i d Uraba lugens.

2 . P a r a s i t e D i a p a u s e

I n a d d i t i o n to e x t e r n a l ab io t i c cues , w h i c h m a y be m e d i a t e d by c h a n g e s in t h e hos t ' s e n d o c r i n e sy s t em, t h e in i t i a t ion a n d m a i n t e n a n c e of d i a p a u s e in p a r a s i t e s often is inf luenced b y hos t cues . Severa l hos t c o n d i t i o n s h a v e b e e n i m p l i c a t e d in d i a p a u s e i n d u c t i o n , especia l ly in e n d o p a r a s i t e s , for e x a m p l e , hos t a g e (in Cotesia glomerata; S c h o o n h o v e n , 1962), hos t size (in Aphidius nigripes; B r o d e u r a n d M c N e i l , 1989), a n d hos t species (in Nasonia vitripennis;

Page 20: Parasites and Pathogens of Insects. Parasites

10 Μ. Mackauer and R. Sequeira

S a u n d e r s et al., 1970). B r o w n et al. (1990) showed t h a t , in l a rvae of t h e cod l ing m o t h , Cydia pomonella, e x p o s u r e to sho r t d a y l e n g t h r e su l t ed in dor ­m a n c y c a u s e d by fai lure of t he e n d o c r i n e sys t em. T h e c h a n g e d e n d o c r i n e mi l ieu , in t u r n , i n d u c e d d i a p a u s e in first-instar l a rvae of t h e b r a c o n i d e n d o -p a r a s i t e , Ascogaster quadridentata. A d i rec t effect of t he hos t o n d i a p a u s e in i t ia ­t ion w a s d e m o n s t r a t e d recen t ly in Aphidius matricariae a n d Praon volucre, t w o so l i ta ry e n d o p a r a s i t e s of t he g r e e n p e a c h a p h i d , Myzus persicae (Po lga r et al., 1991). U n d e r iden t i ca l l o n g - d a y cond i t i ons , p a r a s i t e l a rvae d e v e l o p i n g in n y m p h s of ov ipa r ae e n t e r e d a p r e p u p a l d i a p a u s e , w h e r e a s those d e v e l o p i n g in p a r t h e n o g e n e t i c a l l y r e p r o d u c i n g m o r p h s ( funda t r i ces , f u n d a t r i g e n i a e , a n d v i r g i n o p a r a e ) d id no t . T h e a u t h o r s sugges t ed t h a t , in t h e fall, t h e p r o d u c t i o n of o v i p a r a e in holocycl ic a p h i d s , w h i c h is usua l ly a s soc ia t ed w i t h s h o r t - d a y c o n d i t i o n s , c a n serve as a n u n a m b i g u o u s s igna l of d e c l i n i n g h o s t n u m b e r s to these p a r a s i t e s .

3 . D e v e l o p m e n t a l A r r e s t m e n t

H a g e n (1964) d i scussed va r ious e x a m p l e s of d e l a y e d d e v e l o p m e n t in in­sect p a r a s i t e s . Severa l species of T r i g o n a l i d a e ( H y m e n o p t e r a ) a n d T a c h -in idae ( D i p t e r a ) lay so-cal led m i c r o t y p e eggs d i rec t ly o n foliage. Fo r t he egg to h a t c h , it m u s t be inges ted by a p o t e n t i a l hos t ; t he l a r v a t h e n p e n e t r a t e s t h e g u t wal l a n d deve lops e n d o p a r a s i t i c a l l y ( W i s h a r t , 1956; C o p p e l , 1958). D e ­layed la rva l d e v e l o p m e n t h a s a lso b e e n found in s o m e a p h i d h y p e r p a r a s i t e s , for e x a m p l e , Alloxysta vitrix a n d A. megourae. Fema le s depos i t t he i r eggs in t h e l a rva , o r occas iona l ly t h e e m b r y o n a t e d egg, of a p r i m a r y a p h i d p a r a s i t e s u c h as Aphidius. Howeve r , t h e egg does n o t h a t c h un t i l t h e p r i m a r y p a r a s i t e h a s comple t e ly c o n s u m e d a n d m u m m i f i e d t he hos t a p h i d ; t h e h y p e r p a r a s i t e lar­v a t h e n feeds o n a n d even tua l ly kills t h e p r i m a r y l a r v a ( M a t e j k o a n d Su l ­l ivan , 1979; Sul l ivan , 1987).

D e v e l o p m e n t a l a r r e s t m e n t m a y a lso o c c u r a t a l a t e r s t age in p a r a s i t e d e v e l o p m e n t , for e x a m p l e , d u r i n g t h e first ins ta r . T h e p a r a s i t e l a r v a con t i n ­ues to deve lop a n d g row only after t he h o s t h a s r e a c h e d a specific size o r i n s t a r ( H a g e n , 1964; Al len a n d Kel ler , 1991). I t is n o t a l w a y s c lea r w h e t h e r s u c h e x a m p l e s r e p r e s e n t n o r m a l va r i a t i ons in t h e pa r a s i t e ' s g r o w t h r a t e , p e r h a p s co r r e l a t ed w i t h differences in hos t qual i ty , o r a n a r r e s t m e n t of g r o w t h in t he a b s e n c e of a specific ( h o r m o n a l ) s t i m u l u s ( L a w r e n c e , 1990; S t r a n d et al., 1991).

B. Influence of Host Nutrition

A n y func t iona l c o n s t r a i n t s o n o p t i o n sets a n d trade-offs b e t w e e n l ife-history c h a r a c t e r s m a y b e revea led w h e n t h e h o s t - p a r a s i t e s y s t e m is sub jec t ed to a d d i t i o n a l s t ress . T w o a p p r o a c h e s wou ld s e e m p a r t i c u l a r l y p r o m i s i n g for

Page 21: Parasites and Pathogens of Insects. Parasites

1. Patterns of Development in Insect Parasites 11

s u c h s tud i e s , especia l ly in e n d o p a r a s i t e s : t h e use of s u p e r p a r a s i t i s m a n d hos t s t a r v a t i o n . I n s u p e r p a r a s i t i s m , n o t all p a r a s i t e offspring c a n c o m p l e t e deve l ­o p m e n t b e c a u s e e i the r t h e hos t r e sou rces a r e insufficient to s u p p o r t all l a rvae ( typica l ly g r e g a r i o u s species) o r t h e l a rvae c o m p e t e w i t h each o t h e r w i t h on ly o n e s u r v i v i n g ( typica l ly so l i t a ry species) (Sal t , 1961; M a c k a u e r , 1990). I n c o n t r a s t , s t a r v a t i o n causes a g e n e r a l r e d u c t i o n in insec t g r o w t h a n d d e v e l o p ­m e n t (S lansky a n d Scr iber , 1985), a c h a n g e t h a t p r e s u m a b l y lowers h o s t qua l i ty .

1. S u p e r p a r a s i t i s m

P a r a s i t i s m by m a n y e n d o p a r a s i t e s resu l t s in d i m i n i s h e d hos t g r o w t h a n d c o n s u m p t i o n r a t e s ( T h o m p s o n , 1985a) . P a r a s i t i s m of t he p e a a p h i d b y A. smithi t h u s m a y b e a typ i ca l in t h a t p a r a s i t i z e d a p h i d s i nges t ed m o r e food ( b u t a s s i m i l a t e d it less efficiently) t h a n the i r u n p a r a s i t i z e d c o u n t e r p a r t s ; al l a p h i d s w e r e m a i n t a i n e d o n a n art if icial d i e t (C lou t i e r a n d M a c k a u e r , 1979). B e c a u s e s u p e r p a r a s i t i z e d a p h i d s i n c o r p o r a t e d food m o r e efficiently a n d g r e w faster t h a n s ingly p a r a s i t i z e d a p h i d s (C lou t i e r a n d M a c k a u e r , 1980), t h e g r o w t h p o t e n t i a l of t h e su rv iv ing p a r a s i t e l a rva m a y b e h igher . T h i s s u p p o s i ­t ion w a s conf i rmed recent ly . M a l e s of A. ervi t h a t , as l a rvae , d e v e l o p e d in s u p e r p a r a s i t i z e d p e a a p h i d s h a d g r e a t e r a d u l t m a s s t h a n t hose f rom s ingly p a r a s i t i z e d hos t s ; however , d e v e l o p m e n t t i m e d i d n o t differ b e t w e e n t h e two g r o u p s (Bai a n d M a c k a u e r , 1992). T h e s e resu l t s sugges t t h a t , in s o m e h o s t -p a r a s i t e a s soc ia t ions a t leas t , t he hos t m a y r e s p o n d to t h e a d d e d d e m a n d s of t h e d e v e l o p i n g p a r a s i t e l a rva (e ) b y i n c r e a s e d food u p t a k e .

I n c o n t r a s t , in g r e g a r i o u s species , t h e su rv iv ing w a s p s f rom supe r ­p a r a s i t i z e d hos t s gene ra l ly a r e s m a l l e r t h a n the i r c o u n t e r p a r t s f rom n o n -s u p e r p a r a s i t i z e d hos t s ; however , d e v e l o p m e n t t i m e is less c o m m o n l y af­fected. Wyl ie (1965) showed t h a t , in t h e e c t o p a r a s i t e N. vitripennis, t h e m e a n p e r c e n t a g e of l a rvae t h a t su rv ived in s ame-s i zed h o u s e fly p u p a e d e c l i n e d w i t h t h e p a r a s i t e l oad . S u p e r n u m e r a r y l a rvae w e r e e l i m i n a t e d b y s t a r v a t i o n , u sua l l y in t h e las t ins ta r . I n cases of h e a v y s u p e r p a r a s i t i s m ( ^ 5 0 l a rvae p e r p u p a in i t ia l ly) , t h e hos t w a s comple t e ly c o n s u m e d before t h e p a r a s i t e l a rvae r e a c h e d t h e las t ins ta r , a n d h e n c e all p a r a s i t e s d i ed . T h e s t a r v e d l a rvae of g r e g a r i o u s species a r e u sua l ly n o t e a t e n b y t h e su rv ivor s , a b e h a v i o r t h a t c a n resu l t in t h e w a s t a g e of hos t r e sou rces (Sal t , 1961). B e c a u s e m o r t a l i t y w a s h i g h e r a m o n g female t h a n m a l e l a rvae in Eupteromalus dubius, Wyl ie (1976) sugges t ed t h a t s u p e r p a r a s i t i s m m a y b ias t h e offspring sex r a t i o . H o w e v e r , T a y l o r (1988) found n o ev idence of differential offspring m o r t a l i t y in Bracon hebetor, c o n c l u d i n g t h a t a n y b i a s r e p o r t e d for o t h e r species ( W a a g e , 1986; K i n g , 1987) m a y have b e e n d u e to m a t e r n a l sex r a t i o m a n i p u l a t i o n .

B e c k a g e a n d Ridd i fo rd (1978 , 1983) e x a m i n e d t h e g r o w t h a n d d e v e l o p ­m e n t of t h e g r e g a r i o u s e n d o p a r a s i t e C. congregata in r e l a t i on to t h e p a r a s i t e

Page 22: Parasites and Pathogens of Insects. Parasites

12 Μ. Mackauer and R. Sequeira

load a n d the n u t r i t i o n a l s t a t u s of its hos t , M. sexta l a rvae . I n f i r s t - ins tar h o s t s , t h e n u m b e r of p a r a s i t e l a rvae d e t e r m i n e d the t i m i n g of the i r e m e r g e n c e f rom t h e hos t . E m e r g e n c e usua l ly o c c u r r e d d u r i n g the four th o r fifth hos t i n s t a r ; however , p a r a s i t e s e m e r g e d in the t h i rd o r a s u p e r n u m e r a r y s ix th i n s t a r in cases of a n ex t r eme ly l ight o r heavy p a r a s i t e load , respect ively. T h e first l a rva l m o l t of t he p a r a s i t e o c c u r r e d after hos t ecdysis to t h e t e r m i n a l s t age , r ega rd l e s s of w h e t h e r t h a t s t age w a s t he four th , fifth, o r s ix th ins ta r . W h e r e a s t he to ta l we t m a s s of t he h o s t - p a r a s i t e c o m p l e x w a s posi t ively c o r r e l a t e d w i t h t he p a r a s i t e load , the m a s s of i n d i v i d u a l l a rvae or of a d u l t w a s p s w a s less in heavi ly p a r a s i t i z e d hos t s . I n c o n t r a s t , d e v e l o p m e n t t i m e a p p e a r e d to be i n d e p e n d e n t of t he p a r a s i t e load or t he hos t i n s t a r p a r a s i t i z e d in C. glomerata, a n e n d o p a r a s i t e of Pieris rapae; t he g r e g a r i o u s l a rvae e m e r g e d a l ­ways from fifth-instar ca t e rp i l l a r s ( F u h r e r a n d Keja , 1976).

2 . H o s t S tarvat ion

T h e p a r a s i t e C. congregata failed to e m e r g e if newly ecdysed , t e r m i n a l - s t a g e hos t l a rvae , M. sexta, we re s t a rved . By p o s t p o n i n g t h e s t a r v a t i o n t r e a t m e n t to a l a te r t ime , Beckage a n d Ridd i fo rd (1983) were ab l e to i nc r ea se t he p e r c e n t ­age of p a r a s i t e s r e a c h i n g the a d u l t s t age ; they sugges t ed t h a t hos t l a rvae m u s t feed d u r i n g a specific pe r iod to satisfy t he d e v e l o p m e n t a l r e q u i r e m e n t s of t he p a r a s i t e . Similar ly, t he d e v e l o p m e n t t i m e of t he t ach in id Compsilura concinnata w a s unaffected by s t a r v a t i o n if t h e p a r a s i t e deve loped in a l a rge gypsy m o t h la rva ; however , p a r a s i t e s e m e r g e d ear l i e r f rom severely s t ressed hos t s (Weseloh, 1984). I n the a p h i d p a r a s i t e E. californicus, w a s p s e m e r g e d ea r l i e r f rom s t a rved a p h i d s , a n d they were smal le r , t h a n the i r c o u n t e r p a r t s from n o n s t a r v e d hos t s ( K o u a m e a n d M a c k a u e r , 1991). By c o n t r a s t , t h e d e ­v e l o p m e n t t i m e of t he so l i ta ry i c h n e u m o n i d Campoletis sonorensis i n c r e a s e d if f ou r th - in s t a r hos t l a rvae , Heliothis virescens, were s t a rved (Dover a n d V i n s o n , 1990).

C r o w d i n g m a y have a s imi la r effect as hos t s t a r v a t i o n in t h a t b o t h ac t as g e n e r a l s t ress factors . Fo r e x a m p l e , in Leptopilina boulardi, a cyn ip id e n d o ­p a r a s i t e of Drosophila l a rvae , a d u l t size a n d d e v e l o p m e n t t i m e w e r e r e d u c e d in hos t s m a i n t a i n e d u n d e r c r o w d e d cond i t i ons ( W a j n b e r g et al., 1990).

V Developmental Strategies

Diver se hos t exp lo i t a t ion a n d d e v e l o p m e n t a l s t ra teg ies have evolved in insec t p a r a s i t e s t h a t a d a p t t he i m m a t u r e s ' m e t a b o l i c r e q u i r e m e n t s to t h e ava i l ab le b i o m a s s , g r o w t h po t en t i a l , a n d surv iva l of t he p a r a s i t i z e d hos t . A h i g h d e g r e e of n u t r i t i o n a l a n d phys io log ica l i n t e g r a t i o n b e t w e e n the hos t a n d t h e p a r a s i t e sy s t em is cha rac t e r i s t i c of s u c h assoc ia t ions ( T h o m p s o n , 1985b, 1990; Bar -

Page 23: Parasites and Pathogens of Insects. Parasites

1. Patterns of Development in Insect Parasites 13

re t t a n d S c h m i d t , 1991). We have s h o w n in Sec t ions I I I a n d I V t h a t t h e p a r a s i t e ' s g r o w t h r a t e , d e v e l o p m e n t t i m e , a n d a d u l t b i o m a s s a r e t h e essen t ia l c o m p o n e n t s of a n y d e v e l o p m e n t a l s t r a t egy ; they a r e c o n s t r a i n e d by h o s t q u a l i t y in a n associa t ion-speci f ic m a n n e r .

M e t a b o l i c p rocesses t h a t govern g r o w t h , d e v e l o p m e n t , a n d u l t i m a t e l y fitness a r e u sua l ly s i z e - d e p e n d e n t (Pe te rs , 1983; S c h m i d t - N i e l s e n , 1984). I n insec t p a r a s i t e s , b o d y size is gene ra l l y co r r e l a t ed w i t h l ife-history a n d d e m o ­g r a p h i c c h a r a c t e r s ( K i n g , 1987), a fact sugges t ing t h a t b o d y size is t he m a i n t a r g e t of se lec t ion . However , a d u l t size a n d d e v e l o p m e n t r a t e m a y have i n d e p e n d e n t , a n d even o p p o s i t e , effects on fitness (Roff, 1981; Sibly a n d Calow, 1986). C o n s e q u e n t l y , t he p a r t i c u l a r va lues a d o p t e d by a p a r a s i t e species for these a t t r i b u t e s a r e condi t ion-spec i f ic a n d d e t e r m i n e d , for e x a m ­ple , by a n y fitness t rade-off b e t w e e n size a n d d e v e l o p m e n t t i m e . Sibly a n d C a l o w (1986) n o t e d t h a t se lect ion e i t he r m a y p u s h p h e n o t y p e s a n d the i r u n d e r l y i n g phys io logies to the i r l imi t i m p o s e d by s ize- re la ted c o n s t r a i n t s , o r m a y o p t i m i z e p h e n o t y p e s be low size c o n s t r a i n t s in r e s p o n s e to fitness t r a d e ­offs b e t w e e n i n d i v i d u a l c h a r a c t e r s . T h u s , a pa ra s i t e ' s " d e c i s i o n " to g row bigger , o r to m a t u r e ear l ier , o r to c o m p r o m i s e b o t h , will d e p e n d o n a d a p t i v e va r i ab i l i ty in t he g r o w t h r a t e . W h e n the g r o w t h r a t e is a t its phys io log ica l m a x i m u m , a n i nc rea se in b o d y size c a n on ly be ach ieved a t t he cost of a n i nc rea se in d e v e l o p m e n t t ime . Al te rna t ive ly , a l a rge r b o d y size c o m b i n e d w i t h a d e c r e a s e in d e v e l o p m e n t t i m e r e q u i r e s a n i n c r e a s e d g r o w t h r a t e .

E m p i r i c a l d a t a (see Sec t ions I I I a n d I V ) sugges t t h a t t h r e e b r o a d l y differ­en t d e v e l o p m e n t a l p a t t e r n s have evolved a m o n g insec t p a r a s i t e s in r e s p o n s e to hos t c o n s t r a i n t s . T h e first m o d e l (Fig . 1) a s s u m e s t h a t t h e h o s t is a c losed r e sou rce e n v i r o n m e n t a n d t h a t p a r a s i t e g r o w t h a n d d e v e l o p m e n t a r e con­s t r a i n e d solely by hos t qual i ty . T h e hos t c o n t a i n s a finite a m o u n t of r e sou rces t h a t is d e t e r m i n e d a t t h e t i m e of p a r a s i t i z a t i o n . H o s t q u a l i t y does n o t vary, o r var ies very l i t t le , d u r i n g the cou r se of t h e in t e rac t ion ; however , q u a l i t y m a y va ry b e t w e e n different species a n d ages of hos t s . T h e p a r a s i t e ' s s t r a t e g y is to m a x i m i z e a d u l t b i o m a s s ( a s s u m e d to b e t h e chief d e t e r m i n a n t of fi tness) p e r un i t of hos t r e sou rces . T h e g r o w t h t ra jec tory is re la t ively i n v a r i a n t a n d m a x i ­m i z e d for a g iven set of hos t a n d e n v i r o n m e n t a l cond i t i ons . T h e r e f o r e , p a r a ­site a d u l t size is posi t ively co r r e l a t ed w i t h hos t qua l i t y ; l a rge hos t s give r ise to l a rge ( a n d p r e s u m a b l y m o r e fecund) p a r a s i t e s t h a t , however , m a y r e q u i r e m o r e t i m e to c o m p l e t e d e v e l o p m e n t t h a n s m a l l i n d i v i d u a l s .

T h e second m o d e l (Fig . 2) a s s u m e s t h a t t he hos t r e p r e s e n t s a n o p e n r e sou rce e n v i r o n m e n t a n d , as for M o d e l 1, t h a t p a r a s i t e g r o w t h a n d d e v e l o p ­m e n t a r e c o n s t r a i n e d solely b y hos t qual i ty . H o s t q u a l i t y a n d r e s o u r c e avai l ­abi l i ty v a r y over t i m e a n d w i t h hos t age a t p a r a s i t i z a t i o n . H o s t feeding a n d g r o w t h a r e e x p e c t e d to c o n t i n u e d u r i n g t h e in i t ia l p h a s e s of p a r a s i t i s m , a lbe i t a t modi f ied r a t e s . I n low-qua l i ty hos t s , p a r a s i t e d e v e l o p m e n t m a y i n c l u d e a

Page 24: Parasites and Pathogens of Insects. Parasites

14 Μ. Mackauer and R. Sequeira

min max Parasite development time

Figure 1 Parasite growth and development in a closed resource environment: bio-mass per unit of host resources is maximized (Model 1). The parasite grows at a constant rate that is independent of host quality. Parasite biomass is directly propor­tional to host quality (and development time).

lag min max Parasite development time

Figure 2 Parasite growth and development in an open resource environment: bio­mass per unit of host resources is maximized (Model 2). The parasite must reach a critical mass within a variable development time. By delaying the beginning of expo­nential growth (= lag phase) until the host has reached a larger size, the parasite may increase its growth potential in low-quality hosts but cannot offset any initial delay.

Page 25: Parasites and Pathogens of Insects. Parasites

1. Patterns of Development in Insect Parasites 15

l ag p h a s e d u r i n g w h i c h t i m e t h e h o s t c o n t i n u e s to grow. As in M o d e l 1, t h e p a r a s i t e ' s s t r a t e g y is to m a x i m i z e b i o m a s s p e r u n i t of hos t r e s o u r c e s . A p p a r ­ently, p a r a s i t e s g r o w a t the i r phys io log ica l l imi t . W h e r e a s fi tness g a i n s f rom i n c r e a s e d b i o m a s s m u s t b e b a l a n c e d a g a i n s t fi tness losses f rom i n c r e a s e d d e v e l o p m e n t t i m e , t h e fo rmer a r e a s s u m e d to b e of re la t ive ly g r e a t e r i m p o r ­t a n c e for fitness. T h i s s t r a t e g y favors t h e evo lu t ion of a m i n i m u m o r cr i t ica l b o d y size for successful d e v e l o p m e n t to t h e a d u l t s t age .

T h e t h i r d m o d e l (Fig . 3) a s s u m e s t h a t t h e hos t r e p r e s e n t s a n o p e n re ­sou rce e n v i r o n m e n t a n d t h a t p a r a s i t e g r o w t h a n d d e v e l o p m e n t a r e r e s o u r c e -a n d t ime- l imi t ed . T h e d y n a m i c s of hos t q u a l i t y a r e t h e s a m e as in t h e s e c o n d m o d e l ; however , th is m o d e l a s s u m e s a d e v e l o p m e n t a l s t r a t e g y t h a t o p t i m i z e s a set of c h a r a c t e r s t h a t j o i n t l y d e t e r m i n e fitness, for e x a m p l e , b o d y size a n d d e v e l o p m e n t t ime . T i m e c o n s t r a i n t s c a n t ake severa l fo rms , s u c h a s a fixed p e r i o d of h o s t su rv iva l after p a r a s i t i z a t i o n o r a s h a r p dec l ine in a d u l t p a r a s i t e su rv iva l w i t h i n c r e a s e d age . I n low-qua l i ty o r sma l l hos t s , p a r a s i t e g r o w t h m a y b e r e sou rce - l imi t ed d u r i n g e i the r ea r ly d e v e l o p m e n t ( lag p h a s e ) o r l a t e d e v e l o p m e n t (p recoc ious d e a t h ) . T h e p a r a s i t e ' s g r o w t h t ra jec to ry is v a r i a b l e , ref lect ing h o s t age - o r s tage-specif ic c o n s t r a i n t s o n n u t r i t i o n a l r e s o u r c e s .

lag min max Parasite development time

Figure 3 Parasite growth and development in an open resource environment: the optimal phenotype is determined by a trade-off between adult biomass and develop­ment time (Model 3). As in Model 2, a parasite developing in a low-quality host may delay the beginning of exponential growth ( = lag phase) until the host has reached a larger size. This initial delay is offset by compensatory feeding (and increased growth) during late larval development.

Page 26: Parasites and Pathogens of Insects. Parasites

16 Μ. Mackauer and R. Sequeira

T h u s , a n ini t ia l d e l a y in the onse t of e x p o n e n t i a l p a r a s i t e g r o w t h m a k e s a c o m p e n s a t o r y inc rease in t he g r o w t h r a t e d u r i n g l a te r s t ages neces sa ry in o r d e r to b a l a n c e a n y fitness ga ins (from inc reased b i o m a s s ) a n d losses (from inc rea sed d e v e l o p m e n t t ime) .

W h e r e a s M o d e l 1 conforms to t he d e v e l o p m e n t a l p a t t e r n of m o s t id io­b ion t s , M o d e l s 2 a n d 3 a r e r e p r e s e n t a t i v e of k o i n o b i o n t life h i s to r ies . H o s t b i o m a s s a t t he t i m e of p a r a s i t i z a t i o n r e p r e s e n t s t he m a i n c o n s t r a i n t o n id io-b i o n t a d u l t b i o m a s s a n d d e v e l o p m e n t t ime . E g g p a r a s i t e s typica l ly c a u s e t h e a r r e s t m e n t of hos t e m b r y o g e n e s i s ( S t r a n d , 1986), t h u s e n s u r i n g t h a t h o s t q u a l i t y r e m a i n s la rge ly u n c h a n g e d d u r i n g the cour se of i n t e r ac t i on . T h e s t r a t e g y a d o p t e d by the p a r a s i t e is to g row un t i l hos t r e sou rces a r e e x p e n d e d (Fig . 1). I n s o m e species , d e v e l o p m e n t m a y be c o m p r o m i s e d by t h e p a r a s i t e ' s inab i l i ty to ut i l ize all t he r e sources c o n t a i n e d in l a rge hos t s (Sal t , 1964; Wyl ie , 1965). Severa l ko inob ion t s deve lop ing in l e p i d o p t e r a n hos t s r e q u i r e a cr i t ica l hos t s i z e / b i o m a s s for c o m p l e t i o n of l a rva l d e v e l o p m e n t (Beckage a n d T e m p l e t o n , 1985; B l o e m a n d Duffey, 1990) o r m o l t i n g (Slansky, 1986). H o w ­ever, s o m e c h a n g e s in p a r a s i t e g r o w t h a n d d e v e l o p m e n t m a y b e m e d i a t e d b y the hos t ' s e n d o c r i n e sys t em ( C o r b e t , 1968; Beckage , 1985; L a w r e n c e , 1990; S t r a n d et al., 1991). T h e d e v e l o p m e n t a l cha rac te r i s t i c s of H. exiguae a n d Microplitis species a p p e a r to be cons i s t en t w i th t he p a t t e r n s h o w n in Fig . 2.

I n c o m p a r i s o n , t he d e v e l o p m e n t a l s t r a t egy of A. ervi a p p e a r s to b e b a s e d on trade-offs t h a t resu l t in t he o p t i m i z a t i o n of b o t h a d u l t b i o m a s s a n d devel ­o p m e n t t i m e (Fig . 3) . T h e su rv ivo r sh ip of p a r a s i t i z e d a p h i d s is i n d e p e n d e n t of age a t p a r a s i t i z a t i o n ( C a m p b e l l a n d M a c k a u e r , 1975; L iu a n d H u g h e s , 1984), a cond i t i on l imi t ing r e sou rce avai lab i l i ty to a fixed p e r i o d before t he hos t d ies . I n low-qual i ty hos t s , p a r a s i t e l a rvae e x p e r i e n c e d slow in i t ia l g r o w t h b u t c o m p l e t e d d e v e l o p m e n t a t a c o m p e n s a t o r y r a t e . U n d e r different o p t i o n sets , p a r a s i t e b o d y size w a s o p t i m i z e d before d e v e l o p m e n t t i m e (Se­q u e i r a a n d M a c k a u e r , 1992a,b) .

VI. Conclusions

F r o m the p a r a s i t e ' s pe r spec t ive , a hos t is obv ious ly m o r e t h a n its n u t r i t i o n a l qual i ty , i n c l u d i n g its avai labi l i ty, behav ior , a n d as soc ia t ed c o m p e t i t o r s a n d n a t u r a l e n e m i e s . However , to u n d e r s t a n d the evo lu t ion of different life-h i s to ry s t ra teg ies in insect p a r a s i t e s , we n e e d to k n o w the func t iona l con­s t r a i n t s o n the i r d e v e l o p m e n t a n d r e p r o d u c t i o n in va r ious hos t spec ies . I n this r e g a r d , a d u l t b i o m a s s m a y i n d e e d serve as a useful i n d e x of p a r a s i t e fitness. As we have shown , t he bes t s t r a t egy for t he m a x i m i z a t i o n of b i o m a s s will b e d e t e r m i n e d by the b a l a n c e b e t w e e n t i m e a n d r e sou rce l im i t a t i ons o n p a r a s i t e g r o w t h . O p t i m a l i t y t heo ry ( M a y n a r d S m i t h , 1982; P a r k e r a n d M a y -

Page 27: Parasites and Pathogens of Insects. Parasites

1. Patterns of Development in Insect Parasites 17

n a r d S m i t h , 1990) a s s u m e s t h a t , for different species , on ly c e r t a i n con­s t r a i n e d c o m b i n a t i o n s of f i tness- re la ted c h a r a c t e r s c a n be rea l ized in p r a c ­t ice. T h e s e o p t i o n sets differ b e t w e e n i d iob ion t a n d k o i n o b i o n t a n d , poss ib ly as well , b e t w e e n so l i ta ry a n d g r e g a r i o u s species of insec t p a r a s i t e s . For e x a m ­ple , a s t r a t e g y b a s e d on a flexible g r o w t h t ra jec tory m a y e n a b l e a k o i n o b i o n t to r e s p o n d to v a r i a b l e hos t q u a l i t y b u t w o u l d have l i t t le u t i l i ty in i d iob ion t s .

A d i s t i nc t i on b e t w e e n " c o n f o r m e r s " a n d " r e g u l a t o r s , " as p r o p o s e d b y L a w r e n c e (1986, 1990) a n d V i n s o n (1990) , focuses o n the p r o x i m a t e m e c h a ­n i s m s by w h i c h p a r a s i t e s explo i t hos t r e sou rces . By def in i t ion , al l fo rms of p a r a s i t i s m a r e e x p e c t e d to a l t e r hos t phys io logy a n d on togeny , a lbe i t in w a y s t h a t m a y b e obv ious a n d p a t h o l o g i c a l in s o m e assoc ia t ions ( " r e g u l a t o r s " ) a n d s u b t l e in o t h e r s ( " c o n f o r m e r s " ) . Similar ly , the i n v o l v e m e n t in hos t a l ter ­a t i on of p a r a s i t e - d e r i v e d p r o d u c t s , s u c h as p o l y d n a v i r u s a n d v e n o m s (Sto l tz , 1986; S t r a n d a n d Dover , 1991; F l e m i n g , 1992), does n o t in p r i n c i p l e c h a n g e t h e n a t u r e of t he i n t e r ac t ions , a l t h o u g h these m e c h a n i s m s e n l a r g e t he o p t i o n set for hos t exp lo i t a t ion .

D e t a i l e d s tud ie s of t he d y n a m i c s of p a r a s i t e d e v e l o p m e n t u n d e r different c o n s t r a i n t s have b e e n m a d e on only few species , n o t a b l y so l i ta ry k o i n o b i o n t s . T h u s , t h e t h r e e m o d e l s p r e s e n t e d h e r e a r e b a s e d o n f r a g m e n t a r y i n f o r m a t i o n a n d s h o u l d be seen as p r e l i m i n a r y only. I n p a r t i c u l a r , t h e m o d e l s a n d the i r u n d e r l y i n g a s s u m p t i o n s m u s t be t es ted empir ica l ly . O f in t e re s t w o u l d b e a c o m p a r i s o n of t h e g r o w t h t ra jec tor ies of i n d i v i d u a l l a rvae b e t w e e n so l i ta ry a n d g r e g a r i o u s species , especia l ly as r e l a t ed to s u p e r p a r a s i t i s m a n d n u t r i ­t iona l s t ress r e su l t i ng from, for e x a m p l e , s t a r v a t i o n a n d c r o w d i n g . A n o t h e r a r e a t h a t is la rge ly u n e x p l o r e d a n d n e e d s a t t e n t i o n is t h e t i m i n g of t h e e n d of l a rva l feeding a n d of hos t d e a t h . S u c h c o m p a r a t i v e s tud ies of a s soc ia t ion -specific func t iona l c o n s t r a i n t s o n p a r a s i t e o n t o g e n y m a y h e l p e x p l a i n t h e su rv iva l v a l u e of different l ife-history s t ra teg ies in insec t p a r a s i t e s .

Acknowledgment

We thank the Natural Sciences and Engineering Research Council of Canada for financial support.

References

Allen, G. R., and Keller, M. A. (1991). Uraba lugens (Lepidoptera: Noctuidae) and its parasitoids (Hymenoptera: Braconidae): Temperature, host size, and development. Environ. Entomol. 20:458-469.

Anderson, D. T. (1972). The development of holometabolous insects. In "Developmental Systems: Insects" (S.J . Counce and C.H.W. Waddington, eds.), Vol. 1, pp. 165-242. Aca­demic Press, London.

Arthur, A. P., and Wylie, H. G. (1959). Effects of host size on sex ratio, developmental time and size of Pimpla tunonellae L. Entomopkaga 4 :297-301.

Page 28: Parasites and Pathogens of Insects. Parasites

18 Μ. Mackauer and R. Sequeira

Askew, R. R., and Shaw, M. R. (1986). Parasitoid communities: Their size, structure and development. In "Insect Parasitoids" (J. Waage and D. Greathead, eds.), pp. 225-264. Academic Press, London.

Bai, B., and Mackauer, M. (1992). Influence of superparasitism on development rate and adult size in a solitary parasitoid wasp, Aphidius ervi. Funct. Ecol. 6:302-307.

Barrett, M., and Schmidt, J. M. (1991). A comparison between the amino acid composition of an egg parasitoid wasp and some of its hosts. Entomol. Exp. Appl. 59 :29 -41 .

Beckage, Ν. E. (1985). Endocrine interactions between endoparasitic insects and their hosts. Amu. Rev. Entomol. 30:371-413.

Beckage, Ν. E., and Riddiford, L. M. (1978). Developmental interactions between the tobacco hornworm Manduca sexta and its braconid parasite Apanteles congregatus. Entomol. Exp. Appl. 23:139-151.

Beckage, Ν. E., and Riddiford, L. M. (1983). Growth and development in the endoparasitic wasp Apanteles congregatus: Dependence on host nutritional status and parasite load. Physiol. Entomol. 8:231-241.

Beckage, Ν. E., and Templeton, T.J. (1985). Temporal synchronization of emergence ofHyposo-ter exiguae and H. fiigitivus (Hymenoptera: Ichneumonidae) with apolysis preceding larval moulting in Manduca sexta (Lepidoptera: Sphingidae). Ann. Entomol. Soc. Am. 78:775-782.

Beckage, Ν. E., and Templeton, T. J. (1986). Physiological effects of parasitism by Apanteles congregatus in terminal-stage tobacco hornworm larvae. J. Insect Physiol. 32:299-314.

Bigler, F., Meyer, Α., and Bosshart, S. (1987). Quality assessment in Trichogramma maidis Pin-tureau et Voegele reared from eggs of the factitious hosts Ephestia kuehniella Zell. and Sitotroga cerealella (Olivier). J. Appl. Entomol. 104:340-353.

Blackburn, Τ. M. (1991). A comparative examination of life-span and fecundity in parasitoid Hymenoptera. J. Anim. Ecol. 60:151-164.

Bloem, Κ. Α., and Duffey, S. S. (1990). Effect of protein type and quantity on growth and development of larval Heliothis zea and Spodoptera exigua and the endoparasitoid Hyposoter exiguae. Entomol. Exp. Appl. 54:141-148.

Brodeur, J., and McNeil, J. N. (1989). Biotic and abiotic factors involved in diapause induction of the parasitoid, Aphidius nigripes (Hymenoptera: Aphidiidae). J. Insect Physiol. 35:969-974.

Brown, J. J., Reed-Larsen, D. , and Ahl, J. (1990). Physiological relationship between a diapaus-ing endoparasitoid (Ascogaster quadridentata) and its dormant host (Cydiapomonella). Arch. Insect Biochem. Physiol. 13:229-238.

Campbell, Α., and Mackauer, M. (1975). The effects of parasitism by Aphidius smithi (Hymenop­tera: Aphidiidae) on reproduction and population growth of the pea aphid (Homoptera: Aphididae). Can. Entomol. 107:919-926.

Campbell, Α., Frazer, B. D. , Gilbert, N., Gutierrez, A. P., and Mackauer, M. (1974). Tempera­ture requirements of some aphids and their parasites. J. Appl. Ecol. 11:431-438.

Campbell, B. C , and Duffey, S. S. (1979). Effect of density and instar of Heliothis zea on parasitization by Hyposoter exiguae. Environ. Entomol. 8:127-130.

Charnov, E. L., and Skinner, S. W. (1985). Complementary approaches to the understanding of parasitoid oviposition decisions. Environ. Entomol. 14:383-391.

Chow, F. J., and Mackauer, M. (1984). Inter- and intraspecific competition in Aphidius smithi and Praon pequodorum (Hymenoptera: Aphidiidae). Can. Entomol. 116:1097—1107.

Cloutier, C , and Mackauer, M. (1979). The effect of parasitism by Aphidius smithi (Hymenop­tera: Aphidiidae) on the food budget of the pea aphid, Acyrthosiphon pisum (Homoptera: Aphididae). Can. J. Zool. 57:1605-1611.

Cloutier, C , and Mackauer, M. (1980). The effect of superparasitism by Aphidius smithi (Hy­menoptera: Aphidiidae) on the food budget of the pea aphid, Acyrthosiphon pisum (Homoptera: Aphididae). Can. J. Zool. 58:241-244.

Page 29: Parasites and Pathogens of Insects. Parasites

1. Patterns of Development in Insect Parasites 19

Cloutier, C , McNeil, J. N., and Regniere, J. (1981). Fecundity, longevity, and sex ratio of Aphidius nigripes (Hymenoptera: Aphidiidae) parasitizing different stages of its host, Macro-siphum euphorbiae (Homoptera: Aphididae). Can. Entomol. 113:193-198.

Coppel, H. C. (1958). Studies on dipterous parasites of the spruce budworm, Chonstoneura fiimiferanae (Clem.) (Lepidoptera: Tortricidae). VI . Phorocera incrassata Smith (Diptera: Tach-inidae). Can. J. Zool. 36:453-462.

Corbet, S. A. (1968). The influence of Ephestia kuehniella on the development of its parasite Nementis canescens. J. Exp. Biol. 48:291-304.

Cruz, Y. P. (1981). A sterile defender morph in a polyembryonic hymenopterous parasite. Nature (London) 294:446-447.

Dominey, W. J. (1984). Alternative mating tactics and evolutionary stable strategies. Am. Zool. 24:385-396.

Doutt, R. L. (1963). Pathologies caused by insect parasites. In "Insect Pathology" (E. A. Steinhaus, ed.), Vol. 2, pp. 393-422. Academic Press, New York.

Dover, Β. Α., and Vinson, S. B. (1990). Effect of host ligation and starvation on the development and emergence of the parasitoid Campoletis sonorensis. Entomol. Exp. Appl. 57:209-213 .

Fleming, J.-A. G. W. (1992). Polydnaviruses: Mutualists and pathogens. Anna. Rev. Entomol. 37:401-425.

Fuhrer, E., and Keja, T. D. (1976). Physiologische Wechselbeziehungen zwischen Pieris brassicae und dem Endoparasiten Apanteles glomeratus. Der Einfluss der Parasitierung auf Wachstum und Korpergewicht des Wirtes. Entomol. Exp. Appl. 19:287-300.

Gauld, I. D. (1988). Evolutionary patterns of host utilization by ichneumonoid parasitoids (Hymenoptera: Ichneumonidae and Braconidae). Biol. J. Linn. Soc. 35:351-377.

Gauld, I., and Bolton, B., eds. (1988). "The Hymenoptera." Oxford Univ. Press, New York. Godfray, H.C.J. (1987). The evolution of clutch size in parasitic wasps. Am. Nat. 1 2 9 : 2 2 1 -

233. Gunasena, G. H., Vinson, S. B., and Williams, H.J . (1989). Interrelationships between growth

of Heliothis virescens (Lepidoptera: Noctuidae) and that of its parasitoid, Campoletis sonorensis (Hymenoptera: Ichneumonidae). Ann. Entomol. Soc. Am. 82:187-191.

Haeselbarth, E. (1979). Zur Parasitierung der Puppen von Forleule (Panolis flammea [SchifF.]), Kiefernspanner (Bupalus piniarius [L.]) and Heidelbeerspanner (Boarmia bistortana [Goeze]) in bayerischen Kiefernwaldern. Z. Angew. Entomol. 87:186-202, 311-322.

Hagen, K. S. (1964). Developmental stages of parasites. In "Biological Control of Insect Pests and Weeds" (P. DeBach and Ε. I. Schlinger, eds.), pp. 168-246. Reinhold, New York.

Hall, R. D. , and Fischer, F. J. (1988). Laboratory studies on the biology of Spalangia nigra (Hymenoptera: Pteromalidae). Entomophaga 33:495-504.

Hebert, C , and Cloutier, C. (1990). Host instar as a determinant of preference and suitability for two parasitoids attacking late instars of the spruce budworm (Lepidoptera: Tortricidae). Ann. Entomol. Soc. Am. 83:734-741 .

Hintz, J. L., and Andow, D. A. (1990). Host age and host selection by Trichogramma nubilale. Entomophaga 35:141-150.

Hopper, K. R. (1986). Preference, acceptance, and fitness components of Microplitis croceipes (Hymenoptera: Braconidae) attacking various instars of Heliothis virescens (Lepidoptera: Noc­tuidae). Environ. Entomol. 15:274-280.

Hopper, K. R., and King, E. G. (1984). Preference of Microplitis croceipes (Hymenoptera: Bra­conidae) for instars and species of Heliothis (Lepidoptera: Noctuidae). Environ. Entomol. 13:1145-1150.

Irvine, Μ. T. (1991). Preference of Ephedras californicus for different instars of the pea aphid and its relationship to parasitoid fitness. Master of Pest Management Thesis, Simon Fraser University, Burnaby, B.C.

Page 30: Parasites and Pathogens of Insects. Parasites

2 0 Μ. Mackauer and R. Sequeira

Jones, R. L., and Lewis, W. J. (1971). Physiology of the host-parasite relationship between Heliothis zea and Microplitis croceipes. J. Insect Physiol. 17:921-927.

Kambhampati, S., and Mackauer, M. (1989). Multivariate assessment of inter- and intraspecific variation in performance criteria of several pea aphid parasites (Hymenoptera: Aphidiidae). Ann. Entomol. Soc. Am. 82:314-324.

King, Β. H. (1987). Offspring sex ratios in parasitoid wasps. Q. Rev. Biol. 62:367-396. King, Β. H. (1989). Host-size-dependent sex ratios among parasitoid wasps: Does host growth

matter? Oecologia 78:420-426. King, Β. H. (1990a). Sex ratio manipulation by the parasitoid wasp Spalangia cameroni in re­

sponse to host age: A test of the host-size model. Evol. Ecol. 4:149-156. King, Β. H. (1990b). Interspecific differences in host (Diptera: Muscidae) size and species usage

among parasitoid wasps (Hymenoptera: Pteromalidae) in a poultry house. Environ. Entomol. 19:1519-1522.

Kouame, K. L., and Mackauer, M. (1991). Influence of aphid size, age and behaviour on host choice by the parasitoid wasp Ephedrus californicus: A test of host-size models. Oecologia 88:197-203.

Lawrence, P. O. (1982). Biosteres longicaudatus: Developmental dependence on host (Anastrepha suspensa) physiology. Exp. Parasitol. 53:396-405.

Lawrence, P. O. (1986). Host-parasitoid hormonal interactions: An overview. J. Insect Physiol. 32:295-298.

Lawrence, P. O. (1990). The biochemical and physiological effects of insect hosts on the develop­ment and ecology of their parasites: An overview. Arch. Insect Biochem. Physiol. 13:217—228.

Leather, S. R. (1988). Size, reproductive potential and fecundity in insects: Things aren't as simple as they seem. Oikos 51:386-389.

Legner, E. F. (1969). Adult emergence interval and reproduction in parasitic Hymenoptera influenced by host size and density. Ann. Entomol. Soc. Am. 62:220-226.

le Masurier, A. D. (1987). A comparative study of the relationship between host size and brood size in Apanteles spp. (Hymenoptera: Braconidae). Ecol. Entomol. 12:383-393.

le Masurier, A. D. (1991). Effect of host size on clutch size in Cotesia glomerata. J. Anim. Ecol. 60:107-118.

Lewis, W. J. (1970). Study of species and instars of larval Heliothis parasitized by Microplitis croceipes. J. Econ. Entomol. 63:363-365.

Liu, S. S. (1985). Development, adult size and fecundity of Aphidius sonchi reared in two instars of its aphid host, Hyperomyzus lactucae. Entomol. Exp. Appl. 37:41-48 .

Liu, S. S., and Hughes, R. D. (1984). Effect of host age at parasitization by Aphidius sonchi on the development, survival, and reproduction of the sowthistle aphid, Hyperomyzus lactucae. Ento­mol. Exp. Appl. 36:239-246.

Mackauer, M. (1986). Growth and developmental interactions in some aphids and their hy-menopterous parasites. J. Insect Physiol. 32:275-280.

Mackauer, M. (1990). Host discrimination and larval competition in solitary endoparasitoids. In "Critical Issues in Biological Control" (M. Mackauer, L. E. Ehler, and J. Roland, eds.), pp. 41 -62 . Intercept, Andover, Hants.

Mackauer, M., and Kambhampati, S. (1988). Parasitism of aphid embryos by Aphidius smithi: Some effects of extremely small host size. Entomol. Exp. Appl. 49:167-173.

Mangum, C , and Towle, D. (1977). Physiological adaptation to unstable environments. Am. Sci. 65:67-75 .

Marston, N., and Ertle, L. R. (1973). Host influence on the bionomics of Trichogramma minutum. Ann. Entomol. Soc. Am. 66:1155-1162.

Matejko, I., and Sullivan, D . J . (1979). Bionomics and behavior ofAlloxysta megourae, an aphid hyperparasitoid (Hymenoptera: Cynipidae). J. N.Y. Entomol. Soc. 87:275-282.

Page 31: Parasites and Pathogens of Insects. Parasites

1. Patterns of Development in Insect Parasites 21

Maynard Smith, J. (1982). "Evolution and the Theory of Games." Cambridge Univ. Press, Cambridge.

Pak, G. A. (1986). Behavioural variations among strains of Trichogramma spp. A review of the literature on host age selection. J. Appl. Entomol. 101:55-64.

Parker, G. Α., and Maynard Smith, J. (1990). Optimality theory in evolutionary biology. Nature (London) 348:27-33 .

Peters, R. H. (1983). "The Ecological Implications of Body Size." Cambridge Univ. Press, Cambridge.

Polgar, L., Mackauer, M., and Volkl, W. (1991). Diapause induction in two species of aphid parasitoids: The influence of aphid morph. J. Insect Physiol. 37:699-702.

Puttier, B. (1961). Biology of Hyposoter exiguae (Hymenoptera: Ichneumonidae), a parasite of lepidopterous larvae. Ann. Entomol. Soc. Am. 54:25-30 .

Rajapakse, R.H.S., and Ashley, T. R. (1985). Biology and host acceptance of Microplitis manilae (Hym: Braconidae) raised on fall armyworm larvae Spodoptera frugiperda (Lepidoptera: Noc­tuidae). Fla. Entomol. 68:653-657.

Reznik, S. Y., and Umarova, Τ. Y. (1990). The influence of host's age on the selectivity of parasitism and fecundity of Trichogramma. Entomophaga 35:31-37 .

Roif, D. A. (1981). On being the right size. Am. Nat. 118:405-422. Salt, G. (1938). Experimental studies in insect parasitism. VI. Host suitability. Bull. Entomol.

Res. 29:223-246. Salt, G. (1940). Experimental studies in insect parasitism. VII . The effects of different hosts

on the parasite Trichogramma evanescens Westwood. Proc. R. Entomol. Soc. London, Ser. A 1 5 : 8 1 -95.

Salt, G. (1961). Competition among insect parasitoids. Symp. Soc. Exp. Biol. 15:96-119. Salt, G. (1964). The ichneumonid parasite Nemeritis canescens (Gravenhorst) in relation to the wax

moth Galleria mellonella (L.). Trans. R. Entomol. Soc. London 116:1-14 . Sandlan, K. P. (1982). Host suitability and its effects on parasitoid biology in Coccygomimus

turionellae (Hymenoptera: Ichneumonidae). Ann. Entomol. Soc. Am. 75:217-227. Saunders, D. S., Sutton, D., and Jarvis, R. A. (1970). The effect of host species on diapause

induction in Nasonia vitripennis. J. Insect Physiol. 16:405-416. Schmidt, J. M., and Smith, J.B.B. (1987). The measurement of exposed host volume by the

parasitoid wasp Trichogramma minutum and the effects of wasp size. Can. J. Zool. 65 :2837-2845.

Schmidt-Nielsen, K. (1984). "Scaling: Why is Animal Size So Important?" Cambridge Univ. Press, Cambridge.

Schoonhoven, L. M. (1962). Synchronization of a parasite/host system, with special reference to diapause. Ann. Appl. Biol. 50:617-621.

Sequeira, R., and Mackauer, M. (1992a). Nutritional ecology of an insect host-parasitoid association: The pea aphid—Aphidius ervi system. Ecology 73:183-189.

Sequeira, R., and Mackauer, M. (1992b). Covariance of adult size and development time in the parasitoid wasp Aphidius ervi in relation to the size of its host, Acyrthosiphon pisum. Evol. Ecol. 6:34-44.

Sequeira, R., and Mackauer, M. (1993). The nutritional ecology of a parasitoid wasp: Ephedrus californicus Baker (Hymenoptera: Aphididae). Can. Entomol. 125 (in press).

Sibly, R. M., and Calow, P. (1986). "Physiological Ecology of Animals. An Evolutionary Ap­proach." Blackwell, Oxford.

Slansky, F., Jr. (1986). Nutritional ecology of endoparasitic insects and their hosts: An overview. J. Insect Physiol. 32:255-261 .

Slansky, F., Jr., and Scriber, J. M. (1985). Food consumption and utilization. In "Comprehensive Insect Physiology, Biochemistry and Pharmacology" (G. A. Kerkut and L. I. Gilbert, eds.), Vol. 4, pp. 87-163 . Pergamon, Oxford.

Page 32: Parasites and Pathogens of Insects. Parasites

2 2 Μ. Mackauer and R. Sequeira

Smilowitz, Z., and Iwantsch, G. F. (1973). Relationships between the parasitoid Hyposoter exiguae and the cabbage looper, Trichoplusia ni: Effects of host age on developmental rate of the parasitoid. Environ. Entomol. 2:759-763.

Stoltz, D. B. (1986). Interactions between parasitoid-derived products and host insects: An overview. J. Insect Physiol. 32:347-350.

Strand, M. R. (1986). The physiological interactions of parasitoids with their hosts and their influence on reproductive strategies. In "Insect Parasitoids" (J. Waage and D. Greathead, eds.), pp. 97-136. Academic Press, London.

Strand, M. R., and Dover, B. A. (1991). Developmental disruption of Pseudoplusia includens and Heliothis virescens larvae by the calyx fluid and venom of Microplitis demolitor. Arch. Insect Biochem. Physiol. 18:131-145.

Strand, M. R., Johnson, J. Α., and Culin, J. D. (1988). Developmental interactions between the parasitoid Microplitis demolitor (Hymenoptera: Braconidae) and its host Heliothis virescens (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 81:822-830.

Strand, M. R., Baerecke, Ε. H., and Wong, E. A. (1991). The role of host endocrine factors in the development of polyembryonic parasitoids. Biol. Control 1:144—152.

Sullivan, D . J . (1987). Insect hyperparasitism. Anna. Rev. Entomol. 32:49-70 . Tauber, M. J., Tauber, C. Α., and Masaki, S. (1984). Adaptations to hazardous seasonal condi­

tions: Dormancy, migration, and polyphenism. In "Ecological Entomology" (C. B. Huffaker and R. L. Rabb, eds.), pp. 149-183. Wiley (Interscience), New York.

Taylor, A. D. (1988). Host effects on larval competition in the gregarious parasitoid Bracon hebetor.J. Anim. Ecol. 57:163-172.

Thompson, S. N. (1982). Effects of parasitization by the insect parasite Hyposoter exiguae on the growth, development and physiology of its host Trichoplusia ni. Parasitology 84:491-510.

Thompson, S. N. (1983). The nutritional physiology of Trichoplusia ni parasitized by the insect parasite, Hyposoter exiguae, and the effects of parallel-feeding. Parasitology 87:15-28. -

Thompson, S. N. (1985a). Biochemical and physiological effects of metazoan endoparasites on their host species. Comp. Biochem. Physiol. Β 74B: 183-211.

Thompson, S. N. (1985b). Metabolic integration during the host associations of multicellular animal endoparasites. Comp. Biochem. Physiol. Β 81B:21-42 .

Thompson, S. N. (1990). Physiological alterations during parasitism and their effects on host behaviour. In "Parasitism and Host Behaviour" (G.J. Barnard and J. M. Behnke, eds.), pp. 64-94 . Taylor & Francis, London.

Tillman, P. G., and Powell, J. E. (1989). Comparison of acceptance of larval instars of the tobacco budworm (Lepidoptera: Noctuidae) by Microplitis croceipes, Microplitis demolitor, Cote­sia kasak (Hymenoptera: Braconidae) and Hyposoter didymator (Hymenoptera: Ichneumoni­dae). J. Agric. Entomol. 6:201-209.

van Alphen, J.J.M., and Vet, L.E.M. (1986). An evolutionary approach to host finding and selection. In "Insect Parasitoids" (J. Waage and D. Greathead, eds.), pp. 2 3 - 6 1 . Academic Press, London.

Vinson, S. B. (1975). Biochemical coevolution between parasitoids and their hosts. In "Evolution­ary Strategies of Parasitic Insects and Mites" (P. W. Price, ed.), pp. 14-48. Plenum, New York.

Vinson, S. B. (1990). Physiological interactions between the host genus Heliothis and its guild of parasites. Arch. Insect Biochem. Physiol. 13:63—81.

Vinson, S. B., and Iwantsch, G. F. (1980a). Host regulation by insect parasitoids. Q. Rev. Biol. 55:145-165.

Vinson, S. B., and Iwantsch, G. F. (1980b). Host suitability for insect parasitoids. Annu. Rev. Entomol. 25:397-419.

Waage, J. K. (1986). Family planning in parasitoids: Adaptive patterns of progeny and sex

Page 33: Parasites and Pathogens of Insects. Parasites

1. Patterns of Development in Insect Parasites 2 3

allocation. In "Insect Parasitoids" (J. Waage and D. Greathead, eds.), pp. 63 -95 . Academic Press, London.

Waage, J. K., and Godfray, H.CJ. (1985). Reproductive strategies and population ecology of insect parasitoids. In "Behavioural Ecology: Ecological Consequences of Adaptive Behav­iour" (R. M. Sibly and R. H. Smith, eds.), pp. 449-470. Blackwell, Oxford.

Wajnberg, E., Bouletreau, M., Prevost, G., and Fouillet, P. (1990). Developmental relationships between Drosophila larvae and their endoparasitoid Leptopilina (Hymenoptera: Cynipidae) as affected by crowding. Arch. Insect Biochem. Physiol. 13:239-245.

Webb, Β. Α., and Dahlman, D. L. (1985). Developmental pathology of Heliothis virescens larvae parasitized by Microplitis croceipes: Parasite mediated host developmental arrest. Arch. Insect Biochem. Physiol. 2:131-143.

Webb, Β. Α., and Dahlman, D. L. (1986). Ecdysteroid influence on the development of the host Heliothis virescens and its endoparasite Microplitis croceipes. J. Insect Physiol. 32:339-345.

Weseloh, R. M. (1984). Effect of size, stress, and ligation of gypsy moth (Lepidoptera: Ly-mantriidae) larvae on development of the tachinid parasite Compsilura concinnata Meigen (Diptera: Tachinidae). Ann. Entomol. Soc. Am. 77:423-428.

Wishart, G. (1956). Effects of hydrogen ion concentration on hatching of eggs of Aplomya caesar (Aid.) (Diptera: Tachinidae). Can. Entomol. 88:655-656.

Wylie, H. G. (1965). Effects of superparasitism on Nasonia vitripennis (Wlk.) (Hymenoptera: Pteromalidae). Can. Entomol. 97:326-331 .

Wylie, H. G. (1976). Observations on life history and sex ratio variability of Eupteromalus dubius (Hymenoptera: Pteromalidae), a parasite of cyclorrhaphous Diptera. Can. Entomol. 108:1267-1274.

Page 34: Parasites and Pathogens of Insects. Parasites

cha t r 2 ^ a m e s P a r a s ^ e s Play: The a p e r Dynamic Roles of Proteins

and Peptides in the Relationship between Parasite and Host Nancy E. Beckage Department of Entomology University of California Riverside, California

I. Parasitism-Induced Changes: Host Responses or Parasite-Directed Host Manipulation?

II. Parasitism- and Polydnavirus-lnduced Peptides and Proteins in Insect Hosts

III. Parasitic Effects on Endogenous Host Proteins, Enzymes, and Peptides

IV. Comparisons with Parasitism- and Virus-Induced Changes in Other Systems

Acknowledgments References

I. Parasitism-Induced Changes: Host Responses or Parasite-Directed Host Manipulation?

P a r a s i t i s m inflicts m u l t i p l e c h a n g e s in t h e phys io log ica l a n d b i o c h e m i c a l func t ions of h o s t insec ts a s ide from a l t e r i ng the i r behav io r , h o r m o n e t i t e r s , a n d d e v e l o p m e n t as e m p h a s i z e d e l sewhere in th is v o l u m e . G i v e n t h e s o p h i s ­t i ca t ed b i o c h e m i c a l a n d m o l e c u l a r t e c h n i q u e s n o w ava i l ab le , m o n i t o r i n g t h e effects of p a r a s i t i s m on hos t p r o t e i n syn thes i s , a n d con f i rma t ion t h a t p a r a s i t ­i s m s o m e t i m e s i n d u c e s syn thes i s of novel p r o t e i n s in t he hos t , n o w c o n s t i t u t e s o m e of t h e m o s t r ead i ly d o c u m e n t a b l e c h a n g e s o c c u r r i n g d u r i n g insec t e n d o p a r a s i t i s m . T h e goals of this r ev iew a r e to s u m m a r i z e t h e m a j o r l ines of ev idence d e m o n s t r a t i n g t h a t p a r a s i t i z e d insec ts exh ib i t m a j o r c h a n g e s in­vo lv ing p r o t e i n s a n d p e p t i d e s , a n d pose q u e s t i o n s a b o u t t h e n a t u r e of the i r p o t e n t i a l b io logica l s ignif icance a n d i m p a c t u p o n t h e h o s t - p a r a s i t e r e l a t ion ­sh ip .

I m p o r t a n t l y , a b r o a d t a x o n o m i c su rvey reveals t h a t p a r a s i t i s m i n d u c e s a l t e r a t i o n s in t h e p r o t e i n s a n d p e p t i d e s p r e s e n t in a w i d e va r i e ty of o r g a n -

Parasites and Pathogens of Insects Volume 1: Parasites 2 5

Copyright © 1993 by Academic Press, Inc. All rights of reproduction in any form reserved.

Page 35: Parasites and Pathogens of Insects. Parasites

2 6 Nancy Ε. Beckage

i sms a s ide from insec ts , i n d i c a t i n g t hey likely r e p r e s e n t m a j o r p l aye r s in t he r e l a t i o n s h i p b e t w e e n p a r a s i t e a n d hos t in m a n y sys t ems . M a n y m a m m a l s , in a d d i t i o n to severa l c lasses of i n v e r t e b r a t e s , i n c l u d i n g mol luscs a n d c r u s t a ­c e a n s , exh ib i t m a j o r c h a n g e s in the i r b lood c o m p o n e n t s o r h e m o l y m p h d u r ­ing p a r a s i t i s m , a r g u i n g t h a t s imi l a r b i o c h e m i c a l c h a n g e s o c c u r in wide ly r a n g i n g t a x a as a resu l t of p a r a s i t i s m . I n s o m e sys t ems , t h e p a r a s i t e s t h e m ­selves d i rec t ly i n t e rvene in c a u s i n g these c h a n g e s , w h e r e a s in o t h e r s t he i r inf luence a p p e a r s to b e m o r e ind i rec t . Severa l p a r a s i t e s d e v e l o p i n g in m a m ­m a l i a n hos t s (or even p l an t s ) have b e e n s h o w n to secre te p r o t e i n s a n d en­z y m e s t h a t faci l i tate, o r a r e abso lu t e ly r e q u i r e d for, i nvas ion of hos t t i ssues o r m a i n t e n a n c e of a n a p p r o p r i a t e b i o c h e m i c a l e n v i r o n m e n t t h a t m a r k e d l y en­h a n c e s p a r a s i t e success .

O n e of t he m o s t cr i t ica l fea tures of p a r a s i t i c i nvas ion obv ious ly is t h a t t h e p a r a s i t e s successfully e scape or s u p p r e s s t he h o s t i m m u n e r e s p o n s e , a n d s o m e of t h e molecu le s p r o d u c e d or o the rwi se a s soc i a t ed w i t h p a r a s i t e s a r e t h o u g h t to serve i m p o r t a n t roles in act ively d i s e n g a g i n g t h e h o s t i m m u n e r e sponse , t h e r e b y p r e v e n t i n g i m m u n o d e t e c t i o n . Yet o t h e r species of p a r a s i t e s a r e t h o u g h t to e m p l o y hos t " m i m i c r y " to c i r c u m v e n t hos t defenses b y incor­p o r a t i n g hos t l ike a n t i g e n s (e i ther p a r a s i t e - o r hos t -de r ived molecu les ) o n t o the i r surface, t h e r e b y a l lowing the p a r a s i t e s to e s c a p e r ecogn i t i on as foreign d u r i n g d e v e l o p m e n t in hos t t i ssues . P ro t e in s t h u s p l a y i m p o r t a n t roles in " m a s k i n g " t he surface of p a r a s i t e s o r o the rwi se p r o v i d i n g p r o t e c t i o n .

Unfo r tuna t e ly , insec ts have b e e n c o n s i d e r a b l y less in tens ive ly s t u d i e d c o m p a r e d to m a m m a l s w i t h r e spec t to t h e p rec i se m e c h a n i s m s w h e r e b y the i r p a r a s i t e s c a u s e hos t i m m u n o s u p p r e s s i o n or e scape i m m u n o r e c o g n i t i o n a n d re jec t ion. C o n s e q u e n t l y , o u r b i o c h e m i c a l ins igh t s i n to t h e n a t u r e of t h e cr i t i ­cal molecu les a n d m e c h a n i s m s func t ion ing a t t h e h o s t - p a r a s i t e i m m u n o l o g i ­cal in terface in insec t sy s t ems r e m a i n very l imi ted . I n o n e i n s t a n c e , it a p p e a r s t h a t t h e v i rus l ike pa r t i c l es injected b y a w a s p p a r a s i t o i d (Venturia canescens) express " h o s t l i k e " ep i topes on the surface of t he v i r ions . Fol lowing oviposi ­t ion , l a rge n u m b e r s of v i r ions a d h e r e to t h e surface of t h e d e v e l o p i n g p a r a s i t e eggs , t h u s p r o t e c t i n g t h e a c c o m p a n y i n g p a r a s i t e s b y a p rocess ak in to m i m i ­cry of hos t a n t i g e n s ( S c h m i d t a n d S c h u c h m a n n - F e d d e r s e n , 1989). H o w e v e r , these v i ru s pa r t i c l e s a r e u n i q u e a m o n g t h e po lydnav i ru s l i ke e l e m e n t s c a r r i e d by p a r a s i t o i d s in t h a t t hey a p p e a r to lack a n y nuc le ic ac ids ye t have evolved p o t e n t p ro t ec t ive s t ra teg ies b a s e d u p o n h o s t p r o t e i n r ecogn i t i on p rocesses ( S c h m i d t et al, 1990).

T h e m e c h a n i s m s o p e r a t i n g in o t h e r species of p a r a s i t i z e d insec t s a r e less clear . Fo r e x a m p l e , a l t h o u g h it is k n o w n t h a t t h e h e m o c y t e s of p a r a s i t i z e d insec ts show ex tens ive behav io ra l t r a n s f o r m a t i o n s t h a t p r e c l u d e t he i r in­v o l v e m e n t in e n c a p s u l a t i o n (Stol tz , V o l u m e 1, C h a p t e r 8) , t h e t r a n s d u c i n g p a t h w a y s w h e r e b y t h e pa r a s i t o id - a s soc i a t ed p o l y d n a v i r u s e s c a u s e these eel-

Page 36: Parasites and Pathogens of Insects. Parasites

2. Games Parasites Play 2 7

l u l a r c h a n g e s r e m a i n whol ly specu la t i ve . T h e m o l e c u l a r m e c h a n i s m s o p e r a t ­ing to s u p p r e s s h o s t h u m o r a l a n d ce l lu la r defenses d u r i n g p a r a s i t i s m t h u s r e m a i n to b e def ined. T h i s s i t u a t i o n hopeful ly soon will b e d r a m a t i c a l l y c h a n g e d as we explo i t t h e r e c e n t r a p i d pro l i fe ra t ion of p r o b e s a n d t e c h n i q u e s ava i l ab le for us to d issec t t h e d y n a m i c n a t u r e a n d va r ious levels of m o l e c u l a r i n t e r ac t i ons o p e r a t i n g b e t w e e n p a r a s i t e s a n d the i r r espec t ive h o s t s . O n t h e bas i s of o u r k n o w l e d g e of m a m m a l i a n s y s t e m s , we m i g h t s u s p e c t t h a t p r o ­te ins , p e p t i d e s , g lycopro t e in s , lec t ins , l i p o p h o s p h o g l y c a n s , a n d o t h e r cell-su r face-assoc ia ted molecu le s m i g h t p l a y m a j o r roles .

I n m a m m a l s , r e cen t a d v a n c e s in d e v e l o p m e n t a l b io logy h a v e p r o v e n in­sightful in t h a t m a n y of t h e s a m e molecu le s here tofore r ecogn ized a s m a j o r p l aye r s in ce l l - ce l l r ecogn i t i on p rocesses in i m m u n i t y a lso a p p e a r to p l a y cr i t ica l ro les in cell p ro l i fe ra t ion , t i ssue o r g a n i z a t i o n , a n d o t h e r d e v e l o p m e n ­ta l p rocesses . C y t o k i n e s a n d severa l g r o w t h factors p l u s t he i r r e c e p t o r s u l t i ­m a t e l y m a y b e s h o w n to h a v e s u c h d u a l roles in m a m m a l s . Fo r e x a m p l e , m e m b e r s of t r a n s f o r m i n g g r o w t h factor β-family p l a y a role in defense to p a t h o g e n s , for e x a m p l e , in d e t e r m i n i n g m a c r o p h a g e suscep t ib i l i ty to l e i s h m a n i a p a r a s i t e s ( B a r r a l - N e t t o et al., 1992), whi le a l so func t ion ing d u r i n g e m b r y o n i c d e v e l o p m e n t (Fe rguson a n d A n d e r s o n , 1992; J e s se l l a n d M e l t o n , 1992). I n insec t s , a s imi l a r d u a l func t iona l i ty of s o m e molecu le s a p p e a r s likely ( N a t o r i , 1990). I n Drosophila, a n e u r o g l i a n b e l o n g i n g to t h e i m m u ­n o g l o b u l i n supe r fami ly p l ays a n i m p o r t a n t ro le d u r i n g gl ial a n d n e u r a l cell a d h e s i o n d u r i n g d e v e l o p m e n t of t h e n e r v o u s s y s t e m (Biebe r et al., 1989) a n d a n o t h e r insec t i m m u n o g l o b u l i n l i k e m o l e c u l e ca l led h e m o l i n a p p e a r s to b i n d to t h e surface of b a c t e r i a a n d t a r g e t t h e m for d e s t r u c t i o n ( S u n et al., 1990). H e n c e , s o m e of t h e m e c h a n i s m s involved in d i s t i n g u i s h i n g "self" v e r s u s "non-se l f " d u r i n g a n i m a l d e v e l o p m e n t ve r sus infect ion m a y involve s o m e of t h e s a m e m o l e c u l a r s igna ls a n d r ecogn i t i on p rocesses d i r e c t e d a t ident i fy ing different deg ree s of " fo re ignnes s " in t h e a n i m a l .

Severa l a u t h o r s s t u d y i n g insec t sy s t ems have ident i f ied " p a r a s i t i s m -specif ic" o r " p a r a s i t i s m - i n d u c e d " p r o t e i n s in insec t h o s t s , w h i c h b e c o m e d e t e c t a b l e in t h e h o s t a t v a r y i n g t imes p o s t p a r a s i t i z a t i o n (see Sec t ion I I ) . T h e i r de novo syn thes i s m a y beg in as ea r ly as a few h o u r s after t h e h o s t is p a r a s i t i z e d , o r t h e y m a y n o t a p p e a r in t h e h e m o l y m p h u n t i l t h e p a r a s i t e s h a v e n e a r l y m a t u r e d , w i t h t h e p rec i se t e m p o r a l p a t t e r n of t he i r a p p e a r a n c e v a r y i n g a c c o r d i n g to t h e species of h o s t a n d t h e p a r a s i t e s involved . Severa l species of l e p i d o p t e r a n s (Cook et al., 1984; B e c k a g e et al., 1987, 1989; Sol-dev i l a a n d J o n e s , 1991 , 1993) a n d d i p t e r a n s ( L a w r e n c e , 1990) p a r a s i t i z e d b y e n d o p a r a s i t i c w a s p s h a v e b e e n s h o w n to syn thes i ze pa ras i t i sm-spec i f i c p r o ­te ins . I n s o m e species (e .g. , Manduca sexta, see Sec t ion I I ) t h e h o s t h e m o ­l y m p h shows ev idence of t h e p r e s e n c e of different sets of " e a r l y " a n d " l a t e " pa ras i t i sm-spec i f i c p r o t e i n s , w i t h t h e t e m p o r a l p a t t e r n of t he i r exp res s ion

Page 37: Parasites and Pathogens of Insects. Parasites

2 8 Nancy Ε. Beckage

b e i n g prec ise ly r e g u l a t e d . I m p o r t a n t l y , t he p r o t e i n s a p p e a r u n i q u e to p a r a ­si t ized l a rvae , b e i n g n o n i n d u c i b l e by o t h e r forms of "phys io log ica l s t r e s s " such as h e a t o r cold shock (Fi t t inghoff a n d Ridd i fo rd , 1990; J o p l i n et al., 1990), p a t h o g e n i c infect ion (Beckage et al., 1989; see t he following d i scuss ion ) , o r phys i ca l t r a u m a a n d in jury (i .e. , s h a m inject ions) (Ferkovich et al., 1983). W h i l e n e w p ro t e in s a r e p r o d u c e d in r e sponse to t h e l a t t e r cha l l enges , careful ana lys i s reveals t h a t they differ in m o l e c u l a r we igh t a n d o t h e r cha rac t e r i s t i c s f rom those i n d u c e d by p a r a s i t i z a t i o n . For e x a m p l e , a l t h o u g h w o u n d i n g o c c u r s following p u n c t u r e of t h e h e m o c o e l d u r i n g ovipos i t ion , t h e molecu le s t h a t h a v e t h u s far b e e n c h a r a c t e r i z e d as b e i n g syn thes i zed in r e s p o n s e to phys i ca l in jury (e.g. , s a r c o t o x i n s — s e e K a n a i a n d N a t o r i , 1989) a p p e a r n o t a b l y differ­en t from those i n d u c i b l e by p a r a s i t i z a t i o n . T h u s , t hey d o n o t r e p r e s e n t gen ­era l ized s t ress p ro t e in s b u t i n s t ead c o n s t i t u t e a specific r e s p o n s e .

A survey of r ecen t inves t iga t ions sugges t s t h a t t he a b s e n c e of a n y q u a n ­t i ta t ive o r qua l i t a t i ve effect of p a r a s i t i s m on hos t h e m o l y m p h e n z y m e s o r cons t i tu t ive p ro t e in s likely r ep re sen t s the excep t ion r a t h e r t h a n t h e ru le . T h e i n d u c t i o n of h o r m o n e - r e l a t e d c h a n g e s a lso is now recogn ized as b e i n g c o m ­m o n l y assoc ia ted w i th insect e n d o p a r a s i t i s m . Hypo the t i ca l l y , t he a n t i b a c ­ter ia l p ro t e in s i n d u c e d by bac te r i a l cha l l enge (see references in Faye a n d H u l t m a r k , V o l u m e 2, C h a p t e r 2; K a n o s t et al., 1990) m i g h t have close p a r a l ­lels in insects a t t a cked by mu l t i ce l l u l a r o r g a n i s m s , s u c h t h a t hos t s r e s p o n d by p r o d u c i n g novel p ro t e in s o r p e p t i d e s , w h i c h a r e specifically ( a n d u n i q u e l y ) a s soc ia ted w i t h t he pa r a s i t i z ed s t a t e . Howeve r , t h e s i t u a t i o n is m o r e c o m p l i c a t e d w i t h respec t to p a r a s i t i s m in t h a t in s o m e cases t he p a r a ­sites have " s y m b i o t i c " o r t h i r d - p a r t y e l e m e n t s s u c h as v i ruses o r b a c t e r i a a s soc ia t ed w i th t h e m , t h u s c o n f o u n d i n g i n t e r p r e t a t i o n of e x p e r i m e n t s d e ­s igned to p i n p o i n t t he or ig in(s ) of t he c o g n i z a n t molecu les (i .e. , genes of t he hos t or its p a r a s i t e s o r t he e l e m e n t involved) . Moreove r , these p r o t e i n s often a p p e a r co r r e l a t ed wi th successful p a r a s i t i s m , r a t h e r t h a n a lack thereof. D u r i n g n o r m a l d e v e l o p m e n t of t he p a r a s i t e s , t h e p r o t e i n s a r e p r o d u c e d , a n d the i r syn thes i s h e n c e is co r r e l a t ed w i t h p a r a s i t e p r o t e c t i o n a n d a b s e n c e of e n c a p s u l a t i o n . T h u s , t he p a t t e r n of the i r o c c u r r e n c e differs f rom t h a t of t he a n t i b a c t e r i a l p r o t e i n s , w h i c h cons t i t u t e a n efficacious " p r o t e c t i v e " hos t r e ­s p o n s e t h a t checks p a t h o g e n invas ion .

A n ana lys i s of th is c o m p l e x scena r io w o u l d no t b e c o m p l e t e w i t h o u t refer­ence to p a r a s i t i s m - i n d u c e d modi f ica t ions in the hos t ' s e n d o g e n o u s p r o t e i n s . T i t e r s of m a n y of those molecu les a r e s ignif icant ly a l t e r ed d u r i n g p a r a s i t i s m . Fac to r s a s soc ia ted w i t h p a r a s i t i s m m a y affect t h e r a t e s of t r a n s c r i p t i o n o r t r a n s l a t i o n of hos t genes a n d be r e spons ib l e for i n d u c i n g these c h a n g e s . I n t he leas t c o m p l i c a t e d s i t ua t ion , t he s i m p l e p r e s e n c e of t he p a r a s i t e s w i t h i n t he b o d y cavi ty of t he hos t m a y b e sufficient to affect t h e r a t e s of t r a n s c r i p ­t ion or t r a n s l a t i o n , t h e r e b y h a v i n g a n i m p a c t on hos t p r o t e i n syn thes i s . T i m e

Page 38: Parasites and Pathogens of Insects. Parasites

2. Games Parasites Play 2 9

cou r se s tud i e s sugges t c h a n g e s o c c u r early, before t he w a s p s h a t c h . L a t e r , d e p l e t i o n of a m i n o ac ids a n d o t h e r n u t r i e n t s d u e to p a r a s i t e c o n s u m p t i o n of hos t h e m o l y m p h c o n s t i t u e n t s conce ivab ly cou ld modify t he r a t e of hos t p r o ­tein syn thes i s , s ince t he pools of p r e c u r s o r s r e q u i r e d for o p t i m a l t r a n s c r i p t i o n a n d t r a n s l a t i o n of hos t m R N A s m i g h t c o n s e q u e n t l y b e p r e s e n t in s u b o p t i m a l c o n c e n t r a t i o n s o r r a t ios d u e to d ive rs ion to " c o m p e t i n g " t i ssues , t h a t is, t h e p a r a s i t e s . T h u s , s o m e m e t a b o l i c effects ( T h o m p s o n , V o l u m e 1, C h a p t e r 6) likely a r e t igh t ly i n t e rwoven w i t h p a r a s i t i s m - i n d u c e d modi f i ca t ions in hos t p r o t e i n p r o d u c t i o n a n d t r a n s p o r t .

Add i t iona l ly , factors sec re ted o r o t h e r w i s e a s soc ia t ed w i t h t h e p a r a s i t e s , s u c h as t e r a tocy te s ( D a h l m a n a n d V i n s o n , V o l u m e 1, C h a p t e r 7) a n d p o l y d -nav i ru se s (Stol tz , V o l u m e 1, C h a p t e r 8; F l e m i n g a n d K r e l l , V o l u m e 1, C h a p ­te r 9) , m a y a lso have a r e g u l a t o r y inf luence . E x a m p l e s of t h e e n d o g e n o u s p r o t e i n s n o w k n o w n to b e affected b y insec t e n d o p a r a s i t i s m i n c l u d e t hose i n t i m a t e l y a s soc ia t ed w i t h l a rva l d e v e l o p m e n t a n d m e t a m o r p h o s i s (e .g. , a r -y l p h o r i n s ) , r e p r o d u c t i o n (e.g. , v i t e l logen in) , a n d t h e hos t i m m u n e r e s p o n s e (e.g. , p h e n o l o x i d a s e ) . As s o m e of these c h a n g e s a r e d e s c r i b e d in de t a i l in o t h e r c h a p t e r s , on ly a br ief s u m m a r y is p r e s e n t e d h e r e to i l l u s t r a t e t h e n a t u r e a n d ex t en t to w h i c h the hos t ' s e n d o g e n o u s p r o t e i n s a r e modif ied d u r i n g e n d o p a r a s i t i s m .

A n un re so lved , b u t none the l e s s i n t r i gu ing , q u e s t i o n c o n c e r n s t h e d e g r e e to w h i c h these c h a n g e s reflect ac t iv i ty of p a r a s i t e (or p a r a s i t e - a s s o c i a t e d ele­m e n t ) " d e s i g n e r g e n e s " w h o s e expres s ion d i rec t ly m a n i p u l a t e s t h e phys io logy of t he hos t for t he p a r a s i t e s ' benefi t . T h e c o n c e p t of " h o s t r e g u l a t i o n " is f requent ly invoked by phys io log is t s a n d pa ras i to log i s t s to exp l a in t he a d a p t i v e s ignif icance of m a n y of t he i m m u n o l o g i c a l , m e t a b o l i c , a n d b e h a v i o r a l c h a n g e s o b s e r v e d in hos t o r g a n i s m s d u r i n g p a r a s i t i s m ; yet t he s u p p o r t i n g ev idence for s u c h r e g u l a t o r y p h e n o m e n a is d i s a p p o i n t i n g l y s p a r s e , especia l ly w i t h r e spec t to insec t s y s t e m s . Unfo r tuna t e ly , t he t ru ly i n t i m a t e coevo lu t i ona ry n a t u r e of t h e h o s t - p a r a s i t e r e l a t i o n s h i p r e n d e r s i n t e r p r e t a t i o n of m a n y of t h e b i o c h e m i ­cal c h a n g e s seen in hos t insec ts exceed ing ly p r o b l e m a t i c , d u e to t h e c o m p l e x i ­ties involved in unravel ing the web of interact ions. S imul taneously one m u s t con­s ider t h e i n t r i g u i n g i n t e r p l a y of t he b i o c h e m i c a l " a t t a c k " s t r a teg ies evolved by p a r a s i t e s a n d t h e begu i l i ng c o u n t e r s t r a t e g i e s evolved b y hos t insec ts for the i r defense , no t to m e n t i o n the roles of p a r a s i t e - a s s o c i a t e d e l e m e n t s .

A m o n g p l a n t pa tho log i s t s , t he i dea of gene-for-gene coevo lu t ion b e t w e e n p a r a s i t e s a n d hos t s h a s n o w b e e n wide ly accep t ed s ince th is c o n c e p t w a s first p r o p o s e d by F lo r (1942) . S ince its i ncep t i on , th is w o r k i n g h y p o t h e s i s h a s g e n e r a t e d m u c h d e b a t e a n d e x p e r i m e n t a l r e s e a r c h , a n d for tu i tous ly h a s led to t he ident i f ica t ion of severa l " v i r u l e n c e " a n d " a v i r u l e n c e " genes in p l a n t p a t h o g e n s , h e n c e verifying its usefulness as a n e x p e r i m e n t a l p a r a d i g m (for review, see T h o m p s o n a n d B u r d o n , 1992). V i r u l e n t g e n o t y p e s r ecen t ly have

Page 39: Parasites and Pathogens of Insects. Parasites

3 0 Nancy Ε. Beckage

also b e e n ident if ied in o t h e r p a r a s i t e s , for e x a m p l e , p r o t o z o a n p a r a s i t e s of m a m m a l s (Sibley a n d B o o t h r o y d , 1992). T h i s c o n c e p t u a l f r a m e w o r k s e e m ­ingly h a s b e e n less w a r m l y e m b r a c e d by insec t pa ra s i to log i s t s a n d p a r a s i t o i d spec ia l i s t s , w h o h a v e i n t e r p r e t e d t h e p a n o r a m a of h o s t c h a n g e s a s s y m p ­t o m a t i c of hos t " s t r e s s , " " r e d i r e c t i o n , " o r " r e g u l a t i o n " w i t h o u t a n y d i r ec t reference to the i r i m p o r t a n c e as i n d i c a t o r s of evo lu t ion of p a r a s i t e v i ru l ence cha rac te r i s t i c s r e q u i r e d for hos t i nvas ion or l o n g - t e r m surv iva l in w h a t m i g h t o t h e r w i s e b e a n o n c o m p a t i b l e hos t e n v i r o n m e n t .

However , as r ecen t r e s e a r c h o n m a l a r i a h a s e m p h a s i z e d , a de l i ca t e in te r ­p l a y of hos t genes e n c o d i n g factors r e l a t ed to suscep t ib i l i ty a n d r e s i s t ance cha rac te r i s t i c s , i n t e r a c t i n g w i t h t h e p r o d u c t s of p a r a s i t e v i ru l ence a n d avir-u l ence genes , likely d e t e r m i n e s t h e o u t c o m e of m a n y h o s t - p a r a s i t e e n c o u n ­ters (Sayles a n d W a s s o m , 1988). T h e de l i ca t e c o u n t e r b a l a n c e of p a r a s i t e offense ve r sus hos t defense p r e s u m a b l y r equ i r e s a s imi l a r s t r a t e g y of g e n e -for-gene coevo lu t ion t h a t u l t i m a t e l y r e n d e r s t he r e l a t i o n s h i p a "success fu l" o n e w h e n the p a r a s i t e s b e c o m e c a p a b l e of d e v e l o p m e n t to m a t u r i t y w i t h i n a p rev ious ly " h o s t i l e " o r n o n h a b i t u a l hos t species (or s t r a i n the reo f ) . T h e p a r a s i t e t h u s m a y b e cons ide r ed t h e p a r t n e r w i t h t h e " d r i v e r " genes d i r ec t ­ing t h e hos t t o w a r d evolu t ion of r e s i s t ance - re l a t ed c h a r a c t e r s .

T h e ident i f ica t ion of pa r a s i t e - a s soc i a t ed " v i r u l e n c e " o r "k i l l e r " genes , a n d the i r c o r r e s p o n d i n g a v i r u l a n t m u t a n t al leles , u n f o r t u n a t e l y still awa i t s us w i t h r e spec t to sy s t ems invo lv ing p a r a s i t e s of insec t hos t s . T h e successful express ion of g e n e p r o d u c t s by the i r a s soc ia t ed " t h i r d - p a r t y " e l e m e n t s (e.g. , p o l y d n a v i r u s e s a s soc ia t ed w i t h w a s p s , o r bac t e r i a a s soc i a t ed w i t h n e m a ­todes) a lso likely is cr i t ica l to d e t e r m i n i n g the o u t c o m e of p a r a s i t i c i n t e r a c ­t ions invo lv ing a va r i e ty of insec t hos t s . T h u s , in these c o m p l e x s y s t e m s invo lv ing severa l " p a r t n e r s " it a p p e a r s likely t h a t b o t h t h e e l e m e n t ( such as a p o l y d n a v i r u s ) a n d t h e p a r a s i t e m u s t be c a p a b l e of c o m p l e t i n g i ts life cycle to e n s u r e successful p r o p a g a t i o n in t he hos t sys t em, w h i c h c u l m i n a t e s in m a t u ­r a t i o n of t h e p a r a s i t e s followed by d i s s e m i n a t i o n a n d infect ion of n e w h o s t s .

II. Parasitism- and Polydnavirus-lnduced Peptides and Proteins in Insect Hosts

M a n y s tud ie s have s h o w n t h a t insec t h e m o l y m p h p r o t e i n s a r e a l t e r ed d u r i n g p a r a s i t i s m (see references in following d i scuss ion , p lu s ea r l i e r s t ud i e s b y F i s h e r a n d G a n e s a l i n g a m , 1970; K i n g a n d Rafa i , 1970; V i n s o n a n d B a r r a s , 1970; B a r r a s et al., 1972; B r e w e r et al., 1973; Smi lowi tz , 1973; Smi lowi tz a n d S m i t h , 1977; V i n s o n a n d I w a n t s c h , 1980). I n a few cases of p a r a s i t i s m of l e p i d o p t e r a n l a rvae b y b r a c o n i d a n d i c h n e u m o n i d w a s p s , novel " p a r a s i t i s m -

Page 40: Parasites and Pathogens of Insects. Parasites

2. Games Parasites Play 31

specif ic" h e m o l y m p h p r o t e i n s h a v e b e e n s h o w n to b e syn thes i zed de novo fol lowing p a r a s i t i z a t i o n , as i n d i c a t e d by in vivo a m i n o ac id r a d i o l a b e l i n g of t h e p r o t e i n ( s ) p r o d u c e d in newly p a r a s i t i z e d hos t s (Cook et al., 1984; Beck­a g e et al., 1987). T h i s l ine of ev idence sugges t s t h a t t hey a r e n o t mo lecu l e s s h u t t l e d f rom t h e a d u l t p a r a s i t o i d to t he hos t d u r i n g p a r a s i t i z a t i o n , b u t i n s t e a d r e p r e s e n t newly syn thes i zed molecu le s . M o s t w o r k h a s focused o n assess ing c h a n g e s in h e m o l y m p h - b o r n e molecu le s , w h i c h a r e therefore e m ­p h a s i z e d in th is c h a p t e r ; a va r i e ty of i n t r ace l lu l a r o r t i s sue -as soc ia t ed c h a n g e s likely a lso o c c u r b u t h a v e b e e n c o n s i d e r a b l y less well s t u d i e d .

T h e p o l y d n a v i r u s e s in jec ted b y t h e w a s p p a r a s i t o i d Campoletis sonorensis t o g e t h e r w i t h t h e eggs in i t i a t e v i ra l g e n e t r a n s c r i p t i o n fol lowing t rans fe r of t h e v i rus from t h e w a s p " v e c t o r " to t he l e p i d o p t e r a n " h o s t . " Different s u b ­sets of v i ra l genes a r e exp res sed in each species ; a t h i r d set of " c o n s t i t u t i v e " genes a p p e a r s to b e expres sed ini t ia l ly in t h e w a s p ovary a n d expres s ion c o n t i n u e s following t ransfe r to t h e l e p i d o p t e r a n hos t ( T h e i l m a n n a n d S u m ­m e r s , 1988; F l e m i n g a n d K r e l l , V o l u m e 1, C h a p t e r 9) . I n th i s s y s t e m , m R N A t r a n s c r i p t s have b e e n i so la ted b y h y b r i d i z a t i o n of e x t r a c t e d R N A s to v i ra l p r o b e s , a l t h o u g h t h e c o r r e s p o n d i n g p r o t e i n s awa i t fu ture c h a r a c t e r i z a t i o n (Bl i ssard et al., 1986; T h e i l m a n n a n d S u m m e r s , 1988). T h e s e m a y r e p r e s e n t t h e novel p r o t e i n s d e s c r i b e d in ea r l i e r s tud ie s of p a r a s i t i z e d Heliothis l a rvae ( V i n s o n a n d B a r r a s , 1970; B a r r a s et al., 1972; B r e w e r et al., 1973). I n t e r ­estingly, s o m e p a r t i c u l a r l y a b u n d a n t "pa ra s i t i sm-spec i f i c " p r o t e i n s de t ec t ­a b l e in h o s t insec ts a r e i n d e e d p o l y d n a v i r u s - i n d u c e d t r a n s c r i p t s , w h i c h a r e n o t p r o d u c e d w h e n t h e v i rus is i nac t iva t ed (Cook et al., 1984; B e c k a g e et al., 1987; H a r w o o d , 1993; H a r w o o d et al., 1993a) . O t h e r mo lecu l e s a p p a r e n t l y a r e syn thes i zed by t h e d e v e l o p i n g p a r a s i t e l a rvae o r the i r a s soc i a t ed ter-a tocyes , a n d obv ious ly a r e g e n e r a t e d in sufficient a m o u n t s to b e d e t e c t a b l e in t h e hos t ' s b lood ( L a w r e n c e , 1990; Soldevi la a n d J o n e s , 1993). T h u s , t h e o r ig in a n d s i te(s) of p r o d u c t i o n of these p r o t e i n s a r e v a r i a b l e a n d likely species-specif ic , w i t h s o m e p r o t e i n s p r o b a b l y h a v i n g m u l t i p l e exp res s ion loci w i t h i n t h e hos t (wasp , p o l y d n a v i r u s , hos t ) .

T h e m o l e c u l a r we igh t s of t h e p a r a s i t i z a t i o n - i n d u c e d molecu le s d e s c r i b e d t h u s far v a r y f rom < 10,000 d a l t o n s to > 150,000 d a l t o n s , a n d w i t h i n a s ingle hos t , m u l t i p l e p r o t e i n s o r p e p t i d e s m a y b e p r o d u c e d a c c o r d i n g to a t igh t ly r e g u l a t e d t e m p o r a l p a t t e r n v a r y i n g a c c o r d i n g to t h e s t age of p a r a s i t i s m . For e x a m p l e , different se ts of pa ras i t i sm-spec i f i c p r o t e i n s a r e p r o d u c e d in " e a r l y " ve r sus " l a t e " s t age hos t l a rvae of t h e t obacco h o r n w o r m , Manduca sexta, fol­lowing p a r a s i t i z a t i o n by t h e b r a c o n i d w a s p Cotesia congregata ( D a h l m a n a n d G r e e n e , 1981; B e c k a g e et al., 1987, 1989; B e c k a g e a n d T e m p l e t o n , 1986; B e c k a g e a n d K a n o s t , 1993; H a r w o o d , 1993; H a r w o o d a n d B e c k a g e , 1993). Fo l lowing t h e d i s a p p e a r a n c e of t h e " e a r l y " p o l y p e p t i d e s severa l d a y s pos t -p a r a s i t i z a t i o n , o t h e r " l a t e " a p p e a r i n g p r o t e i n s s u b s e q u e n t l y a p p e a r in las t -

Page 41: Parasites and Pathogens of Insects. Parasites

3 2 Nancy Ε. Beckage

i n s t a r hos t s , w h i c h c o n t i n u e to c i r cu la te in t he hos t ' s h e m o l y m p h un t i l it even tua l ly d ies severa l d a y s following the w a s p s ' e m e r g e n c e (Beckage a n d T e m p l e t o n , 1986) d u e to n e u r e n d o c r i n e d i s r u p t i o n ( Z i t n a n et aL, 1993).

T h e t e m p o r a l p a t t e r n of a p p e a r a n c e of the " l a t e " p r o t e i n s m i r r o r s t h a t seen in o t h e r sys t ems . I n c a b b a g e looper l a rvae p a r a s i t i z e d b y Chelonus n e a r curvimaculatus, a novel h i g h - m o l e c u l a r - w e i g h t p r o t e i n (ca. 160 k D a o n S D S -P A G E gels) a p p e a r s in t he h e m o l y m p h of newly m o l t e d m a t u r e h o s t l a rvae , w h i c h t h e n , as resu l t of p a r a s i t i s m , a r e i n d u c e d to u n d e r g o p recoc ious m e t a ­m o r p h o s i s a n d w a n d e r following w h a t w o u l d n o r m a l l y b e t he p e n u l t i m a t e i n s t a r ( J o n e s et aL, 1985, 1986; J o n e s , 1989; Soldevi la a n d J o n e s , 1991). T h i s p r o t e i n is of low a b u n d a n c e re la t ive to o t h e r h e m o l y m p h p r o t e i n s , a n d beg ins to a p p e a r a t h e a d capsu l e s l ippage p r e c e d i n g the las t l a rva l ecdysis ; it is u n d e t e c t a b l e in n o n p a r a s i t i z e d la rvae of t h e s a m e species , r ega rd l e s s of the i r s t age of d e v e l o p m e n t . Moreove r , the p r o t e i n pers i s t s in t he h e m o l y m p h of t he hos t un t i l t he w a s p e m e r g e s (Soldevi la a n d J o n e s , 1991, 1993), s imi l a r to t h e " l a t e " p ro t e in s cha rac t e r i s t i c of p a r a s i t i z e d M. sexta.

T h e p r o t e i n fails to a p p e a r in p s e u d o p a r a s i t i z e d T. ni l a rvae , def ined as l a rvae in w h i c h n o p a r a s i t e is p r e s e n t b u t i n t o w h i c h v e n o m a n d p o l y d -n a v i r u s have b e e n injected, t he p a r a s i t e h a v i n g b e e n kil led by chi l l ing or o t h e r e x p e r i m e n t a l m a n i p u l a t i o n s ( J o n e s et aL, 1986), a r g u i n g t h a t t h e p r e s ­ence of a deve lop ing p a r a s i t e is r equ i s i t e for its syn thes i s (Soldevi la a n d J o n e s , 1991, 1993). Recen t d a t a show the p r o t e i n ac tua l ly o r ig ina t e s f rom the p a r a s i t e s a n d the w a s p s show a posi t ive r eac t ion w i t h a n t i b o d i e s d i r e c t e d a g a i n s t t he p r o t e i n . E v i d e n c e a lso exists for its de novo b iosyn thes i s by t he w a s p s , w h i c h cou ld a lso a c q u i r e t h e p r o t e i n b y inges t ion of t he i r hos t ' s h e m o l y m p h . H e n c e , Soldevi la a n d J o n e s (1991 , 1993) c o n c l u d e d t h a t t h e m o s t likely s cena r io is t h a t the p r o t e i n is p a r a s i t e - d e r i v e d . Ear l i e r , it was t h o u g h t t h a t t he p r e s e n c e of t he m a t u r e w a s p s (or the i r a s soc ia t ed factors) s o m e h o w i n d u c e s t h e hos t ' s t issues to syn thes ize t h e p r o t e i n b e g i n n i n g w h e n the hos t in i t ia tes its final l a rva l mo l t .

T h e p r e d o m i n a n t " e a r l y " expressed paras i t i sm-spec i f ic p o l y p e p t i d e s seen in M. sexta a r e in t he size r a n g e of 3 3 - 3 8 k D a a n d a r e very a b u n d a n t p r o ­te ins , r e p r e s e n t i n g u p to 8 - 1 0 % of t he to ta l c i r cu l a t i ng h e m o l y m p h p r o t e i n a n a l y z e d a t 24 h r p o s t p a r a s i t i z a t i o n . O n e of t he t h r e e m a j o r b a n d s d e t e c t a b l e in th is size r a n g e h a s b e e n conf i rmed to be a p o l y d n a v i r a l g e n e p r o d u c t ( H a r w o o d , 1993; H a r w o o d et aL, 1993a) . Severa l l ower -molecu la r -we igh t p o l y p e p t i d e s in t he 17- to 2 0 - k D a r a n g e a lso a r e i n d u c e d d u r i n g t h e s a m e t e m p o r a l window, a n d l ikewise d i s a p p e a r s y n c h r o n o u s l y w i t h t h e h igher -m o l e c u l a r - w e i g h t p ro t e in s several d a y s following ovipos i t ion (Beckage et aL, 1989). T h e s i m u l t a n e o u s u p - a n d d o w n - r e g u l a t i o n of severa l of th is a r r a y of " e a r l y " p o l y p e p t i d e s is s t r ik ing a n d sugges t s they m a y b e c o o r d i n a t e l y r egu ­l a t ed (Beckage et aL, 1987, 1989). Moreove r , s ince all of t h e m a p p e a r i n d u e -

Page 42: Parasites and Pathogens of Insects. Parasites

2. Games Parasites Play 3 3

ib le b y in ject ion of pur i f ied p o l y d n a v i r u s i n t o n o n p a r a s i t i z e d M. sexta l a rvae , o u r o b s e r v a t i o n s sugges t t hey m i g h t have a c o m m o n or ig in , t h a t is, coor­d i n a t e ^ r e g u l a t e d v i ra l genes .

I n p a r a s i t i z e d t o b a c c o h o r n w o r m s a very l a rge p o l y p e p t i d e ( > 1 2 0 k D a ) a p p e a r s as a m a j o r d e n s e b a n d on S D S - P A G E gels b e g i n n i n g a few d a y s fol lowing t h e hos t ' s ecdysis to its final ins ta r , j u s t a few d a y s p r i o r to t h e w a s p s ' e m e r g e n c e (Beckage a n d T e m p l e t o n , 1986). In te res t ing ly , th i s p r o ­te ins a p p e a r s s y n c h r o n o u s l y w i t h a m u c h less a b u n d a n t ca . 100-kDa poly­p e p t i d e a few d a y s p r i o r to w a s p e m e r g e n c e , j u s t a t t h e t i m e t h e w a s p s u n d e r g o the i r first l a rva l ecdysis to t he s econd i n s t a r (Beckage a n d T e m ­p l e t o n , 1986). T h e onse t of syn thes i s of these p r o t e i n s s eems r e m a r k a b l y well-s y n c h r o n i z e d w i t h th is L j - L 2 t r a n s i t i o n in t h e w a s p s , sugges t ing t hey m a y b e of p a r a s i t e o r ig in o r syn thes i zed b y h o s t t i ssues in r e s p o n s e to t h e p r e s e n c e of th is specific p a r a s i t e s t age . M o r e o v e r , t he i r a p p e a r a n c e is s u p p r e s s e d in hos t s t r e a t e d w i t h t h e insec t g r o w t h r e g u l a t o r a z a d i r a c h t i n , w h i c h ac t s a s a n ec­dys is i n h i b i t o r so t he p a r a s i t e s p r o d u c e a s e c o n d - i n s t a r cu t ic le b u t d ie as p h a r a t e L 2 l a rvae t r a p p e d w i t h i n t h e hos t (Beckage et al., 1988). F a i l u r e of t h e p a r a s i t e s to ecdyse p r e v e n t s a p p e a r a n c e of t he " l a t e " p r o t e i n s , fu r the r c o r r o b o r a t i n g the i r co r r e l a t i on w i t h onse t of t he p a r a s i t e s ' L 2 s t age . Yet a n o t h e r pa ras i t i sm-spec i f i c p o l y p e p t i d e of 56 k D a m o l e c u l a r w e i g h t is p r e s ­e n t in hos t M. sexta h e m o l y m p h b e g i n n i n g a t its ecdysis to t h e las t i n s t a r (Beckage a n d T e m p l e t o n , 1986). I t s t i m i n g of a p p e a r a n c e is r e m i n i s c e n t of t h e p r o t e i n d e t e c t e d in p a r a s i t i z e d c a b b a g e loopers by Soldevi la a n d J o n e s ( 1 9 9 1 , 1993); however , t h e re la t ive a b u n d a n c e a n d m o l e c u l a r we igh t s of t h e p r o t e i n s i so la ted in t he two species a r e s ignif icant ly different, sugges t i ng t hey m a y b e a n a l o g o u s b u t no t i den t i ca l p a r a s i t i s m - a s s o c i a t e d p r o t e i n s .

I n M. sexta w e h y p o t h e s i z e d t h a t t h e p a r a s i t e s m i g h t b e t h e sou rce of t hese " l a t e " p r o t e i n s ; however , c u l t u r i n g t h e p a r a s i t e s in vitro w i t h [ 3 5 S ] m e t h i o n i n e followed b y f l u o r o g r a m ana lys i s of p r o t e i n s sec re ted i n t o t h e m e d i u m over a 24 -h r p e r i o d p r o d u c e d n o ev idence of the i r de novo p r o d u c t i o n by t h e w a s p s , a l t h o u g h severa l p r o t e i n s w e r e r e l eased by t h e w a s p s (Fig . 1). T h e ter-a tocy te s d e v e l o p i n g in t he hos t h e m o c o e l a lso d o n o t a p p e a r to b e t h e syn­the t i c s o u r c e (de B u r o n et al., 1993). O u r c u r r e n t w o r k i n g h y p o t h e s i s is t h a t t hey a r e l ikely hos t - r a t h e r t h a n p a r a s i t e - d e r i v e d . Add i t iona l ly , in vivo s t ud i e s h a v e s h o w n t h a t t h e " l a t e " p r o t e i n s pers i s t in t h e h e m o l y m p h of t h e hos t for severa l d a y s fol lowing p a r a s i t e e m e r g e n c e f rom t h e hos t , f u r the r sugges t i ng t hey m a y b e of h o s t or ig in . I n c o n t r a s t to t h e " e a r l y " i n d u c e d p r o t e i n s , t hey c lear ly a r e n o t i n d u c i b l e b y t he in ject ion of p o l y d n a v i r u s i n to n o n p a r a s i t i z e d l a rvae (Beckage et al., 1993), sugges t i ng t h a t t hey d o n o t r e q u i r e ac t iv i ty of v i ra l genes for the i r express ion . I n s u m m a r y , a l t h o u g h t h e " e a r l y " p r o t e i n s r e p r e s e n t p r o t e i n p r o d u c t s of p o l y d n a v i r u s genes , t h e o r ig in of t h e " l a t e " p r o t e i n s d e t e c t e d in t he hos t r e m a i n s ( f rus t ra t ingly) unc l ea r .

Page 43: Parasites and Pathogens of Insects. Parasites

3 4

A

Nancy Ε. Beckage

- 9 4 -

- 6 7 -

- 4 3 »

- 3 0

- 2 0 -

Figure Ί (A) Production of radiolabeled polypeptides by Cotesia congregata larvae dissected from host larvae on day 2 (D2) or 3 (D3) of the fifth instar, and cultured for 24 hr with sterile Grace's medium (formulated without methionine added) that was supplemented with [ 3 5 S ] methionine to label proteins synthesized de novo. For culture procedures see de Buron et al. (1993) and Riddiford et al. (1979). Proteins recovered from the media (M), whole-body homogenates of the parasites (P), and parasite

{continues)

I m p o r t a n t l y , n o n e of these p r o t e i n s c o r r e s p o n d s to a n y of t h e a n t i b a c t e r i a l p r o t e i n s cha rac te r i s t i ca l ly p r o d u c e d in n o n p a r a s i t i z e d t o b a c c o h o r n w o r m la rvae following inject ion of n o n p a t h o g e n i c bac t e r i a ( B e c k a g e et al., 1989; K a n o s t et al., 1990; Faye a n d H u l t m a r k , V o l u m e 2, C h a p t e r 2) . N o r does in ject ion of o t h e r D N A v i ruses i n d u c e the i r syn thes i s . Fo r e x a m p l e , in jec t ion of l e tha l dosages of Autographa californica n u c l e a r po lyhed ros i s v i ru s ( N P V ) does n o t i n d u c e t h e s a m e p r o t e i n s (Fig . 2) , i n d i c a t i n g they a r e u n i q u e l y i n d u c e d by p a r a s i t i s m . T h e t obacco h o r n w o r m r e p r e s e n t s a s e m i p e r m i s s i v e h o s t of t h e N P V v i rus a n d lives for a n e x t e n d e d p e r i o d fol lowing in jec t ion of

P a r a s i t e L a r v a e

^ 1 4 ^

M D 2 M D 3 M D 3 P H D 2 P D 2 P D 3 P D 3 P D 3

Page 44: Parasites and Pathogens of Insects. Parasites

2. Games Parasites Play 3 5

Figure 1 (continued) hemolymph (PH) were analyzed by SDS-PAGE and fluorography (for techniques, see Beckage et al., 1987, 1989). Note that the media samples contain many radiolabeled polypeptides synthesized and secreted by the wasps; however, the major "parasitism-specific" bands detected in last-instar hosts (Beckage and Tem­pleton, 1986) do not appear to be of wasp origin as determined by comparison to previously published gels (Beckage and Templeton, 1986; Beckage et al., 1989). (B) Appearance of second-instar parasites similar to those used for the in vitro culture experiments described in Fig. l a legend. Note the bulbous anal vesicle at the posterior end of each larva; these were punctured and hemolymph samples from several para­sites were pooled and analyzed as described in Beckage et al. (1989). At this stage the mature second-instar parasites are ca. 3 m m in length and weigh 3 mg (Beckage and Riddiford, 1982). Photograph by Frances F. Tan.

th is v i ru s ; in jec ted l a rvae p r o d u c e severa l novel p r o t e i n s in r e s p o n s e to N P V (Fig . 2) a n d u l t i m a t e l y d ie f rom the v i ra l infect ion ca . 1 0 - 1 2 d a y s l a t e r after m o l t i n g to t h e fifth i n s t a r ( G r e t c h et al., 1991). A s ide-by-s ide c o m p a r i s o n shows t h a t t h e p r o t e i n s d e t e c t e d in l a rvae following N P V in jec t ion c lear ly differ in M W from those i n d u c e d following in ject ion of t h e C. congregata P D V (Fig . 2) (Beckage et al., 1987, 1989; H a r w o o d , 1993; H a r w o o d et al., 1993a) . T h u s , these t w o classes of insec t D N A v i ruses i n d u c e different sets of p r o t e i n s to b e exp re s sed in t h e s a m e " h o s t . " T h e s e differences a r e n o t s u r p r i s i n g g iven t h a t a t l eas t s o m e of t he novel p r o t e i n s d e t e c t e d r e p r e s e n t p r o d u c t s of v i ra l

Page 45: Parasites and Pathogens of Insects. Parasites

- « 9 4

- • 6 7

— 4 3

— 3 0

— 2 0

— 1 4

AcNPV Control PDV

Page 46: Parasites and Pathogens of Insects. Parasites

2. Games Parasites Play 3 7

genes ( H a r w o o d , 1993; H a r w o o d et al., 1993a, b) w h o s e s e q u e n c e s m a y n o t b e h igh ly conse rved a m o n g insec t D N A v i ruses .

U n f o r t u n a t e l y , w h a t is c u r r e n t l y l ack ing is a d i r ec t d e m o n s t r a t i o n of t h e b io logica l s ignif icance of "pa ra s i t i sm-spec i f i c " p r o t e i n s a n d ev idence t h a t t hey p l a y a cr i t ica l role in t he r e l a t i o n s h i p b e t w e e n p a r a s i t e a n d hos t . S ince t h e " e a r l y " p r o t e i n s a p p e a r p r i o r to h a t c h i n g of t h e first-instar p a r a s i t e s , t h e v i ruses a n d the i r g e n e p r o d u c t s m a y serve as p ro tec t ive a g e n t s d u r i n g th is ea r ly v u l n e r a b l e p h a s e of t he w a s p s ' d e v e l o p m e n t , wh i l e d u r i n g l a t e r s t ages t h e p a r a s i t e s t hemse lves b e c o m e c a p a b l e of func t ion ing in th is capac i ty . T h o u g h th is i dea is a t t r ac t i ve b a s e d on the re la t ive t i m e cou r se of a p p e a r a n c e of t h e p r o t e i n s , s t r o n g e x p e r i m e n t a l ev idence for th is h y p o t h e s i s is l ack ing .

C o n c e i v a b l y a t leas t s o m e of t h e p a r a s i t i s m - i n d u c e d p r o t e i n s have a func­t iona l ro le in r e g u l a t i n g s o m e of t h e f u n d a m e n t a l i n t e r ac t i ons cha rac t e r i s t i c of i n t i m a t e o r " h a b i t u a l " h o s t - p a r a s i t e r e l a t i onsh ip s d u r i n g ea r ly p h a s e s of t h e r e l a t i onsh ip . I n d e e d , m a n y of t h e paras i t i sm-spec i f i c p r o t e i n s c h a r a c ­te r ized t h u s far a r e extens ively g lycosy la ted , s imi l a r to o t h e r surface-i n t e r a c t i n g molecu le s . S ince g lycos ida ted r e s idues a r e n o w k n o w n to p l a y m a j o r roles in ce l l - ce l l r ecogn i t i on a n d defense p rocesses in o t h e r a n i m a l sy s t ems as well as p l a n t s , t hey m a y r e p r e s e n t p a r t i c u l a r l y cr i t ica l m o l e c u l a r d e t e r m i n a n t s of p a r a s i t e - h o s t i n t e r ac t i on . For e x a m p l e , t hey cou ld b i n d to p a r a s i t e surfaces a n d p r e v e n t s t i m u l a t i o n of h e m o c y t e e n c a p s u l a t i o n ; a l ter ­nat ively, t hey cou ld i n t e r ac t w i t h t he cells t hemse lves to elicit t r a n s f o r m a t i o n to t h e n o n e n c a p s u l a t i v e s t a t e (Stol tz , V o l u m e 1, C h a p t e r 8) .

A r e a s o n a b l e coro l la ry m i g h t b e t h a t r e q u i r e d pa ras i t i sm-spec i f i c p r o t e i n s m a y n o t b e p r o d u c e d a t t h e n o r m a l r a t e o r the i r funct ion m a y b e i m p a i r e d in n o n h a b i t u a l i n t e r ac t ions c u l m i n a t i n g in t h e e v e n t u a l d e a t h o r d e m i s e of p a r a s i t e s in " a l i e n " hos t s . C o o k et al. (1984) n o t e d t h a t p r o d u c t i o n of a 5 5 -

Figure 2 SDS-PAGE analysis of hemolymph samples collected from fourth-instar nonparasitized tobacco hornworm larvae 24 hr after injection of 10 6 pfu of the budded form of the Autographa californica nuclear polyhedrosis virus (AcNPV) diluted in sterile Grace's medium, control larvae injected with Grace's only, and larvae injected with ca. 2 wasp equivalents of filter-purified Cotesia congregata polydnavirus (Beckage et aL, 1993). T h e dose of AcNPV used is lethal for the larvae though they live for several days following virus injection (Gretch et al., 1991). Hemolymph sampling and S D S -PAGE analysis were carried out as described previously (Beckage et aL, 1987). Arrows (left) denote novel proteins present only in samples collected from AcNPV-injected larvae; stars (right) denote the "parasitism-specific" proteins induced by injection of PDV (Beckage etaL, 1987, 1989; Harwood, 1993; Harwood etal., 1993a). Note that the majority of the proteins induced by the two agents appear to have different mobilities; a few of the induced proteins in the AcNPV and PDV lanes appear to have roughly similar, though not identical, molecular weights. At least one of the novel proteins produced in the PDV-injected insects represents a viral transcript (see text).

Page 47: Parasites and Pathogens of Insects. Parasites

3 8 Nancy Ε. Beckage

k D a g lycopro te in in hos t l a rvae pa r a s i t i z ed by the i c h n e u m o n Hyposoter exi­guae w a s co r r e l a t ed w i t h t he pa ra s i t e ' s e v e n t u a l successful d e v e l o p m e n t ; moreover , t he p r o t e i n was n o t expressed in n o n h a b i t u a l hos t s in w h i c h t h e p a r a s i t e s w e r e e n c a p s u l a t e d . T h e i r s t u d y fur ther showed t h a t t h e p r o t e i n w a s i n d u c i b l e by inject ion of t h e w a s p ' s p o l y d n a v i r u s i n to n o n p a r a s i t i z e d insec t s , w h e r e a s w h e n the v i rus w a s inac t iva ted th is p r o t e i n failed to b e i n d u c e d .

Similar ly, in s p h i n g i d s t h a t a r e n o n p e r m i s s i v e or pa r t i a l l y pe rmi s s ive for t he d e v e l o p m e n t of C. congregata, syn thes i s of t he m a j o r ear ly " p o l y d n a v i r u s -i n d u c e d " p r o t e i n a p p e a r s a l t e r ed (or m a r k e d l y r e d u c e d ) in cases w h e r e p a r a ­s i t i sm is no t whol ly effective a n d the p a r a s i t e s u l t i m a t e l y b e c o m e e n c a p s u ­l a t ed ( H a r w o o d , 1993; H a r w o o d et al., 1993b) . Howeve r , t h e co r r e l a t i on of p r o t e i n p r o d u c t i o n w i t h pe rmiss iv i ty is n o t en t i re ly c lea r -cu t (as in a p l u s / m i n u s co r re l a t ion ) , as s o m e p r o d u c t i o n of t h e p r o t e i n occu r s in n o n p e r ­miss ive hos t s , a lbe i t a t s ignif icant ly r e d u c e d levels; moreover , W e s t e r n b lo t s show t h a t the i r syn thes i s s o m e t i m e s ceases p r e m a t u r e l y in cases w h e r e t h e p a r a s i t e s a r e d e s t i n e d for e n c a p s u l a t i o n ( H a r w o o d , 1993; H a r w o o d et al., 1993b) . W h e t h e r t he r e d u c e d p r o d u c t i o n of these pa ras i t i sm-spec i f i c p r o t e i n s o r a l t e red t i m i n g of the i r syn thes i s c o n t r i b u t e s to t h e p a r a s i t e s ' e n c a p s u l a t i o n a n d fai lure to e m e r g e from the hos t l a rva r e m a i n s to b e e s t ab l i shed ; conceiv­ably, t he lack of p r o t e i n p r o d u c t i o n cou ld r e p r e s e n t a n a s soc ia t ed , b u t n o t c ausa l , p h e n o m e n o n . However , in species t h a t have b e e n d e t e r m i n e d to b e fully pe rmis s ive a l t e rna t i ve hos t species , s u c h as Hyles lineata, t h e full spec ­t r u m of b o t h " e a r l y " a n d " l a t e " p ro t e in s a r e p r o d u c e d ( H a r w o o d , 1993; H a r w o o d et al., 1993b) . T h e s e o b s e r v a t i o n s s u p p o r t t he h y p o t h e s i s t h a t t he i r syn thes i s m a y be l inked w i th successful p a r a s i t i s m of s p h i n g i d hos t s b y C. congregata b u t a d d i t i o n a l e x p e r i m e n t a l ev idence is r e q u i r e d to yield def ini t ive conc lus ions a b o u t the i r func t iona l ro le(s ) . A fu ture a p p r o a c h will b e to inject a n t i s e n s e nuc leo t ides i n to newly pa ra s i t i z ed hos t s , w h i c h w o u l d b e e x p e c t e d to d e c r e a s e p a r a s i t e success if t h e c o m p l e m e n t a r y g e n e p r o d u c t s a r e a b s o ­lu te ly essent ia l for successful p a r a s i t i s m .

T h u s , o u r c u r r e n t w o r k i n g hypo thes i s in t h e M. sexta s y s t e m is t h a t t h e " e a r l y " p r o t e i n s s o m e h o w act a t t h e in i t ia l i m m u n o l o g i c a l in terface b e t w e e n p a r a s i t e a n d hos t . W h e r e a r e they p r o d u c e d ? N o r t h e r n b lo t s show t h e p r e ­d o m i n a n t " e a r l y " p ro t e in s a r e p r o d u c e d p r i m a r i l y by t h e fat b o d y a n d h e m o -cytes , a l t h o u g h o t h e r t i ssues a lso syn thes ize t he m R N A s to a lesser d e g r e e ( H a r w o o d , 1993; H a r w o o d a n d Beckage , 1993). E x p e r i m e n t s u s i n g in vitro c u l t u r e of hos t fat b o d y (Fig . 3) a n d h e m o c y t e s ( d a t a n o t s h o w n ) h a v e verified t h a t t he " e a r l y " p ro t e in s a r e syn thes i zed by fat b o d y cells a n d se­c re ted i n t o t he m e d i u m . Similar ly, fat b o d y a n d h e m o c y t e s r e p r e s e n t t h e p r i m a r y t i ssue sources of a n t i b a c t e r i a l p r o t e i n s , wh i l e severa l o t h e r s p l a y a lesser role ( D u n n , 1986; Faye a n d H u l t m a r k , V o l u m e 2, C h a p t e r 2) .

T h e nex t cr i t ica l s t ep will b e to a s say effects of pur i f ied pa ras i t i sm-spec i f i c p r o t e i n s on h e m o c y t e behav io r a n d o t h e r hos t phys io log ica l func t ion to m o r e

Page 48: Parasites and Pathogens of Insects. Parasites

Figure 3 Results of SDS—PAGE and fluorograph analysis of proteins synthesized and secreted into Grace's medium by the fat bodies of unparasitized fourth-instar tobacco hornworm larvae (U) and newly parasitized (P) larvae 24 hr postparasitiza-tion. Culture techniques and fluorography were carried out as described for ter-atocyte cultures (de Buron et al., 1993) and cultures of M. sexta tissues (Riddiford et al., 1979). Stars (right) indicate bands present in the cultures of parasitized fat body that were undetected in the control media containing fat body from unparasitized larvae. Note multiple novel bands appearing in the media of the parasitized sample, in the < 2 0 and 30—40 kDa M W ranges; these likely represent the early "parasitism-specific" proteins described in the text (Beckage et al., 1987, 1989; Harwood, 1993).

υ P

97

66

4 3

3 1

22

14

Page 49: Parasites and Pathogens of Insects. Parasites

4 0 Nancy Ε. Beckage

di rec t ly a d d r e s s the i r b iological role . M u l t i c e l l u l a r p a r a s i t e s obv ious ly m u s t ut i l ize different m e c h a n i s m s a s ide from d i rec t ce l lu la r i nvas ion to d i r ec t hos t b i o c h e m i c a l c h a n g e s , a n d these ex t race l lu la r sec re ted molecu le s w o u l d a p ­p e a r to be o n e p l aus ib l e m e c h a n i s m of phys io log ica l i n t e r ac t i on w i t h t he hos t . As m e n t i o n e d earl ier , s o m e of the bes t c lues a b o u t t h e n a t u r e of t h e r equ i s i t e h o s t - p a r a s i t e m o l e c u l a r i n t e rac t ions m a y ar i se f rom e x a m i n a t i o n of s i t ua t i ons in w h i c h the hos t is comple t e ly n o n p e r m i s s i v e , o r exh ib i t s on ly p a r t i a l suscep t ib i l i ty to p a r a s i t i s m , so t h a t t he p a r a s i t e s beg in d e v e l o p i n g b u t t h e n b e c o m e e n c a p s u l a t e d before e m e r g i n g . Severa l s cena r ios a r e p l a u s i b l e , a n d s ide-by-s ide c o m p a r i s o n s of t he " s u i t e " of b i o c h e m i c a l c h a n g e s o c c u r r i n g in suscep t ib l e , n o n p e r m i s s i v e , a n d semipe rmis s ive hos t s m a y facil i tate d i s ­c r i m i n a t i o n of t he m o s t cr i t ical genes w h o s e express ion i n v a r i a b l y is l inked to "successfu l" p a r a s i t i s m (or, a l te rna t ive ly , cons t i t u t e a n effective " a n t i p a r a s i t e p r o t e c t i o n " ) . A n o t h e r poss ibi l i ty is t h a t t he a b s e n c e (or a t leas t r e d u c e d syn thes i s ) of " i n c o m p a t i b l e " hos t p r o t e i n s m a y r e p r e s e n t w h a t is r e q u i r e d . I n t he fo rmer case , p r e s u m a b l y t he n o r m a l express ion of a n y cr i t ica l genes w o u l d b e h a m p e r e d (poss ibly to ta l ly i nh ib i t ed ) in a n o n p e r m i s s i v e hos t env i ­r o n m e n t , w h e r e a s express ion of nonc r i t i ca l genes w o u l d n o t s h o w a n y m o d ­ifying effect of e n d o p a r a s i t i s m . N o n p e r m i s s i v e hos t s t h u s w o u l d a p p e a r s imi­la r to n o n p a r a s i t i z e d a n i m a l s , w h e r e a s "successful ly" p a r a s i t i z e d i n d i v i d u a l s shou ld show a n a t t e n u a t i o n o r s i lenc ing of express ion of a n y t ru ly n o n c o m -p a t i b l e p r o t e i n w h o s e p r e s e n c e m i g h t t a rge t t he p a r a s i t e for e n c a p s u l a t i o n . T h e s e m i g h t r e p r e s e n t " a s s a s s i n " genes , t he express ion of w h i c h m u s t b e k n o c k e d o u t by t he p a r a s i t e ( s ) to p r e v e n t a po t en t i a l l y l e tha l s i t ua t i on f rom deve lop ing .

I n h o r n w o r m la rvae injected w i th l a rge a m o u n t s of P D V , t he " e a r l y " p ro t e in s a r e i n d u c e d , b u t o t h e r u n i q u e p ro t e in s even tua l ly a p p e a r , w h i c h a r e neve r seen in n a t u r a l l y p a r a s i t i z e d hos t s o r n o n p a r a s i t i z e d l a rvae . Specifi­cally, a d m i n i s t r a t i o n of two or m o r e w a s p equ iva l en t s of pur i f ied C. congregata p o l y d n a v i r u s i n d u c e s t he " e a r l y " p ro t e in s d e s c r i b e d ear l ier , b u t a lso s o m e p r o t e i n s n o t n o r m a l l y d e t e c t a b l e following n a t u r a l e x p o s u r e to w a s p p a r a ­s i to ids ; a t 6 - 1 0 d a y s pos t in jec t ion large a m o u n t s of heavi ly g lycosy la ted 18-to 2 2 - k D a M W p o l y p e p t i d e s a r e d e t e c t a b l e in these P D V - t r e a t e d " h o s t s " (Beckage et aL, 1993). E i t h e r these p a r t i c u l a r p r o t e i n s a r e n o t i n d u c i b l e d u r i n g n a t u r a l p a r a s i t i s m , o r for s o m e r e a s o n the i r syn thes i s is s u p p r e s s e d in hos t s w h o s e p a r a s i t e s deve lop normal ly . Al te rna t ive ly , t hey m a y be i n d u c i b l e on ly by inject ion of m e g a d o s e s of p o l y d n a v i r u s no t typ ica l ly de l ive red b y female w a s p s to hos t s d u r i n g p a r a s i t i z a t i o n . In t r igu ing ly , these e n i g m a t i c p r o t e i n s beg in to a p p e a r w h e n the l a rvae beg in to show m a j o r p i g m e n t a t i o n a n o m a l i e s d u e to P D V inject ion, w i th t he i n t e g u m e n t a c q u i r i n g a d i s t inc t ive rosy co lo ra t ion (Beckage et aL, 1990), b u t w h e t h e r t he two p h e n o m e n a , t h a t is, t h e a p p e a r a n c e of t he p ro t e in s a n d p i g m e n t s , a r e phys io log ica l ly l inked is

Page 50: Parasites and Pathogens of Insects. Parasites

2. Games Parasites Play 41

u n k n o w n . S imi l a r p i g m e n t a t i o n c h a n g e s o c c u r in n a t u r a l l y p a r a s i t i z e d lar­vae , b u t t hey a r e often e x a g g e r a t e d in l a rvae in jected w i t h l a rge a m o u n t s of P D V . A d d i t i o n a l s tud ie s a r e u n d e r w a y to c h a r a c t e r i z e these u n u s u a l p r o ­te ins a n d assess the i r poss ib le r e l evance to o t h e r phys io log ica l c h a n g e s in ­d u c e d b y P D V inject ion.

O t h e r poss ib le roles of t h e " e a r l y " i n d u c e d p r o t e i n s i n c l u d e i n d u c t i o n of hos t m e t a b o l i c o r b e h a v i o r a l effects, o r m o d u l a t i o n of t h e hos t ' s e n d o c r i n e o r n e u r o e n d o c r i n e s y s t e m c u l m i n a t i n g in i n d u c t i o n of hos t a r r e s t . S u c h ac t ion a p p e a r s p a r t i c u l a r l y p l a u s i b l e for t h e " l a t e " p ro t e in s p r o d u c e d d u r i n g t h e p e r i o d w h e n t h e hos t shows m u l t i p l e m e t a b o l i c a n d h o r m o n a l d e v i a t i o n s f rom t h e n o r m a l n o n p a r a s i t i z e d s t a t e . Howeve r , e x p e r i m e n t a l ev idence for a role of p e p t i d e s o r p r o t e i n s in a l t e r ing t h e hos t ' s e n d o c r i n e s t a t u s , behav io r , a n d d e v e l o p m e n t a l p r o g r a m m i n g r e m a i n s a " m i s s i n g l ink" (Beckage , 1990) a n d the i r p o t e n t i a l r e g u l a t o r y role in gove rn ing s u c h c h a n g e s r e m a i n s p u r e l y specu l a t i ve a t th is po in t .

Amaz ing ly , t he d e g r e e to w h i c h insec t p a r a s i t e s t hemse lves invoke c h a n g e s in t h e h e m o l y m p h p r o t e i n c o n t e n t of the i r hos t h a s rece ived sur­p r i s ing ly l i t t le a t t e n t i o n . T h e p a u c i t y of e x p e r i m e n t a t i o n in th is a r e a s h a r p l y c o n t r a s t s w i t h r a p i d r ecen t p r o g r e s s in ident i f ica t ion of t h e s p e c t r u m of mo lecu le s sec re t ed by p a r a s i t e s of v e r t e b r a t e hos t s ; l i tera l ly t h o u s a n d s of r e cen t p a p e r s h a v e d e s c r i b e d m e m b r a n e - a s s o c i a t e d p r o t e i n s a n d secre­t o r y / e x c r e t o r y a n t i g e n s in m a n y spec ies , u sua l ly w i t h a focus o n exp lo i t ing t h a t i n f o r m a t i o n for t he p u r p o s e s of d i sease d i agnos i s a n d vacc ine d e v e l o p ­m e n t (see t h e fol lowing). I n d e e d , g iven t h e lack of r e s e a r c h d i r e c t e d t o w a r d specific c h a r a c t e r i z a t i o n of p a r a s i t e - o r p a r a s i t o i d - s e c r e t e d molecu le s in in­sect hos t s , o n e m i g h t logical ly a s s u m e t h a t e n d o p a r a s i t i c w a s p s r e p r e s e n t a " s i l en t p a r t n e r " o r m i n o r c o m p o n e n t in t he phys io log ica l i n t e r a c t i o n b e t w e e n h o s t a n d p a r a s i t e . T h e c o m p r e h e n s i v e p i c t u r e likely i nc ludes c o n t r i b u t i o n s from severa l i n t e r a c t i n g c o m p o n e n t s , i n c l u d i n g t h e p a r a s i t e s as well as the i r a s soc i a t ed t e r a tocy t e s a n d p o l y d n a v i r u s e s , p lus t h e t issues of t h e hos t w h o s e phys io log ica l func t ions a r e va r ious ly modif ied d u r i n g p a r a s i t i s m .

For e x a m p l e , s tage-specif ic p r o t e i n s have b e e n s h o w n to b e p r o d u c e d b y e m b r y o s of Microplitis croceipes (Ferkovich a n d D i l l a rd , 1986; T i l d e n a n d Fer-kovich , 1987) a n d Copidosoma floridanum (Baeh recke et al., 1992), b u t w h e t h e r a n y e m b r y o - d e r i v e d p r o t e i n s a r e sec re ted in to t he s u r r o u n d i n g h o s t t i ssues w a s n o t d e t e r m i n e d in t h e s tud ies c i ted . I n t he t e p h r i t i d fruitfly Anastrepha suspensa, t h e se rosa l cells (i .e. , t e r a tocy te s ) of t h e b r a c o n i d w a s p Biosteres longicaudatus p r o d u c e a 2 4 - k D a m o l e c u l a r we igh t pa ras i t i sm-spec i f i c p o l y p e p ­t ide d e t e c t e d in t h e p h a r a t e p u p a l hos t ; t h e p a r a s i t e s a lso secre te t h e s a m e p r o t e i n , sugges t i ng it cou ld b e p r o d u c e d b y all p a r a s i t e - d e r i v e d cell l ineages ( L a w r e n c e , 1990). O t h e r t e r a tocy t e - sec re t ed molecu les a r e d e s c r i b e d b y D a h l m a n (1991) , D a h l m a n a n d V i n s o n ( V o l u m e 1, C h a p t e r 7), a n d d e Bur -

Page 51: Parasites and Pathogens of Insects. Parasites

4 2 Nancy Ε. Beckage

on et al. (1993) . I n t he l a t t e r p a p e r , m u l t i p l e ( > 3 0 ) p r o t e i n s were o b s e r v e d to b e syn thes ized a n d sec re ted by t e r a tocy te s of C. congregata; d u e to t h e l a rge n u m b e r s ( l i teral ly h u n d r e d s of t h o u s a n d s ) of cells p r e s e n t in each hos t , t he i r c o n t r i b u t i o n to t he hos t h e m o l y m p h mi l ieu w o u l d be s ignif icant .

I n o n e case , a p e p t i d e p rev ious ly c h a r a c t e r i z e d as "pa ra s i t i sm-spec i f i c " was r ecen t ly d e t e c t e d in n o n p a r a s i t i z e d i nd iv idua l s of t h e s a m e species ( H a y -a k a w a , 1992). T h u s , t he p r ev ious d e s i g n a t i o n of this p e p t i d e as " p a r a s i t i s m -specif ic" w a s a m i s n o m e r ( H a y a k a w a , 1990, 1992) w i t h t he a u t h o r n o w c o n c l u d i n g t h a t p a r a s i t i s m causes a n o m a l o u s mi sexp re s s ion of th is e n d o g e ­n o u s mo lecu l e a t a s t age l a te r t h a n it n o r m a l l y w o u l d b e d e t e c t e d ( H a y ­a k a w a , 1992) (see t he following). I n c o n t r a s t , t he p r o t e i n s c i ted ear l i e r a p ­p e a r to be t ru ly "pa ras i t i sm-spec i f i c " a n d c a n n o t b e " t u r n e d o n " in n o n p a r a s i t i z e d insects sub jec ted to v a r i o u s forms of phys io log ica l s t ress o r m a n i p u l a t i o n , a s ide f rom p a r a s i t i s m .

B e c a u s e of the i r u n i q u e assoc ia t ion w i t h p a r a s i t i z e d insec t s , a fu ture ave­n u e for exp lo i t a t ion of paras i t i sm-spec i f ic hos t h e m o l y m p h p r o t e i n c h a n g e s m a y be to ut i l ize prote in-speci f ic p r o b e s to conf i rm p a r a s i t i z a t i o n in cases w h e r e t h e hos t s a r e s imp ly too sma l l to b e easi ly d i s sec ted . W e s t e r n slot b lo t s o r E L I S A tests t h e n cou ld b e u sed to deve lop insec t " s q u a s h b l o t s " to est i ­m a t e t he p e r c e n t a g e of pa r a s i t i z ed insects in t h e hos t insec t p o p u l a t i o n . I n a g r i c u l t u r a l en tomology , a n a c c u r a t e a s s e s s m e n t of t h e p e r c e n t a g e of insec ts p a r a s i t i z e d following re lease of b iological con t ro l a g e n t s is cr i t ica l to m o n i t o r ­ing t he success of b iocon t ro l p r o g r a m s , ye t t e s t ing is difficult to c a r r y o u t , p a r t i c u l a r l y w i t h l a rge p o p u l a t i o n s of sma l l insec t s . J u s t as p a r a s i t e -a s soc ia t ed a n t i g e n s a r e now be ing ut i l ized for de t ec t i on of p a r a s i t i c infect ion in m a m m a l i a n hos t s , a n d for de t ec t i on of a r t h r o p o d - b o r n e p a r a s i t e s (e .g . , m a l a r i a , l e i s h m a n i a ) in vec to rs , so too m i g h t t he pa ras i t i sm-spec i f i c a n t i g e n s d e s c r i b e d h e r e be used for d i a g n o s t i c p u r p o s e s in s c r een ing insec ts for evi­d e n c e of p a r a s i t i s m .

A n o t h e r s t r a t egy for " t e c h n o l o g y t r ans fe r " m a y b e to ut i l ize g e n e t rans fe r to explo i t genes e n c o d i n g paras i t i sm-spec i f ic p ro t e in s for gene t i c e n g i n e e r i n g of p a r a s i t e s , poss ib ly u s i n g p o l y d n a v i r u s p r o m o t e r s d i r e c t i n g " e a r l y " exp re s ­s ion of c ruc ia l genes n e e d e d for successful i n t e rac t ion . S i t e -d i rec ted m u t a ­genes is first c a n b e u s e d to identify t h e m o s t cr i t ica l d o m a i n s n e e d e d for a p p r o p r i a t e i n t e rac t ion , w h i c h t h e n w o u l d b e t r ans fe r red to o t h e r p a r a s i t e s o r p o l y d n a v i r u s e s ; o n e goa l m i g h t b e to r e n d e r a species h a v i n g a n e x t r e m e l y n a r r o w hos t r a n g e m o r e p r o m i s c u o u s , for e x a m p l e . M o l e c u l a r " a s s a s i n " molecu le s m i g h t be f o r m u l a t e d for t a r g e t i n g to hos t h e m o c y t e s , t h e r e b y r en ­d e r i n g t h e m i n c a p a b l e of m o u n t i n g a successful defense . A l t h o u g h the se s t r a teg ies m a y b e cons ide red futur is t ic a t th is j u n c t u r e , r e cen t successes in g e n e t ransfer a n d t r a n s f o r m a t i o n in o t h e r b iological con t ro l a g e n t s s u c h as beneficial p r e d a t o r y mi t e s (P resna i l a n d Hoy, 1992) a r e e n c o u r a g i n g a n d

Page 52: Parasites and Pathogens of Insects. Parasites

2. Games Parasites Play 4 3

l ead to t h e o p t i m i s t i c p r e d i c t i o n t h a t th is t ype of b io t echno log ica l a p p r o a c h m i g h t b e m a d e feasible for p a r a s i t i c species in t h e n e x t d e c a d e .

III. Parasitic Effects on Endogenous Proteins, Enzymes, and Peptides

A s i d e f rom s t i m u l a t i n g de novo syn thes i s of n e w p r o t e i n s , p a r a s i t i s m fre­q u e n t l y a lso d r a m a t i c a l l y affects t h e t i te rs of e n d o g e n o u s h o s t h e m o l y m p h p r o t e i n s . T h e s e c h a n g e s m a y a r i se v ia a l t e r a t i ons in t h e r a t e ( s ) of t r a n s c r i p ­t ion of h o s t genes o r t r a n s l a t i o n a l even t s . N o t surpr i s ingly , t h e levels of to ta l h e m o l y m p h p r o t e i n often a r e u l t i m a t e l y affected, w i t h s o m e spec ies of h o s t insec ts s h o w i n g a d e c r e a s e in to ta l h e m o l y m p h p r o t e i n w h e r e a s o t h e r s d i s ­p l a y a s ignif icant i nc rease . As ide f rom h a v i n g d i r ec t effects o n h o s t p r o t e i n express ion , p a r a s i t i s m m a y a lso a l t e r h o s t b lood v o l u m e , t h e r e b y ind i r ec t ly affecting p r o t e i n c o n c e n t r a t i o n ; h e m o l y m p h v o l u m e m a y in t u r n b e a l t e r e d v ia effects o n d iu re s i s , food a n d fluid i n t a k e , o r o t h e r p rocesses affecting t h e d i l u t i o n of e n d o g e n o u s p r o t e i n s in t h e b lood . T h u s , h o s t h e m o l y m p h p r o t e i n c o n c e n t r a t i o n reflects t he s u m m a t i o n of ac t ion of m u l t i p l e phys io log ica l fac­to r s .

H o w m i g h t t h e express ion of hos t genes b e affected b y p a r a s i t i s m ? Severa l h y p o t h e t i c a l r o u t e s a r e p l aus ib l e . S o m e a l t e r a t i ons m a y ar i se v ia m e c h a ­n i s m s m e d i a t e d b y effects o n t r a n s c r i p t i o n factors , he l icases , R N A p roces s ing e n z y m e s , o r o t h e r modif iers t h a t u l t i m a t e l y i m p a c t t h e r a t e of hos t g e n e express ion . T r a n s l a t i o n a n d p r o t e i n p roce s s ing m a y a lso b e modif ied (see t h e fol lowing). Pa ra s i t i c effects on hos t n u t r i t i o n a n d t h e re la t ive a b u n d a n c e of a m i n o ac ids a n d o t h e r mo lecu le s r e q u i r e d for syn thes i s of specific e n z y m e s , p e p t i d e s , a n d cons t i t u t ive o r t r a n s p o r t p r o t e i n s m i g h t a l so b e e x p e c t e d to h a v e a d a m p i n g effect o n t he r a t e of h o s t p r o t e i n syn thes i s . O b v i o u s l y o n e c o m p l i c a t i n g factor is t h a t t h e feeding b e h a v i o r of t he h o s t f r equen t ly is a l t e r e d d u r i n g p a r a s i t i s m . T h i s inf luences t h e r a t e of n u t r i e n t i n t a k e re la t ive to t h a t o c c u r r i n g in n o n p a r a s i t i z e d insec t s , a n d m a n y species of p a r a s i t i z e d insec ts s h o w a dec l ine o r c o m p l e t e cessa t ion of food c o n s u m p t i o n d u r i n g t h e final s t ages of p a r a s i t i s m . Levels of a m i n o ac ids a r e often r e d u c e d w h e n t h e h o s t insec t is e x p e r i e n c i n g s e m i s t a r v a t i o n a n d is feeding a t a s ignif icant ly s lower r a t e , t h u s d e c r e a s i n g n u t r i e n t t ransfe r f rom t h e g u t to t h e h e m o l y m p h . A n a c r o s s - t h e - b o a r d d e c r e a s e in all h e m o l y m p h p r o t e i n s logical ly m i g h t e n s u e ; however , in m a n y cases t h e effects of p a r a s i t i s m a r e pro te in-spec i f ic , w i t h s o m e p r o t e i n s s h o w i n g n o a l t e r a t i o n s o r q u a n t i t a t i v e effects, w h e r e a s o t h e r s s h o w signif icant i nc reases o r d e c r e a s e s d u r i n g p a r a s i t i s m . T h i s selec­t ivi ty s t rong ly a r g u e s t h a t a nonspeci f ic lower ing o r s h u t d o w n in t h e r a t e of h o s t p r o t e i n syn thes i s is n o t r e spons ib l e . I n s t e a d , t h e effects a p p e a r h igh ly

Page 53: Parasites and Pathogens of Insects. Parasites

4 4 Nancy Ε. Beckage

specific a n d t a r g e t e d to ce r t a in genes w h o s e levels of express ion a r e va r ious ly modif ied d u r i n g p a r a s i t i s m .

O n e class of p ro t e in s c o m m o n l y affected d u r i n g p a r a s i t i s m of l a rva l s t age hos t s is t he a r y l p h o r i n s . T h e s e h i g h - m o l e c u l a r - w e i g h t s t o r a g e p ro t e in s a r e syn thes ized d u r i n g the l a rva l feeding s t age a n d funct ion as a n a m i n o acid reservoi r for use d u r i n g d e v e l o p m e n t a l r e s t r u c t u r i n g ( W e b b a n d R idd i fo rd , 1988a ,b) . L a b e l i n g s tud ies have s h o w n t h a t t he a m i n o acid c o m p o n e n t s of a r y l p h o r i n a r e pe r iod ica l ly b r o k e n d o w n a n d t h e n i n c o r p o r a t e d in to t h e cut ic le a n d o t h e r t issues d u r i n g la rva l m o l t i n g a n d m e t a m o r p h o s i s , p r o v i d i n g ev idence for the i r role in a m i n o acid " r e p r o c e s s i n g " ( W e b b a n d R idd i fo rd , 1988a) . D u r i n g s t a r v a t i o n a n d o t h e r nonfeed ing pe r iods s u c h as m o l t i n g , t he syn thes i s of a r y l p h o r i n ceases t rans ien t ly , b u t is qu ick ly r e s u m e d u p o n re ­s u m p t i o n of feeding ( W e b b a n d Ridd i fo rd , 1988a ,b) .

T w o d i s t inc t t r e n d s a r e ev iden t in p a r a s i t i z e d insec ts . I n a few i n s t a n c e s p a r a s i t i s m causes p recoc ious express ion of h igh levels of a r y l p h o r i n s d u r i n g w h a t w o u l d n o r m a l l y be the p e n u l t i m a t e ins ta r , as exempl i f ied b y w a s p s b e l o n g i n g to t he g e n u s Chelonus, w h i c h i nva r i ab ly i n d u c e th is p h e n o m e n o n in hos t l e p i d o p t e r a n l a rvae ( J o n e s et al., 1985, 1986; J o n e s , 1989; K u n k e l et aL, 1990). I n o t h e r s , h e m o l y m p h a r y l p h o r i n levels a r e m a r k e d l y d e p r e s s e d d u r ­ing p a r a s i t i s m , as seen in l e p i d o p t e r a n la rvae p a r a s i t i z e d by severa l species of Cotesia. For e x a m p l e , in fifth-instar l a rvae of M. sexta p a r a s i t i z e d b y C. congre-gata, t he hos t ' s h e m o l y m p h shows a t e m p o r a l dec l ine in t h e c o n c e n t r a t i o n of a r y l p h o r i n following hos t ecdysis to t he fifth ins ta r , w h e r e a s t h a t of s imi la r ly aged n o n p a r a s i t i z e d a n i m a l s exh ib i t s a d r a m a t i c fourfold i nc rea se in ar­y l p h o r i n c o n t e n t (Beckage a n d K a n o s t , 1993). In te res t ing ly , d e s p i t e t h e low­ered level of h e m o l y m p h a r y l p h o r i n , t he fat b o d y of p a r a s i t i z e d l a rvae con­t a ins r o u g h l y s imi l a r a r y l p h o r i n m R N A levels (pe r m g t issue) as t hose d e t e c t a b l e in t i ssues excised from u n p a r a s i t i z e d p r e w a n d e r i n g l a rvae , as d e ­t e r m i n e d by N o r t h e r n h y b r i d i z a t i o n s ca r r i ed o u t u s ing r a d i o l a b e l e d M. sexta a r y l p h o r i n p r o b e s to a n a l y z e fat b o d y m R N A s (Beckage a n d W e b b , u n ­p u b l i s h e d d a t a ) . T h e l a t t e r s t u d y a lso showed t h a t these m R N A s a r e t r a n s l a ­t ab l e in vitro u s ing the t e c h n i q u e s of W e b b a n d Ridd i fo rd (1988b) . I n s u c h s i t ua t ions w h e r e n o r m a l m R N A levels c o n t i n u e to be p r o d u c e d a l t h o u g h h e m o l y m p h t i ters of the p r o t e i n a r e m a r k e d l y d e p r e s s e d , o n e logical conc lu ­sion is t h a t a r y l p h o r i n express ion m a y be r e g u l a t e d pos t t r ansc r ip t i ona l ly . T h u s , s imi la r to h e a t shock ( a n d o t h e r s t ress - re la ted) p r o t e i n s , v e r t e b r a t e t r a n s p o r t p r o t e i n s , a n d n u m e r o u s v i ra l gene p r o d u c t s ( I l a n , 1987; T h a c h , 1992; Her shey , 1992), a r y l p h o r i n p r o t e i n express ion d u r i n g p a r a s i t i s m m a y b e r e g u l a t e d pos t - t r ansc r ip t iona l ly , r a t h e r t h a n a t ear l ie r s t eps in f luenc ing the r a t e of a c c u m u l a t i o n of hos t m R N A s . P e r h a p s t r a n s l a t i o n a l con t ro l is logical for t he insec t s t o r age p r o t e i n s , w h o s e syn thes i s m a y be qu ick ly u p - o r d o w n - r e g u l a t e d s y n c h r o n o u s w i t h r a p i d c h a n g e s in n u t r i t i o n a l s t a t e ; d u r i n g

Page 54: Parasites and Pathogens of Insects. Parasites

2. Games Parasites Play 4 5

nonfeed ing p e r i o d s , i ts a c c u m u l a t i o n s tops ( W e b b a n d R idd i fo rd , 1988a) . P l aus ib l e m e c h a n i s m s m i g h t involve fas t -ac t ing t r a n s l a t i o n b lock ing a g e n t s or o t h e r factors . As o t h e r a u t h o r s have n o t e d a d e c r e a s e in hos t h e m o l y m p h s t o r a g e p r o t e i n t i te rs following p a r a s i t i z a t i o n by r e l a t ed species of Cotesia ( J u n n i k k a l a , 1966), t he m e c h a n i s m s effecting a s u p p r e s s i o n of a r y l p h o r i n a c c u m u l a t i o n m a y b e w i d e - r a n g i n g a m o n g species .

B e c a u s e s t o r a g e p r o t e i n s r e p r e s e n t a l a rge p r o p o r t i o n of t h e to ta l h e m o ­l y m p h p r o t e i n , p a r t i c u l a r l y d u r i n g the p r e w a n d e r i n g feeding p e r i o d i m m e ­d ia te ly p r e c e d i n g the onse t of m e t a m o r p h o s i s , it is no t s u r p r i s i n g to find t h a t p a r a s i t i s m f requen t ly causes a lower ing of t he to ta l p r o t e i n c o n t e n t of t h e b lood d u r i n g this pe r iod . H y p o p r o t e i n e m i a h a s b e e n r e p o r t e d in a w i d e r a n g e of p a r a s i t i z e d insec ts , i n d i c a t i n g t h a t it likely is a c o m m o n effect of p a r a s i t i s m ( V i n s o n a n d I w a n t s c h , 1980). Effects a r e often c o m p l e x , t h a t is, in f o u r t h - i n s t a r newly p a r a s i t i z e d M. sexta l a rvae , t he to ta l p r o t e i n c o n c e n t r a ­t ion in i t ia l ly is e leva ted following ovipos i t ion ( p r e s u m a b l y d u e to i n d u c t i o n of t he pa ras i t i sm-spec i f i c p ro t e ins ) t h e n is s ignif icant ly d e c r e a s e d re la t ive to t he p r o t e i n c o n c e n t r a t i o n m e a s u r e d in n o n p a r a s i t i z e d l a rvae , following m o l t ­ing to t he fifth i n s t a r (Beckage et αι., 1989). T h i s l a t t e r dec l i n ing t r e n d likely reflects t he re la t ive d e c r e a s e in a r y l p h o r i n t i ters (Beckage a n d K a n o s t , 1993). T h u s , b o t h t r a n s i t o r y hype r - a n d h y p o - r e g u l a t o r y effects c a n b e o b s e r v e d in t he s a m e hos t .

M i g h t a n o t h e r factor c o n t r i b u t i n g to hos t h y p o p r o t e i n u r i a b e p a r a s i t e u p t a k e of hos t h e m o l y m p h p ro te ins? Pa ra s i t e eggs d o n o t a p p e a r to a b s o r b o r ut i l ize hos t a p o p r o t e i n s o r the i r d e g r a d a t i o n p r o d u c t s (Ferkovich a n d Di l -l a r d , 1986) t h o u g h t h e s i t u a t i o n m i g h t be different w i t h l a rvae . P rev ious ly we h a d s u s p e c t e d t h a t t h e r a p i d l y d e v e l o p i n g s e c o n d - i n s t a r C. congregata l a rvae s e q u e s t e r e d a r y l p h o r i n following u p t a k e from the hos t h e m o l y m p h . H o w ­ever, W e s t e r n b lo ts u s ing a n t i b o d i e s to M. sexta a r y l p h o r i n s h o w e d t h a t t h e l a t t e r p r o t e i n w a s u n d e t e c t a b l e in h e m o l y m p h or w h o l e - b o d y h o m o g e n a t e s of t h e w a s p s ; a l t h o u g h t h e w a s p s a p p e a r e d to have e n d o g e n o u s s t o r a g e p r o ­te in l ike mo lecu l e s w i t h m o l e c u l a r we igh t s s imi la r to M. sexta a r y l p h o r i n s u b u n i t s , t h e w a s p p r o t e i n s d id n o t c ross - reac t w i t h t h e M. sexta a r y l p h o r i n a n t i b o d i e s (Beckage et al., 1989). Howeve r , t h e poss ib i l i ty still exists t h a t h o s t p r o t e i n s i n c l u d i n g a r y l p h o r i n a r e c o n s u m e d , r a p i d l y d e g r a d e d , t h e n re ­p roces sed b y t h e w a s p s . Moreove r , p a r a s i t o i d s t h a t a r e c u l t u r e d in vitro fre­q u e n t l y r e q u i r e t h e p r e s e n c e of p r o t e i n - o r l i pop ro t e in - r i ch s u p p l e m e n t s (in t h e form of fetal bov ine s e r u m , bov ine s e r u m a l b u m i n , etc .) in t h e m e d i u m to faci l i tate n o r m a l d e v e l o p m e n t (Greany , 1986; Ferkovich et al., 1991; Pen-n a c h i o et al., 1992). I t h a s t h u s b e e n inferred t h a t acqu i s i t i on of h o s t p r o t e i n s m i g h t b e cr i t ica l in fulfilling t he p a r a s i t e s ' n o r m a l n u t r i t i o n a l r e q u i r e m e n t s , a l t h o u g h the specific roles of hos t p r o t e i n s o r l i pop ro t e in s h a v e yet to b e e s t ab l i shed .

Page 55: Parasites and Pathogens of Insects. Parasites

4 6 Nancy Ε. Beckage

A r y l p h o r i n is n o t t h e on ly hos t h e m o l y m p h p r o t e i n affected b y p a r a s i t i s m . H e m o l y m p h se rp in levels a l so a r e d r a m a t i c a l l y lowered d u r i n g t h e final s t ages of p a r a s i t i s m by C. congregata (Beckage a n d K a n o s t , 1993). Se r ine p r o t e a s e s a r e i n t i m a t e l y involved in m o d u l a t i n g act iv i ty of p h e n o l o x i d a s e s a n d p a r t i c i p a t e as well in o t h e r e n z y m e ca scades ; t h u s , i n d u c t i o n of s o m e modi f ica t ions in hos t b i o c h e m i c a l r e g u l a t o r y p a t h w a y s m i g h t b e e x p e c t e d to e n s u e c o n c o m i t a n t w i t h a r e d u c t i o n in s e rp in t i te rs . A n t i b a c t e r i a l p r o t e i n s a lso f requen t ly a r e lowered d u r i n g p a r a s i t i s m , t h u s e n h a n c i n g sens i t iv i ty to p a t h o g e n i c infect ion in m a n y species (Brooks , V o l u m e 2, C h a p t e r 11). P a r a ­si t ized M. sexta l a rvae a r e m o r e suscep t ib l e to bac t e r i a l infect ion as c o m p a r e d to n o n p a r a s i t i z e d l a rvae , a n d b o t h cell- a n d h u m o r a l - m e d i a t e d i m m u n e m e c h a n i s m s likely a r e s u p p r e s s e d d u r i n g p a r a s i t i s m (Ross a n d D u n n , 1989).

Howeve r , t he vas t ma jo r i ty of hos t h e m o l y m p h p r o t e i n s in M. sexta r e m a i n unaffected b y p a r a s i t i s m a n d effects of p a r a s i t i s m a p p e a r h igh ly select ive. I n c o n t r a s t to t h e d e p r e s s i o n in levels of a r y l p h o r i n a n d se rp in s , i n sec t i cyan in a n d l i p o p h o r i n a r e p r e s e n t a t n e a r - n o r m a l c o n c e n t r a t i o n s in t h e b lood (Beck­age a n d K a n o s t , 1993). T h e a b s e n c e of a n y effect o n l i p o p h o r i n is s u r p r i s i n g for two r e a s o n s . F i r s t , p r ev ious s tud ies have n o t e d a r e d u c t i o n in l ipid a n d e leva t ion in g lycogen c o n t e n t of t h e fat b o d y of p a r a s i t i z e d l a rvae c o m p a r e d to n o n p a r a s i t i z e d l a rvae ( T h o m p s o n et aL, 1990); th i s effect o n s to red l ip ids m i g h t logical ly be expec t ed to a l t e r t he t i te rs of l ip id t r a n s p o r t p r o t e i n s c i r cu l a t i ng in t h e b lood , yet t h e levels r e m a i n u n a l t e r e d . T h e lack of effect o n l i p o p h o r i n w a s a l so u n e x p e c t e d g iven the r e d u c e d we igh t s of p a r a s i t i z e d l a rvae . T h u s , p a r a s i t i z e d l a rvae p rov ide s o m e clues as to its m o d e of r egu l a ­t ion in t h a t t h e l i p o p h o r i n t i ter of 3 - to 4-g hos t l a rvae w i t h newly e m e r g e d w a s p s is t h e s a m e as t h a t r e p o r t e d for 8- to 10-g n o n p a r a s i t i z e d p r e w a n d e r -ing l a rvae , sugges t ing t h a t l a rva l we igh t p e r se h a s n o m a j o r r e g u l a t o r y inf luence (Beckage a n d K a n o s t , 1993). L i p o p h o r i n h a s r ecen t ly b e e n s h o w n to s ignif icant ly r e d u c e h e m o c y t e a d h e s i o n b e h a v i o r ( C o o d i n a n d Caveney , 1992), l e a d i n g th is a u t h o r to specu la t e : M i g h t t h e re la t ive a b u n d a n c e of th is p r o t e i n be r e l a t ed to t h e cha rac t e r i s t i c " t r a n s f o r m a t i o n s " in hos t h e m o c y t e b e h a v i o r o c c u r r i n g d u r i n g p a r a s i t i s m ?

A n o t h e r hos t p r o t e i n f requent ly affected by p a r a s i t i s m is t h e e n z y m e p h e -no lox idase (a lso see C h r i s t e n s e n a n d Severson , V o l u m e 1, C h a p t e r 11; D a h l -m a n a n d V i n s o n , V o l u m e 1, C h a p t e r 7). I n insec ts a t t a c k e d b y i c h n e u m o n i d (e.g. , Hyposoter exiguae) a n d b r a c o n i d {Cotesia congregata) w a s p s , p o l y d n a v i r a l i nvas ion of hos t h e m o c y t e s elicits a r e d u c t i o n of p h e n o l o x i d a s e ac t iv i ty (Stol tz a n d C o o k , 1983; Beckage et aL, 1990), poss ib ly b y affecting t r a n s c r i p ­t ion of t h e hos t p h e n o l o x i d a s e gene ( s ) , o r s u b s e q u e n t t r a n s l a t i o n of t h e m R N A s following v i rus u p t a k e by the cells. A n o t h e r i n t e r p r e t a t i o n w a s p r e ­sen t ed b y S roka a n d V i n s o n (1978) , w h o a t t r i b u t e d p h e n o l o x i d a s e i n h i b i t i o n in p a r a s i t i z e d Heliothis l a rvae to ty ros ine deficiency; in o t h e r spec ies , p h e -

Page 56: Parasites and Pathogens of Insects. Parasites

2. Games Parasites Play 4 7

no lox ida se i n h i b i t o r s m a y a lso b e p r e s e n t in p a r a s i t i z e d l a rvae ( F u h r e r a n d Wi l l e r s , 1986; K i t a n o et al, 1990).

Bacu lov i ruses , w h i c h i n v a d e h o s t h e m o c y t e s s imi l a r to p o l y d n a v i r u s e s , a l so c a u s e a s u p p r e s s i o n of h e m o l y m p h p h e n o l o x i d a s e ac t iv i ty a n d m e l a n i z a -t ion ( A n d e r s o n s et al, 1990), sugges t ing t h a t a w i d e r a n g e of v i ruses m a y e m p l o y a c o m m o n m e c h a n i s m to d o w n - r e g u l a t e p h e n o l o x i d a s e p r o d u c t i o n in infected insec t s . Poss ibly a n y t ype of v i ra l o r bac te r i a l infect ion t h a t h a s a d v e r s e effects o n h e m o c y t e s , i n c l u d i n g p a r a s i t i s m b y e n t o m o p h a g o u s n e m a ­todes a n d the i r a s soc ia t ed b a c t e r i a (Yokoo et al., 1992), m a y l ikewise i n h i b i t p h e n o l o x i d a s e activity, s ince t h e e n z y m e n o r m a l l y is p r o d u c e d b y these cells a n d re leased i n t o t h e p l a s m a . H e m o c y t e d e p l e t i o n o r p a t h o l o g y m i g h t a l so c o n t r i b u t e to a lowered capac i ty of t h e hos t to p r o d u c e a n t i b a c t e r i a l p r o t e i n s , as well a s o t h e r s of h e m o c y t e o r ig in .

E n z y m e s cr i t ica l to e n d o c r i n e r e g u l a t i o n a r e a lso i m p a c t e d by p a r a s i t i s m , t h e r e b y affecting t he hos t ' s d e v e l o p m e n t a l p r o g r a m . T h e e n z y m e s k n o w n to b e affected b y p a r a s i t i s m i n c l u d e j u v e n i l e h o r m o n e es t e rase , w h i c h is e i t he r d e p r e s s e d to n e a r n o n d e t e c t a b l e levels (Beckage a n d Ridd i fo rd , 1982; D a h l ­m a n et al, 1990; H a y a k a w a , 1990; S t r a n d et al, 1990; Z h a n g et al, 1992) o r p recoc ious ly i n c r e a s e d ( J o n e s et al, 1986), a n d e c d y s o n e 2 0 - m o n o o x y g e n a s e m a y a lso b e affected (Beckage a n d T e m p l e t o n , 1986). B o t h of t hese e n z y m e s a r e n o r m a l l y p r o d u c e d by t h e fat body, sugges t ing o n c e a g a i n t h a t th is t i s sue r e p r e s e n t s a m a j o r s i te w h e r e effects of p a r a s i t i s m a r e exp re s sed o r " t r a n s ­d u c e d , " t h e r e b y modi fy ing the hos t ' s phys io logy a n d d e v e l o p m e n t . I n m a n y species , t h e fat b o d y of p a r a s i t i z e d l a rvae often shows m a j o r deb i l i t a t ive effects of p a r a s i t i s m in t h a t it fails to pro l i fe ra te a t t h e n o r m a l r a t e , p e r h a p s t h u s a c c o u n t i n g for s o m e of t h e i n h i b i t o r y effects of p a r a s i t i s m o n e n z y m e p r o d u c t i o n . A g a i n , p a r a s i t i c effects a p p e a r t a r g e t e d to specific e n z y m e s , as exempl i f ied b y t h e fact t h a t in M. sexta h e m o l y m p h k e t o r e d u c t a s e ac t iv i ty a p p e a r s unaffected by p a r a s i t i s m ( D . B . G e l m a n a n d Ν . E . B e c k a g e , u n ­p u b l i s h e d ) . T h i s e n z y m e conver t s t h e 3 - d e h y d r o e c d y s o n e p r o d u c e d b y t h e p r o t h o r a c i c g l a n d s to e c d y s o n e (Ki r i i sh i et al, 1990) a n d a p p e a r s to b e a loof to a n y modi fy ing effect of p a r a s i t i s m , in c o n t r a s t to J H es t e ra se t i te rs in t h e s a m e l a rvae , w h i c h a r e d r a m a t i c a l l y r e d u c e d . T h u s , hos t h o r m o n a l c h a n g e s m a y a r i se f rom p a r a s i t i c effects o n t h e ac t iv i ty of r e g u l a t o r y e n z y m e s in t h e p a t h w a y s l e a d i n g from p r e c u r s o r s to h o r m o n e s to m e t a b o l i t e s , b u t n o t all e n z y m e s a r e affected equal ly .

H a y a k a w a (1990, 1991) r e p o r t e d t h e p r e s e n c e of a g r o w t h - b l o c k i n g j u v e ­ni le h o r m o n e e s t e ra se supp re s s ive factor in t h e h e m o l y m p h of l a s t - i n s t a r l a rvae of t h e a r m y w o r m Pseudaletia separata p a r a s i t i z e d b y t h e w a s p Apanteles ( = Cotesia) kariyai. A l t h o u g h ini t ia l ly h e h y p o t h e s i z e d t h a t th is factor of 4500 k D a M W w a s u n i q u e l y p r e s e n t in p a r a s i t i z e d l a rvae ( H a y a k a w a , 1990, 1991) a n d ac t ed to p r e v e n t the i r m e t a m o r p h o s i s b y r ep re s s ing J H e s t e r a se activity,

Page 57: Parasites and Pathogens of Insects. Parasites

4 8 Nancy Ε. Beckage

a m o r e r ecen t s t u d y ( H a y a k a w a , 1992) i n d i c a t e d t h a t t he factor is n o r m a l l y p r e s e n t in p e n u l t i m a t e - s t a g e a n d y o u n g e r n o n p a r a s i t i z e d l a rvae b u t d i s a p ­p e a r s in the las t ins ta r . The re fo r e , p a r a s i t i s m e x t e n d s t h e p e r i o d w h e n the p e p t i d e is p r o d u c e d , p r e s u m a b l y by s u p p r e s s i n g m e t a m o r p h o s i s .

T h i s p e p t i d e is h y p o t h e s i z e d to be r e q u i r e d for m a i n t e n a n c e of l a rva l cha rac te r i s t i c s a n d s p e c u l a t e d to be a h o r m o n e l i k e mo lecu l e ( H a y a k a w a , 1992). However , a n o t h e r i n t e r p r e t a t i o n is p l aus ib l e . In jec t ion of pur i f ied p e p t i d e i n to n o n p a r a s i t i z e d la rvae causes i nh ib i t i on of food c o n s u m p t i o n a n d g r o w t h ( H a y a k a w a , 1991), a n d lack of n o r m a l feeding b e h a v i o r m i g h t b e expec t ed to d e p r e s s levels of h e m o l y m p h j u v e n i l e h o r m o n e es t e rase . P r ev ious s tud ies have s h o w n t h a t s t a r v a t i o n of n o n p a r a s i t i z e d l a rvae e levates t he J H t i te r a n d dep re s se s J H es te rase , t h e r e b y d e l a y i n g m e t a m o r p h o s i s ( C y m -borowsk i et al., 1982). T h u s , effects of the p e p t i d e o n J H es t e rase cou ld b e ind i rec t , m e d i a t e d via o t h e r m e c h a n i s m s such as r e d u c t i o n of t h e hos t ' s feeding activity.

IV. Comparisons with Parasitism- and Virus-Induced Changes in Other Systems

Simi l a r i n t e rac t ions involv ing p r o t e i n s a n d p e p t i d e s occu r in a w i d e r a n g e of p a r a s i t i z e d a n i m a l s . I n m a m m a l s , p a r a s i t i s m i n d u c e s m a j o r a l t e r a t i o n s in t he p r o t e i n s a n d o t h e r c o m p o n e n t s of t he hos t ' s b lood , f r equen t ly affecting levels of the hos t ' s e n d o g e n o u s p ro t e in s in con junc t ion w i t h i n d u c i n g n e w p ro t e in s ( some of w h i c h a r e pa r a s i t e -de r ived ) to a p p e a r in t h e c i r cu l a t i on . A var ie ty of pa r a s i t e - s ec r e t ed molecu les a r e re leased in to t h e hos t mi l i eu , a n d s o m e a r e n o w ut i l ized as d i agnos t i c tools to d o c u m e n t t h e o c c u r r e n c e of infect ion. Severa l of these so-cal led m e m b r a n e - a s s o c i a t e d a n t i g e n s , e x o a n -t igens , o r e x c r e t o r y / s e c r e t o r y p r o d u c t s have b e e n p roven to have a s ignif icant i m p a c t on the i r hos t ' s phys io logy (Turco , 1990; B lax t e r et al., 1992; L o k e r et al., 1992; N o d a , 1992). I n a d d i t i o n to b e i n g ex t r eme ly useful for d i agnos i s of a c u t e a n d c h r o n i c p a r a s i t e m i a s , s o m e of these molecu le s a r e a lso b e i n g ex­p lo i ted in d e v e l o p m e n t of n e w m e t h o d s of vacc ine f o r m u l a t i o n b a s e d u p o n these pa r a s i t e -de r i ved a n t i g e n s (see references in C o o m b s a n d N o r t h , 1991).

A n excep t iona l ly w e l l - d o c u m e n t e d e x a m p l e of t h e i n d u c t i o n of syn thes i s of novel p e p t i d e s by p a r a s i t i s m t h a t s u b s e q u e n t l y in ter fere w i t h n o r m a l hos t funct ion is i l l u s t r a t ed by s tud ies of sch is tosome- infec ted sna i l s ( s u m m a r i z e d in d e J o n g - B r i n k , 1992). T h e hos t exper iences p a r a s i t i c c a s t r a t i o n , a n d the m e c h a n i s m s c a u s i n g cessa t ion of r e p r o d u c t i o n in t h e f resh-wate r sna i l Lym-naea stagnalis h ave now b e e n ident i f ied. T h e p r i m a r y m e d i a t o r of c a s t r a t i o n is a novel p e p t i d e t e r m e d sch i s tosomin , w h i c h h a s a p r o n o u n c e d i n h i b i t o r y

Page 58: Parasites and Pathogens of Insects. Parasites

2. Games Parasites Play 4 9

effect o n r e p r o d u c t i o n of t h e hos t sna i l (Schal l ig et al., 1991; d e J o n g - B r i n k , 1992), a n d h a s b o t h p e r i p h e r a l a n d c e n t r a l effects o n t h e phys io logy of t h e hos t sna i l . T h i s p e p t i d e is i n d u c e d by t h e p r e s e n c e of s c h i s t o s o m e ce rca r i ae in t h e hos t , conce ivab ly by h u m o r a l factors sec re ted by t h e p a r a s i t e s . I t h a s a n i n h i b i t o r y effect o n r e p r o d u c t i o n by a n t a g o n i z i n g t h e ac t ion of t h e sna i l s ' female g o n a d o t r o p i c h o r m o n e s ( c a u d o d o r s a l cell h o r m o n e a n d ca l f luxin) , s u p p r e s s i n g the i r s t i m u l a t o r y ac t ion o n , respect ively, t h e g o n a d a n d t h e a l b u ­m e n g l a n d , t h e female accessory sex g l a n d t h a t p r o d u c e s per iv i te l l in fluid to n o u r i s h t h e d e v e l o p i n g e m b r y o (de J o n g - B r i n k et al., 1988). S c h i s t o s o m i n a l so h a s c e n t r a l effects o n t he n e u r o e n d o c r i n e cen te r s r e g u l a t i n g r e p r o d u c ­t ion a n d g r o w t h , specifically by ac t ing o n the c a u d o d o r s a l cells a n d l ight g r e e n cells (de J o n g - B r i n k , 1992; d e J o n g - B r i n k et al., 1992). A l t h o u g h it p r ev ious ly w a s s p e c u l a t e d t h a t e cdys t e ro id s sec re ted by t h e p a r a s i t e s i n d u c e t he syn thes i s of s ch i s to somin by hos t t i ssues , e x p e r i m e n t s sugges t th is is n o t t h e case (Schal l ig , 1991). T h u s , t h e p r o x i m a t e i n d u c i n g fac tor(s) , as well a s t h e t i ssues p r o d u c i n g t h e m , awa i t fu ture i so la t ion a n d c h a r a c t e r i z a t i o n . Conce ivab ly , t he ident i f ica t ion of t hese r e g u l a t o r y mo lecu le s , p l u s t h e m o d ­u l a t o r y factors in f luenc ing s ch i s to somin p r o d u c t i o n , u l t i m a t e l y m a y yie ld i n f o r m a t i o n r e l evan t to d e v e l o p m e n t of n e w s t ra teg ies to c o n t r o l p ro l i fe ra t ion of un in fec ted sna i l s .

I n p a r a s i t i z e d c r a b s , p r o t e i n s t h a t a p p e a r "pa ra s i t i sm-spec i f i c " ( H e r ­b e r t s , 1982) have b e e n i so la ted ; s o m e of these a p p e a r to i n h i b i t hos t sper ­m a t o g e n e s i s a n d r e p r o d u c t i o n ( R u b i l i a n i , 1983), b u t c o n s i d e r a b l y less is k n o w n a b o u t t hose molecu le s c o m p a r e d to s ch i s to somin . I n insec t s , severa l species of insec t p a r a s i t o i d s c a u s e hos t c a s t r a t i o n by i n h i b i t i n g n o r m a l deve l ­o p m e n t of t h e g o n a d s d u r i n g the l a rva l s t age ( J u n n i k k a l a , 1985; R e e d -L a r s e n a n d B r o w n , 1990). T h o u g h it is c lea r t h a t t h e a g e n t s c a u s i n g th i s effect a r e t r ans fe r r ed to t he hos t d u r i n g a def ined t e m p o r a l w i n d o w a t p a r a ­s i t i za t ion , v i r tua l ly n o t h i n g is k n o w n a b o u t t he n a t u r e of t h e m o l e c u l a r m e d i a t o r s s u p p r e s s i n g d i f ferent ia t ion of t he tes tes ( R e e d - L a r s e n a n d B r o w n , 1990; B r o w n a n d K a i n o h , 1992). P r o t e i n s (or pep t i de s ) m a y m e d i a t e c a s t r a ­t ion a s o c c u r s d u r i n g s u p p r e s s i o n of s p e r m a t o g e n e s i s in c r a b s infected w i t h r h i z o c e p h a l a n b a r n a c l e p a r a s i t e s ; t h e l a t t e r p a r a s i t e s secre te mo lecu l e s (est i ­m a t e d to be 25 to 30 k D a m o l e c u l a r we igh t ) t h a t ac t o n t h e hos t g o n a d direct ly , a s well as h a v i n g ind i r ec t effects m e d i a t e d v ia t h e s inus g l a n d a n d t h e h o s t n e u r o s e c r e t o r y s y s t e m ( R u b i l i a n i , 1983).

S tud i e s of o t h e r p a r a s i t e t a x a have conf i rmed t h a t t hey sec re te a n a s ­t o u n d i n g n u m b e r of p o t e n t mo lecu le s t h a t i n c l u d e , a s ide f rom h o r m o n e s , a b a t t e r y of p r o t e a s e s a n d o t h e r p r o t e i n s ( C o o m b s a n d N o r t h , 1991 ; Beie r et al., 1992), ch i t i nases (Schle in et al., 1992), cyc looxygenases ( K a i s e r et al., 1992), g r o w t h - p r o m o t i n g factors ( P h a r e s a n d W a t t s , 1988), a n d o t h e r p e p ­t ides ( T h o r n d y k e , 1990). T h e s e p a r a s i t e - g e n e r a t e d " c o c k t a i l s " likely influ-

Page 59: Parasites and Pathogens of Insects. Parasites

5 0 Nancy Ε. Beckage

ence t h e hos t ' s phys io logy to v a r y i n g deg rees , m o s t often for t h e p a r a s i t e ' s u l t i m a t e benefi t . S o m e in t eg ra l m e m b r a n e p ro t e in s a p p e a r to b e p a r t i c u l a r l y cr i t ica l in t h e h o s t - p a r a s i t e interface; these a r e i m p r e g n a t e d in t h e p a r a s i t e s ' surface a n d ac t p ro tec t ive ly to p r e v e n t i m m u n o r e c o g n i t i o n p rocesses f rom b e i n g mob i l i zed to des t roy t h e p a r a s i t e s (B lax te r et al., 1992) o r m e d i a t e c e l l -cell r ecogn i t i on d u r i n g invas ion of hos t cells. Fo r e x a m p l e , surface lec t ins m a y m e d i a t e con t ac t a n d c y t o a d h e r e n c e w i t h specific s u b s e t s of h o s t cells ( T h e a et al., 1992). A n t i g e n s h e d d i n g a lso occu r s a n d a l lows t h e p a r a s i t e to c o n t i n u o u s l y r e n e w the molecu les exposed on its surface, a l lowing n e w g e n e p r o d u c t s to be expres sed d u r i n g different s tages of p a r a s i t i s m . R e c e p t o r s for hos t h o r m o n e s a n d g r o w t h factors m a y a lso be exp res sed o n t h e p a r a s i t e ' s surface , t h u s faci l i ta t ing a r e s p o n s e to hos t h o r m o n e s o r i m m u n e m o d u l a t o r s s u c h as t u m o r necros is factor re leased d u r i n g a n i m m u n e r e s p o n s e to p a r a s i t ­ic infect ion ( A m i r i et al., 1992). Unfo r tuna t e ly , o u r k n o w l e d g e of t h e a n t i g e n s a s soc i a t ed w i t h , a n d secre ted by, p a r a s i t e s deve lop ing in insec t hos t s a r e c o n s i d e r a b l y less well c h a r a c t e r i z e d in c o m p a r i s o n to those p r o d u c e d b y p r o t o z o a n , h e l m i n t h , a n d o t h e r p a r a s i t e s t h a t i n v a d e a n d pro l i fe ra te in m a m ­m a l i a n hos t s .

S imi l a r to p a r a s i t e s , m a n y v i ruses l ikewise affect t r a n s c r i p t i o n a n d / o r t r a n s l a t i o n of h o s t g e n e p r o d u c t s , a n d m a y d o so w i t h o u t p e r t u r b i n g v i t a l cell func t ions . For e x a m p l e , s tud ies of l y m p h o c y t i c c h o r i o m e n i n g i t i s v i ru s ac t ion in p i t u i t a r y cells sugges t t he v i rus interferes w i t h t r a n s c r i p t i o n of g r o w t h h o r m o n e genes , v ia a n effect o n g r o w t h h o r m o n e t r a n s a c t i v a t o r factor, b u t expres s ion of p ro l ac t i n a n d o t h e r r e q u i r e d genes r e m a i n s unaffec ted (de la T o r r e a n d O l d s t o n e , 1992). T h e l a t t e r a u t h o r s c o n c l u d e d t h a t a va r i e ty of non ly t i c v i ruses t h a t pe r s i s t en t ly infect cells of t h e e n d o c r i n e , i m m u n e , o r n e r v o u s t issues m a y c a u s e select ive effects on h o r m o n e p r o d u c t i o n , i m m u n e funct ion , a n d n e u r o t r a n s m i t t e r re lease , w h i c h here tofore w e r e n o t r ecogn ized as h a v i n g a v i ra l etiology.

H o w m i g h t these findings r e l a t e to t h e p h e n o m e n a o c c u r r i n g in p a r a ­si t ized insects? M a n y of t he phys io log ica l c h a n g e s o b s e r v e d in insec t hos t s m a y reflect ac t ion of these a g e n t s a s soc ia t ed w i t h insec t p a r a s i t e s . C o n c e i v ­ably, t h e p o l y d n a v i r u s e s h a v e s imi l a r non ly t i c , b u t none the l e s s h igh ly m o d ­ula tory , roles in t h e t a rge t l e p i d o p t e r a n insec ts in jec ted w i t h these v i ruses . M o r e o v e r , severa l r e cen t s tud ies have verified t h a t p o l y d n a v i r u s D N A "pe r ­s i s t s " in hos t insec t cells for t he d u r a t i o n of t he a s soc ia t ion b e t w e e n p a r a s i t e a n d hos t , as d e m o n s t r a t e d u s ing d o t o r slot b lo ts for de t ec t i on of " l i n g e r i n g " v i ra l D N A s (Stol tz et al., 1988; F . F . T a n a n d Ν . E . Beckage , u n p u b l i s h e d ; S t r a n d et al., 1992). H e n c e , " l a t e n t " infect ion of cells of t h e fat b o d y a n d o t h e r t i ssues cou ld inf luence hos t gene express ion from the m o m e n t of t h e in i t ia l con t ac t b e t w e e n p a r a s i t e a n d hos t un t i l t he w a s p s successfully m a t u r e , so t h a t s m a l l dosages of P D V m a y affect hos t e n d o c r i n e r e g u l a t i o n as well as i m m u n i t y ( D u s h a y a n d Beckage , 1993).

Page 60: Parasites and Pathogens of Insects. Parasites

2. Games Parasites Play 51

W h a t r e m a i n s to be u n r a v e l e d a r e t h e p o t e n t i a l m e c h a n i s m s involved in modi fy ing hos t g e n e expres s ion . Clear ly , t h e fact t h a t s o m e p r o t e i n s a r e select ively d e p r e s s e d whi l e o t h e r s a r e m a i n t a i n e d a t t i te rs a p p r o a c h i n g nor ­m a l levels a r g u e s s t rong ly t h a t p a r a s i t i s m h a s c o m p l e x effects u p o n t h e h o s t g e n o m e . V i r a l t r a n s c r i p t i o n factors a n d t r a n s l a t i o n a l con t ro l m e c h a n i s m s affect hos t g e n e express ion in a w i d e r a n g e of a n i m a l s (no t to m e n t i o n p l a n t s ) , sugges t i ng t h a t p o l y d n a v i r u s e s , a c t i ng i n d e p e n d e n t l y o r c o o r d i n a t e l y w i t h t h e p a r a s i t e s c a r r y i n g t h e m , m a y h a v e factors a s soc i a t ed w i t h t h e m c a p a b l e of in f luenc ing hos t g e n e express ion for t he d u r a t i o n of t h e p a r a s i t i c r e l a t i onsh ip .

T h u s , h o s t genes m a y be r e g u l a t e d e i the r a t t h e t r a n s c r i p t i o n a l level ( P t a s h n e , 1988) o r a t s u b s e q u e n t p o i n t s in t h e p r o t e i n s y n t h e t i c p a t h w a y t h r o u g h a l t e r a t i o n s in t h e r a t e of t r a n s l a t i o n of hos t m R N As invo lv ing in i t i a ­t ion , e l onga t i on , a n d p roces s ing of t h e n a s c e n t p r o t e i n s . T h e l a t t e r m a y o c c u r v ia d i r ec t i n t e r r u p t i o n of t h e n o r m a l t r a n s l a t i o n p rocess , o r ind i rec t ly v ia s u p p r e s s i o n of p r o t e i n syn thes i s d u e to c o m p e t i t i o n of t he hos t a n d i ts p a r a ­si tes for ava i l ab le n u t r i e n t s a n d t h e a m i n o ac ids r e q u i r e d for p r o t e i n s y n t h e ­sis. S ince t h e effects of p a r a s i t i s m often a r e h igh ly specific, t h e l a t t e r p h e n o m ­e n o n a p p e a r s un l ike ly to b e t he m a j o r factor a c c o u n t i n g for m a n y of t h e o b s e r v e d c h a n g e s in t h e h e m o l y m p h p r o t e i n profile in hos t insec t s . A l t h o u g h t h e ident i f ica t ion of t he m e c h a n i s m s of t r a n s c r i p t i o n a l / t r a n s l a t i o n a l c o n t r o l a n d i so la t ion of t r a n s c r i p t i o n factors , t r a n s l a t i o n a l r ep re s so r p r o t e i n s , a n d o t h e r modi fy ing e l e m e n t s h a s p r o g r e s s e d r a p i d l y in m a m m a l i a n a n d o t h e r s y s t e m s , we u n f o r t u n a t e l y have on ly r u d i m e n t a r y i n fo rma t ion a b o u t t hese p rocesses in insec t s . O b v i o u s l y g r e a t cha l l enges awa i t us w i t h r e g a r d to d e c i p h e r i n g t h e m e c h a n i s m s w h e r e b y p a r a s i t i s m a l t e r s t h e h e m o l y m p h p r o ­te ins of insec t hos t s , a n d a t p r e s e n t we c a n on ly s p e c u l a t e a b o u t t h e f r equen­cy of t he i r o c c u r r e n c e a n d p o t e n t i a l ro le(s) a t t h e in terface b e t w e e n p a r a s i t e a n d hos t . W e c a n on ly a s s u m e t h a t m a n y of t he o b s e r v e d hos t c h a n g e s l ikely h a v e s ignif icant select ive a d v a n t a g e s for t h e p a r a s i t e s involved (as e x e m ­plified b y t h e a d v a n t a g e o u s i n d u c t i o n of insec t hos t b e h a v i o r a l c h a n g e s re ­p o r t e d h e r e i n by H o r t o n a n d M o o r e ) , a n d work f rom t h a t p o i n t f o rw a rd in assess ing t he i r ro les . A l t h o u g h m a n y p o i n t s in th is r ev iew h a v e b e e n obv i ­ous ly a n d de l i be ra t e ly h igh ly specu la t ive , hopeful ly t hey will s t i m u l a t e n e w d i r ec t i ons in r e s e a r c h a n d p rov ide a s t r o n g i m p e t u s for fu tu re m o l e c u l a r s t ud i e s of these c o m p l e x , t h o u g h inc red ib ly fasc ina t ing , i n t e r ac t i ons in insec t hos t s .

Acknowledgments

The author sincerely acknowledges Drs. Bruce Webb, Davy Jones, Steve Harwood, Mitch Dushay, and several other reviewers for their critical comments; Ms. Frances Tan, Ms. Therese Reignier, and Ms. Dorothy Nesbit for technical assistance. Many undergrade assisted with

Page 61: Parasites and Pathogens of Insects. Parasites

5 2 Nancy Ε. Beckage

various aspects of this work; Anthony Nguyen, Lisa Cherubin, Roni Lane, and Trang Vo deserve special mention. Studies of the Manduca sexta system cited in this review were funded by grants from the NSF, USDA, and University of California-Riverside, all of which are gratefully ac­knowledged by the author.

The author dedicates this review, as well as her efforts in assembling these volumes, to her son Ross, in joyful celebration of his tenth birthday and his infectious enthusiasm for nature of all sorts; and acknowledges family members, especially her mother Pauline and brother Paul, and many friends for their enduring and much-appreciated support.

References

Amiri, P., Locksley, R. M., Parslow, T. G., Sadick, M., Rector, E., Ritter, D., and McKerrow, J. H. (1992). Tumour necrosis factor alpha restores granulomas and induces parasite egg-laying in schistosome-infected SCID mice. Nature (London) 356:604-607.

Andersons, D., Gunne, H., Hellers, M., Johansson, H., and Steiner, H. (1990). Immune re­sponses in Trichoplusia ni challenged with bacteria or baculoviruses. Insect Biochem. 20 :537 -543.

Baehrecke, Ε. H., Strand, M. R., Williamson, J. L., and Aiken, J. M. (1992). Stage-specific protein and mRNA synthesis during morphogenesis of the polyembryonic parasitoid Copidosoma floridanum (Ashmead) (Hymenoptera: Encyrtidae). Arch. Insect Biochem. Physiol. 19:81-92.

Barral-Netto, M., Barral, Α., Bronell, C. E., Skeiky, Y.A.W., Ellingsworth, L. R., Twardzik, D. R., and Reed, S. G. (1992). Transforming growth factor-B in leishmanial infection: A parasite escape mechanism. Science 257:545-548.

Barras, D. J., Kisner, R. T , Lewis, W. J., and Jones, R. T. (1972). Effects of the parasitoid, Microplitis croceipes, on the haemolymph proteins of the corn earworm, Heliothis zea. Comp. Biochem. Physiol. Β 43B:941-947.

Beckage, Ν. E. (1990). Induction of host endocrine and hemolymph protein alterations in tobacco hornworm larvae parasitized by Cotesia congregata. Adv. Invertebr. Reprod. 5:149-155.

Beckage, Ν. E. (1993). In preparation. Beckage, Ν. E., and Kanost, M. R. (1993). Effects of parasitism by the braconid wasp Cotesia

congregata on host hemolymph proteins of the tobacco hornworm, Manduca sexta. Insect Bio­chem. Mol. Biol, (in press).

Beckage, Ν. E., and Riddiford, L. M. (1978). Developmental interactions between the tobacco hornworm Manduca sexta and its braconid parasite Apanteles congregatatus. Entomol. Exp. Appl. 23:139-151.

Beckage, Ν. E., and Riddiford, L. M. (1982). Effects of parasitism by Apanteles congregatus on the endocrine physiology of the tobacco hornworm, Manduca sexta. Gen. Comp. Endocrinol. 4 7 : 3 0 8 -322.

Beckage, Ν. E., and Templeton, T. J. (1986). Physiological effects of parasitism by Apanteles congregatus in terminal-stage tobacco hornworm larvae. J. Insect Physiol. 32:299-314.

Beckage, Ν. E., Templeton, T. J., Nielsen, B. D., Cook, D. I., and Stoltz, D. B. (1987). Parasitism-induced hemolymph polypeptides in Manduca sexta (L.) larvae parasitized by the braconid wasp Cotesia congregata (Say). Insect Biochem. 17:439-455.

Beckage, Ν. E., Metcalf, J. S., Nielsen, B. D., and Nesbit, D . J . (1988). Disruptive effects of azadirachtin on development of Cotesia congregata in host tobacco hornworm larvae. Arch. Insect Biochem. Physiol. 9:47-65.

Beckage, Ν. E., Nesbit, D. J., Nielsen, B. D., Spence, K. D., and Barman, M. A. (1989). Alterations of hemolymph polypeptides in Manduca sexta: A two-dimensional electrophoretic analysis and comparison with major bacteria-induced proteins. Arch. Insect Biochem. Physiol. 10:29-45.

Page 62: Parasites and Pathogens of Insects. Parasites

2. Games Parasites Play 5 3

Beckage, Ν. E., Metcalf, J. S., Nesbit, D. J., Schleifer, K. W., Zetlan, S. T., and de Buron, I. (1990). Host hemolymph monophenoloxidase activity in parasitized Manduca sexta larvae and evidence for inhibition by wasp polydnavirus. Insect Biochem. 20:285-294.

Beckage, Ν. E., Tan, F. F., Schleifer, K. W., Lane, R. D., and Cherubin, L. L. (1993). Character­ization and biological effects of Cotesia congregata polydnavirus on host larvae of the tobacco hornworm, Manduca sexta. Arch. Insect Biochem. Physiol, (in press).

Beier, J. C , Vaughan, J. Α., Madani, Α., and Noden, Β. H. (1992). Plasmodium falciparum: Release of circumsporozoite protein by sporozoites in the mosquito vector. Exp. Parasitol. 75:248-256.

Bieber, A. J., Snow, R M., Hortsch, M., Patel, Ν. H., Traquina, Z. R., Schilling, J., and Goodman, C. S. (1989). Drosophila neuroglian: A member of the immunoglobulin super-family with extensive homology to the vertebrate neural adhesion molecule LI. Cell (Cam­bridge, Mass.) 59:447-460.

Blaxter, M. L., Page, A. P., Rudin, W., and Maizels, R. M. (1992). Nematode surface coats: Actively evading immunity. Parasitol. Today 8:243-247.

Blissard, G. W., Fleming, J.G.W., Vinson, S. B., and Summers, M. D. (1986). Campoletis sonoren-sis virus: Expression in Heliothis virescens and identification of expressed sequences. J. Insect Physiol. 32:351-359.

Brewer, F. D. , Glick, B., and Vinson, S. B. (1973). A comparative study of selected tissues from the parasitoid Cardiochiles nigriceps, its susceptible host Heliothis virescens and a resistant host Heliothis zea by polyacrylamide gel electrophoresis. Comp. Biochem. Physiol. Β 46B:567-574 .

Brown, J. J., and Kainoh, Y. (1992). Host castration by Ascogaster spp. (Hymenoptera: Bra-conidae). Ann. Entomol. Soc. Am. 85 :67-71 .

Coodin, S., and Caveney, S. (1992). Lipophorin inhibits the adhesion of cockroach (Periplaneta americana) haemocytes in vitro. J. Insect Physiol. 38:853-862.

Cook, D. I., Stoltz, D. B., and Vinson, S. B. (1984). Induction of a new haemolymph glycopro­tein in larvae of permissive hosts parasitized by Campoletis sonorensis. Insect Biochem. 14:45-50.

Coombs, G., and North, M., eds. (1991). "Biochemical Protozoology." Taylor & Francis, Wash­ington, DC.

Cymborowski, B., Bogus, M., Beckage, Ν. E., Williams, C. M., and Riddiford, L. M. (1982). Juvenile hormone titers and metabolism during starvation-induced supernumerary larval moulting of the tobacco hornworm, Manduca sexta. J. Insect Physiol. 28:129-135.

Dahlman, D. L. (1991). Teratocytes and host/parasitoid interactions. Biol. Control 1:118-126. Dahlman, D. L., and Greene, J. R. (1981). Larval hemolymph protein patterns in tobacco

hornworms parasitized by Apanteles congregatus. Ann. Entomol. Soc. Am. 74:130—133. Dahlman, D. L., Coar, D. L., Roller, N., and Neary, T.J. (1990). Contributing factors to reduced

ecdysteroid titers in Heliothis virescens parasitized by Microplitis croceipes. Arch. Insect Biochem. Physiol. 13:29-39.

de Buron, I., Nesbit, D. J., Tan, F. F., and Beckage, Ν. E. (1993). Development of Cotesia congregata teratocytes in host larvae of the tobacco hornworm, Manduca sexta: Correlation with morphological and biochemical changes in the cells. Dev. Biol, (submitted for publica­tion).

de Jong-Brink, M. (1992). Interference of schistosome parasites with neuroendocrine mecha­nisms in their snail host causes physiological changes. Adv. Neuroimmunol. 2:199-233.

de Jong-Brink, Elsaadany, Μ. M., and Boer, Η. H. (1988). Trichobilharzia ocellata: Interference with endocrine control of female reproduction of Lymnaea stagnalis. Exp. Parasitol. 65:91-100.

de Jong-Brink, M., Hordijk, P. L., Vergeest, D.P.E.J., Schllig, H.D.F.H., Kits, K. S., and ter Maat, A. (1992). The anti-gonadotropic neuropeptide schistosomin interferes with periph­eral and central neuroendocrine mechanisms involved in the regulation of reproduction and growth in the schistosome-infected snail Lymnaea stagnalis. Prog. Brain Res. 92:385-392.

Page 63: Parasites and Pathogens of Insects. Parasites

5 4 Nancy Ε. Beckage

de la Torre, J. C , and Oldstone, M.B.A. (1992). Selective disruption of growth hormone tran­scription by viral infection. Proc. Natl. Acad. Set. U.S.A. 89:9939-9943.

Dunn, P. E. (1986). Biochemical aspects of insect immunology. Anna. Rev. Entomol. 31:321-339. Dushay, M. S., and Beckage, Ν. E. (1993). Dose-dependent separation of Cotesia congre-

£Ata-associated polydnavirus effects on Manduca sexta larval development and immunity. J. Insect Physiol, (in press).

Ferguson, E. L., and Anderson, Κ. V. (1992). Localized enhancement and repression of the activity of the TGF-B family member, decapentaplegic, is necessary for dorsal-ventral pattern formation in the Drosophila embryo. Development (Cambridge, UK) 114:583-597.

Ferkovich, S. M., and Dillard, C. (1986). A study of the radiolabeled host proteins and protein synthesis during development of the eggs of the endoparasitoid, Microplitis croceipes (Cresson) (Braconidae). Insect Biochem. 16:337-345.

Ferkovich, S. M., Greany, P. D., and Dillard, C. (1983). Changes in haemolymph proteins of the fall armyworm, Spodopterafrugiperda (J. E. Smith), associated with parasitism by the braconid parasitoid Cotesia marginiventris (Cresson). J. Insect Physiol. 29:933-942.

Ferkovich, S. M., Dillard, C , and Oberlander, H. (1991). Stimulation of embryonic develop­ment in Microplitis croceipes (Braconidae) in cell culture media preconditioned with a fat body cell line derived from a nonpermissive host, gypsy moth, Lymantria dispar. Arch. Insect Biochem. Physiol. 18:169-175.

Fisher, R. C , and Ganesalingam, V. K. (1970). Changes in the composition of host hemolymph after attack by an insect parasitoid. Nature (London) 277:191-192.

Fittinghoff, C. M., and Riddiford, L. M. (1990). Heat sensitivity and protein synthesis during heat-shock in the tobacco hornworm, Manduca sexta. J. Comp. Physiol. 160:349-356.

Flor, Η. H. (1942). Inheritance of pathogenicity in Melanmpsora lint. Phytopathology 32:653-669. Fuhrer, E., and Willers, D. (1986). The anal secretion of the endoparasitic larva Pimpla tur­

ionellae: Sites of production and effects. J. Insect Physiol. 32:361-367. Greany, P. D. (1986). In vitro culture of hymenopterous larval endoparasitoids. J. Insect Physiol.

32:409-419. Gretch, D. G., Sturley, S. L., Friesen, P. D., Beckage, Ν. E., and Attie, A. D. (1991). Baculovirus-

mediated expression of human apolipoprotein Ε in Manduca sexta larvae generates particles that bind to the low density lipoprotein receptor. Proc. Natl. Acad. Sci. U.S.A. 88:8530-8533.

Harwood, S. H. (1993). A Cotesia congregata polydnavirus gene: Cloning, characterization, and pattern of expression in host sphingid larvae. Ph.D. Dissertation, Department of Entomol­ogy, University of California-Riverside.

Harwood, S. H. and Beckage, Ν. E. (1993). Purification and characterization of an abundant polydnavirus-induced protein from the hemolymph of Manduca sexta larvae parasitized by Cotesia congregata. Insect Biochem. Molec. Biol, (submitted for publication).

Harwood, S. H., Grosovsky, A. J., Davis, J. W., and Beckage, Ν. E. (1993a). An abundantly expressed host hemolymph glycoprotein isolated from Manduca sexta is a Cotesia congregata polydnavirus gene product. Virology (submitted for publication).

Harwood, S. H., McElfresh, J. S., Nguyen, T. Q., and Beckage, Ν. E. (1993b). Pattern of expression of a Cotesia congregata polydnavirus gene transcript in different sphingid hosts: Correlation with successful parasitism? (submitted for publication).

Hayakawa, Y. (1990). Juvenile hormone esterase activity repressive factor in the plasma of parasitized insect larvae. J. Biol. Chem. 265:10813-10816.

Hayakawa, Y. (1991). Structure of a growth-blocking peptide in parasitized insect hemolymph. J. Biol. Chem. 266:7982-7984.

Hayakawa, Y. (1992). A putative new juvenile peptide hormone in lepidopteran insects. Biochem. Biophys. Res. Commun. 185:1141-1147.

Herberts, C. (1982). Host-parasite relation between the shore crab Carcinus maenas and Sacculina

Page 64: Parasites and Pathogens of Insects. Parasites

2. Games Parasites Play 5 5

carcini (Rhizocephala): Identification and characterization of a specific fraction correlated with parasitism. J. Invertebr. Pathol. 39:60-65 .

Hershey, J.W.B. (1992). Translational control in mammalian cells. Annu. Rev. Biochem. 60:11 Τ­Ι 79.

Ilan, J., ed. (1987). "Translational Regulation of Gene Expression." Plenum, New York. Jessell, Τ. M., and Melton, D. A. (1992). Diffusible factors in vertebrate embryonic induction.

Cell (Cambridge, Mass.) 68:257-270. Jones, D. (1989). Protein expression during parasite redirection of host (Trichoplusia ni) bio­

chemistry. Insect Biochem. 19:445-455. Jones, D. , Jones, G., Rudnicka, M., and Click, A. (1985). Precocious expression of the final

larval instar developmental program in larvae of Trichoplusia ni pseudoparasitized by Chelonus spp. Comp. Biochem. Physiol. Β 83B:339-346.

Jones, D., Jones, G., Rudnicka, M., Click, Α., Reck-Malleczewen, V., and Iwaya, M. (1986). Pseudoparasitism of host Trichoplusia ni by Chelonus spp. as a new model system for parasite regulation of host physiology. J. Insect Physiol. 32:315-328.

Joplin, Κ. H., Yocum, G. D., and Denlinger, D. L. (1990). Cold shock elicits expression of heat shock proteins in the flesh fly, Sarcophaga crassipalpis. J. Insect Physiol. 36:825-834.

Junnikkala, E. (1966). Effect of braconid parasitization on the nitrogen metabolism of Pieris brassicae L. Ann. Acad. Set. Fenn., Ser. A4 100:1-83 .

Junnikkala, E. (1985). Testis development in Pieris brassicae parasitized by Apanteles glomeratus. Entomol. Exp. Appl. 37:283-288.

Kaiser, L., Lamb, V. L., Tithof, P. K., Gage, D. Α., Chamberlin, Β. Α., Watson, J. T , and Williams, J. F. (1992). Dirofilaria immitis: Do filarial cyclooxygenase products depress endothelium-dependent relaxation in the in vitro rat aorta? Exp. Parasitol. 75:159-167.

Kanai, Α., and Natori, S. (1989). Cloning of gene cluster for sarcotoxin I, antibacterial proteins of Sarcophaga peregrina. FEBS Lett. 258:199-202.

Kanost, M. R., Kawooya, J. K., Law, J. H., Ryan, R. O., Van Huesden, M. C , and Ziegler, R. (1990). Insect hemolymph proteins. Adv. Insect Physiol. 22:299-396.

King, P. E., and Rafai, J. (1970). Host discrimination in a gregarious parasitoid Nasonia vitripen-nis (Walker) (Hymenoptera: Pteromalidae). J. Exp. Biol. 53:245-254.

Kiriishi, S., Rountree, D. B., Sakurai, S., and Gilbert, L. I. (1990). Prothoracic gland synthesis of 3-dehydroecdysone and its hemolymph 3B-reductase mediated conversion to ecdysone in representative insects. Experientia 46 :716-721 .

Kitano, H., Wago, H., and Arakawa, T. (1990). Possible role of teratocytes of the gregarious parasitoid Apanteles glomerata in the suppression of phenoloxidase activity in the larval host, Pieris rapae crucivora. Arch. Insect Biochem. Physiol. 13:177-185.

Kunkel, J. G., Grossniklaus-Buergin, C , Karpells, S. T., and Lanzrein, B. (1990). Arylphorin of Trichoplusia ni: Characterization and parasite-induced precocious increase in titer. Arch. Insect Biochem. Physiol. 13:117-125.

Lawrence, P. O. (1990). Serosal cells οϊBiosteres longicaudatus (Hymenoptera: Braconidae): Ultra-structure and release of polypeptides. Arch. Insect Biochem. Physiol. 13:199-216.

Loker, E. S., Cimino, D. F., and Hertel, L. A. (1992). Excretory-secretory products of Echi-nostoma paraensei sporocysts mediate interference with Biomphalaria glabrata hemocyte func­tions. J. Parasitol. 78:104-115.

Natori, S. (1990). Dual functions of insect immunity proteins in defence and development. Res. Immunol. 141:938-939.

Noda, S. (1992). Effects of excretory-secretory products of Echinostoma paraensei larvae on the hematopoietic organ of M-line Biomphalaria glabrata snails. J. Parasitol. 78:512-517.

Pennachio, F., Vinson, S. B., and Tremblay, E. (1992). Preliminary results on in vitro rearing of the endoparasitoid Cardiochiles nigriceps from egg to second instar. Entomol. Exp. Appl. 64:209-216.

Page 65: Parasites and Pathogens of Insects. Parasites

5 6 Nancy Ε. Beckage

Phares, C. K., and Watts, D. J. (1988). The growth hormone-like factor produced by the tapeworm Spirometra mansonoides specifically binds receptors on culture human lymphocytes. J. Parasitol. 74:896-898.

Presnail, J. K., and Hoy, M. A. (1992). Stable transformation of a beneficial arthropod, Meta-seiulus occidentalis (Acari: Phytoseiidae), by a microinjection technique. Proc. Natl. Acad. Set. U.S.A. 89:7732-7736.

Ptashne, M. (1988). How eukaryotic transcriptional activators work. Nature (London) 335:683-689. Reed-Larsen, D. Α., and Brown, J. J. (1990). Embryonic castration of the codling moth, Cydia

pomonella, by an endoparasitoid, Ascogaster quadridentata. J. Insect Physiol. 36:111-118. Riddiford, L. M., Curtis, A. T , and Kiguchi, K. (1979). Culture of the epidermis of the tobacco

hornworm Manduca sexta. Tissue Cult. Assoc. Man. 5:975-985. Ross, D. R., and Dunn, P. E. (1989). Effect of parasitism by Cotesia congregata on the suscep­

tibility of Manduca sexta to bacterial infection. Dev. Comp. Immunol. 13:205-216. Rubiliani, C. (1983). Action of a rhizocephalan on the genital activity of host male crabs:

Characterization of a parasitic secretion inhibiting spermatogenesis. Int. J. Invertebr. Reprod. 6:137-147.

Sayles, P. C , and Wassom, D. L. (1988). Immunoregulation in murine malaria. Susceptibility of inbred mice to infection with Plasmodiumyoelli depends on the dynamic interplay of host and parasite genes. J. Immunol. 141:241-248.

Schallig, H.D.F.H. (1991). Neuro-endocrine interactions between schistosome parasites and their intermediate hosts, freshwater snails, studied in the combination Trichobilharzia ocellata-Lymnaea stagnalis. Ph.D. Thesis, Vrije Universiteit, Amsterdam, The Netherlands.

Schallig, H.D.F.H., Sassen, M.J.M., Hordijk, P. L., and de Jong-Brink, M. (1991). Tri­chobilharzia ocellata: Influence of infection on the fecundity of its intermediate snail host Lymnaea stagnalis and cercarial induction of the release of schistosomin, a snail neuropeptide antagonizing female gonadotropic hormones. Parasitology 102:85-91 .

Schlein, Y., Jacobson, R. L., and Messer, G. (1992). Leishmania infections damage the feeding mechanism of the sandfly vector and implement parasite transmission by bite. Proc. Natl. Acad. Sci. U.S.A. 89:9944-9948.

Schmidt, O., and Schuchmann-Feddersen, I. (1989). Role of virus-like particles in parasitoid-host interaction of insects. Subcell. Biochem. 15:91-119.

Schmidt, O., Andersson, K., Will, Α., and Schuchmann-Feddersen, I. (1990). Viruslike particle proteins from a hymenopteran endoparasitoid are related to a protein component of the immune system in the lepidopteran host. Arch. Insect Biochem. Physiol. 13:107-115.

Sibley, L. C , and Boothroyd, J. C. (1992). Virulent strains of Toxoplasms condii comprise a single clonal lineage. Nature (London) 359:82-85 .

Smilowitz, Z. (1973). Electrophoretic patterns in haemolymph protein of cabbage looper during development of the parasitoid Hyposoter exiguae. Ann. Entomol. Soc. Am. 66:93-99 .

Smilowitz, Z., and Smith, C. L. (1977). Hemolymph proteins of developing Pieris rapae larvae parasitized by Apanteles glomeratus. Ann. Entomol. Soc. Am. 70:447-454.

Soldevila, A. I., and Jones, D. (1991). Immunoanalysis of unique protein in Trichoplusia ni larvae parasitized by the braconid wasp Chelonus near curvimaculatus. Insect Biochem. 21:845-856.

Soldevila, A. and Jones, D. (1993). Expression of a parasitism-specific protein in lepidopteran hosts of Chelonus sp. Arch. Insect Biochem. Physiol, (in press).

Sroka, P., and Vinson, S. B. (1978). Phenyloxidase activity in the hemolymph of parasitized and unparasitized Heliothis virescens. Insect Biochem. 8:399-402.

Stoltz, D. B., and Cook, D. I. (1983). Inhibition of host phenoloxidase activity by parasitoid hymenoptera. Experientia 39:1022-1024.

Stoltz, D. B., and Cook, D. I. (1986). Apparent haemocytic transformations associated with parasitoid induced inhibition of immunity in Malacosoma disstria larvae. J. Insect Physiol. 32:377-388.

Page 66: Parasites and Pathogens of Insects. Parasites

2. Games Parasites Play 5 7

Stoltz, D. B., Guzo, D., Belland, E. R., Lucarotti, C. J., and MacKinnon, E. A. (1988). Venom promotes uncoating in vitro and persistence in vivo of DNA from a braconid polydnavirus. J. Gen. Virol. 69:903-907.

Strand, M. R., Dover, Β. Α., and Johnson, J. A. (1990). Alterations in the ecdysteroid and juvenile hormone esterase profiles of Trichoplusia ni parasitized by the polyembryonic wasp Copidosoma floridanum. Arch. Insect Biochem. Physiol. 13:41-51.

Strand, M. R., McKenzie, D. I., Grassl, V , Dover, Β. Α., and Aiken, J. M. (1992). Persistence and expression of Microplitis demolitor polydnavirus in Pseudoplusia includens. J. Gen. Virol. 73:1627-1635.

Sun, S. C., Lindstrom, I., Boman, H. G., Faye, I., and Schmidt, O. (1990). Hemolin: An insect-immune protein belonging to the immunoglobulin superfamily. Science 250:1729-1732.

Thach, R. E. (1992). Cap recap: The involvement of EIF-4F in regulating gene expression. Cell (Cambridge, Mass.) 68:177-179.

Thea, D. M., Pereira, M.E.A., Kotler, D., Sterling, C. R., and Keusch, G. T. (1992). Identifica­tion and partial purification of a lectin on the surface of the sporozoite of Cryptosporidium parvum. J. Parasitol. 78:886-893.

Theilmann, D. Α., and Summers, M. D. (1988). Identification and comparison of Campoletis sonorensis virus transcripts expressed from four genomic segments in the insect hosts Cam­poletis sonorensis and Heliothis virescens. Virology 167:329-341.

Thompson, J. N., and Burdon, J. J. (1992). Gene-for-gene coevolution between plants and parasites. Nature (London) 360:121-125.

Thompson, S. N., Lee, R.W.K., and Beckage, Ν. E. (1990). Metabolism of parasitized Manduca sexta examined by nuclear magnetic resonance. Arch. Insect Biochem. Physiol. 13:127-143.

Thorndyke, M. C. (1990). Neurohormonal peptides in parasitic worms: A new frontier in host -parasite pathophysiology. In "Progress in Comparative Endocrinology," pp. 716-721. Wiley-Liss, New York.

Tilden, R. L., and Ferkovich, S. M. (1987). Regulation of protein synthesis during egg development of the parasitic wasp, Microplitis croceipes (Cresson) (Braconidae). Insect Biochem. 17:783-792.

Turco, S. J. (1990). The leishmanial lipophosphoglycans: A multifunctional molecule. Exp. Parasitol. 70:241-245.

Vinson, S. B., and Barras, D . J . (1970). Effects of the parasitoid, Cardiochiles nigriceps, on the growth, development, and tissues of Heliothis virescens. J. Insect Physiol. 16:1329-1338.

Vinson, S. B., and Iwantsch, G. F. (1980). Host regulation by insect parasitoids. Q. Rev. Biol. 55:143-165.

Webb, Β. Α., and Riddiford, L. M. (1988a). Synthesis of two storage proteins during larval development of the tobacco hornworm, Manduca sexta. Dev. Biol. 130:671—681.

Webb, Β. Α., and Riddiford, L. M. (1988b). Regulation of expression of arylphorin and female-specific protein mRNAs in the tobacco hornworm. Manduca sexta. Dev. Biol. 130:682-692.

Yokoo, S., Tojo, S., and Ishibashi, N. (1992). Suppression of the prophenoloxidase cascade in the larval haemolymph of the turnip moth, Agrotis segetum, by an entomopathogenic nematode, Steinernema carpocapsae, and its symbiotic bacterium. J. Insect Physiol. 38:915—924.

Zhang, D., Dahlman, D. L., and Gelman, D. B. (1992). Juvenile hormone esterase activity and ecdysteroid titer in Heliothis virescens larvae injected with Microplitis croceipes teratocytes. Arch. Insect Biochem. Physiol. 20:231-242.

Zitnan, D., Kramer, S. J., and Beckage, Ν. E. (1993). Accumulation of neuropeptides in the cerebral neurosecretory system of Manduca sexta larvae parasitized by the braconid wasp Cotesia congregata. Develop. Biol, (submitted for publication).

Page 67: Parasites and Pathogens of Insects. Parasites

Chapter 3 • • ι • . , ·

Hormonal Interactions between Insect Endoparasites and Their Host Insects Pauline O. Lawrence Beatrice Lanzrein Department of Zoology Division of Developmental Biology University of Florida Zoological Institute Gainesville, Florida University of Berne

Berne, Switzerland

I. Introduction and Terminology

II. Hormones Controlling Insect Development: An Overview

III. Parasite Hormones Relative to Those of Their Hosts

IV. Direct or Indirect Host Endocrine Effects on Endoparasites

V. Direct or Indirect Effects of Endoparasites on Host Endocrine System

A. Substances Secreted by Serosal Membranes/Teratocytes

B. Calyx Fluid, Viruses, and Venom Gland Secretions

VI. Limitations

VII. Possible Solutions

VIII. Summary Acknowledgments References

I. Introduction and Terminology

Para s i t i c o r g a n i s m s l iv ing w i t h i n the i r hos t s necessar i ly e n c o u n t e r a r a n g e of phys io log ica l a n d b i o c h e m i c a l c o n d i t i o n s t h a t reflect t h e d e v e l o p m e n t a l , m a t u r a t i o n a l , a n d s t r e s s - re la t ed c h a n g e s t h e hos t s u n d e r g o . T h e i m m u ­nolog ica l , n u t r i t i o n a l , a n d h o r m o n a l c o n d i t i o n s of t h e h o s t inf luence a n d a r e t hemse lve s in f luenced by s u c h c h a n g e s . E n d o p a r a s i t e s therefore r eac t to t h e p r e v a i l i n g h o s t e n v i r o n m e n t to m i n i m i z e d a m a g e to t hemse lves a n d to c a p ­i ta l ize o n those n u t r i t i o n a l a n d phys io log ica l c o n d i t i o n s t h a t will u l t i m a t e l y e n h a n c e t he i r o w n fi tness. I n s e c t p a r a s i t e s h a v e essent ia l ly t h e s a m e fami ly of h o r m o n e s a s the i r insec t hos t s . C o n s e q u e n t l y , s o m e a r e likely to ut i l ize t he se h o r m o n e s d i rec t ly to r e g u l a t e the i r o w n d e v e l o p m e n t a l a n d m e t a b o l i c p r o ­cesses w h e r e a s o t h e r s m a y ut i l ize t h e fluctuations in hos t h o r m o n e t i te rs a n d / o r h o r m o n e - m e d i a t e d m e t a b o l i c a n d n u t r i t i o n a l s t a t u s as cues to in i t i -

ParasiUs and Pathogens of Insects Volume 1: Parasites 5 9

Copyright © 1993 by Academic Press, Inc. All rights of reproduction in any form reserved.

Page 68: Parasites and Pathogens of Insects. Parasites

6 0 Pauline Ο. Lawrence and Beatrice Lanzrein

a t e the i r o w n e n d o c r i n e a n d m e t a b o l i c mach ine ry . S o m e e n d o p a r a s i t e s m a y r e q u i r e cond i t i ons of h o m e o s t a s i s t h a t a r e s imi l a r to the i r hos t s ' a n d m a y read i ly ut i l ize these cond i t i ons w i t h m i n i m a l d i s r u p t i o n of t h e hos t ' s e n d o ­c r ine o r m e t a b o l i c p a t h w a y s . C o n s e q u e n t l y , a t p a r a s i t e l oads o p t i m a l for the i r d e v e l o p m e n t , these conformers d o n o t s ignif icant ly d i s r u p t the i r hos t ' s b e h a v i o r o r d e v e l o p m e n t o r c a u s e macroeco log ica l n i che a l t e r a t i o n s of the i r hos t s ( L a w r e n c e , 1986a, 1990b) . Still o t h e r p a r a s i t e s ( r egu la to r s ) d i s r u p t t h e n o r m a l m e t a b o l i c a n d e n d o c r i n e p rocesses of the i r hos t s w h o s e m i c r o e n -v i r o n m e n t a l cond i t i ons a r e s u b o p t i m a l for p a r a s i t e g r o w t h a n d d e v e l o p m e n t ( L a w r e n c e , 1986a, 1990b) . C o n s e q u e n t l y , these r e g u l a t o r s a l t e r t he deve lop ­m e n t , behav ior , a n d u l t imate ly , t he n i che of the i r hos t s . A l a rge c a d r e of e n d o p a r a s i t i c insec ts m a y ut i l ize a c o m b i n e d c o n f o r m e r - r e g u l a t o r s t r a t egy d e p e n d i n g on the s tage(s ) of t he hos t they a t t ack a n d in w h i c h they deve lop , on t he c h a n g e s in the i r n u t r i t i o n a l r e q u i r e m e n t s ( L a w r e n c e , 1990b) , a n d p r o b a b l y o n the ex ten t of the coevo lu t iona ry r e l a t i o n s h i p b e t w e e n t h e p a r t i c ­u l a r hos t a n d p a r a s i t e species (see L a w r e n c e , 1988c).

T h e p rocess of p a r a s i t i s m s t i m u l a t e s r ec ip roca l r e sponses f rom the hos t . For e x a m p l e , feeding of p a r a s i t e l a rvae dep le t e s t he hos t ' s n u t r i e n t s a n d these n u t r i t i o n a l c h a n g e s likely a l t e r t he e n d o c r i n e mi l ieu of t h e hos t , t h e r e b y i m p a c t i n g t h e p a r a s i t e ( L a w r e n c e , 1990b) . T h u s , a neces sa ry u n d e r p i n n i n g of d i scuss ions of e n d o c r i n e in t e rac t ions b e t w e e n insec t hos t s a n d the i r e n d o ­p a r a s i t e s is t he a p p r e c i a t i o n of t h e i n t r i ca t e i n t e r p l a y a m o n g m e t a b o l i s m , n u t r i t i o n a l s t a t u s , a n d e n d o c r i n e feedback m e c h a n i s m s t h a t o c c u r in insec ts (Ni jhou t , 1975; C y m b o r o w s k y et al, 1982; D o w n e r a n d Laufer , 1983; K e r k u t a n d G i lbe r t , 1985).

A p p r o x i m a t e l y 1 0 % of all species of a n i m a l s a r e p a r a s i t i c insec ts (Askew, 1971). A l a rge n u m b e r of these insec ts a r e p a r a s i t i c a s a d u l t s b u t a n even g r e a t e r n u m b e r a r e p a r a s i t i c d u r i n g the i r i m m a t u r e s tages a n d a r e therefore t e r m e d p r o t e l e a n p a r a s i t e s (Askew, 1971). P r o t e l e a n insec t p a r a s i t e s t h a t u l t i m a t e l y kill the i r insect hos t s a n d l a t e r e m e r g e as free-l iving a d u l t s a r e t e r m e d p a r a s i t o i d s ( D o u t t , 1964). (However , s ince p a r a s i t o i d s b e h a v e essen­tial ly like o t h e r mu l t i ce l lu l a r p a r a s i t e s d u r i n g the i r d e v e l o p m e n t w i t h i n the i r hos t s , t he t e r m p a r a s i t e s will be u t i l ized t h r o u g h o u t th is c h a p t e r . )

I n s e c t p a r a s i t e s a r e ca tegor i zed on the bas i s of t he hos t s t age t hey a t t a c k a n d from w h i c h they exit as m a t u r e l a rvae or a d u l t s , as well as o n t h e o p t i m a l n u m b e r of p r o g e n y t h a t c a n deve lop p e r hos t . T h u s , egg- la rva l p a r a s i t e s a t t a c k t he hos t egg a n d e m e r g e from the l a rva l s t age , a n d so on . So l i t a ry a n d g r e g a r i o u s p a r a s i t e s deve lop o n e a n d m o r e t h a n o n e p r o g e n y p e r hos t , re ­spect ively ( D o u t t , 1964). I n p o l y e m b r y o n i c species , severa l offspring d e v e l o p from a s ingle egg. A hos t is sa id to be s u p e r p a r a s i t i z e d if it h a s m o r e p r o g e n y of a s ingle species t h a n c a n deve lop . I t is m u l t i p l y p a r a s i t i z e d w i t h p r o g e n y from two or m o r e p a r a s i t e species ( D o u t t , 1964).

Page 69: Parasites and Pathogens of Insects. Parasites

3. Hormonal Interactions of Endoparasites and Hosts 61

T h e ma jo r i ty of p a r a s i t i c species o c c u r in t h e o r d e r s H y m e n o p t e r a a n d D i p t e r a , a n d exh ib i t a va r i e ty of d e v e l o p m e n t a l a n d phys io log ica l i n t e r a c ­t ions w i t h the i r hos t s . T h e s e i n t e r ac t i ons p r e s u m a b l y o c c u r a l o n g a c o n t i n u ­u m , w i t h confo rmers a n d r e g u l a t o r s a t t h e e x t r e m e s ( L a w r e n c e , 1986a) . H o w e v e r , t h e p a u c i t y of e n d o c r i n e s tud ie s h a s res t r i c ted o u r ab i l i ty to b e t t e r u n d e r s t a n d these i n t e r ac t i ons . T h e ava i lab i l i ty of sensi t ive b i o c h e m i c a l a n d m o l e c u l a r t e c h n i q u e s h a s faci l i ta ted s e p a r a t e a n d d i r ec t e v a l u a t i o n s of t h e e n d o g e n o u s h o r m o n e fluctuations a n d r e l a t ed b i o c h e m i c a l even t s in insec t hos t s a n d the i r e n d o p a r a s i t e s . H o w e v e r , m a n y h o s t - p a r a s i t e t a x a r e m a i n to b e s t u d i e d in o r d e r to facil i tate a hol is t ic a p p r e c i a t i o n of t he i r e n d o c r i n e i n t e r ac t i ons . T h e p u r p o s e of this p a p e r is to (1) rev iew o u r c u r r e n t k n o w l e d g e on t h e h o r m o n a l i n t e r ac t ions b e t w e e n h y m e n o p t e r a n e n d o p a r a s i t e s ( the m o s t s t u d i e d g r o u p of p a r a s i t i c insects) a n d the i r hos t s a n d (2) identify p r o b l e m s t h a t res t r ic t o u r u n d e r s t a n d i n g of these i n t e r ac t i ons a n d sugges t poss ib le so lu t ions to t h e m .

II. Hormones Controlling Insect Development: An Overview

T h r e e types of h o r m o n e s p l ay m a j o r roles in insec t d e v e l o p m e n t : p e p t i d e s p r o d u c e d by the b r a i n o r o t h e r n e u r a l t i ssues , ecdys t e ro ids (Fig . 1) p r o d u c e d b y t h e p r o t h o r a c i c g l a n d (or r i ng g l a n d in D i p t e r a ) , a n d j u v e n i l e h o r m o n e s ( J H s ) (F ig . 2) , w h i c h a r e s e s q u i t e r p e n o i d s p r o d u c e d by t h e c o r p o r a a l l a t a ( C A ) . T h e r e a d e r is referred to rev iews by Lafon t a n d K o o l m a n (1984) o n ecdys t e ro id s a n d B a k e r (1990) on J H s . T h e m o s t i m p o r t a n t n e u r o p e p t i d e s a r e t h e p r o t h o r a c i c o t r o p i c h o r m o n e s ( P T T H s ) , w h i c h s t i m u l a t e t h e s y n t h e ­sis a n d re lease of e c d y s o n e b y t h e p r o t h o r a c i c g l a n d ; a l l a t o t r o p i n s a n d a l -l a t o s t a t i n s , w h i c h s t i m u l a t e a n d inh ib i t , respect ively, t h e p r o d u c t i o n of J H b y the C A ; a n d eclosion h o r m o n e , w h i c h elicits eclosion behav io r .

D a t a f rom Manduca sexta i n d i c a t e t h a t t h e ecdys t e ro ids 2- a n d 3 - d e h y d r o -e c d y s o n e a r e p r o d u c e d by the p r o t h o r a c i c g l a n d s a n d a r e i m m e d i a t e l y con­ve r t ed to e c d y s o n e ( rev iewed b y G i lbe r t , 1989). I t a p p e a r s t h a t , d e p e n d i n g o n t h e d e v e l o p m e n t a l s t a g e of t h e insec t , e c d y s o n e ac ts a s a h o r m o n e b y i tself o r as a p r e c u r s o r (or p r o h o r m o n e ) of 2 0 - h y d r o x y e c d y s o n e , t h e m o s t c o m ­m o n l y o c c u r r i n g m o l t i n g h o r m o n e . 2 0 , 2 6 - D i h y d r o x y e c d y s o n e is gene ra l ly c o n s i d e r e d a m e t a b o l i t e of 2 0 - h y d r o x y e c d y s o n e b u t m a y exer t its o w n m o r p h o g e n e t i c effects. I t h a s b e e n sugges t ed t h a t in e m b r y o s of M. sexta, 26-h y d r o x y e c d y s o n e a n d / o r 2 0 , 2 6 - d i h y d r o x y e c d y s o n e m a y ac t m o r p h o g e n e t -ically ( rev iewed in G i lbe r t , 1989). M a k i s t e r o n e A is u n i q u e a m o n g t h e ec­dys t e ro id s in t h a t it c o n t a i n s a m e t h y l s u b s t i t u e n t a t C - 2 4 of t h e s ide c h a i n

Page 70: Parasites and Pathogens of Insects. Parasites

6 2 Pauline Ο. Lawrence and Beatrice Lanzrein

C H 2 - R 3

OH

HO

HO

(I) R 1 = R 2 = R 3 = H

(II) R 1 = O H , R 2 = R 3 = H

(III ) R 1 = O H , R 2 = C H 3 , R 3 = H Η ι

Ο

(IV) R 1 = R 3 = H , R 2 = C H 3

(V) R 1 = R 3 = O H , R 2 = C H 3

Figure 1 Structures of ecdysteroids of insects. (I) ecdysone; (II) 20-hydroxyecdysone; ( I I I ) makisterone A; (IV) 20-deoxymakisterone A; (V) 26-hydroxymakisterone A.

a n d is n o t syn thes i zed from choles te ro l as a r e all t he o t h e r ecdys t e ro ids . I t h a s b e e n ident if ied in severa l H e m i p t e r a , as well as in t h e h o n e y b e e ( H y m e n o p ­te ra ) a n d Drosophila ( D i p t e r a ) (Kel ly et al, 1981 , 1984; Feldlaufer , 1989).

A m a j o r funct ion of J H s in l a rva l insec ts is to d i c t a t e t h e c h a r a c t e r of t h e mol t : t he p r e s e n c e of J H d u r i n g a ce r t a in pe r iod in t h e m o l t i n g cycle l eads to

a R R' R"

COOR M M

JH III JH II JHI J H O

R = R' = R" = Me R = Et, R' = R" = Me R = R' = Et, R" = Me R = R' = R" = Et

R"' = R m = R'" = R'" = R , M =

Η Η Η Η Me 4 - M e J H I R = R' = Et, R" = Me

R' for JHs = Me for JH acids = Η

b

J Η bisepoxide

Figure 2 Structures of juvenile hormones in insects, (a) J H s found in vivo, (b) J H bisepoxide synthesized by cyclorraphous dipteran ring glands in vitro.

Page 71: Parasites and Pathogens of Insects. Parasites

3. Hormonal Interactions of Endoparasites and Hosts 6 3

l a rva l m o l t s , a n d its a b s e n c e l eads to m e t a m o r p h i c mo l t s (for r ev iews , see D o w n e r a n d Laufer , 1983; K e r k u t a n d G i l b e r t , 1985; S e h n a l , 1989; G u p t a , 1990). J H I I I a p p e a r s to b e t h e m o s t u b i q u i t o u s J H as it w a s found in all o r d e r s i nves t iga t ed , i n c l u d i n g L e p i d o p t e r a , H y m e n o p t e r a , a n d D i p t e r a , w h e r e a s t h e h i g h e r h o m o l o g s J H I I , J H I , J H 0, a n d 4 - m e t h y l - J H I h a v e so far on ly b e e n found in l a rva l a n d / o r e m b r y o n i c L e p i d o p t e r a ( rev iewed in Baker , 1990). I n p r e p u p a l s t ages of M. sexta a n d poss ib ly o t h e r L e p i d o p t e r a , t h e C A swi tch f rom sec re t ing J H to sec re t ing J H acid , w h i c h c a n b e m e t h y ­l a t ed to J H by i m a g i n a l d isks ( B h a s k a r a n et al., 1986). J H I I I b i s epox ide h a s so far on ly b e e n obse rved in vitro u p o n i n c u b a t i o n of r i ng g l a n d s of l a rva l Drosophila melanogaster a n d r e l a t ed D i p t e r a a n d m a y r e p r e s e n t a b iological ly ac t ive fo rm of J H in c y c l o r r a p h o u s D i p t e r a ( R i c h a r d et al., 1989). A l t h o u g h insec t d e v e l o p m e n t is p u n c t u a t e d b y m o l t s , it is a c o n t i n u o u s p r o c e s s in w h i c h b o t h ecdys t e ro ids a n d J H s have funct ions in a d d i t i o n to t hose g iven h e r e (see G i lbe r t , 1989; S e h n a l , 1989).

T h e fluctuations in t h e t i te r of J H s a n d ecdys t e ro ids a r e b r o u g h t a b o u t b y v a r i a t i o n s in b o t h the i r r a t e s of b iosyn thes i s a n d d e g r a d a t i o n . I n t h e h e m o ­l y m p h J H is m e t a b o l i z e d by es te r hydro lys i s to J H acid ( rev iewed by H a m ­m o c k , 1985), b u t in t h e w h o l e insec t epox ide hydro lys i s l e a d i n g to J H diol a n d J H ac id-d io l a p p e a r s to b e equa l ly i m p o r t a n t ( K l a g e s a n d E m m e r i c h , 1979; H a l a r n k a r a n d Schooley, 1990). T h e m a j o r r o u t e s of d e g r a d a t i o n of 20-h y d r o x y e c d y s o n e a r e 2 6 - h y d r o x y l a t i o n l e a d i n g to 2 0 , 2 6 - d i h y d r o x y e c d y s o n e a n d t h e s u b s e q u e n t f o rma t ion of 20 -hydroxy-ecdysono ic ac id . I t is , however , i m p o r t a n t to n o t e t h a t e c d y s o n e m e t a b o l i s m p a t h w a y s v a r y w i t h spec ies , d e v e l o p m e n t a l s t age , a n d t i ssue ( rev iewed b y Lafon t a n d C o n n a t , 1989).

D u r i n g l a rva l m o l t s a n d m e t a m o r p h o s i s , c o m p l e x i n t e r e n d o c r i n e i n t e r a c ­t ions o c c u r a n d a r e essent ia l ly s imi l a r in d i p t e r a n s a n d l e p i d o p t e r a n s (see R i c h a r d s , 1981a ,b ; Redfe rn , 1984; G i lbe r t , 1989; Baker , 1990; R a u s c h e n -b a c h , 1991), b u t l e p i d o p t e r a n sy s t ems have b e e n s t u d i e d m o r e extensively. C u r r e n t m o d e l s for l e p i d o p t e r a n m e t a m o r p h o s i s a r e t h a t a cr i t ica l size m u s t first b e ach ieved to a l low t h e J H t i t e r to fall a n d P T T H to b e r e l eased . T h e a b s e n c e of J H a p p e a r s to b e neces sa ry for b o t h P T T H re lease to o c c u r a n d for p r o t h o r a c i c g l a n d s to g a i n s t e ro idogen ic c o m p e t e n c e , t h a t is , to r e s p o n d to P T T H b y p r o d u c i n g e c d y s o n e (see rev iews b y Bo l l enbache r , 1988; W a t s o n a n d Bo l l enbache r , 1988; W a t s o n et al., 1989). A s l ight i nc r ea se in e c d y s o n e a n d / o r 2 0 - h y d r o x y e c d y s o n e in t h e a b s e n c e o f J H i n d u c e s p u p a l c o m m i t m e n t (Ridd i fo rd , 1980). T h e r e a f t e r a s econd re lease of P T T H i n d u c e s a s econd , m u c h h i g h e r i nc rea se in e c d y s o n e a n d 2 0 - h y d r o x y e c d y s o n e , a n d J H in­c reases a g a i n a l o n g w i t h J H ac ids (see rev iew by Bo l l enbache r , 1988). P r e ­s u m a b l y th i s i nc r ea se in J H is n e c e s s a r y for fu r the r ac t iva t ion of t h e p r o ­tho rac i c g l a n d ( G r u e t z m a c h e r et al., 1984; W a t s o n et al., 1989) a s wel l as for t h e p r o p e r f o r m a t i o n of t h e p u p a ( H i r u m a , 1980, 1986). I n s o m e species th is p r e p u p a l i nc r ea se in J H is a l so p r e s u m e d to i n d u c e j u v e n i l e h o r m o n e es-

Page 72: Parasites and Pathogens of Insects. Parasites

6 4 Pauline Ο. Lawrence and Beatrice Lanzrein

t e ra se ( J H E ) ( J o n e s a n d H a m m o c k , 1983) b u t in o t h e r species th is s e e m s no t to b e t he case (Baker et al., 1987). I n still o t h e r species , a l l a t e c t o m i z e d l a rvae u n d e r g o n o r m a l p u p a t i o n (Sehna l a n d G r a n g e r , 1975), i n d i c a t i n g species-specif ic i m p o r t a n c e of t he p r e p u p a l J H peak . T h e h o r m o n a l c h a n g e s a s soc ia t ed w i th t he in i t i a t ion of insect m e t a m o r p h o s i s a l so d ra s t i ca l ly influ­ence t he syn thes i s a n d s to rage of p r o t e i n s , l ip ids , a n d g lycogen in t h e fat b o d y (Col l ins , 1974; Locke , 1980).

III. Parasite Hormones Relative to Those of Their Hosts

T h e q u a l i t a t i v e a n d q u a n t i t a t i v e c h a n g e s of J H s a n d ecdys t e ro ids in t h e cour se of d e v e l o p m e n t of l e p i d o p t e r a n a n d d i p t e r a n hos t s c r ea t e a va r i e ty of b i o c h e m i c a l cond i t i ons t h a t e n d o p a r a s i t e s e n c o u n t e r . T h e hos t mi l i eu c lear ly var ies w i t h t he species , t he e n v i r o n m e n t a l a n d n u t r i t i o n a l c o n d i t i o n s , t h e ins ta r , a n d the t i m e p o i n t w i th in a n ins ta r . E n d o p a r a s i t e s h a v e different n u t r i t i o n a l a n d phys io log ica l r e q u i r e m e n t s (see rev iew by L a w r e n c e , 1990b) . C o n s e q u e n t l y , p a r t i c u l a r p a r a s i t e s will select p a r t i c u l a r hos t spec ies , w h e t h e r eggs , ear ly i n s t a r s , o r l a te i n s t a r s ( L a w r e n c e , 1990b) . T h e r a n g e of hos t species (n iche b r e a d t h ) se lected d e p e n d s on w h e t h e r p a r a s i t e s a r e m o n o - o r p o l y p h a g o u s . The re fo r e , a p a r a s i t e , especia l ly a p o l y p h a g o u s spec ies , will l ikely e n c o u n t e r hos t s of va r ious e n d o c r i n e a n d phys io log ica l s t a t e s . T h u s , e i the r r egu l a t i on of o r con fo rma t ion to t he ex is t ing hos t c o n d i t i o n s o r a c o m b i n e d c o n f o r m e r - r e g u l a t o r coevo lu t iona ry r e l a t i o n s h i p w i t h t he hos t will en sue .

J H a n d ecdys te ro id t i ters have b e e n m e a s u r e d in on ly very few p a r a s i t i c h y m e n o p t e r a n s a n d the i r hos t s . F i r s t - ins t a r l a rvae of t h e b r a c o n i d Di-achasmimorpha (Biosteres) longicaudata, a l a r v a l - p u p a l p a r a s i t e of Anastrepha sus-pensa ( D i p t e r a , T e p h r i t i d a e ) , c o n t a i n e d h i g h q u a n t i t i e s of J H I I I ( L a w r e n c e et al., 1990). T h e c o r r e s p o n d i n g la te t h i r d - i n s t a r a n d p h a r a t e p u p a l hos t s h a d a n a b n o r m a l l y h igh level of J H I I I c o m p a r e d w i t h t h e u n p a r a s i t i z e d con t ro l s ( L a w r e n c e et al., 1990). I t is no t k n o w n w h e t h e r this e leva ted J H t i te r is a c o n s e q u e n c e of i nc reased J H p r o d u c t i o n by the hos t o r w h e t h e r it r e p r e s e n t s J H t h a t w a s re leased from the p a r a s i t e o r its se rosa ( e x t r a e m b r y o n i c m e m ­b r a n e ) . In te res t ing ly , t h e h igh J H t i te r in p h a r a t e p u p a l hos t s c o - o c c u r r e d w i t h a d e c r e a s e in J H E , whi le J H a n d J H E levels in u n p a r a s i t i z e d i n d i v i d u ­als w e r e low a n d h igh , respect ively ( L a w r e n c e et al., 1990), as e x p e c t e d in h e a l t h y d i p t e r a n s ( R a u s c h e n b a c h , 1991). E c d y s t e r o i d s in D. longicaudata first i n s t a r s w i t h i n p h a r a t e p u p a e of A. suspensa i nc reased w i t h each dec l ine of t he p h a r a t e p u p a l ecdys te ro id peaks of t he hos t ( L a w r e n c e , 1988b, 1991). T h i s r e l a t i o n s h i p is fu r the r i n d i c a t e d in in vitro e x p e r i m e n t s ; p a r a s i t e s

Page 73: Parasites and Pathogens of Insects. Parasites

3. Hormonal Interactions of Endoparasites and Hosts 6 5

p icked u p [ 3 H ] e c d y s o n e from c u l t u r e m e d i u m a n d c o n v e r t e d it to [ 3 H ] - 2 0 -h y d r o x y e c d y s o n e ( L a w r e n c e a n d H a g e d o r n , 1986), w h i c h t h e y r e q u i r e to syn thes i ze a s econd l a rva l cut ic le ( L a w r e n c e , 1988d) . S tud i e s in vitro i nd i ­c a t e d t h a t t h e a d d i t i o n of 2 0 - h y d r o x y e c d y s o n e a t va r i ous in t e rva l s to c u l t u r e m e d i a r e su l t ed in ecdys t e ro id inc reases in first- a n d s e c o n d - i n s t a r D. long-icaudata a n d s t i m u l a t e d m o l t i n g to s u b s e q u e n t i n s t a r s , a l t h o u g h a s m a l l per ­c e n t a g e of these l a t e r i n s t a r s have b e e n o b s e r v e d to m o l t w i t h o u t c o n t i n u e d h o r m o n e s u p p l e m e n t ( L a w r e n c e , 1991 , a n d u n p u b l i s h e d ) . T h e ecdys t e ro id r e q u i r e m e n t by D. longicaudata in vitro sugges t s a poss ib le e n d o c r i n e d e p e n ­d e n c e on t h e hos t .

T h i s a p p e a r s n o t to be t h e case in t h e b r a c o n i d Chelonus sp . , a n egg- la rva l p a r a s i t e of Trichoplusia ni ( L e p i d o p t e r a , N o c t u i d a e ) . I n th is p a r a s i t e J H I I I w a s ident i f ied w i t h p h y s i c o c h e m i c a l m e t h o d s in l a te s e c o n d - i n s t a r l a rvae w h e r e a s J H I I w a s ident i f ied in t h e hos t ( J o n e s et al., 1990). T h i s is t h e on ly p a r a s i t e / h o s t s y s t e m w h e r e fluctuations in J H I I , J H I I I , a n d v a r i o u s ec­d y s t e r o i d s w e r e m e a s u r e d in p a r a s i t e s a n d c o r r e s p o n d i n g h o s t h e m o l y m p h (Grossn ik l aus -B i i rg in a n d L a n z r e i n , 1990b) . I n l a te first-instar p a r a s i t e s a very h i g h t i te r (60 n g / g ) of J H I I I w a s seen followed by a s m a l l e r p e a k (30 n g / g ) in t he m i d d l e of t h e s econd i n s t a r whi le t he t i te r of J H I I in h o s t h e m o l y m p h fluctuated b e t w e e n 0 a n d 3 n g / m l (Grossn ik l aus -B i i rg in a n d L a n z r e i n , 1990b) . E c d y s t e r o i d s in t h e p a r a s i t e i n c r e a s e d before t h e m o l t to t h e s econd i n s t a r a n d fluctuated a t h i g h levels in s econd- a n d t h i r d - i n s t a r l a rvae wh i l e e c d y s o n e a n d 2 0 - h y d r o x y e c d y s o n e w e r e low in c o r r e s p o n d i n g hos t h e m o l y m p h ; in t h i r d - i n s t a r p a r a s i t e s ecdys t e ro ids w e r e t en ta t ive ly ident i f ied b y the use of h i g h - p e r f o r m a n c e l iqu id c h r o m a t o g r a p h y ( H P L C ) c o m b i n e d w i t h r a d i o i m m u n o a s s a y ( R I A ) ( two different a n t i b o d i e s ) a s e c d y s o n e , 2 0 - h y d r o x y e c d y s o n e , 2 0 , 2 6 - d i h y d r o x y e c d y s o n e , a n d u n k n o w n s , a n d gas c h r o m a t o g r a p h y - m a s s s p e c t r o m e t r y ( G C - M S ) a n a l y s e s con f i rmed t h e p r e s e n c e of 2 0 - h y d r o x y e c d y s o n e , 2 0 , 2 6 - d i h y d r o x y e c d y s o n e , e c d y s o n e , a n d poss ib ly 2 6 - h y d r o x y e c d y s o n e in a p r o p o r t i o n of 1 0 0 : 1 4 . 8 : 1 1 . 3 : 2 . 0 (Grossn ik l aus -B i i rg in a n d L a n z r e i n , 1990b) . T o o u r k n o w l e d g e th is r e p r e ­sen t s t h e on ly ident i f ica t ion of ecdys t e ro id s in a n e n d o p a r a s i t i c insec t . A s n e i t h e r J H s n o r ecdys t e ro ids fluctuated in a cons i s t en t p a t t e r n in t h e p a r a s i t e re la t ive to t hose in t he hos t a n d w e r e in g e n e r a l h i g h e r in t h e former , a n d as t h e p a r a s i t e c o n t a i n s J H I I I whi le t h e hos t c o n t a i n s J H I I , th i s p a r a s i t e c lear ly m a k e s its o w n h o r m o n e s a t s t ages after t h e l a te first i n s t a r (Gros sn ik l aus -B i i rg in a n d L a n z r e i n , 1990b) .

T a k e n t o g e t h e r t he few d a t a ava i l ab le so far sugges t t h a t in e n d o p a r a s i t i c as in free-l iving h y m e n o p t e r a n s t he m a j o r J H is J H I I I . I t s c o n c e n t r a t i o n in p a r a s i t e s is very h igh , p a r t i c u l a r l y in t h e first a n d second i n s t a r s . N o d a t a o n m e t a b o l i s m of J H by p a r a s i t e s h a v e b e e n r e p o r t e d to d a t e b u t p r e l i m i n a r y in vitro d a t a o b t a i n e d w i t h h o m o g e n a t e s of first- a n d s e c o n d - i n s t a r l a rvae of t h e

Page 74: Parasites and Pathogens of Insects. Parasites

6 6 Pauline Ο. Lawrence and Beatrice Lanzrein

p a r a s i t e Chelonus inanitus i nd i ca t e t h a t l abe led J H I I I is d e g r a d e d on ly a t a very low r a t e a n d t h a t t he m a j o r m e t a b o l i t e is J H I I I d iol (B . L a n z r e i n a n d B . D . H a m m o c k , u n p u b l i s h e d ) . T h u s t h e h igh J H t i te rs seen in p a r a s i t e s m i g h t reflect low ra t e s of J H d e g r a d a t i o n r a t h e r t h a n h i g h r a t e s of J H b io ­syn thes i s . So far t he r e exists n o ev idence t h a t p a r a s i t e s re lease h o r m o n e s i n to t h e hos t . T h i s poss ib i l i ty a p p e a r s to b e a t t r ac t i ve a s it w o u l d offer to t h e p a r a s i t e m u l t i p l e possibi l i t ies of in f luenc ing t h e hos t ' s e n d o c r i n e s y s t e m , p a r t i c u l a r l y in v iew of t h e c o m p l e x i n t e r e n d o c r i n e r e g u l a t o r y m e c h a n i s m s . However , two a spec t s have to b e cons ide red . (1) I t is n o t c lea r b y w h i c h m e c h a n i s m h o r m o n e s p r o d u c e d ins ide t he p a r a s i t e cou ld r e a c h t h e hos t ' s h e m o l y m p h w i t h o u t b e i n g d e g r a d e d . (2) A l t h o u g h t h e c o n c e n t r a t i o n of J H a n d ecdys t e ro ids w a s found to b e h i g h in t he p a r a s i t e s inves t iga t ed so far, t h e q u a n t i t y in a b s o l u t e t e r m s a n d in c o m p a r i s o n to t h e hos t h e m o l y m p h v o l u m e is very sma l l . C o n s e q u e n t l y , p a r a s i t e s w o u l d have to p r o d u c e very l a rge a m o u n t s of h o r m o n e s in o r d e r to subs t an t i a l l y a l t e r t h e t i te r in t h e hos t . T h e poss ib i l i ty of re lease of h o r m o n e m e t a b o l i t e s s eems m o r e likely.

E x p e r i m e n t s w i t h Chelonus sp./T. ni, w h e r e l abe led e c d y s o n e w a s in jec ted in to t he hos t , followed by s u b s e q u e n t ana lys i s of l abe led ecdys t e ro id s in p a r a s i t e a n d hos t , sugges ted t h a t this p a r a s i t e m a k e s a p o l a r ecdys t e ro id s t h a t a r e re leased in to t he hos t ( G r o s s n i k l a u s - B u r g i n et al., 1989). Also t h e p r e s ­ence of J H I I I acid in la te s e c o n d - i n s t a r Chelonus sp . a n d c o r r e s p o n d i n g ca rcasses of T. ni ( J o n e s et al., 1990) cou ld b e i n t e r p r e t e d a s re lease of J H I I I acid from t h e p a r a s i t e i n to t he hos t . T h e r e f o r e t h e r e is i n d i c a t i o n t h a t s o m e p a r a s i t e s use a n d m e t a b o l i z e hos t h o r m o n e s a n d / o r re lease h o r m o n e m e t a b ­oli tes i n t o t h e hos t b u t n o c o h e r e n t p i c t u r e e m e r g e s ye t as to t h e e n d o c r i n e e x c h a n g e s b e t w e e n p a r a s i t e s a n d hos t s .

IV. Direct or Indirect Host Endocrine Effects on Endoparasites

T h e i m p a c t of hos t q u a l i t y o n p a r a s i t e d e v e l o p m e n t h a s b e e n t e r m e d hos t su i t ab i l i ty ( D o u t t , 1964), w h i c h is inf luenced b y t h e n u t r i t i o n a l , e n d o c r i n e , b i o c h e m i c a l , a n d i m m u n o l o g i c a l factors w i t h i n t h e h o s t ( V i n s o n a n d I w a n t s c h , 1980a) . T h e s e factors in t u r n m a y i m p a c t each o t h e r t h r o u g h feedback loops . E n v i r o n m e n t a l l y i n d u c e d s t ress c o n d i t i o n s m a y a lso a l t e r t h e d y n a m i c i n t e r p l a y of t he v a r i o u s phys io log ica l factors t h a t m o d u l a t e h o s t su i t ab i l i ty ( L a w r e n c e , 1988c).

T h e r e h a v e b e e n n u m e r o u s s tud ies o n p a r a s i t i s m - i n d u c e d e n d o c r i n e c h a n g e s in t h e insec t hos t (see Sec t ion V ) b u t very few o n t h e hos t ' s i m p a c t o n t h e p a r a s i t e (see rev iews by L a w r e n c e , 1986a, 1990b) . T h i s p a u c i t y p r o b -

Page 75: Parasites and Pathogens of Insects. Parasites

3. Hormonal Interactions of Endoparasites and Hosts 6 7

a b l y reflects t h e i n h e r e n t difficulty in s e p a r a t i n g h o s t - r e l a t e d ve r sus p a r a s i t e -r e l a t ed factors a n d ident i fy ing t he i r r e spec t ive causes a n d effects in vivo.

H o s t e n d o c r i n e effects o n e n d o p a r a s i t e s w e r e d e m o n s t r a t e d ind i rec t ly in t h e Optus concolor ( H y m e n o p t e r a , Braconidae)-C*rafr7w capitata ( D i p t e r a , T e -p h r i t i d a e ) l a r v a l - p u p a l p a r a s i t e - h o s t sy s t em. T h e pa r a s i t e ' s first l a rva l m o l t w a s i n d u c e d by t h e in ject ion of e c d y s o n e in to t h e hos t after t he i r d e v e l o p ­m e n t a l a r r e s t b y y i r r a d i a t i o n ( C a l s - U s c i a t i , 1969, 1975). S ince p u p a r i a -t i o n / p u p a t i o n of t he in jec ted h o s t p r e c e d e d t h e p a r a s i t e ' s l a rva l m o l t , it is n o t c lea r w h e t h e r t h e h o r m o n e effects d i rec t ly o n t h e p a r a s i t e o r i nd i r ec t ly b y m e d i a t i n g i m p o r t a n t b i o c h e m i c a l c h a n g e s a s soc ia t ed w i t h h o s t p u p a r i a -t ion a n d p u p a t i o n . I n t h e r e l a t e d H y m e n o p t e r a - D i p t e r a p a r a s i t e - h o s t sys­t e m s Opius (Diachasmimorpha) tryoni-C. capitata a n d Optus melleus-Rhagoletis pomonella, t h e p a r a s i t e s ' first l a rva l m o l t a p p e a r s to b e in f luenced b y a n d o c c u r s in r e l a t ion to t h e p u p a r i a t i o n / p u p a t i o n of the i r hos t s ( P e m b e r t o n a n d W i l l a r d , 1918; L a t h r o p a n d N e w t o n , 1933). T h o u g h s ignif icant e n d o c r i n e c h a n g e s a r e k n o w n to b e neces sa ry for m o l t i n g , p u p a r i a t i o n , p u p a t i o n , a n d d i a p a u s e , t he i r ro le in in f luenc ing e n d o p a r a s i t e s n e e d s c lar i f ica t ion. O n l y co r r e l a t i ons b e t w e e n p a r a s i t e b e h a v i o r a n d d e v e l o p m e n t a n d hos t e n d o c r i n e -m e d i a t e d even t s (see Me l l i n i , 1975; L a w r e n c e , 1986a, 1990b) a n d h o s t ho r ­m o n e t i ters h a v e so far b e e n e s t ab l i shed ( P l a n t e v i n et al., 1986; G r o s s n i k l a u s -Bi i rg in a n d L a n z r e i n , 1990b; S t r a n d et al., 1991) in t h e ma jo r i t y of s t ud i e s to d a t e . In vitro c u l t u r e a n d h o r m o n e t h e r a p y of a few p a r a s i t e species h a v e d e m o n s t r a t e d a d i r ec t effect of hos t h o r m o n e s o n p a r a s i t e d e v e l o p m e n t . Fo r e x a m p l e , N e n o n (1972) first d e m o n s t r a t e d t h e necess i ty of J H a n d e c d y s o n e for g r o w t h a n d d e v e l o p m e n t of t h e h y m e n o p t e r a n p a r a s i t e Ageniaspis fitsciollis in vitro. M o r e recent ly, L a w r e n c e (1988d) d e m o n s t r a t e d t h a t 20 -hydroxy­e c d y s o n e s u p p l e m e n t a t i o n of c u l t u r e m e d i u m w a s n e c e s s a r y for cu t i cu lo -genes is of D. longicaudata s e c o n d i n s t a r s p r e c e d i n g the first l a rva l m o l t . F u r ­t h e r m o r e , 2 0 - h y d r o x y e c d y s o n e cell-free c u l t u r e m e d i u m c o n t a i n i n g D. longi­caudata l a rvae effected inc reases in p a r a s i t e e n d o g e n o u s ecdys t e ro id t i t e rs a n d s u b s e q u e n t l a rva l mo l t s ( L a w r e n c e , 1991). T h e d e v e l o p m e n t of n e w in vitro c u l t u r e m e d i a m u s t necessar i ly p r e c e d e s tud ies o n a l a r g e r n u m b e r of e n d o ­p a r a s i t e s to d e t e r m i n e hos t e n d o c r i n e effects. I t s h o u l d b e n o t e d t h a t t h e effects of 2 0 - h y d r o x y e c d y s o n e , J H , a n d o t h e r insec t h o r m o n e s o n e n d o ­p a r a s i t e s in vitro a r e n o t s u r p r i s i n g b u t t h e a b s e n c e of p a r a s i t e d e v e l o p m e n t in h o r m o n e - f r e e m e d i u m prov ides s t r o n g ev idence for a d i r ec t h o s t h o r m o n a l r o l e — p r o v i d i n g t h e m e d i u m is o p t i m a l for p a r a s i t e g r o w t h .

I n t h e a b s e n c e of e m p i r i c a l ev idence of v a r i o u s hos t e n d o c r i n e effects o n e n d o p a r a s i t e s , we will briefly a d d r e s s se lec ted hos t factors a n d t h e poss ib le w a y s in w h i c h they likely i m p a c t t h e d e v e l o p i n g p a r a s i t e d i rec t ly o r v ia t h e e n d o c r i n e s y s t e m . T h e e n d o c r i n e a n d n u t r i t i o n a l s t a t u s of h o s t insec t s is k n o w n to i m p a c t t h e d e v e l o p m e n t a n d v iabi l i ty of the i r e n d o p a r a s i t e s . For

Page 76: Parasites and Pathogens of Insects. Parasites

6 8 Pauline Ο. Lawrence and Beatrice Lanzrein

e x a m p l e , Sa l t (1937) d e m o n s t r a t e d t h a t Trichogramma evanescens r e a r e d o n a n e u r o p t e r a n hos t (Sialis) e m e r g e d as a p t e r o u s a d u l t s , w h e r e a s those r e a r e d on the u s u a l l e p i d o p t e r a n hos t eggs were n o r m a l (w inged ) . H e a r g u e d t h a t t he n u t r i e n t s in Sialis we re s u b o p t i m a l for a l a t e a d u l t d e v e l o p m e n t . T h e size a n d q u a l i t y of t he hos t in inf luencing p a r a s i t e d e v e l o p m e n t w e r e fu r the r d e m o n s t r a t e d by the r e a r i n g of Trichogramma o n eggs of different-s ized l ep ­i d o p t e r a n hos t s . Sal t (1941) o b t a i n e d p a r a s i t e a d u l t s t h a t w e r e s t u n t e d o r h a d m a l f o r m e d wings from sma l l hos t eggs w h e r e a s n o r m a l - s i z e d i n d i v i d u a l s e m e r g e d from t h e u s u a l l e p i d o p t e r a n hos t eggs . S o m e p a r a s i t e s c o n t a i n t h e s a m e types of a m i n o ac ids as the i r hos t s ( T h o m p s o n , 1986) a n d p r o b a b l y s e q u e s t e r all o r s o m e of these from the i r hos t s . C o n s e q u e n t l y , a def ic iency in s u c h n u t r i e n t s w i t h i n t he hos t cou ld b e de le t e r ious to t h e d e v e l o p i n g p a r a s i t e . C a l s - U s c i a t i (1969, 1975) a n d severa l o t h e r s have s h o w n t h a t l a rva l e n d o p a r a s i t e s feed on hos t h e m o l y m p h d u r i n g t h e first l a rva l s ta ­d i u m a n d m a y even p u n c t u r e hos t cells w i t h the i r m a n d i b l e s to ut i l ize cell c o n t e n t s .

T h e n u t r i e n t s ava i l ab le in a hos t a r e inf luenced b y the food e a t e n b y t h e hos t itself as well as by t he e n d o c r i n e a n d d e v e l o p m e n t a l s t a t u s of t h e hos t (see L a w r e n c e , 1990b, for rev iew) . B a r b o s a (1988) h a s rev iewed t h e effects of s u b s t a n c e s such as n ico t ine , r u t i n , a n d o t h e r a l l e lochemica l s w i t h i n t h e hos t ' s food on e n d o p a r a s i t e s . T h e y inh ib i t p a r a s i t e g r o w t h , p r o l o n g l a rva l deve lop ­m e n t , a n d even c a u s e m o r t a l i t y in a l a rge p e r c e n t a g e of e n d o p a r a s i t e s . S o m e p l a n t - d e r i v e d s u b s t a n c e s like c o u m a r i n s c a n cross t h e insec t g u t wal l a n d b i n d to s t o r age p r o t e i n s in t he h e m o l y m p h ( S h a p i r o et al., 1988) a n d a r e therefore e n c o u n t e r e d by the p a r a s i t e l a rvae . P h y t o h o r m o n e s , s u c h as j u v a d e c e n e ( N i s h i d a et al., 1983) a n d p h y t o e c d y s t e r o i d s , p l u s a n t i h o r m o n e s such as p r e c o c e n e , c a n d i rec t ly o r ind i rec t ly i m p a c t t h e d e v e l o p i n g p a r a s i t e . A z a d i r a c t i n , a n e e m t ree de r iva t ive , w a s found to d i s r u p t v i te l logenes is as well as J H a n d ecdys te ro id levels in t he exposed insec ts ( R e m b o l d a n d S c h m u t t e r e r , 1981). T h u s , e n d o p a r a s i t e s t h a t a t t ack act ively feeding l a rvae of p h y t o p h a g o u s insec ts a r e t he m o s t likely to be affected b y p l a n t - d e r i v e d s u b s t a n c e s f rom the hos t ' s food. S u c h effects m a y o c c u r w i t h i n a s h o r t t i m e after t he hos t feeds o r a t a l a te r d a t e in cases w h e r e s u b s t a n c e s like c o u m a r i n s m a y be b o u n d to a r y l p h o r i n s ( S h a p i r o et al., 1988), l i pop ro t e in s , o r o t h e r s t o r a g e molecu le s . S e c o n d - o r d e r effects of a l l e lochemica l s o n benefic ia ls h a v e b e e n s t u d i e d in a few cases ( B a r b o s a , 1988). However , t he i m p a c t of t hese a l l e lochemica l s on hos t a n d p a r a s i t e e n d o c r i n e sy s t ems , t h o u g h likely, h a s no t b e e n e v a l u a t e d .

T h e level of h e m o l y m p h n u t r i e n t s in insects is k n o w n to be in f luenced by the i r e n d o c r i n e s t a t u s (Locke , 1980; W y a t t , 1980). N o s tud ies have b e e n d o n e on the i m m e d i a t e a n d u l t i m a t e effects of e n d o c r i n e - i n d u c e d n u t r i t i o n a l c h a n g e s in hos t s on the i r deve lop ing e n d o p a r a s i t e s . O n e c a n on ly s p e c u l a t e

Page 77: Parasites and Pathogens of Insects. Parasites

3. Hormonal Interactions of Endoparasites and Hosts 6 9

o n t h e poss ib le effects. For e x a m p l e , act ively feeding l e p i d o p t e r a n l a rvae m a y h a v e a h i g h e r level of free h e m o l y m p h t r eha lose t h a n nonfeed ing l a rvae . C o n s e q u e n t l y , h o r m o n e s t h a t s t i m u l a t e t he m e t a b o l i s m of g lycogen a n d t h e p r o d u c t i o n of t r eha lose (Col l ins , 1974) m a y differ in t i te r b e t w e e n m a t u r e l a rvae a n d y o u n g e r s t age feeding l a rvae w i t h c o r r e s p o n d i n g l y different effects on the i r r espec t ive e n d o p a r a s i t e s . Severa l of these h o r m o n e s t h a t r e g u l a t e insec t m e t a b o l i s m have b e e n rev iewed ( G o l d s w o r t h y a n d G a d e , 1983; Ker -k u t a n d G i l b e r t , 1985). T h e i r poss ib le d i r ec t a n d ind i r ec t effects o n d e v e l o p ­ing e n d o p a r a s i t e s have b e e n d i scussed ( L a w r e n c e , 1990b) b u t e m p i r i c a l s t ud i e s a r e n e e d e d to d e t e r m i n e the i r i m p a c t o n e n d o p a r a s i t e s . Resu l t s f rom s u c h s tud i e s cou ld b e p a r t i c u l a r l y v a l u a b l e in deve lop ing art if icial m e d i a for r e a r i n g e n d o p a r a s i t e s .

Severa l h o r m o n e l i k e s u b s t a n c e s m a y a lso work v ia t he h o s t to adve r se ly i m p a c t t h e d e v e l o p i n g p a r a s i t e . T h e s e i n c l u d e h o r m o n e a n a l o g s ( W r i g h t a n d S p a t e s , 1972; M c N e i l , 1975; Beckage , 1985), a n t i h o r m o n e s (Bowers , 1983), h o r m o n e agon i s t s ( W i n g , 1988), a n d ch i t in syn thes i s i n h i b i t o r s ( L a w r e n c e , 1981). A l t h o u g h m u c h effort is b e i n g m a d e to deve lop pes t i c ides w i t h m i n i ­m a l de l e t e r ious e n v i r o n m e n t a l effects, l i t t le effort is b e i n g m a d e to a d d r e s s t h e i m p a c t of these s u b s t a n c e s in c o m p r e h e n s i v e pes t con t ro l p r o g r a m s in w h i c h beneficial insec t s , p r i m a r i l y e n d o p a r a s i t e s , a r e e m p l o y e d . For e x a m ­ple , m o r t a l i t y of t he e n d o p a r a s i t e D. longicaudata, t r e a t e d w i t h t h e ch i t in syn thes i s i n h i b i t o r d i f l u b e n z u r o n , as first i n s t a r s w i t h i n p h a r a t e p u p a e of t h e d i p t e r a n hos t , A. suspensa, w a s lower t h a n t h a t of p a r a s i t e s t h a t w e r e e i the r four th i n s t a r o r p u p a e w h e n t h e hos t w a s t r e a t e d ( L a w r e n c e , 1981). H o w e v e r , g r e a t e r t h a n 7 0 % of those p a r a s i t e s ( t r e a t e d as first i n s t a r s ) t h a t e m e r g e d as a d u l t s w e r e m a l f o r m e d d u e to a b n o r m a l sc ler i te d e v e l o p m e n t ( L a w r e n c e , 1981 , 1983). P r e s u m a b l y , t h e i n h i b i t o r y effect of d i f l u b e n z u r o n o n iV-ace ty lg lucosamine u p t a k e d u r i n g ch i t in syn thes i s ( M a y e r et aL, 1980) m a y h a v e i m p a c t e d t he p a r a s i t e s a n d p r e v e n t e d t he n o r m a l f o r m a t i o n of p u p a l a n d a d u l t cu t ic les .

T h e newly deve loped e c d y s o n e agon i s t R H 5849 is a p o t e n t i a l insec t i c ide t h a t b i n d s e c d y s o n e r ecep to r s a n d h a s s imi l a r effects o n m o l t i n g as 2 0 - O H E ( W i n g , 1988). T h i s agon i s t is m o r e effective in vivo t h a n n a t u r a l e c d y s t e r o i d s b e c a u s e it is n o t as r ead i ly m e t a b o l i z e d by e n d o g e n o u s e n z y m e s as a r e t h e ecdys t e ro id s . S ince s o m e p a r a s i t e s s u c h as C. congregata a p p a r e n t l y ut i l ize i n c r e a s e d e c d y s o n e t i te rs as a s igna l to exit the i r t r e a t e d hos t s (Beckage , 1985), to w h a t ex t en t cou ld this pes t i c ide inf luence p r e m a t u r e e m e r g e n c e of e n d o p a r a s i t e l a rvae f rom the i r t r e a t e d hos ts? I n t h e case of t hose p a r a s i t e s r e q u i r i n g hos t ecdys t e ro ids to in i t i a t e cut ic le syn thes i s a n d s u b s e q u e n t deve l ­o p m e n t , w h a t i m p a c t will s u b s t a n c e s like R H 5849 have o n p a r a s i t e d e v e l o p ­m e n t w h e n a p p l i e d a t s u b l e t h a l d o s a g e s to d i s r u p t t he pes t hos t ' s deve lop ­m e n t o r r e p r o d u c t i o n ?

Page 78: Parasites and Pathogens of Insects. Parasites

7 0 Pauline Ο. Lawrence and Beatrice Lanzrein

V. Direct or Indirect Effects of Endoparasites on Host Endocrine System

T h e effects of e n d o p a r a s i t e s on hos t d e v e l o p m e n t a r e n u m e r o u s a n d d ive r se ( rev iewed in V i n s o n a n d I w a n t s c h , 1980b; Beckage , 1985, 1990a ,b ; Law­rence , 1986a, 1988a) . I n m o s t cases it is n o t k n o w n w h e t h e r p a r a s i t e s d i rec t ly in terfere w i t h t he hos t ' s e n d o c r i n e s y s t e m o r w h e t h e r p a r a s i t e effects a r e ind i rec t a n d c a u s e d by s t ress a n d / o r inf luences o n the n u t r i t i o n a l s t a t u s of t h e hos t . I n t h e following we shal l d i scuss va r ious types of d e v e l o p m e n t a l a n d e n d o c r i n e effects of p a r a s i t e s on the i r hos t s by focusing o n se lec ted a n d well-inves t iga ted p a r a s i t e / h o s t sy s t ems . T a b l e 1 s u m m a r i z e s t h e effects of severa l h y m e n o p t e r o u s p a r a s i t e s on the i r l e p i d o p t e r u s hos t s . I t shows t h e d e v e l o p ­m e n t a l effects, t he e n d o c r i n e man i f e s t a t i ons , a n d w h e r e ava i l ab le , t h e p u t a ­tive factors involved . I t i nc ludes p a r a s i t e s t h a t p r o l o n g l a rva l life of t h e hos t a n d / o r c a u s e its d e v e l o p m e n t a l a r r e s t in t h e las t ins ta r , o r t h a t i n d u c e p r e c o ­c ious onse t of m e t a m o r p h o s i s , o r t h a t p r o l o n g t h e feeding p h a s e in t h e las t ins ta r .

T h e b r a c o n i d s C. congregata, Apanteles kariyai, Cardiochiles nigriceps, a n d Mi­croplitis croceipes a r e all l a rva l p a r a s i t e s t h a t c a u s e d e v e l o p m e n t a l a r r e s t of t h e hos t in t h e las t ins ta r . T h i s is reflected in lowered J H E a n d ecdys t e ro id levels as well as a l t e r ed sensi t ivi ty of p r o t h o r a c i c g l a n d s to P T T H a n d / o r a l t e r ed sens i t iv i ty of t a r g e t t i ssues to ecdys t e ro ids , d e p e n d i n g o n t h e s y s t e m . C a l y x (wh ich c o n t a i n s v i rus ) , v e n o m , a n d t e r a tocy te s a p p e a r to b e involved in c a u s i n g s o m e of t he e n d o c r i n e c h a n g e s in t he hos t b u t the i r p rec i se func t ion h a s n o t ye t b e e n e luc ida t ed (see be low) . T h e i c h n e u m o n i d Campoletis sonoren­sis a l so causes d e v e l o p m e n t a l a r r e s t of t h e hos t a n d p o l y d n a v i r u s e s i n d u c e d e g e n e r a t i o n of t he p r o t h o r a c i c g l a n d a n d s u p p r e s s e c d y s o n e p r o d u c t i o n b u t on ly if l a s t - i n s t a r l a rvae a r e a t t a c k e d (Dover a n d V i n s o n , 1990). T h i s a p p e a r s to b e excep t iona l u n d e r n a t u r a l cond i t i ons , a n d this effect m i g h t t h u s r a t h e r r e p r e s e n t a safety m e a s u r e t h a t w o u l d al low s o m e p a r a s i t e s to su rv ive w h e n n o y o u n g e r l a rvae a r e ava i lab le . C. sonorensis is a h a b i t u a l p a r a s i t e of t h i r d -i n s t a r H. virescens (Davies et al., 1987).

W h i l e t he l a rva l p a r a s i t e s d i scussed in t h e foregoing p r o l o n g l a rva l life of t h e hos t a n d / o r p r e v e n t hos t p u p a t i o n , egg- la rva l p a r a s i t e s of t h e g e n u s Chelonus (Bracon idae ) i n d u c e p recoc ious cocoon s p i n n i n g of t h e hos t in t h e p e n u l t i m a t e i n s t a r followed by p a r a s i t e e m e r g e n c e ( J o n e s et al., 1981). T h e s e so l i t a ry p a r a s i t e s oviposi t i n t o eggs of va r i ous l e p i d o p t e r a n spec ies . T h e first i n s t a r h a t c h e s w h e n the hos t is a la te e m b r y o o r a newly h a t c h e d f i rs t - ins tar l a rva . T h e p a r a s i t e s r e m a i n in the i r first s t a d i u m for severa l d a y s a n d m o l t

Page 79: Parasites and Pathogens of Insects. Parasites

3. Hormonal Interactions of Endoparasites and Hosts 71

i n to t h e s econd i n s t a r on ly after t h e hos t ' s ecdysis i n to its p r ecoc ious las t i n s t a r ( G r o s s n i k l a u s - B u r g i n a n d L a n z r e i n , 1990b) .

V a r i o u s e n d o c r i n e p a r a m e t e r s have b e e n m e a s u r e d in t he cou r se of deve l ­o p m e n t in n o n p a r a s i t i z e d a n d p a r a s i t i z e d T. ni l a rvae . T h e p a t t e r n of J H E ( B u h l e r et aL, 1985), t he v a r i a t i o n s in J H I I a n d v a r i o u s ecdys t e ro id s ( G r o s s n i k l a u s - B u r g i n a n d L a n z r e i n , 1990b) , a n d the m e t a b o l i s m of e c d y s o n e ( G r o s s n i k l a u s - B u r g i n et aL, 1989) w e r e found to be s imi l a r in p a r a s i t i z e d p r ecoc ious l a s t - i n s t a r l a rvae a n d in n o n p a r a s i t i z e d l a s t - i n s t a r l a rvae (Tab le 1). A l so t h e s t o r a g e p r o t e i n a r y l p h o r i n w a s seen to a p p e a r p recoc ious ly ( K u n k e l et aL, 1990). All of these d a t a i n d i c a t e t h a t th is p a r a s i t e i n d u c e s a t r u e p r ecoc ious in i t i a t ion of m e t a m o r p h o s i s . E x p e r i m e n t s c a r r i e d o u t w i t h p s e u d o p a r a s i t i z e d l a rvae ( la rvae d e v e l o p i n g from s t u n g eggs b u t c o n t a i n i n g n o live p a r a s i t e ) t h a t b e c o m e d e v e l o p m e n t a l l y a r r e s t e d in t h e p r e p u p a l s t age i n d i c a t e d s u p p r e s s i o n of e c d y s o n e p r o d u c t i o n a n d m e t a b o l i s m ( J o n e s , 1986) b u t n o i n d i c a t i o n of e i the r s u p p r e s s i o n of e c d y s o n e p r o d u c t i o n o r conve r s ion to 2 0 - h y d r o x y e c d y s o n e w a s seen in p a r a s i t i z e d T. ni u p to t h e s t age w h e n t h e p a r a s i t e s exi t t h e hos t ( G r o s s n i k l a u s - B u r g i n et aL, 1989; G r o s s n i k l a u s - B u r g i n a n d L a n z r e i n , 1990b) . I t is n o t c lea r w h i c h factors a r e r e spons ib l e for i n d u c ­t ion of t h e hos t ' s p r ecoc ious m e t a m o r p h o s i s .

T h e o b s e r v a t i o n t h a t p s e u d o p a r a s i t i z e d l a rvae go in to p r e c o c i o u s m e t a ­m o r p h o s i s a n d t h e fact t h a t r e m o v a l of s e c o n d - i n s t a r p a r a s i t e s f rom h o s t l a rvae does n o t p r e v e n t in i t i a t ion of p r ecoc ious m e t a m o r p h o s i s ( B u h l e r et aL, 1985) i n d i c a t e t h a t t he s e c o n d - i n s t a r p a r a s i t e a l one c a n n o t i n d u c e p r e c o c i o u s m e t a m o r p h o s i s . F r o m ind i r ec t a p p r o a c h e s it h a s b e e n c l a i m e d t h a t m a t e r i a l f rom t h e female w a s p a lone is r e spons ib l e for i n d u c i n g p r e c o c i o u s m e t a ­m o r p h o s i s ( J o n e s , 1987) b u t so far d i r ec t ev idence is l ack ing a n d a n involve­m e n t of e m b r y o n i c o r f i rs t - ins tar p a r a s i t e s o r t e r a tocy te s c a n n o t ye t b e ex­c l u d e d . In jec t ion of ca lyx fluid p lu s v e n o m from Chelonus insularis i n to Spodoptera ornithogalli w a s seen to i m i t a t e t he g r o w t h - r e d u c i n g effect of p a r a s i t ­i sm b u t n o t t h e p recoc ious in i t i a t ion of m e t a m o r p h o s i s (Abies a n d V i n s o n , 1981). In jec t ion of ca lyx fluid, pur i f ied v i rus , o r v e n o m from Chelonus inanitus also d i d n o t i n d u c e p recoc ious m e t a m o r p h o s i s in e i the r S. littoralis o r S. exigua ( C . G r o s s n i k l a u s - B u r g i n a n d B . L a n z r e i n , u n p u b l i s h e d ) . T h i s sugges t s t h a t factors in a d d i t i o n to v i rus a n d v e n o m a r e neces sa ry to i n d u c e p r e c o c i o u s m e t a m o r p h o s i s .

A c o m p a r i s o n of J H s in n o n p a r a s i t i z e d eggs of T. ni a n d eggs p a r a s i t i z e d b y Chelonus sp . r evea led t h a t before h a t c h i n g p a r a s i t i z e d eggs c o n t a i n e d h i g h q u a n t i t i e s of J H ( J H I , J H I I , a n d J H I I I ) w h e r e a s n o n p a r a s i t i z e d ones c o n t a i n e d on ly l i t t le J H ( J H I a n d J H I I ) . A t th is s t age t h e p a r a s i t e s h a t c h a n d re lease t h e se rosa l m e m b r a n e , a n d it w a s sugges t ed t h a t t h e l a t t e r p r o ­d u c e s J H I I I ( G r o s s n i k l a u s - B u r g i n a n d L a n z r e i n , 1990b) . T h e difference in

Page 80: Parasites and Pathogens of Insects. Parasites

Tabl

e 1

Effe

cts

of P

aras

ites

on H

ost

Deve

lopm

ent a

nd E

ndoc

rinol

ogy,

and

Put

ativ

e Pa

rasit

e Fa

ctor

s In

volv

ed in

The

se E

ffect

s

Para

site

H

ost

Cat

egor

y D

evel

opm

enta

l ef

fect

s E

ndoc

rine

m

anif

esta

tion

in

host

Fa

ctor

s R

efer

ence

Cote

sia c

ongr

egat

a B

raco

nida

e

Apan

tele

s ka

riyai

B

raco

nida

e

Card

ioch

iles

nigr

icep

s B

ra­

coni

dae

Man

duca

sex

ta

Sphi

ngid

ae

Gre

gari

ous

larv

al

Pseu

dale

tia s

epar

ata

Gre

gari

ous

Noc

tuid

ae

larv

al

Hel

ioth

is vi

resc

ens

Noc

tuid

ae

Gre

gari

ous

larv

al

Dev

elop

men

tal

arre

st

in l

ast

inst

ar,

occa

­si

onal

ly s

uper

­nu

mer

ary

larv

al

inst

ar

Prol

onga

tion

of

lar­

val

life,

dev

elop

­m

enta

l ar

rest

in

last

sta

dium

Prol

onga

tion

of

lar­

val

life,

dev

elop

­m

enta

l ar

rest

in

last

sta

dium

JH

titer

ele

vate

d, J

H

este

rase

low

ered

, ec

dyso

ne 2

0-m

onoo

xyge

nase

su

ppre

ssed

, se

nsi­

tivi

ty t

o ec

-dy

ster

oids

low

ered

Inhi

biti

on o

f P

TT

H

synt

hesi

s or

sec

re­

tion

, lo

wer

ed s

ensi

­ti

vity

to

20-

hydr

oxye

cdys

one,

pr

otho

raci

c gl

and

sens

itiv

ity

to

PT

TH

su

ppre

ssed

; JH

est

eras

e su

p­pr

essi

ng f

acto

r

Func

tion

of

pro-

thor

acic

gla

nd a

nd

its

sens

itiv

ity

to

PT

TH

de

pres

sed

Cal

yx +

ve

nom

+

tera

tocy

tes

Cal

yx -

I- ve

nom

Rev

iew

ed i

n B

ecka

ge

and

Tem

plet

on

(198

6);

Bec

kage

(1

990b

)

Tan

aka

et a

l. (1

987)

; T

anak

a (1

987)

; W

ani

etal

. (1

990)

; H

ayak

awa

(199

0)

Tan

aka

and

Vin

son

(199

1)

72

Page 81: Parasites and Pathogens of Insects. Parasites

Mic

ropl

itis

croc

eipe

s B

raco

nida

e H

elio

this

vire

scen

s N

octu

idae

So

litar

y la

rval

D

evel

opm

enta

l ar

rest

in

las

t st

adiu

m

Cam

pole

tis so

nore

n-sis

Ich

-ne

umon

idae

Hel

ioth

is vi

resc

ens

Noc

tuid

ae

Solit

ary

larv

al

Dev

elop

men

tal

arre

st

whe

n la

st i

nsta

r la

rvae

are

att

acke

d

Chel

onus

sp.

Bra

­co

nida

e Tr

icho

plus

ia n

i, N

octu

idae

So

litar

y eg

g-la

rval

Pr

ecoc

ious

ons

et o

f m

etam

orph

osis

, em

erge

nce

of p

ara­

site

fro

m p

reco

­ci

ous

prep

upa

Copi

doso

ma

flori

- Tr

icho

plus

ia n

i, Po

lyem

bryo

nic

Prol

onga

tion

of

feed

-da

num

Enc

yr-

Noc

tuid

ae

egg-

larv

al

ing

in l

ast

stad

ium

ti

dae

Ecd

yste

roid

s lo

wer

ed,

J Η

est

eras

e lo

ered

Deg

ener

atio

n of

pro

-th

orac

ic g

land

s,

ecdy

ster

oids

lo

ered

Prec

ocio

us a

ppea

r­an

ce o

f pr

emet

-am

orph

ic c

hang

es

in J

H,

ec­

dyst

eroi

ds,

and

JH

este

rase

; el

evat

ed

JH t

iter

in p

ara­

siti

zed

eggs

JH t

iter

elev

ated

, JH

es

tera

se a

nd e

c-dy

ster

oid

incr

ease

de

laye

d

Ter

atoc

ytes

, ca

­ly

x

Cal

yx o

r po

lyd-

Poly

dnav

irus

?

Ter

atoc

ytes

?

Web

b an

d D

ahlm

an

(198

6);

Zha

ng a

nd

Dah

lman

(1

989)

; D

ahlm

an e

t al

. (1

990a

,b)

Dov

er e

t al.

(198

7,

1988

a,b,

19

89);

D

over

and

V

inso

n (1

990)

Jone

s et

al

(198

1);

Buh

ler

et a

l. (1

985)

G

ross

nikl

aus-

Biir

gin

and

Lan

zrei

n (1

990b

)

Stra

nd e

t al.

(199

0,

1991

)

73

Page 82: Parasites and Pathogens of Insects. Parasites

7 4 Pauline Ο. Lawrence and Beatrice Lanzrein

J H t i te r a p p e a r s n o t to be d u e to different r a t e s of m e t a b o l i s m of J H as l abe led J H I I I was seen to b e d e g r a d e d to t he s a m e e x t e n t b y h o m o g e n a t e s of p a r a s i t i z e d a n d n o n p a r a s i t i z e d eggs in t he closely r e l a t ed s y s t e m C. inan-itus/S. exigua (B . L a n z r e i n , u n p u b l i s h e d ) .

T h e p o l y e m b r y o n i c egg- la rva l p a r a s i t e Copidosoma floridanum ( E n c y r t i d a e ) pa ra s i t i ze s T. ni a n d o t h e r p lus i ine L e p i d o p t e r a . C. floridanum ov ipos i t s i n t o t h e eggs a n d d u r i n g t h e first t h r o u g h four th s t a d i a t h e p a r a s i t e e m b r y o prol i fera tes to form a n ave rage of 1200 m o r u l a s t age e m b r y o s . A p p r o x i m a t e l y 40 of these e m b r y o s in i t i a te m o r p h o g e n e s i s d u r i n g th is p e r i o d to form a m o r p h referred to as t he p recoc ious l a rva ( S t r a n d , 1989). T h e s e l a rvae cease to be fo rmed in t he four th s t a d i u m of T. ni, d o n o t mo l t , a n d d ie in t h e fifth s t a d i u m . T h e r e m a i n i n g e m b r y o s deve lop in to a s econd m o r p h , refer red to as t he r e p r o d u c t i v e l a rva . Dif ferent ia t ion of m o r u l a e beg ins w i t h t h e T. ni m o l t to t h e fifth s t a d i u m (Baehrecke a n d S t r a n d , 1990) a n d t h e r e p r o d u c t i v e l a rvae eclose o n d a y 3 of t h e hos t ' s fifth s t a d i u m . Pa ra s i t i z ed l a rvae a t t a i n a l a rge r final we igh t a n d in i t i a te w a n d e r i n g o n e d a y l a t e r t h a n n o n p a r a s i t i z e d l a rvae . J H t i ter m e a s u r e m e n t s showed t h a t p a r a s i t i z e d T. ni c o n t a i n e d t h r e e t imes m o r e J H t h a n n o n p a r a s i t i z e d ones d u r i n g the m o l t to t h e four th s t a d i ­u m ( S t r a n d et al., 1991). As the iden t i ty of t he J H w a s n o t d e t e r m i n e d , it is n o t c l ea r w h e t h e r it is of p a r a s i t e o r hos t o r ig in . I n t h e fifth s t a d i u m t h e J H t i ter of p a r a s i t i z e d la rvae fell o n e d a y l a te r c o m p a r e d to t h a t of n o n ­p a r a s i t i z e d l a rvae ( S t r a n d et al., 1991) a n d c o r r e s p o n d i n g l y ecdys t e ro id a n d J H E inc reases w e r e a lso de l ayed ( S t r a n d et al., 1990). I t is n o t k n o w n w h e t h ­er t he d e l a y in t h e in i t i a t ion of m e t a m o r p h o s i s a n d t h u s t h e i nc rea se in l e n g t h of t h e hos t ' s feeding p h a s e a r e c a u s e d d i rec t ly b y h o r m o n a l s igna l s f rom t h e p a r a s i t e o r w h e t h e r it is a c o n s e q u e n c e of a l t e r ed hos t physiology.

I n t he following we d i scuss t h e p u t a t i v e e n d o c r i n e effects of t h e v a r i o u s p a r a s i t e - a s s o c i a t e d factors .

A. Substances Secreted by Serosal Membranes/Teratocytes

Tera tocy t e s a r e cells de r ived from the serosal m e m b r a n e of B r a c o n i d a e , T r i -c h o g r a m m a t i d a e , a n d Sce l ion idae ; these cells a p p a r e n t l y a s s u m e different roles ( t roph ic , i m m u n o s u p p r e s s i o n , secre tory) in different species ( rev iewed by D a h l m a n , 1990). Endocr ino log ica l ly , t h e l ink b e t w e e n t h e se rosa l m e m ­b r a n e / t e r a tocy t e s a n d t h e J H s y s t e m is m o s t i n t r i g u i n g . S o m e o b s e r v a t i o n s sugges t t h a t se rosa l m e m b r a n e s a n d y o u n g t e r a tocy te s of s o m e species con­t a in a n d / o r re lease J H . I n t he sys t em D. longicaudata-A. suspensa, c o m p a r a ­tive J H I I I m e a s u r e m e n t s in n o n p a r a s i t i z e d a n d p a r a s i t i z e d A. suspensa a n d d i s sec ted p a r a s i t e s sugges ted t h a t se rosa l m e m b r a n e s p r o b a b l y c o n t a i n J H I I I ( L a w r e n c e et al., 1990). T h e s a m e hypo thes i s w a s p u t f o r w a r d in t h e sys t em Chelonus sp.-T. ni, w h e r e p a r a s i t i z e d eggs were seen to c o n t a i n m u c h

Page 83: Parasites and Pathogens of Insects. Parasites

3. Hormonal Interactions of Endoparasites and Hosts 7 5

h i g h e r q u a n t i t i e s of J H t h a n n o n p a r a s i t i z e d ones a t t he s t a g e of re lease of se rosa l m e m b r a n e s i n to t he hos t ( G r o s s n i k l a u s - B u r g i n a n d L a n z r e i n , 1990b) . I n t h e sys t em C. nigriceps-H. virescens, in ject ion of t e r a tocy t e s w a s seen to h a v e J H - l i k e effects, w i t h y o u n g e r t e r a tocy te s b e i n g m o r e effective ( V i n s o n , 1970), a n d J H ana ly se s m a d e by Galleria b ioa s say revea led h i g h c o n c e n t r a t i o n s of J H in 7-day-old t e r a tocy t e s a n d m u c h lower c o n c e n t r a t i o n s in t e r a tocy t e s of m i x e d ages ( J o i n e r et aL, 1973). In te res t ing ly , se rosa l e p i t h e -lia of t h e locus t Locusta migratoria h a v e b e e n s h o w n to p r o d u c e J H I I I ( H a r t -m a n n et aL, 1987), w h i c h d e m o n s t r a t e s t h e capab i l i t y of th is t i ssue to s y n t h e ­size J H .

O l d e r t e r a tocy te s of s o m e species a p p e a r to in ter fere w i t h t h e J H s y s t e m a n d to i nc r ea se t h e J H t i te r in t h e h o s t b y ac t ing o n t h e J H E . I n t h e s y s t e m M. croceipes-H. viresecens, in ject ion of t e r a tocy te s w a s seen to i n h i b i t l a r v a l -p u p a l t r a n s f o r m a t i o n in t h e hos t in a dose - a n d a g e - d e p e n d e n t m a n n e r , w i t h y o u n g e r t e r a tocy t e s b e i n g m o r e act ive a n d y o u n g e r hos t s b e i n g m o r e sens i ­t ive ( Z h a n g a n d D a h l m a n , 1989). I t is i n t e r e s t i ng to n o t e t h a t C. congregata t e r a tocy t e s col lec ted from M. sexta h a d n o effect w h e n in jec ted i n t o H. vir­escens; m e a s u r e m e n t of J H E in h e m o l y m p h of / / , virescens l a rvae in jec ted w i t h t e r a tocy t e s f rom M. croceipes r evea led t h a t J H E w a s d r a m a t i c a l l y d e p r e s s e d w h e n t h e n o r m a l n u m b e r (750) of t e r a tocy t e s f rom a s ingle p a r a s i t e w a s in jec ted , b u t n o t w h e n t e r a tocy te s f rom C. congregata w e r e in jec ted ( Z h a n g a n d D a h l m a n , 1989). I n t h e s y s t e m Apanteles karyiai-Pseudaletia separata, in jec­t ion of t e r a tocy t e s d e l a y e d l a r v a l - l a r v a l a n d l a r v a l - p u p a l ecdys is ( W a n i et aL, 1990). I n th is s y s t e m h e m o l y m p h of l a rvae col lec ted 3 - 6 d a y s after p a r a s i t i z a t i o n w a s seen to c o n t a i n a factor t h a t s u p p r e s s e s J H E ; th is factor w a s pur i f ied , found to b e a p r o t e i n , a n d pa r t i a l l y s e q u e n c e d ( H a y a k a w a , 1990), b u t i ts o r ig in (hos t , t e r a tocy t e s , p o l y d n a v i r u s ) h a s n o t b e e n inves t i ­g a t e d . I n al l of these s y s t e m s , p a r a s i t i z a t i o n causes d e v e l o p m e n t a l a r r e s t before p u p a t i o n (Tab le 1). I n t h e e n d o c r i n e c h a n g e s a s soc i a t ed w i t h m e t a ­m o r p h o s i s a n a b s e n c e of J H is neces sa ry n o t on ly for p u p a l c o m m i t m e n t b u t a l so for t h e r e g u l a t i o n of P T T H a n d s t e ro idogen ic c o m p e t e n c e of t h e p r o -tho rac i c g l a n d s (see Sec t ion V.B) , a n d c o n s e q u e n t l y a n in te r fe rence w i t h t h e r e m o v a l of J H b y es te rases h a s m u l t i p l e effects.

B. Calyx Fluid, Viruses, and Venom Gland Secretions

V i r u s e s h a v e b e e n i m p l i c a t e d in i m m u n o s u p p r e s s i o n a n d in a l t e r i n g t h e n u t r i t i o n a l a n d h o r m o n a l b a l a n c e of t h e hos t (Stol tz a n d V i n s o n , 1979). I n t h e s y s t e m C. congregata-M. sexta, p o l y d n a v i r u s h a s b e e n s h o w n to i n d u c e t h e a p p e a r a n c e of pa ras i t i sm-spec i f i c p r o t e i n s in t h e h o s t (Beckage , 1990a) . I n t h e s y s t e m C. sonorensis/H. virescens, in ject ion of ca lyx fluid o r p o l y d n a v i r u s i n t o f if th-instar l a rvae led to d e g e n e r a t i o n of t he p r o t h o r a c i c g l a n d a n d r e -

Page 84: Parasites and Pathogens of Insects. Parasites

7 6 Pauline Ο. Lawrence and Beatrice Lanzrein

d u c e d ecdys te ro id t i ters (Dover et al., 1987, 1988a ,b , 1989). H o s t s s t u n g in t he four th s t a d i u m showed n o s igns of p r o t h o r a c i c g l a n d d e g e n e r a t i o n a n d inject ion of ca lyx in to ear ly f o u r t h - s t a d i u m la rvae d i d n o t c a u s e p r o t h o r a c i c g l a n d d e g e n e r a t i o n , sugges t ing t h a t i n d u c t i o n of p r o t h o r a c i c g l a n d d e g e n e r a ­t ion by p o l y d n a v i r u s is specific to t he las t s t a d i u m of t he hos t (Dover a n d V i n s o n , 1990). I n t he sys t em M. croceipes-H. virescens, in ject ion of ca lyx fluid i n h i b i t e d g r o w t h a n d d e v e l o p m e n t as well as J H E activity, effects a l so seen u p o n the inject ion of t e r a tocy tes (see T a b l e 1 a n d ear l i e r d i scuss ion ) , a n d it was sugges t ed t h a t t e r a tocy tes c o n t a i n p o l y d n a v i r u s o r s o m e of i ts g e n o m i c i n f o r m a t i o n ( D a h l m a n et al., 1990b) .

V e n o m g l a n d secre t ions exh ib i t a w ide r a n g e of act ivi t ies . T h o s e p r o d u c e d by e c t o p a r a s i t e s a r e often p a r a l y t i c , t hose of s o m e e n d o p a r a s i t e s have b e e n s h o w n to c o n t r i b u t e to t he a b r o g a t i o n of t he hos t ' s i m m u n e sy s t em, a n d o t h e r s have b e e n i m p l i c a t e d in t he p e r t u r b a t i o n of t h e e n d o c r i n e s y s t e m of t he hos t (Stol tz a n d V i n s o n , 1979; Stol tz , 1986). A n i m p o r t a n t func t ion of v e n o m s a p p e a r s to be the i r role as synerg is t s of v i ruses in t h a t t hey faci l i tate p e n e t r a t i o n a n d surv iva l of v i rus in hos t cells (Stol tz et al., 1988). I n t h e sys t em A. karyiai-P. separata (see T a b l e 1), ca lyx fluid p lus v e n o m have b e e n s h o w n to s u p p r e s s t he sensi t iv i ty of p r o t h o r a c i c g l a n d s to P T T H , a n d in t h e sys t em C. nigriceps-H. virescens (see T a b l e 1), t he two c o m p o n e n t s t o g e t h e r have b e e n s h o w n to d e p r e s s t he funct ion of t he p r o t h o r a c i c g l a n d a n d its c o m p e t e n c e to r e s p o n d to P T T H ( T a n a k a a n d V i n s o n , 1991).

F r o m these de sc r ip t i ons it is obv ious t h a t t he m e c h a n i s m s a n d factors t h r o u g h w h i c h p a r a s i t e s a l t e r the i r hos t ' s e n d o c r i n e s y s t e m v a r y w i t h t he p a r a s i t e species involved a n d w i th t he hos t species a n d s t age a t t a c k e d . S o m e effects m a y be d u e to pa r a s i t e -de r i ved s u b s t a n c e s ac t ing o n e n d o c r i n e g l a n d s , o n h o r m o n e m e t a b o l i s m , o r o n t h e sens i t iv i ty of t a r g e t g l a n d s a n d t i s sues , o r in te r fe r ing w i t h i n t e r e n d o c r i n e axes in t he P T T H / e c d y s o n e a n d J H s y s t e m a n d feedback loops . I n t e r a c t i o n s w i t h m e t a b o l i c h o r m o n e s have n o t ye t b e e n inves t iga t ed b u t a r e a lso a likely t a rge t for p a r a s i t e ac t ion . A t leas t in o n e sys t em it h a s b e e n s h o w n t h a t t he t h r e e factors ca lyx, v e n o m , a n d t e r a tocy t e s in jected in a s e q u e n c e t h a t s i m u l a t e d t he in vivo s i t ua t i on s i m u l a t e d t h e d e v e l o p m e n t a l effect of p a r a s i t i s m ( W a n i et al., 1990). T h i s i n d i c a t e s t h a t t h e va r ious pa r a s i t e - a s soc i a t ed factors act in conce r t a n d m i g h t exp la in w h y a p p l i c a t i o n of on ly o n e factor usua l ly does no t i n d u c e t h e full s p e c t r u m of p a r a s i t i s m l i k e a l t e r a t i o n s .

VI. Limitations

T h e foregoing review clear ly d e m o n s t r a t e s t h a t o u r s t u d y of p a r a s i t e - h o s t e n d o c r i n e i n t e r ac t ions is in its infancy a n d m u c h n e e d s to b e d o n e before we

Page 85: Parasites and Pathogens of Insects. Parasites

3. Hormonal Interactions of Endoparasites and Hosts 7 7

c a n a t t e m p t to u n d e r s t a n d th is very c o m p l i c a t e d a s soc ia t ion . A m o n g t h e factors t h a t c o n t r i b u t e to o u r l imi ted p rog re s s a r e t h e following: (1) o u r inab i l i ty to s e p a r a t e (successfully) p a r a s i t e f rom hos t over a p r o l o n g e d p e r i o d in o r d e r to s t u d y the physiology, n u t r i t i o n a l b iochemis t ry , a n d e n d o c r i n o l o g y s e p a r a t e l y ; (2) t h e lack of a p p r o p r i a t e t echno logy t h a t a l lows t h e s t u d y of very sma l l o r g a n i s m s such as insec t p a r a s i t e s , p a r t i c u l a r l y t h e H y m e n o p t e r a , a n d t h e m i n u t e v o l u m e s of h e m o l y m p h ava i l ab le for a c c u r a t e h o r m o n e ana ly ­sis, b o t h q u a l i t a t i v e a n d q u a n t i t a t i v e ; (3) o u r i n t e r p r e t a t i o n s of t h e effects of h o r m o n e s o n hos t s a n d p a r a s i t e s , for e x a m p l e , i nc reases in h o r m o n e t i te r m a y faci l i tate c e r t a i n ce l lu la r even t s n o t r ead i ly d e t e c t a b l e b u t a dec l ine in t h e s a m e h o r m o n e m a y t h e n resu l t in s o m e m e a s u r a b l e c h a n g e ; a n d (4) n u m e r o u s p e p t i d e h o r m o n e s o c c u r in insec ts b u t m o s t paras i te—host s t ud i e s have b e e n conf ined to J H a n d ecdys t e ro ids . W h a t roles d o p e p t i d e h o r m o n e s p l a y in h o s t - p a r a s i t e in t e rac t ions?

T h e m a j o r l imi t a t i ons in d o i n g endoc r ino log ica l s tud ie s w i t h insec t p a r a ­sites a r i se f rom t h e sma l l size of p a r a s i t e eggs a n d l a rvae (fract ions of a m i c r o g r a m to a few mi l l i g r ams ) . Fo r m e a s u r e m e n t of J H s for i n s t a n c e , t h e m o s t r e l i ab le m e t h o d is G C - M S , w h i c h al lows prec i se quan t i f i c a t i on of i nd i ­v i d u a l J H s (for de ta i l s , see Baker , 1990), b u t th is m e t h o d r e q u i r e s q u a n t i t i e s of b iological m a t e r i a l t h a t a r e often n o t ava i l ab le a n d on ly a few l a b o r a t o r i e s have t h e neces sa ry cost ly e q u i p m e n t a n d the exper t i se .

R a d i o i m m u n o a s s a y s of b io logica l ex t rac t s d o n o t p r o v i d e a b s o l u t e infor­m a t i o n a b o u t t he c o n c e n t r a t i o n of i n d i v i d u a l ecdys t e ro ids . T h i s is p r i m a r i l y b e c a u s e t h e a n t i b o d i e s c o m m o n l y u s e d c ross - reac t w i t h severa l e cdys t e ro id s to v a r y i n g deg rees (for de ta i l s , see W a r r e n a n d G i lbe r t , 1986; R e u m a n d K o o l m a n , 1989). C o n s e q u e n t l y , a c o m b i n a t i o n of R I A w i t h c h r o m a t o g r a p h i c m e t h o d s s u c h as t h in - l aye r c h r o m a t o g r a p h y or p re fe rab ly H P L C al lows quan t i f i c a t i on of i n d i v i d u a l ecdys t e ro ids , p r o v i d e d t h e c ross - reac t iv i ty of t h e v a r i o u s ecdys t e ro ids w i t h t he a n t i b o d y is k n o w n . For m e a s u r i n g J H s , severa l a p p r o a c h e s a r e b e i n g used : p h y s i c o c h e m i c a l m e t h o d s ( G C - M S ) , b i o a s s ay s , R I A s , a n d c o m b i n a t i o n s of H P L C w i t h b ioas say o r R I A . I n f o r m a t i o n a b o u t t h e fluctuation of i n d i v i d u a l J H s c a n be bes t o b t a i n e d by G C - M S . T h e c o m b i n a t i o n of H P L C w i t h b ioas say or R I A c a n a lso fulfill th i s goa l , p r o ­v i d e d s t a n d a r d cu rves for t h e different J H s a r e ava i l ab le (b ioassays ) o r c ross -react iv i t ies of t h e a n t i b o d y w i t h t h e i n d i v i d u a l J H s a r e k n o w n ( R I A ) .

I n cases w h e r e specific m e t h o d s were used a n d m e a s u r e m e n t s t a k e n a t s h o r t i n t e rva l s ( 6 - 8 h r ) , h o r m o n e t i te rs w e r e seen to fluctuate rap id ly . For e x a m p l e , P T T H w a s seen to b e re l eased in b u r s t s ( rev iewed in G i l b e r t , 1989), i n d i v i d u a l J H s d i s p l a y e d s h o r t a n d s h a r p p e a k s ( B a k e r et aL, 1987; G r o s s n i k l a u s - B u r g i n a n d L a n z r e i n , 1990a) , a n d a l so e c d y s o n e a n d 20-h y d r o x y e c d y s o n e were seen to fluctuate r a p i d l y (Lafon t et aL, 1975; G r o s s n i k l a u s - B u r g i n a n d L a n z r e i n , 1990a) . I n a d d i t i o n , s ince very m i n o r

Page 86: Parasites and Pathogens of Insects. Parasites

7 8 Pauline Ο. Lawrence and Beatrice Lanzrein

h o r m o n e inc reases a n d dec reases c a n b e biological ly s ignif icant , it w o u l d b e m o s t d e s i r a b l e to a n a l y z e prec ise ly s t aged insec ts a t s h o r t i n t e rva l s .

T h e sma l l size of p a r a s i t e s m a k e s it imposs ib l e to m e a s u r e h o r m o n e t i t e rs in t h e h e m o l y m p h or to rou t ine ly m e a s u r e r a t e s of h o r m o n e syn thes i s by i n c u b a t i n g g l a n d s (GA, p r o t h o r a c i c g l a n d s , o r b r a i n s ) in vitro. C o n s e q u e n t l y , m a n y a p p r o a c h e s u sed to inves t iga te t he e n d o c r i n e s t a t u s of p a r a s i t e s a r e ind i rec t . I n t he case of h o r m o n e a p p l i c a t i o n to t h e hos t , it is n o t poss ib le to k n o w if a pa r a s i t e ' s r eac t ion is c a u s e d by t h e h o r m o n e itself o r b y h o r m o n e -i n d u c e d c h a n g e s in t he hos t . L ikewise , ana lys i s of h o r m o n e m e t a b o l i s m b y p a r a s i t e s in vivo is very difficult as t he l abe led h o r m o n e h a s to b e in jected i n t o t h e hos t , w h i c h a lso me tabo l i ze s it. I f t he s a m e h o r m o n e m e t a b o l i t e s a r e ident if ied in p a r a s i t e a n d hos t it is no t poss ib le to k n o w w h e t h e r t hey w e r e m a d e b y t h e p a r a s i t e o r s imp ly t a k e n u p a s m e t a b o l i t e s . I f p a r a s i t e s u se as yet un iden t i f i ed , paras i te -spec i f ic h o r m o n e s , t he i r ana lys i s w o u l d b e ex­t r eme ly difficult b e c a u s e of t he lack of specific b ioas says .

VII. Possible Solutions

T o d a t e , t he p h y s i o l o g y / e n d o c r i n o l o g y of on ly very few h o s t - p a r a s i t e sys­t e m s have b e e n s t ud i ed . C o n s e q u e n t l y , fu r the r ana lyses of p a r a s i t e h o r m o n e s in r e l a t ion to those of the i r hos t s s h o u l d b e ca r r i ed o u t . E m p h a s i s o n hos t s t h a t have a l r e a d y b e e n endocr ino log ica l ly a n a l y z e d w o u l d faci l i tate t h e task . However , t h e ma jo r i t y of these hos t species a r e l e p i d o p t e r a n s . T h e r e f o r e , a d d i t i o n a l efforts s h o u l d be m a d e to i n c l u d e hos t g r o u p s s u c h as t h e h e m i p -t e r a n s a n d d i p t e r a n s s ince r e a s o n a b l e endoc r ino log ica l s tud ie s h a v e b e e n d o n e o n se lected m e m b e r s of these g r o u p s . F u r t h e r m o r e , severa l species of h e m i p t e r a n s a r e m a j o r a g r i c u l t u r a l pes t s a n d n u m e r o u s d i p t e r a n species a r e e i the r themse lves p a r a s i t e s o r vec tors of h u m a n a n d a n i m a l d i seases . C o n s e ­quen t ly , s tud ie s on t he h o r m o n a l i n t e r ac t ions of p a r a s i t e s of t hese hos t s w o u l d b e v a l u a b l e in pes t con t ro l efforts.

W h e n ana lyses of J H s a r e be ing u n d e r t a k e n , they s h o u l d b e m e a s u r e d ind iv idua l ly . I n t he case of severa l l e p i d o p t e r o u s hos t s , th is w o u l d a l low d i s c r i m i n a t i o n b e t w e e n the h y m e n o p t e r a n p a r a s i t e - p r o d u c e d J H I I I a n d hos t J H I I a n d J H I , o r in t he case of l e p i d o p t e r a n hos t eggs , J H 0. H o w e v e r , t h e p r o b l e m s will b e m o r e difficult in h y m e n o p t e r a n — d i p t e r a n p a r a s i t e - h o s t sy s t ems in w h i c h J H I I I is c o m m o n to b o t h g r o u p s . O n e a p p r o a c h t h a t cou ld a l lev ia te this p r o b l e m a n d s i m u l t a n e o u s l y e luc ida t e t h e effect of p a r a s i t e s o n t h e e n d o c r i n e g l a n d s of t he hos t a n d vice ve rsa is t h e ana lys i s of t h e p r o d u c ­t ion in vitro of h o r m o n e s o r o t h e r s u b s t a n c e s by in t ac t p a r a s i t e s , o r by g l a n d s of hos t s a n d the i r n o n p a r a s i t i z e d c o u n t e r p a r t s . T h i s a p p r o a c h h a s b e e n suc ­cessfully u sed to d e m o n s t r a t e p a r a s i t e u p t a k e of l abe led p r o t e i n s (Beckage et

Page 87: Parasites and Pathogens of Insects. Parasites

3. Hormonal Interactions of Endoparasites and Hosts 7 9

al., 1989) a n d a m i n o ac ids (Ferkovich a n d D i l l a rd , 1986), l abe l ed h o r m o n e s ( L a w r e n c e a n d H a g e d o r n , 1986), t h e re lease of p r o t e i n s b y p a r a s i t e s (Law­r e n c e , 1990a) , a n d hos t p r o t h o r a c i c g l a n d act iv i ty ( T a n a k a et al., 1987). O t h e r in vitro s t ud ie s on p a r a s i t e s h a v e i n c l u d e d t h e successful r e a r i n g of p u p a l p a r a s i t e s a n d a s t u d y of t h e n u t r i t i o n a l r e q u i r e m e n t s of o t h e r s (for r ev iews , see G r e a n y , 1986; Ne t t l e s , 1990) a n d t h e r e q u i r e m e n t s of s o m e p a r a s i t e s for e x o g e n o u s h o r m o n e s ( N e o n , 1972; L a w r e n c e , 1986b, 1988d, 1991).

O t h e r a s ye t un re so lved q u e s t i o n s in host—paras i te i n t e r ac t i ons r e l a t e to t hose p a r a s i t e - d e r i v e d factors t h a t d i s r u p t t h e hos t ' s e n d o c r i n o l o g y (see Sec­t ion V ) . T h e i r inf luence on s u s p e c t e d t a r g e t t i ssues a n d g l a n d s of t h e h o s t cou ld b e e v a l u a t e d in vitro.

VIII. Summary

I n t h e p r e c e d i n g d i scuss ion , we have a t t e m p t e d to focus p r i m a r i l y o n hy-m e n o p t e r o u s p r o t e l e a n e n d o p a r a s i t e s t h a t a t t a c k eggs a n d l a rvae of l e p i d o p -t e r a n s a n d l a rvae of d i p t e r a n s . We have u t i l ized ex is t ing i n f o r m a t i o n o n t h e g e n e r a l e n d o c r i n e sys t ems a n d i n t e r e n d o c r i n e i n t e r ac t ions k n o w n in insec t s as t h e bas i s of o u r d i scuss ion a n d h a v e c o m p l e m e n t e d th is w i t h t h e l imi t ed d a t a ava i l ab le f rom a few h o s t - p a r a s i t e sy s t ems .

T h e i n f o r m a t i o n ava i l ab le so far i nd i ca t e s t h a t t h e d e p e n d e n c e of p a r a s i t e s on t h e hos t ' s e n d o c r i n e sys t em var ies f rom s t r o n g to m a r g i n a l a n d is c h a r a c ­ter is t ic of each p a r a s i t e - h o s t sy s t em. I t a p p e a r s t h a t t he e n d o c r i n e i n t e r a c ­t ions b e t w e e n p a r a s i t e s a n d the i r hos t s va ry f rom those t h a t r e q u i r e t h e hos t ' s h o r m o n e s (especia l ly those g o v e r n i n g g r o w t h , d e v e l o p m e n t , a n d m e t a ­m o r p h o s i s ) for t he i r o w n d e v e l o p m e n t (conformers ) to t hose t h a t signifi­c a n t l y modify the i r hos t ' s e n d o c r i n e s y s t e m in o r d e r to r e t a i n t h e h o s t for s o m e p e r i o d of t i m e in a p a r t i c u l a r phys io log ica l a n d likely, n u t r i t i o n a l s t a t e ( r egu l a to r s ) . A t h i r d c a t e g o r y of p a r a s i t e s a p p e a r s to u t i l ize a c o m b i n e d s t ra tegy. I n th is l a t t e r g r o u p , ea r ly s t ages ( e m b r y o s to first-instar l a rvae) a p p e a r to d i s p l a y a h i g h e r d e g r e e of d e p e n d e n c e t h a n l a t e r s t ages . P a r a s i t e effects b e c o m e man i fes t in l a t e r s t ages of hos t d e v e l o p m e n t a n d often involve a d i s t u r b a n c e of t h e P T T H / e c d y s o n e axis a n d / o r t h e J H ax i s . I n c a u s i n g these effects, all factors , name ly , v i ru s , v e n o m , a n d t e r a tocy t e s (if p r e s e n t ) , a p p e a r to b e involved b u t the i r i n t e r r e l a t i o n s h i p a n d i m p a c t o n t h e hos t ' s e n d o c r i n e s y s t e m a r e n o t ye t u n d e r s t o o d . S o m e p a r a s i t e s have b e e n s h o w n to p r o d u c e the i r o w n h o r m o n e s (a t l eas t after t h e l a te first i n s t a r ) a n d th is m i g h t b e gene ra l l y t r u e , b u t it is n o t c lea r w h e t h e r p a r a s i t e h o r m o n e s o r m e t a b o l i t e s t he reo f a r e ever r e l eased i n t o t h e hos t a n d u s e d to inf luence i ts d e v e l o p m e n t .

Page 88: Parasites and Pathogens of Insects. Parasites

8 0 Pauline Ο. Lawrence and Beatrice Lanzrein

Acknowledgments

Financial support from the National Science Foundation, Grant DCB 9005514, and the USDA, CRGO Grant 9001300, to P.O.L., and the Swiss National Science Foundation, Grant 31-27723.89, to B. L. is gratefully acknowledged.

References

Abies, J. R., and Vinson, S. B. (1981). Regulation of host larval development by egg-larval endoparasitoid Chelonus insularis. Entomophaga 26:453-458.

Askew, R. R. (1971). "Parasitic Insects." C.F.R. Woodward, London. Baehrecke, Ε. H., and Strand, M. R. (1990). Embryonic morphology and growth of the embry­

onic parasitoid Copidosoma floridanum (Ashmead) (Hymenoptera: Encyrtidae). Int. J. Insect Morphol. Embryol. 19:165-175.

Baker, F. C. (1990). Techniques for identification and quantification of juvenile hormones and related compounds in arthropods. In "Morphogenetic Hormones of Arthropods" (A. P. Gupta, ed.), pp. 389-453. Rutgers Univ. Press, New Brunswick, NJ and London.

Baker, F. C., Tsai, L. W., Reuter, C. C., and Schooley, D. A. (1987). In vivo fluctuation ofJH, J H acid, and ecdysteroid titer, and J H esterase activity, during development of fifth stadium Manduca sexta. Insect Biochem. 17:989-996.

Barbosa, P. (1988). Natural enemies and herbivore-plant interactions: Influence of plant al­lelochemicals and host specificity. In "Novel Aspects of Insect-Plant Allelochemicals and Host Specificity" (P. Barbosa and D. Letourneau, eds.), pp. 201-229. Wiley, New York.

Beckage, Ν. E. (1985). Endocrine interactions between endo-parasitic insects and their hosts (review). Annu. Rev. Entomol. 30:371-413.

Beckage, Ν. E. (1990a). Induction of host endocrine and hemolymph protein alterations in tobacco hornworm larvae parasitized by Cotesia congregata. Adv. Invertebr. Reprod. 5:149-155.

Beckage, Ν. E. (1990b). Parasitic effects on host development. In "New Directions in Biological Control: Alternatives for Suppressing Agricultural Pests and Diseases" (R. Baker and P. R. Dunn, eds.), pp. 497-515. Liss, New York.

Beckage, Ν. E., and Templeton, T. J. (1986). Physiological effects of parasitism by Apanteles congregatus in terminal-stage tobacco hornworm larvae. J. Insect Physiol. 32:299-314.

Beckage, Ν. E., Nesbit, D. J., Nielsen, B. D., Spence, K. D., and Barman, M.A.E. (1989). Alteration of hemolymph polypeptides in Manduca sexta larvae parasitized by Cotesia congre­gata: A two-dimensional electrophoretic analysis and comparison with major bacteria-induced proteins. Arch. Insect Biochem. Physiol. 10:1 — 17.

Bhaskaran, G., Sparagana, S. P., Barrera, P., and Dahm, Κ. H. (1986). Change in corpus allatum function during metamorphosis of the tobacco hornworm Manduca sexta: Regulation at the terminal step in juvenile hormone biosynthesis. Arch. Insect Biochem. Physiol. 3:321—338.

Bollenbacher, W. E. (1988). The interendocrine regulation of larval-pupal development in the tobacco hornworm, Manduca sexta: A model. J. Insect. Physiol. 34:941-947.

Bowers, W. S. (1983). The precocenes. In "Endocrinology of Insects" (R.G.H. Downer and H. Laufer, eds.), pp. 517-523. Liss, New York.

Buhler, Α., Hanzlik, Τ. N., and Hammock, B. D. (1985). Effects of parasitization of Trichoplusia ni by Chelonus sp. Physiol. Entomol. 10:383-394.

Cals-Usciati, J. (1969). Influence de l'etat physiologique de Phote Ceratitis capitata Weid. (Dip-tera) sur le developpement du parasite Opius concolor Szepl. (Hymenoptera). C. R. Hebd. Seances/Acad. Set., Ser. D 269:342-344.

Page 89: Parasites and Pathogens of Insects. Parasites

3. Hormonal Interactions of Endoparasites and Hosts 81

Cals-Usciati, J. (1975). Repercussion de la modification du cycle normal de Ceratitis capitata Weid. (Diptere: Trypetidae), par irradiation Y et injection d'ecdysone, sur le developpment de son parasite Optus concolor Szepl. (Hymenoptere: Braconidae). C. R. Hebd. Seances/Acad. Sci., Ser. D 281:275-278.

Collins, J. V. (1974). Hormonal control of protein sequestration in the fat body o(Calpodes ethlius. Can. J. Zool. 52:639-642.

Cymborowsky, B., Bogus, M., Beckage, Ν. E., Williams, C. M., and Riddiford, L. M. (1982). Juvenile hormone titers and metabolism during starvation-induced supernumerary larval moulting of the tobacco hornworm, Manduca sexta L. J. Insect Physiol. 28:129-135.

Dahlman, D. L. (1990). Evaluation of teratocyte functions: An overview. Arch. Insect Biochem. Physiol. 13:159-166.

Dahlman, D. L., Coar, D. L., Koller, C. N., and Neary, T.J. (1990a). Contributing factors to reduced ecdysteroid titers in Heliothis virescens parasitized by Microplitis croceipes. Arch. Insect Biochem. Physiol. 13:29-39.

Dahlman, D. L., Zhang, D., and Neary, T. D. (1990b). Alteration of juvenile hormone esterase activity by parasitoid-derived factors [abstract]. In "Molecular Insect Science" (Η. H. Hage-dorn, J. G. Hildebrand, M. G. Kidwel, and J. H. Law, eds.), pp. 295. Plenum, New York.

Davies, D. H., Strand, M. R., and Vinson, S. B. (1987). Changes in differential hemocyte count and in vitro behavior of plasmatocytes from host Heliothis virescens caused by Campoletis sonorensis polydnavirus. J. Insect Physiol. 3 3 : 143-153.

Doutt, R. L. (1964). Biological characteristics of entomophagous adults. In "Biological Control of Insect Pests and Weeds" (P. DeBach and Ε. I. Schlinger, eds.), pp. 145-167. Reinhold, New York.

Dover, Β. Α., and Vinson, S. B. (1990). Stage-specific effects of Campoletis sonorensis parasitism on Heliothis virescens development and prothoracic glands. Physiol. Entomol. 15:405-414.

Dover, Β. Α., Davies, D. H., Strand, M. R., Gray, R. S., Keeley, L. L., and Vinson, S. B. (1987). Ecdysteroid-titre reduction and developmental arrest of last-instar Heliothis virescens larvae by calyx fluid from the parasitoid Campoletis sonorensis. J. Insect Physiol. 33:333-338.

Dover, Β. Α., Davies, D. H., and Vinson, S. B. (1988a). Dose-dependent influence of Campoletis sonorensis polydnavirus on the development and ecdysteroid titers of last-instar Heliothis virescens larvae. Arch. Insect Biochem. Physiol. 8:113-126.

Dover, Β. Α., Davies, D. H., and Vinson, S. B. (1988b). Degeneration of last instar Heliothis virescens prothoracic glands by Campoletis sonorensis polydnavirus. J. Invertebr. Pathol. 51 :80 -91 .

Dover, Β. Α., Strand, M. R., Davies, D. H., and Vinson, S. B. (1989). Ultrastructure of host tissues exposed to the calyx fluid of the parasitoid, Campoletis sonorensis (Cameron) (Hy­menoptera, Ichneumonidae). Int. J. Insect Morphol. Embryol. 18:47-57.

Downer, R.G.H., and Laufer, H., eds. (1983). "Endocrinology of Insects." Liss, New York. Feldlaufer, M. F. (1989). Diversity of molting hormones in insects. In "Ecdysone" (J. Koolman,

ed.), pp. 308-311. Thieme, Stuttgart. Ferkovich, S. M., and Dillard, C. R. (1986). A study of radiolabeled host proteins and protein

synthesis during development of eggs of the endoparasitoid, Microplitis croiceipes (Cresson) (Braconidae). Insect Biochem. 16:337-343.

Gilbert, L. I. (1989). The endocrine control of molting: The tobacco hornworm, Manduca sexta, as a model system. In "Ecdysone" (J. Koolman, ed.), pp. 448-471 . Thieme, Stuttgart.

Goldsworthy, G. J., and Gade, G. (1983). The chemistry of hypertrehalosemic factors. In "Endo­crinology of Insects" (R.G.H. Downer and H. Laufer, eds.), pp. 109-119. Liss, New York.

Greany, P. D. (1986). In vitro culture of hymenopterous larval endoparasitoids. J. Insect Physiol. 32:409-419.

Grossniklaus-Biirgin, C , and Lanzrein, B. (1990a). Qualitative and quantitative analysis of

Page 90: Parasites and Pathogens of Insects. Parasites

8 2 Pauline Ο. Lawrence and Beatrice Lanzrein

juvenile hormone and ecdysteroids from the egg to the pupal molt in Trichoplusi ni. Arch. Insect Biochem. Physiol. 14:13-30.

Grossniklaus-Burgin, C., and Lanzrein, B. (1990b). Endocrine interrelationship between the parasitoid Chelonus sp. and its host Trichoplusi ni. Arch. Insect Biochem. Physiol. 14 :201 -216.

Grossniklaus-Burgin, C., Connat, J. L., and Lanzrein, B. (1989). Ecdysone metabolism in the host-parasitoid system Trichoplusia ni. Arch. Insect Biochem. Physiol. 11:79-92.

Gruetzmacher, M. C., Gilbert, L. I., Granger, Ν. Α., Goodman, W., and Bollenbacher, W. E. (1984). The effect of juvenile hormone on prothoracic gland function during the larval-pupal development of Manduca sexta: An in situ and in vitro analysis. J. Insect Physiol. 30:331-340.

Gupta, A. P., ed. (1990). "Morphogenetic Hormones of Arthropods." Rutgers Univ. Press, New Brunswick, NJ and London.

Halarnkar, P. P., and Schooley, D. A. (1990). Reversed-phase liquid chromatographic separa­tion of juvenile hormone and its metabolites, and its application for an in vivo juvenile hormone metabolism study in Manduca sexta. Entomol. Exp. Appl. 188:394-397.

Hammock, B. D. (1985). Regulation of juvenile hormone titer: Degradation. In "Comprehensive Insect Physiology, Biochemistry and Pharmacology" (G. A. Kerkut and L. I. Gilbert, eds.), Vol. 7, pp. 431-472. Pergamon, New York.

Hartmann, R., Jendrsczok, C , and Peter, M. G. (1987). The occurrence of a juvenile hormone binding protein and in vitro synthesis of juvenile hormone by the serosa of Locusta migratoria embryos. Roux's Arch. Dev. Biol. 196:347-355.

Hayakawa, Y. (1990). Juvenile hormone esterase activity repressive factor in the plasma of parasitized insect larvae. J. Biol. Chem. 265:10813-10816.

Hiruma, K. (1980). Possible roles of juvenile hormone in the prepupal stage of Mamestra brassicae. Gen. Comp. Endocrinol. 41:392-399.

Hiruma, K. (1986). Regulation of prothoracicotropic hormone release by juvenile hormone in the penultimate and last instar larvae of Mamestra brassicae. Gen. Comp. Endocrinol. 6 3 : 2 0 1 -211.

Joiner, R. L., Vinson, S. B., and Benskin, J. B. (1973). Teratocytes as source of juvenile hormone activity in a parasitoid-host relationship. Nature (London) New Biol. 246:120-121 .

Jones, D. (1986). Chelonus sp.: Suppression of host ecdysteroids and developmentally stationary pseudoparasitized prepupae. Exp. Parasitol. 61:10-17 .

Jones, D. (1987). Material from adult female Chelonus sp. directs expression of altered develop­mental programme of host Lepidoptera. J. Insect Physiol. 33:129-134.

Jones, D., Jones, G., and Hammock, B. D. (1981). Developmental and behavioral responses of larval Trichoplusia ni to parasitization by an imported braconid parasite Chelonus sp. Physiol. Entomol. 6:387-394.

Jones, G., and Hammock, B. D. (1983). Prepupal regulation of juvenile hormone esterase through direct induction by juvenile hormone. J. Insect Physiol. 29:471-475.

Jones, G., Hanzlik, T , Hammock, B. D., Schooley, D. Α., Miller, C. Α., Tsai, L. W., and Baker, F. C. (1990). The juvenile hormone titer during the penultimate and ultimate larval stadia of Trichoplusia ni. J. Insect Physiol. 36 :77-83 .

Kelly, T. J., Woods, C. W., Redfern, R. E., and Borkevec, A. B. (1981). Makisterone A: The moulting hormone of larval Oncopeltus. J. Exp. Zool. 218:127-132.

Kelly, Τ J., Aldrich, J. R., Woods, C. W , and Borkevec, A. B. (1984). Makisterone A: Its distribution and physiological role as the moulting hormone of true bugs. Experientia 4 0 : 9 9 6 -997.

Kerkut, G. Α., and Gilbert, L. L, eds. (1985). "Comprehensive Insect Physiology, Biochemistry and Pharmacology." Pergamon, New York.

Klages, G., and Emmerich, H. (1979). Juvenile hormone metabolism and juvenile hormone

Page 91: Parasites and Pathogens of Insects. Parasites

3. Hormonal Interactions of Endoparasites and Hosts 8 3

esterase titer in hemolymph and peripheral tissues of Drosophila hydei. J. Comp. Physiol. 132:319-325.

Kunkel, J. G., Grossniklaus-Biirgin, C., Karpells, S. T., and Lanzrein, B. (1990). Arylphorin of Tnchoplusia ni: Characterization and parasite-induced precocious increase in titer. Arch. Insect Biochem. Physiol. 13:117-125.

Lafont, R., and Connat, J. L. (1989). Pathways of ecdysone metabolism. In "Ecdysone" (J. Koolman, ed.), pp. 167-173. Thieme, Stuttgart.

Lafont, R., and Koolman, J. (1984). Ecdysone metabolism. In "Biosynthesis, Metabolism and Mode of Action in Invertebrate Hormones" (J. A. Hoffman and M. Porchet, eds.), pp. 196— 226. Springer-Verlag, Heidelberg.

Lafont, R., Mauchamp, B., Pennetier, J. L., Tarroux, P., De Hys, L., and Delbecque, J. P. (1975). α-ecdysone and β-ecdysone levels in insect hemolymph—correlation with develop­mental events. Expenentia 31:1241-1242.

Lathrop, F. H., and Newton, R. C. (1933). The biology of Optus melleus Gahan, a parasite of the blueberry maggot. J. Ague. Res. 46:143-160.

Lawrence, P. O. (1981). Developmental and reproduction biologies of Biosteres longicaudatus reared on hosts treated with a chitin synthesis inhibitor. Insect Sci. Appl. 1:403-406.

Lawrence, P. O. (1983). Age-specific fecundity and offspring survivorship in the Caribbean fruit fly, Anastrepha suspensa, after diflubenzuron treatment. Insect Sci. Appl. 4:285-290.

Lawrence, P. O. (1986a). Host-parasite hormonal interactions: An overview. J. Insect Physiol. 32:295-298.

Lawrence, P. O. (1986b). The role of 20-hydroxyecdysone in the moulting of Biosteres long­icaudatus, a parasite of the Caribbean fruit fly, Anastrepha suspensa. J. Insect Physiol. 32:329-337.

Lawrence, P. O. (1988a). Superparasitism of the Caribbean fruit fly Anastrepha suspensa (Diptera: Tephritidae), by Biosteres longicaudatus (Hymenoptera: Braconidae): Implications for host regulation. Ann. Entomol. Soc. Am. 81:233-239.

Lawrence, P. O. (1988b). Ecdysteroid titers and integument changes in superparasitized puparia of Anastrepha suspensa. J. Insect Physiol. 34:603-608.

Lawrence, P. O. (1988c). Hormonal interactions between parasitoids and hosts: Adaptation to stress? In "Endocrinological Frontiers in Physiological Insect Ecology" (F. Sehnal, A. Zabza, and D. L. Denlinger, eds.), pp. 423-435. Wroclaw Tech. Univ. Press, Wroclaw, Poland.

Lawrence, P. O. (1988d). In vivo and in vitro development of first instars of the parasitic wasp Biosteres longicaudatus (Hymenoptera: Braconidae). In "Advances in Parasitic Hymenoptera Research" (V. Gupta, ed.), pp. 351-366. E .J . Brill, New York.

Lawrence, P. O. (1990a). Serosal cells of Biosteres longicaudatus (Hymenoptera:: Braconidae): Ultrastructure and release of polypeptides. Arch. Insect Biochem. Physiol. 13:199-216.

Lawrence, P. O. (1990b). The biochemical and physiological effects of insect hosts on the development and ecology of their insect parasites: An overview. Arch. Insect Biochem. Physiol. 13:217-228.

Lawrence, P. O. (1991). Hormonal effects on insects and other endoparasites in vitro. In Vitro Cell. Dev. Biol. 27:487-496.

Lawrence, P. O., and Hagedorn, Η. H. (1986). Relationship between the ecdysteroid titres of a host and those of its parasite. Insect Biochem. 16:163-168.

Lawrence, P. O., Baker, F. C , Tsai, L. W , Miller, C. Α., Schooley, D. Α., and Geddes, L. G. (1990). J H III levels in larvae and pharate pupae of Anastrepha suspensa (Diptera: Tephritidae) and in larvae of the parasitic wasp Biosteres longicaudatus (Hymenoptera: Braconidae). Arch. Insect Biochem. Physiol. 13:53-62.

Locke, M. (1980). The cell biology of fat body development. In "Insect Biology in the Future— VBW 80" (M. Locke and D. S. Smith, eds.), pp. 227-252. Academic Press, New York.

Page 92: Parasites and Pathogens of Insects. Parasites

8 4 Pauline Ο. Lawrence and Beatrice Lanzrein

Mayer, R. T., Meola, S. M., Coppage, D. L., and DeLoach, J. R. (1980). Utilization of imaginal tissues from pupae of the stable fly for the study of chitin synthesis and screening of chitin synthesis inhibitors. J. Econ. Entomol. 73:76-80.

McNeil, J. (1975). Juvenile hormone and analogues: Detrimental effects on the development of an endoparasitoid. Science 189:640-642.

Mellini, E. (1975). Studi sui Ditteri larvevoridi. XXV. Sul determinismo ormondale delle influ-enze esercitate dagli ospiti sui loro parassiti. Boll. 1st. Entomol. Univ. Bologna 31:165-203.

Nenon, J.-R (1972). Culture in vitro des embryos d'un Hymenoptere endoparasite poly-embryonnaire: Ageniaspis fuscicollis—Role des hormones de synthesis. C. R. Hebd. Seances/ Acad. Sci., Se'r. D 274:3409-3412.

Nettles, W. C , Jr. (1990). In vitro rearing of parasitoids: Role of host factors in nutrition. Arch. Insect Biochem. Physiol. 13:167-175.

Nijhout, H. F. (1975). Dynamics of J H action in larvae of the tobacco hornworm, Manduca sexta. Biol. Bull. (Woods Hole, Mass.) 149:568-579.

Nishida, R., Bowers, W. S., and Evans, P. H. (1983). Juvadecene: Discovery of a juvenile hormone mimic in the plant Macropiper excelsum. Arch. Insect Biochem. Physiol. 1:17-24.

Pemberton, C. E., and Willard, H. F. (1918). A contribution to the biology of fruit fly parasites in Hawaii. J. Agric. Res. 15:419-465.

Plantevin, G., Grenier, S., Richard, G., and Nardon, C. (1986). Larval development, develop­mental arrest, and hormone levels in the couple Galleria mell'onella (Lepidoptera-Pyralidae)-Pseudoperichaeta nigrolineata (Diptera-Tachinidae). Arch. Insect Biochem. Physiol. 3:457-470.

Rauschenbach, I. Y. (1991). Changes in juvenile hormone and ecdysteroid content during insect development under heat stress. In "Hormones and Metabolism in Insect Stress" (J. Ivanovic and M. Jankovic-Hladni, eds.), pp. 115-148. CRC Press, Boca Raton, FL.

Redfern, C. P. (1984). Evidence for the presence of makisterone A in Drosophila larvae and the secretion of 20-deoxymakisterone A by the ring gland. Proc. Natl. Acad. Sci. U.S.A. 81 :5643-5647.

Rembold, H., and Schmutterer, D. (1981). Disruption of insect growth by neem seed compo­nents. In "Regulation of Insect Development and Behavior" (F. Sehnal, A. Zabza, J. J. Menn, and B. Cymborowski, eds.), pp. 1087-1090. Wroclaw Tech. Univ. Press, Wroclaw, Poland.

Reum, L., and Koolman, J. (1989). Radioimmunoassay of ecdysteroids. In "Ecdysone" (J. Koolman, ed.), pp. 131-143. Thieme, Stuttgart.

Richard, D. S., Applebaum, S. W., Sliter, T. J., Baker, F. C , Schooley, D. Α., Reuter, C. C , Henrich, V. C , and Gilbert, L. I. (1989). Juvenile hormone bisepoxide biosynthesis in vitro by the ring gland of Drosophila melanogaster: a. putative juvenile hormone in the higher Dip-tera. Proc. Natl. Acad. Sci. U.S.A. 86:1421-1425.

Richards, G. (1981a). The radioimmunoassay of ecdysteroid titers in Drosophila. Mol. Cell. Endocrinol. 21:181-197.

Richards, G. (1981b). Insect hormones in development. Biol. Rev. Cambridge Philos. Soc. 5 6 : 5 0 1 -549.

Riddiford, L. M. (1980). Interaction of ecdysteroids and juvenile hormone in the regulation of larval growth and metamorphosis of the tobacco hornworm. In "Progress in Ecdysone Re­search" (J. A. Hoffmann, ed.), pp. 409-430. Elsevier/North-Holland, Amsterdam.

Salt, G. (1937). The egg parasite of Sialis lutaria: A study of the influence of the host upon a dimorphic parasite. Parasitology 29:539-553.

Salt, G. (1941). The effects of hosts upon their insect parasites. Biol. Rev. Cambridge Philos. Soc. 16:239-264.

Sehnal, F. (1989). Hormonal role of ecdysteroids in insect larvae and during metamorphosis. In "Ecdysone" (J. Koolman, ed.), pp. 271-277. Thieme, Stuttgart.

Page 93: Parasites and Pathogens of Insects. Parasites

3. Hormonal Interactions of Endoparasites and Hosts 8 5

Sehnal, F., and Granger, N. A. (1975). Control of corpora allata function in larvae of Galleria mellonella. Biol. Bull. (Woods Hole, Mass.) 148:106-116.

Shapiro, J. P., Mayer, R. T., and Schroeder, W.J. (1988). Absorption and transport of natural and synthetic toxins mediated by hemolymph proteins. In "Endocrinological Frontiers in Physiological Insect Ecology" (F. Sehnal, A. Zabza, and D. L. Denlinger, eds.), Wroclaw Tech. Univ. Press, Wroclaw, Poland.

Stoltz, D. B. (1986). Interactions between parasitoid-derived products and host insects: An overview. J. Insect Physiol. 32:347-350.

Stoltz, D. B., and Vinson, S. B. (1979). Viruses and parasitism in insects. Adv. Virus Res. 2 4 : 1 2 5 -171.

Stoltz, D. B., Guzo, E. R., Belland, E. R., Lucarotti, C. J., and Mackinnon, E. A. (1988). Venom promotes uncoating in vitro and persistence in vivo of DNA from a braconid polydnavirus. J. Gen. Virol. 69:903-907.

Strand, M. R. (1989). Development of the polyembryonic parasitoid Copidosoma flondanum in Trichoplusia ni. Entomol. Exp. Appl. 50:37-46 .

Strand, M. R., Dover, Β. Α., and Johnson, J. A. (1990). Alterations in the ecdysteroid and juvenile hormone esterase profiles of Trichoplusia ni parasitized by the polyembryonic wasp Copidosoma floridanum. Arch. Insect Biochem. Physiol. 13:41-51 .

Strand, M. R., Goodman, W. G., and Baehrecke, Ε. H. (1991). The juvenile hormone titer of Trichoplusia ni and its potential role in embryogenesis of the polyembryonic wasp Copidosoma

floridanum. Insect Biochem. 21:205-214. Tanaka, T. (1987). Calyx and venom fluids of Apanteles kariyai (Hymenoptera, Braconidae) as

factors that prolong larval period of the host, Pseudaletia separata (Lepidoptera, Noctuidae). Ann. Entomol. Soc. Am. 80:530-533.

Tanaka, T , and Vinson, S. B. (1991). Depression of prothoracic gland activity of Heliothis virescens by venom and calyx fluids from the parasitoid, Cardiochiles nigriceps. J. Insect Physiol. 37:139-144.

Tanaka, T , Agui, N., and Hiruma, K. (1987). The parasitoid Apanteles kariyai inhibits pupation of its host Pseudaletia separata, via disruption of prothoracicotropic hormone release. Gen. Comp. Endocrinol. 67:364-374.

Thompson, S. N. (1986). The metabolism of insect parasites (parasitoids): An overview. J. Insect Physiol. 32:421-423.

Vinson, S. B. (1970). Development and possible function of teratocytes in the host-parasite association. J. Invertebr. Pathol. 16:93-101.

Vinson, S. B., and Iwantsch, G. F. (1980a). Host suitability for insect parasitoids. Anna. Rev. Entomol. 25 , 397-419.

Vinson, S. B., and Iwantsch, G. F. (1980b). Host regulation by insect parasitoids. Q. Rev. Biol. 55: 143-165.

Wani, M., Yagi, S., and Tanaka, T. (1990). Synergistic effect of venom, calyx and teratocytes of Apanteles kariyai on the inhibition of larval-pupal ecdysis of the host, Pseudaletia separata. Entomol. Exp. Appl. 57:101-104.

Warren, J. T , and Gilbert, L. I. (1986). Ecdysone metabolism and distribution during the pupal-adult development of Manduca sexta. Insect Biochem. 16:65—82.

Watson, R. D., and Bollenbacher, W. E. (1988). Juvenile hormone regulates the steroidogenic competence of Manduca sexta prothoracic glands. Mol. Cell. Endocrinol. 57:251-259.

Watson, R. D., Spaziani, E., and Bollenbacher, W. E. (1989). Regulation of ecdysone bio­synthesis in insects and crustaceans: A comparison. In "Ecdysone" (J. Koolman, ed.), pp. 188-203. Thieme, Stuttgart.

Webb, Β. Α., and Dahlman, D. L. (1986). Ecdysteroid influence on the development of the host Heliothis virescens and its endoparasite Microplitis croceipes. J. Insect Physiol. 32:339—345.

Page 94: Parasites and Pathogens of Insects. Parasites

8 6 Pauline Ο. Lawrence and Beatrice Lanzrein

Wing, S. (1988). RH 5849, a nonsteroidal ecdysone agonist: Effects on a Drosophila cell line. Science 241:467-469.

Wright, J. E., and Spates, G. E. (1972). A new approach in integrated control: Insect juvenile hormone plus a hymenopteran parasite against the stable fly. Science 178:1292-1293.

Wyatt, G. R. (1980). The fat body as a protein factory. In "Insect Biology in the Future—VBW 80" (M. Locke and D. S. Smith, eds.), pp. 201-225. Academic Press, New York.

Zhang, D. , and Dahlman, D. L. (1989). Microplitis croceipes teratocytes cause developmental arrest of Heliothis virescens larvae. Arch. Insect Biochem. Physiol. 12:51-61 .

Page 95: Parasites and Pathogens of Insects. Parasites

Chapter 4

ΗReproductive Disturbances Induced by Parasites and Pathogens of Insects Hilary Hurd Department of Biological Sciences University of Keele Staffordshire, United Kingdom

I. Introduction

II. Microparasites A. Microsporidia

III. Nematodes

IV. Cestodes

V. Endoparasitic Insects

VI. Conclusions References

I. Introduction

Paras i t e s a n d p a t h o g e n s p l a y a m a j o r ro le as r e g u l a t o r s of h o s t life h i s to r ies a n d p o p u l a t i o n d y n a m i c s (see, e.g., D o b s o n , 1988; H o l m e s a n d Z o h a r , 1990; M a y a n d A n d e r s o n , 1990) a n d the i r inf luence u p o n t h e evo lu t ion a n d m a i n ­t e n a n c e of h o s t s exua l b e h a v i o r h a s b e e n rev iewed recen t ly ( R e a d , 1990). I t is m y i n t e n t i o n to confine th is r ev iew to o r g a n i s m s t h a t affect insec t p o p u l a ­t ions , n o t as l e tha l a g e n t s , b u t b y r e d u c i n g r e p r o d u c t i v e o u t p u t o r c a u s i n g h o s t steri l i ty. Pa ra s i t i zed i n v e r t e b r a t e s c o m m o n l y exh ib i t s o m e form of r e p r o ­d u c t i v e c u r t a i l m e n t ( H u r d , 1990a) a n d d iverse a spec t s of phys io logy a n d b e h a v i o r c a n b e affected, r a n g i n g f rom i r revers ib le d e s t r u c t i o n of r e p r o d u c ­tive t i ssue ( t r u e c a s t r a t i o n ) to c h a n g e s in s exua l b e h a v i o r o r j u v e n i l i z a t i o n . A l t h o u g h e x a m p l e s of r e p r o d u c t i v e dys func t ion in infected insec ts a r e a b u n ­d a n t , a t t e m p t s to e l u c i d a t e t h e u n d e r l y i n g m e c h a n i s m s h a v e r a re ly b e e n m a d e . W h e r e v e r poss ib le I will focus u p o n these s tud ie s b u t m a t e r i a l is a r r a n g e d to p r e s e n t a t a x o n o m i c r a t h e r t h a n m e c h a n i s t i c survey. T h u s , t h e effects of m i c r o p a r a s i t e s [def ined b y A n d e r s o n a n d M a y (1981) as s m a l l p a t h o g e n s w i t h a h i g h r a t e of r e p r o d u c t i o n w i t h i n t h e hos t a n d a s h o r t g e n e r a t i o n t i m e ] , n e m a t o d e s , ces todes , a n d e n d o p a r a s i t i c insec t s u p o n insec t r e p r o d u c t i o n will b e e x a m i n e d .

Parasites and Pathogens of Insects Copyright © 1993 by Academic Press, Inc. Volume 1: Parasites 8 7 All rights of reproduction in any form reserved.

Page 96: Parasites and Pathogens of Insects. Parasites

8 8 Hilary Hurd

II. Microparasites

T h e i m p a c t of n o n l e t h a l v i ra l , fungal , a n d bac te r i a l infect ions u p o n insec t p o p u l a t i o n d y n a m i c s is very g r e a t , b o t h hos t r e p r o d u c t i v e o u t p u t a n d sur­v ivo r sh ip of offspring b e i n g affected. However , a su rvey of th is field w o u l d r e q u i r e m o r e space t h a n is ava i l ab le a n d I shal l therefore c o n c e n t r a t e u p o n those m i c r o p a r a s i t e s genera l ly r e g a r d e d as b e i n g w i t h i n t h e r e m i t of p a r a ­sitology, t he P ro t i s t a . A l t h o u g h m a n y insec ts ac t as hos t s for p r o t o z o a w i t h s ing le-s tage life cycles , s o m e a r e vec tors o r i n t e r m e d i a t e hos t s for p a r a s i t e s w i t h v e r t e b r a t e definit ive hos t s , often c a u s i n g d i seases of m e d i c a l o r e c o n o m ­ic i m p o r t a n c e . O u r k n o w l e d g e of t he in t e rac t ion b e t w e e n t h e P ro t i s t a a n d insec t -hos t r e p r o d u c t i v e o u t p u t is su rp r i s ing ly scanty , especia l ly in v iew of t he i m p o r t a n c e of, for e x a m p l e , t he D i p t e r a in t he ep idemio logy of p a r a s i t i c d i sease . T h e ma jo r i ty of s tud ies have c o n c e n t r a t e d u p o n m i c r o s p o r i d i a l in­fections a n d these will be dea l t w i th separa te ly .

A c o m p a r i s o n of r e p r o d u c t i v e o u t p u t in six s t r a ins of Aedes aegypti (Hacke r , 1971) showed a m a r k e d difference in t he r e d u c t i o n in fecund i ty c a u s e d b y Plasmodium gallinaceum, w i t h t he R O C K s t r a in b e i n g the m o s t affected. T h e poss ib le i m p a c t of t he p a r a s i t e u p o n t h e gene t i c s t r u c t u r e of a p o l y m o r p h i c hos t p o p u l a t i o n , a n d its role in t he m a i n t e n a n c e of a b a l a n c e d p o p u l a t i o n s t r u c t u r e , w a s d i scussed . F u r t h e r s tud ies ( H a c k e r a n d K i l a m a , 1974) showed t h a t a r e d u c t i o n in m o s q u i t o fecundi ty o c c u r r e d a t very low levels of p a r a ­s i t emia , m e a s u r e d in t e r m s of b o t h n u m b e r of p a r a s i t e s p e r 100 ch icken e ry th rocy t e s in the b lood m e a l a n d oocys t dens i t y in t h e m o s q u i t o gu t . H o s t fecundi ty w a s no t r e l a t ed to p a r a s i t e b u r d e n in this s tudy.

F re i e r a n d F r i e d m a n (1976) conf i rmed t h a t P. gallinaceum-'mfected A. ae­gypti la id fewer eggs ( an ave rage of 3 5 % less) t h a n those fed o n un in fec ted ch ickens a n d a lso d e m o n s t r a t e d t h a t egg v iabi l i ty w a s unaffected b y infec­t ion . T h e size of t h e b lood m e a l t a k e n by A. aegypti is k n o w n to inf luence t h e n u m b e r of eggs la id (see d i scuss ion in F re i e r a n d F r i e d m a n , 1976). F e m a l e m o s q u i t o e s feeding on pa ra s i t i z ed ch ickens were s h o w n to t ake 4 3 % less b lood t h a n those feeding on un infec ted b lood a n d d e c r e a s e in b l o o d m e a l size a n d fecundi ty w e r e b o t h a s soc ia t ed w i t h a r ise in b lood p a r a s i t e m i a (F re ie r a n d F r i e d m a n , 1976), a l t h o u g h c o n s i d e r a b l e va r iab i l i ty exis ted b e t w e e n i nd i ­v i d u a l insec ts . Infec ted m o s q u i t o e s a r e k n o w n to exh ib i t a l t e r ed p r o b i n g behav io r , p r o b a b l y assoc ia ted w i t h t he p r e s e n c e of sporozo i tes in t h e sa l iva ry g l a n d s (see e.g., M o l y n e u x a n d Jeffer ies , 1976). F r e i e r a n d F r i e d m a n (1976) found t h a t p r o b i n g b e h a v i o r of un infec ted females d i d n o t differ w h e n feeding on infected ch ickens b u t b lood inges t ion r a t e s were r e d u c e d from 1.23 to 0.66 m g / m i n . F u r t h e r m o r e , feeding choice e x p e r i m e n t s i n d i c a t e d t h a t females p re fe r red un infec ted ch ickens a n d could d i s t i ngu i sh b e t w e e n b i r d s sus -

Page 97: Parasites and Pathogens of Insects. Parasites

4. Reproductive Disturbances Induced by Parasites and Pathogens 8 9

p e n d e d 1 c m from t h e cage . T h i s r e p o r t i nd i ca t e s t h a t factors o t h e r t h a n , o r in a d d i t i o n to , q u a l i t y of b lood m e a l a r e involved in feeding cho ice a n d the a u t h o r s c o n c l u d e t h a t olfact ion a n d g u s t a t i o n m a y b e n o n i n t e r a c t i n g factors affecting feeding behav io r .

T h e r e is c lear ly m u c h w o r k still to b e d o n e to clarify t h e r e l a t i o n s h i p b e t w e e n b lood i n t a k e a n d fecundity. I nves t i ga t i ons n e e d to b e p e r f o r m e d to d e t e r m i n e t he effect of m a l a r i a on egg p r o d u c t i o n in t h e s econd a n d s u b s e ­q u e n t g o n o t r o p h i c cycles, w h e n t h e p a r a s i t e is e s t ab l i shed in t h e m o s q u i t o . I n a d d i t i o n t h e r e h a v e b e e n n o de t a i l ed s tud ies of t he effect of Plasmodium s p p . u p o n egg l ay ing in Anopheles m o s q u i t o e s , t h e vec tors of h u m a n m a l a r i a . Sh i eh a n d Ross igno l (1992) d i scussed t h e inf luence of t he a n a e m i a a s soc i a t ed w i t h b l o o d - b o r n e p a r a s i t e s u p o n m o s q u i t o feeding a n d s u b s e q u e n t fecundi ty . T h e y conf i rmed t h e D a n i e l a n d K i n g s o l v e r m o d e l p r e d i c t i o n s b y d e m o n ­s t r a t i n g t h a t Aedes aegypti feed faster o n a n a e m i c b lood a n d a lso d e m o n s t r a t e d t h e n e g a t i v e inf luence of a n a e m i c b lood on egg l ay ing . T h e s ignif icance of these findings to t he field s i t u a t i o n , w h e r e fast feeding m a y b e i m p o r t a n t w h e n feeds a r e f requen t ly i n t e r r u p t e d d u e to hos t defences , w a s d i scussed .

T h e a m o e b a Malamoeba locustae infects t he M a l p i g h i a n t u b u l e s of t h e d e s ­e r t locus t a n d causes a p rogress ive a t t r i t i o n of t h e hos t fat body. C h a n g e s in fat b o d y p r o t e i n m e t a b o l i s m resu l t in a r e d u c t i o n in h e m o l y m p h p r o t e i n t i ter , w h i c h m a y a c c o u n t for t h e s ignif icant d e l a y in oocy te d e v e l o p m e n t o b s e r v e d in infected females (Pap i l lon a n d Cass ie r , 1978). F a t b o d y a t t r i t i o n is a l so a s soc i a t ed w i t h M. locustae infect ion of g r a s s h o p p e r s .

U s i n g t h e M. locustaelgrasshopper m o d e l J a c k s o n et al. (1968) m a d e a n e x a m i n a t i o n of egg l ip ids . A l t h o u g h n o c h a n g e in to ta l l ip id c o n t e n t o r l ip id c o m p o s i t i o n o c c u r r e d in infected g r a s s h o p p e r s , t h e re la t ive a b u n d a n c e of fat ty ac ids w a s a l t e r ed b y infect ion. T h e a u t h o r s were u n a b l e to d e t e r m i n e w h e t h e r th is difference a c c o u n t e d for t h e d e c r e a s e in egg v iab i l i ty a s soc i a t ed w i t h infect ion.

A. Microsporidia

T h e ma jo r i t y of m i c r o s p o r i d i a n - i n s e c t a s soc ia t ions p r o d u c e c h r o n i c , n o n -l e tha l infect ions (Weiser, 1974) of w h i c h a c o m m o n fea tu re is a r e d u c t i o n in h o s t r e p r o d u c t i v e o u t p u t . T h i s r e p r o d u c t i v e c u r t a i l m e n t is e n g e n d e r e d in a n u m b e r of w a y s a n d g e n e r a l i z a t i o n is h a m p e r e d b y t h e v a r i a t i o n in assess ­m e n t p a r a m e t e r s a d o p t e d b y inves t iga to r s . Howeve r , a r e d u c t i o n in m a t i n g success , fecundi ty , a n d egg h a t c h h a v e b e e n d e s c r i b e d b y m a n y a u t h o r s as s h o w n in T a b l e 1. M e r c e r a n d W i g l e y (1987) m e a s u r e d m a t i n g success in Nosema sp . (NGS)- in fec ted p o r o p o r o s t e m b o r e r s , Sceliodes cordalis, a s t h e ab i l i ty to lay v i ab l e eggs . I n a d d i t i o n , G a u g l e r a n d Brooks (1975) o b s e r v e d a h i g h e r i n c i d e n c e of locked m a t i n g s (fai lure to s e p a r a t e after c o p u l a t i o n ) in

Page 98: Parasites and Pathogens of Insects. Parasites

Tabl

e 1

The

Effe

ct o

f Mic

rosp

orid

ial

Infe

ctio

ns u

pon

the

Repr

oduc

tive

Succ

ess

of T

heir

Inse

ct H

osts

Mat

ing

Egg

V

erti

cal

Ven

erea

l Pa

rasi

te

Hos

t su

cces

s*

Fecu

ndit

y ha

tch

tran

smis

sion

tr

ansm

issi

on

Sour

ce

Nos

ema

pyra

ustra

O

strin

ia n

ubila

lis

? -v

e -v

e ρ

? W

inde

ls e

t al.

(197

6)

ρ -v

e -v

e +

Sieg

el e

t al.

(198

6)

ρ ρ

? +

+ (h

o)

Saju

p an

d L

ewis

(19

88)

Nos

ema

sp.

Scel

iode

s cor

dalis

-v

e -v

e -v

e +

+ (s

s)

Mer

cer

and

Wig

ley

(198

7)

(NSC

)

Nos

ema

white

i Tr

ibol

uim

spp

. ρ

-ve

0 N

o M

ilne

r (1

972)

T.

cas

tane

um

-ve

-ve*

?

ρ A

rmst

rong

and

Bas

s (1

986)

N

osem

a he

lioth

idis

Hel

ioth

us z

ea

-ve

-vec

0

+ G

augl

er a

nd B

rook

s (1

975)

N

osem

a al

gera

e Ae

des

aegy

pti

ρ -v

e -v

e +

+ (h

o)

Nna

kum

usan

a (1

986)

Cu

lex

Jatig

ans

? -v

e -v

e +

+ (h

o)

Nos

ema

carp

ocap

sae

Cydi

a po

mon

ella

-v

e -v

e -v

e +

+ (h

o)

(ss)

N

o M

alon

e an

d W

igle

y (1

981)

N

osem

a ki

ngi

Dro

soph

ila w

illist

oni

ρ ρ

ρ +

Yes

A

rmst

rong

(1

977)

N

osem

a pl

odia

e Pl

odia

inte

rpun

ctel

la

ρ -v

e -v

e +

Yes

K

elle

n an

d L

inde

gren

(1

971)

N

osem

a bo

mby

sis

Bom

byx

mor

i ρ

? -v

e +

+ (s

s)

No

Han

and

Wat

anab

e (1

988)

N

osem

a sp

. M

il

ρ ρ

-ve

+ +

(ss)

N

o N

osem

a ste

gom

yiae

Cu

lex

Jatig

ans

ρ -v

e -v

e N

o Po

ssib

le

Rey

nold

s (1

971)

N

osem

a Jum

ifera

na

Chon

stone

ura

fitm

ifera

na

0 -v

e 0

+ ?

Bau

er a

nd N

ordi

n (1

989)

M

icro

spor

idiu

m

Listr

onot

us b

onar

iens

is ρ

-ve

0 ρ

ρ M

alon

e (1

987)

iti

iti

a-v

e, p

aras

ite

adve

rsel

y af

fect

s th

e ho

st; 0

, no

chan

ge o

ccur

s w

ith

infe

ctio

n; ?

, fea

ture

not

inv

esti

gate

d; +

, tr

ansm

issi

on o

ccur

s; +

+ ,

tran

sova

rial

tra

nsm

issi

on

dem

onst

rate

d by

sur

face

ste

riliz

atio

n; o

f eg

gs (

ss)

or b

y hi

stol

ogic

al o

bser

vati

on (

ho).

bF

ecun

dity

mea

sure

d as

off

spri

ng e

mer

genc

e.

'Onl

y oc

curs

whe

n in

sect

s ar

e in

fect

ed p

er o

s.

Page 99: Parasites and Pathogens of Insects. Parasites

4. Reproductive Disturbances Induced by Parasites and Pathogens 91

Nosema heliothidis infect ions of Heliothis zea, a n d A r m s t r o n g a n d Bass (1986) m e a s u r e d m a t i n g f r equency in N. whitei-'mfected Tnbolium castaneum. F e c u n ­d i ty is u s u a l l y m e a s u r e d as t h e n u m b e r of eggs la id (e.g. , Ke l l en a n d L i n -d e g r e n , 1971 ; M a l o n e a n d Wigley, 1981; M a l o n e , 1987) a n d egg v iab i l i ty is d e t e r m i n e d b y egg h a t c h r a t e . H o w e v e r , M e r c e r a n d W i g l e y (1987) d i s t in ­g u i s h e d infert i le eggs f rom those u n d e r g o i n g i n c o m p l e t e e m b r y o g e n e s i s ( a n d therefore n o t h a t c h i n g ) , t h o u g h they d i d n o t d e t e r m i n e w h e t h e r t h e signifi­c a n t d e c r e a s e in successful e m b r y o d e v e l o p m e n t w a s d u e to d e p l e t i o n of food reserves o r in te r fe rence w i t h e m b r y o g e n e s i s .

T h e m e c h a n i s m s u n d e r l y i n g th is r e d u c e d fecund i ty a r e d ive r se . Severa l a u t h o r s h a v e sugges t ed t h a t p a r a s i t e - i n d u c e d n u t r i t i o n a l d e p r i v a t i o n is t h e c a u s e of r e d u c e d egg p r o d u c t i o n ( M a l o n e , 1987). D e p l e t i o n of fat a n d p r o t e i n reserves is a s soc i a t ed w i t h m i c r o s p o r i d i a l infect ion of insec t fat b o d i e s (e .g . , T h o m p s o n a n d Sikorowski , 1979) a n d m a y resu l t in r e d u c e d v i te l logen in p r o d u c t i o n ( G a u g l e r a n d Brooks , 1975).

T h e i n v o l v e m e n t of t h e hos t e n d o c r i n e s y s t e m in t h e i n t e r a c t i o n b e t w e e n m i c r o s p o r i d i a a n d l a rva l insec t hos t s w a s p r o p o s e d b y F i s h e r a n d S a n b o r n (1962 , 1964) to exp l a in t h e d i s t u r b a n c e of l a rva l m o l t s a n d o c c u r r e n c e of a d u l t o i d s t h a t t hey o b s e r v e d in these a s soc i a t ions . T h e y d e m o n s t r a t e d t h a t Nosema s p p . s ec re to ry p r o d u c t s r e s to red t h e n y m p h a l o r l a rva l m o l t s to a l -l a t e c t o m i z e d insec ts w h e n t h e p r o t o z o a w e r e a p p l i e d ex t e rna l l y a n d s e p a ­r a t e d f rom t h e h e m o c o e l b y a 0 .45 -μη ι mi l l i po re filter (F i she r a n d S a n b o r n , 1964). J u v e n i l e h o r m o n e - l i k e ac t iv i ty w a s d e m o n s t r a t e d in s p o r e ex t r ac t s f rom Nosema (F i she r a n d S a n b o r n , 1964), Farinocystis tribolii ( R a b i n d r a et al, 1981), a n d N. bombycis ( K a r a v a e v a , 1987). H o w e v e r , M i l n e r (1972) w a s u n ­a b l e to d e m o n s t r a t e t h e d i s t u r b a n c e of l a rva l m o l t s d e s c r i b e d b y F i s h e r a n d S a n b o r n (1962 , 1964) a n d severa l a u t h o r s have a t t r i b u t e d t h e p a r a s i t e a s so ­c i a t ed d i s t u r b a n c e of insec t d e v e l o p m e n t to fat b o d y invas ion (e .g . , Listov, 1977). I t h a s b e e n sugges t ed t h a t d e s t r u c t i o n of fat b o d y t i s sue w o u l d r e d u c e t h e p r o d u c t i o n of j u v e n i l e h o r m o n e d e g r a d a t i o n e n z y m e s a n d l ead to a n a c c u m u l a t i o n of t h e h o r m o n e , t h u s r e su l t i ng in a b n o r m a l l a rva l d e v e l o p m e n t ( R a b i n d r a et al, 1981).

U l t r a s t r u c t u r a l s t ud i e s of c o r p o r a a l l a t a f rom Nosema ajfrw-infected w o r k e r bees d e m o n s t r a t e d t h a t n e u r o s e c r e t o r y a x o n g r a n u l e s w e r e r a r e ly p r e s e n t in infected bees (L iu , 1986). T h e a u t h o r sugges t ed t h a t g l a n d ac t iv i ty m a y b e affected b u t n o his to lys is o r d e g r a d a t i o n w a s o b s e r v e d . L a t e r s t ud i e s of t h e effect of j u v e n i l e h o r m o n e I I I on t h e h o n e y b e e h y p o p h a r a n g e a l g l a n d s h o w e d t h a t t h e h o r m o n e c a u s e d a d e p l e t i o n of r i b o s o m e s in t h e c y t o p l a s m of t h e cells , r e su l t i ng in i nh ib i t i on of p r o t e i n syn thes i s . T h e o b s e r v a t i o n t h a t Nosema infect ion d id n o t c a u s e r i b o s o m e d e p l e t i o n led to t h e conc lus ion t h a t t h e ac t ion of N. apis m a y n o t b e s y n o n y m o u s w i t h J H ac t ion (L iu , 1989, 1990). Clear ly , fu r the r s tud i e s a r e r e q u i r e d to e l u c i d a t e t h e ro le of e n d o c r i n e

Page 100: Parasites and Pathogens of Insects. Parasites

92 Hilary Hurd

factors in m i c r o s p o r i d i a l - i n s e c t a s soc ia t ions a n d in p a r t i c u l a r the i r p a r t i c i ­p a t i o n , if any, in t he r e d u c t i o n of hos t r e p r o d u c t i v e o u t p u t .

His to log ica l s tud ie s of t he ovar ies of N. pyrausta-mfected Ostrinia nubilalis (Sa jup a n d Lewis , 1988) d e m o n s t r a t e d mass ive g e r m cell d e s t r u c t i o n , w h i c h w o u l d a c c o u n t for r e d u c e d fecundity. However , o v a r i a n invas ion b y m i c r o -spo r id i a does no t a lways d e c r e a s e egg v iabi l i ty as infected l a rvae a r e p r o ­d u c e d in m a n y assoc ia t ions . Sa jup a n d Lewis (1988) p o s t u l a t e d t h a t t h e c o n c e n t r a t i o n of m i c r o s p o r i d i a in the cen t e r of oocytes m a y p r e v e n t in te r ­ference w i th deve lop ing e m b r y o s .

A l t h o u g h m a n y m i c r o s p o r i d i a a r e conf ined to hos t t issues s u c h as fat b o d y or gu t , those t h a t i n v a d e the r e p r o d u c t i v e s y s t e m a r e p r o v i d e d w i t h a n a v e n u e for t r a n s m i s s i o n . T h u s , b o t h h o r i z o n t a l t r a n s m i s s i o n of p a r a s i t e s b e t w e e n hos t s a n d ver t ica l t r a n s m i s s i o n to t he nex t g e n e r a t i o n c a n o c c u r w i th in t he s a m e assoc ia t ions . S o m e a u t h o r s have d i s t i n g u i s h e d b e t w e e n t r ansova r i a l a n d t r a n s o v u m t r a n s m i s s i o n (see T a b l e 1). I n t h e former , infec­t ion occu r s whi le t he egg is deve lop ing w i th in t he ovary, a n d in t he l a t t e r t h e p a t h o g e n is a d s o r b e d o n t o the egg surface a n d infect ion of t h e l a rvae o c c u r s d u r i n g or after h a t c h i n g . T h u s , S a j u p a n d Lewis (1988) o b s e r v e d t h a t N. pyrausta m a y pas s in to deve lop ing oocytes w i t h n u t r i e n t s , f rom the t ro -p h o c y t e s of 0. nubilalis a n d , in a d d i t i o n , infect ion of t h e ep i the l i a l cells of t he ov iduc t m a y resu l t in t r a n s o v u m t r a n s m i s s i o n . If h i s to logica l s tud ie s have n o t b e e n p e r f o r m e d , surface s te r i l iza t ion of eggs is a n essen t ia l s t ep in t h e d e t e r m i n a t i o n of w h e t h e r t r ue t r ansova r i a l t r a n s m i s s i o n h a s o c c u r r e d w h e n infected la rvae e m e r g e . Vene rea l t r a n s m i s s i o n , r e su l t i ng in infected l a rvae b e i n g p r o d u c e d by non infec ted females m a t e d to infected m a l e s h a s a lso b e e n de sc r i bed . T h i s m a y be d u e to c o n t a m i n a t i o n of t he egg surface (Ke l l en a n d L i n d e g r e n , 1971) o r t r u e infect ion of t he female r e p r o d u c t i v e t i ssues ( A r m ­s t rong , 1977).

T h e hos t r e p r o d u c t i v e sys t em t h u s a p p e a r s to p l ay a m a j o r ro le in m i c r o -spor id i a l t r a n s m i s s i o n (see T a b l e 1) a l t h o u g h the exac t m o d e ( t r ansova r i a l o r t r a n s o v u m ) h a s no t a lways been d e t e r m i n e d . N n a k u m u s a n a (1986) sug­ges ted t h a t th is is t he sole m e t h o d of t r a n s m i s s i o n for m o r e t h a n 30 species of m i c r o s p o r i d i a l l a rva l p a t h o g e n s of d i p t e r a n vec tors . S m i t h a n d D u n n (1991) recen t ly d i scussed c y t o p l a s m i c i n h e r i t a n c e of i n t r ace l lu l a r s y m b i o n t s a n d s t ressed the se lect ion p r e s s u r e s faced by p a r a s i t e s c a u s i n g p a t h o l o g y in h o s t offspring. I n v iew of th i s , it is s u r p r i s i n g t h a t this is the sole r o u t e of t r a n s m i s ­sion for so m a n y m i c r o s p o r i d i a .

Few ecological s tud ies of the effects of m i c r o s p o r i d i a l infect ions h a v e b e e n p e r f o r m e d ( b u t see A n d r e a d i s , 1986). However , it is c lear t h a t a k n o w l e d g e of t he d e g r e e of i m p o r t a n c e of h o r i z o n t a l a n d ver t ica l t r a n s m i s s i o n is a n essen­tial factor in t he c o n s t r u c t i o n of m o d e l s of t he inf luence of m i c r o s p o r i d i a u p o n hos t p o p u l a t i o n d y n a m i c s ( A n d e r s o n a n d M a y , 1981; O n s t a d a n d

Page 101: Parasites and Pathogens of Insects. Parasites

4. Reproductive Disturbances Induced by Parasites and Pathogens 9 3

M a d d o x , 1989). T h e p o t e n t i a l for t h e use of insec t p a t h o g e n s as m i c r o b i a l con t ro l a g e n t s of pes t species h a s long b e e n recogn ized . A l t h o u g h m i c r o ­spo r id i a l infect ions a r e usua l ly s u b l e t h a l , t hey resu l t in severe r e d u c t i o n in f ecund i ty a n d , in t he case of N. pyrausta-O. nubilalis infect ions , have b e e n s h o w n to d o w n - r e g u l a t e t he hos t p o p u l a t i o n be low t h e c a r r y i n g capac i t y of t h e e n v i r o n m e n t ( O n s t a d a n d M a d d o x , 1989). For e x a m p l e , N. locusta spo re s have b e e n s h o w n to be effective p o p u l a t i o n r e g u l a t o r s b o t h a l o n e ( R a i n a et aL, 1987) a n d in c o m b i n a t i o n w i t h insec t ic ides ( G e r m i d a et aL, 1987; J o h n ­son a n d H e n r y , 1987). M o r e o v e r , t he p o t e n t i a l for m i c r o s p o r i d i a as con t ro l a g e n t s of s to red p r o d u c t C o l e o p t e r a h a s r ecen t ly b e e n e m p h a s i z e d b y K h a n a n d S e l m a n (1989) .

III. Nematodes

T h e r a t i o of p a r a s i t e to hos t t i ssue u sua l ly a t t a i n s far g r e a t e r p r o p o r t i o n s in e n t o m o g e n o u s n e m a t o d e infect ions t h a n in t he i n s e c t - m i c r o p a r a s i t e assoc ia ­t ions d i scussed in t he foregoing. T h u s , t he p o t e n t i a l d r a i n o n hos t r e sou rces is likely to b e g rea t e r . A l t h o u g h l i t t le d i r ec t g o n a d a l t i ssue invas ion h a s b e e n obse rved , s o m e a u t h o r s r e p o r t e x a m p l e s of n e m a t o d e - i n d u c e d r e p r o d u c t i v e c u r t a i l m e n t r a n g i n g from s l ight r e d u c t i o n s in egg l ay ing to m a l e a n d / o r female s te r i l i za t ion . I n m a n y cases p a r a s i t e b u r d e n h a s b e e n c o r r e l a t e d w i t h loss of r e p r o d u c t i v e o u t p u t a n d ev idence sugges t ing t h a t n u t r i t i o n a l d e p r i v a ­t ion is l inked to hos t - r e sou rce r ea l loca t ion is d i scussed in t h e fol lowing.

A l l a n t o n e m a t i d s infect a va r i e ty of b a r k bee t les (Scoly t idae) a n d a l t e r severa l a s p e c t s of the i r r e p r o d u c t i o n . Behav io ra l p a t t e r n s s u c h as s w a r m i n g w e r e s h o w n to b e affected (Lieu t ie r , 1981) a n d m a n y of t h e infected b a r k bee t les t h a t still la id eggs w e r e found to excava te a b e r r a n t ga l le r ies , w h i c h h a d n o egg n i ches . E x a m p l e s of t h e effect of a l l a n t o n e m a t i d s o n b a r k bee t l e r e p r o d u c t i o n a r e g iven in T a b l e 2 a n d r a n g e from p a r a s i t e - i n d u c e d c a s t r a ­t ion of m a l e a n d female hos t s to a s soc ia t ions w i th n o o b s e r v a b l e effects u p o n hos t g a m e t o g e n e s i s . I n t he ma jo r i ty of cases female insec ts a r e m o r e severely affected t h a n m a l e s .

H i s to log ica l e x a m i n a t i o n of hos t g o n a d s in severa l h o s t - p a r a s i t e assoc ia ­t ions led T o m a l a k et al. (1990) to obse rve t h a t t he scale of d a m a g e infl icted w a s r e l a t ed to t h e t i m i n g of infect ion, re lease of j u v e n i l e n e m a t o d e s i n t o t h e h e m o c o e l , a n d the i r re la t ive a b u n d a n c e . For e x a m p l e , in Sulphuretylenchus pseudoundulatus-'mfected Polygraphus rufipennis, l a rge n u m b e r s of j u v e n i l e s w e r e r e l eased s y n c h r o n o u s l y w h e n the m a t e r n a l n e m a t o d e cut ic le w a s r u p t u r e d . D e v e l o p m e n t of g e r m cells in t he tes tes was i n h i b i t ed , t r o p h a r i a in t h e ova­ries w e r e r e d u c e d , a n d n o foll icular d e v e l o p m e n t o c c u r r e d in infected fe­m a l e s . H o w e v e r , Contortylenchus reversus females d e p o s i t e d j u v e n i l e s i n t o t h e

Page 102: Parasites and Pathogens of Insects. Parasites

Tabl

e 2

The

Effe

ct o

f Alla

nton

emat

id N

emat

odes

on

Bark

Bee

tle R

epro

duct

ion

Ooc

yte

Gen

ital

ia

Nup

tial

G

alle

ry

Spec

ies

Hos

t fo

rmat

ion"

O

vipo

siti

on

Sper

mat

ogen

esis

m

alfo

rmed

fli

ght

cons

truc

tion

So

urce

Cont

orty

lenc

hus

reve

rsus

Den

droc

tonu

s ps

eudo

t-+

+ 0

ρ ρ

* T

hong

and

Web

ster

Co

ntor

tyle

nchu

s re

vers

us

suga

e (1

975a

,b)

C. b

revi

com

i D

.font

alis

ρ +

ρ ρ

ρ *

Mac

Gui

dwin

et a

l. (1

980)

Sulp

hure

tyle

nchu

s el

on-

Scol

ytus

ven

tralis

+

+ +

+ +

+ ρ

ρ p

Mas

sey

(196

4)

galu

s S.

elo

ngat

us

+ +

+ +

+ +

ρ ρ

ρ Sc

hves

ter

(195

7)

galu

s S.

ven

tralis

?

+ 0

ρ Y

es

Ash

raf

and

Ber

rym

an (

1970

)

Para

sitap

hele

nchu

s pa

-To

mic

us p

inip

erda

ρ

ρ ρ

Mal

es

ρ ρ

Tom

alak

et a

l. (1

984)

pilla

tus

Tom

alak

et a

l. (1

990)

S.

pse

udou

ndul

atus

Po

lygr

aphu

s ru

fipen

nis

+ +

+ +

+ +

ρ ρ

**

Tom

alak

et a

l. (1

990)

S. n

opim

ingi

Pi

tyok

tein

es s

pars

us

+ +

+ +

-Ι­ρ

**

Tom

alak

et a

l. (1

990)

S. p

oste

rute

ri Ip

s pe

rrot

i +

+ +

+ Ο

ρ

**

Tom

alak

et a

l. (1

990)

Para

sityl

ench

us s

p.

I. pe

rturb

atus

+

+ 0

ρ *

Tom

alak

et a

l. (1

990)

Neo

para

sityl

ench

us

I. pe

rturb

atus

+

-Ι­0

ρ *

Tom

alak

et a

l. (1

990)

ipin

ius

Alla

nton

ema

para

-D

ryoc

oete

s au

to-

+ Ο

0

ρ *

Tom

alak

et a

l. (1

990)

mor

osum

gr

aphu

s

C. re

vers

us

D. s

impl

ex

+ +

0 ρ

* T

omal

ak e

t al.

(199

0)

Para

sitap

hele

nchu

s sp.

I.

sexd

enta

tus

+ +

ρ Y

es

0 L

ieut

ier

(198

1, 1

982a

,b)

P. s

exde

ntat

i +

+ ρ

Yes

0

Lie

utie

r (1

984a

)

C. d

iplo

gaste

r -Γ

-+

ρ Y

es

0 L

ieut

ier

(198

4a)

Para

sitor

habd

itis

ip-

I. se

xden

tatu

s 0

+ ρ

Yes

+

Lie

utie

r (1

984b

)

soph

ila

a + +

, co

mpl

ete

cess

atio

n; +

, re

duct

ion;

0, u

naff

ecte

d/ha

rdly

aff

ecte

d; ?

, not

inve

stig

ated

; *,

egg

gal

lery

leng

th a

lter

ed; *

*, v

ery

shor

t egg

gal

leri

es a

nd n

o eg

g

Page 103: Parasites and Pathogens of Insects. Parasites

4. Reproductive Disturbances Induced by Parasites and Pathogens 9 5

h o s t h e m o c o e l over a l ong t i m e p e r i o d a n d in this a s soc ia t ion t h e a u t h o r s found t h a t oogenes i s a n d vi te l logenes is p r o c e e d e d in h o s t ovar ies , a l t h o u g h a t a r e d u c e d r a t e , a n d egg l ay ing o c c u r r e d (see T a b l e 2) .

T h e lack of t i ssue d a m a g e a s soc i a t ed w i t h a l l a n t o n e m a t i d infect ions h a s led to t h e sugges t ion t h a t h o s t r e p r o d u c t i v e c u r t a i l m e n t m a y b e d u e to p a r a s i t e -i n d u c e d n u t r i e n t d e p r i v a t i o n r e su l t i ng in i n c r e a s e d fat b o d y c a t a b o l i s m a n d d e c r e a s e d a n a b o l i s m ( T o m a l a k etal.3 1990). L i t t l e ev idence h a s b e e n p r o d u c e d to s u p p o r t th is h y p o t h e s i s , a l t h o u g h L ieu t i e r (1984a ,b ) d e m o n s t r a t e d a r e d u c ­t ion in t h e p r o t e i n c o n t e n t of fat bod ie s t a k e n from n e m a t o d e - i n f e c t e d Ips sexdentatus. T h e a u t h o r sugges t ed t h a t t h e d e l a y in o v a r i a n m a t u r a t i o n w a s a r e su l t of r e d u c e d p r o t e i n s e q u e s t r a t i o n , a l t h o u g h r a t e of fat b o d y syn thes i s a n d h e m o l y m p h p r o t e i n c o n t e n t w e r e n o t e x a m i n e d . U s i n g p o l y a c r y l a m i d e gel e l ec t rophores i s ( P A G E ) , T h o n g a n d W e b s t e r (1975a) d e m o n s t r a t e d t h a t Con-tortylenchus reversus a l so d e p l e t e d t he h e m o l y m p h p r o t e i n s of i ts hos t , Dendroc-tonus pseudotsugae. I m p o r t a n t l y , a l ink has b e e n e s t ab l i shed b e t w e e n fat b o d y p r o t e i n syn thes i s , h e m o l y m p h v i te l logenin t i te rs , a n d o v a r i a n s e q u e s t r a t i o n in a c e s t o d e - i n s e c t a s soc ia t ion (see t h e following).

M e r m i t h i d infect ions a lso resu l t in hos t r e p r o d u c t i v e d i s t u r b a n c e s (see rev iew b y G o r d o n , 1981). I n v e s t i g a t i o n s i n t o t h e u n d e r l y i n g m e c h a n i s m s have focused u p o n locus t a n d blackfly infect ions . G o r d o n a n d his a ssoc ia tes (1973) i nves t iga t ed t h e phys io log ica l m e c h a n i s m s involved in t h e cessa t ion of egg p r o d u c t i o n in Mermis nigrescens-'mfected Schistocerca gregaria. O v a r i e s f rom female locus t s infected 3 d a y s after t h e i m a g i n a l m o l t exh ib i t ed i m p a i r e d s e q u e s t r a t i o n of v i te l logenic p r o t e i n s in t h e s econd week of infect ion a n d , b y week 3 , t e r m i n a l a n d p e n u l t i m a t e oocytes w e r e r e s o r b e d . D e t e r m i n a t i o n of q u a n t i t a t i v e a n d q u a l i t a t i v e c h a n g e s in fat b o d y a n d h e m o l y m p h p r o t e i n s r evea led t h a t t e r m i n a t i o n of v i te l logenes is w a s n o t d u e to d e p l e t i o n of h e m o ­l y m p h v i te l logen ins (wh ich w a s n o t s ignif icant un t i l 1 week l a te r ) a n d w a s t h o u g h t to r e su l t f rom a n i m p a i r m e n t of t h e ab i l i ty of t h e fol l icular e p i t h e ­l i u m to s e q u e s t e r p r o t e i n s . A b s o r p t i o n of oocy tes m a y h a v e r e su l t ed in t h e a c c u m u l a t i o n of v i te l logenic p r o t e i n s in t h e hos t h e m o c o e l , o b s e r v e d in t h e four th week of infect ion, however , t h e a u t h o r s d i d n o t m a k e th is a s soc ia t ion . T h e effect of t h e n e m a t o d e s o n fat b o d y p r o t e i n t u r n o v e r w a s a s c r i b e d to t h e p rov i s ion of a d i e t a r y sou rce of a m i n o ac ids for t h e n e m a t o d e s w i t h i n t h e h e m o l y m p h . I n a d d i t i o n , t h e a u t h o r s sugges t ed t h a t p a r a s i t e - i n d u c e d c h a n g e s in hos t n e u r o s e c r e t o r y ac t iv i ty m a y affect fat b o d y m e t a b o l i s m a n d t h a t a r e d u c t i o n in c i r cu l a to ry J H m a y i n h i b i t o v a r i a n s e q u e s t r a t i o n of yolk p r o t e i n s . A l t h o u g h t h e r e is l i t t le ev idence to s u p p o r t o r refute th is view, Neomesomermis flumenalis w a s s h o w n to i nc r ea se t h e n u c l e a r D N A / R N A activ­i ty ( m e a s u r e d in t e r m s of n u c l e a r / c y t o p l a s m i c ra t ios ) , t h e v o l u m e of t h e h o s t c o r p o r a a l l a t a ( C A ) , a n d t h e a m o u n t of n e u r o s e c r e t o r y m a t e r i a l a c c u m u l a t e d in t h e c e r e b r a l n e u r o s e c r e t o r y cells of Simulium venustum ( C o n d o n a n d G o r ­d o n , 1977).

Page 104: Parasites and Pathogens of Insects. Parasites

9 6 Hilary Hurd

A r e d u c t i o n in C A v o l u m e was a lso assoc ia ted w i t h Sphaerularia bombis infect ions of Bombus terrestris. N o o v a r i a n d e v e l o p m e n t o c c u r r e d in infected q u e e n bees , a n d t h e h e m o l y m p h v i te l logenin t i te r w a s r e d u c e d (Rose ler a n d Roseler , 1973). As b o t h biological ly act ive j u v e n i l e h o r m o n e a n d j u v e n i l e h o r m o n e a n a l o g u e s (Rogers , 1973) a n d ecdys t e ro ids (see B a r k e r a n d Rees , 1990) o c c u r in n e m a t o d e s , t he r e is c lear ly a need to reassess t h e p o t e n t i a l for i n t e r ac t ion b e t w e e n insect a n d n e m a t o d e e n d o c r i n e sy s t ems .

R e d u c e d egg p r o d u c t i o n in D i p t e r a infected w i t h filarial n e m a t o d e s h a s b e e n co r r e l a t ed w i t h p a r a s i t e b u r d e n . U s i n g refractory a n d suscep t ib l e s tocks of Aedes aegypti, J a v a d i a n a n d M a c d o n a l d (1974) d e m o n s t r a t e d a n e g a ­tive l inea r co r re l a t ion b e t w e e n p a r a s i t e l oad a n d egg p r o d u c t i o n in infect ions w i th o lde r l a rvae of Brugia pahangi a n d in A. aegypti infected w i t h Dirofilaria repens, in b o t h ear ly a n d la te infect ions. A nega t ive l i nea r co r r e l a t i on b e t w e e n p a r a s i t e b u r d e n a n d m e a n n u m b e r of b a s a l follicles deve loped p e r female w a s also d e m o n s t r a t e d in t he B. pahangi/A. aegypti a s soc ia t ion ( G a a b o u b , 1976). I n D. immitis-infected A. trivittatus, r e d u c e d egg p r o d u c t i o n h a s a lso b e e n r e l a t ed to p a r a s i t e b u r d e n , w i th those exceed ing 15 j u v e n i l e s p e r m o s q u i t o severely l imi t ing r e p r o d u c t i o n ( C h r i s t e n s e n , 1981). Dirofilaria immitis a n d B. pahangi a r e M a l p i g h i a n t u b u l e a n d flight m u s c l e dwel le r s , respect ively, a n d n o ev idence of d i r ec t d a m a g e to hos t ovar ies h a s b e e n d e s c r i b e d .

T h e fecundi ty of w i l d - c a u g h t Simulium damnosum w a s found to b e r e d u c e d by Onchocerca sp . infect ions ( C h e k e et al., 1982) a n d two species of U n i t e d K i n g d o m blackflies exh ib i t ed r e d u c t i o n s in fecundi ty r e l a t ed to 0. lienalis b u r d e n w h e n infected by b lood feeding o r by i n t r a t h o r a c i c in jec t ions ( H a m a n d B a n y a , 1984). F u r t h e r e x p e r i m e n t s d e m o n s t r a t e d a n a p p r o x i m a t e l y 5 0 % r e d u c t i o n in egg l ay ing in S. ornatum in jected w i t h 30 microf i la rae ( H a m a n d G a l e , 1984). I n t r a t h o r a c i c in ject ions ru l ed o u t t he poss ib le effect of p a t h o l o g y c a u s e d by g u t p e n e t r a t i o n on fecundity. Howeve r , b o t h t h e q u a l i t y a n d q u a n t i t y of b lood inges ted by infected vec tors m a y a l t e r n u t r i e n t avai l ­abi l i ty for t he s y m b i o n t s . U s i n g r ad io i so tope e s t i m a t i o n s of b lood m e a l size, C o u r t n e y et al. (1985) d e m o n s t r a t e d a r e d u c e d i n t a k e w h e n A. aegypti w e r e feeding on D. immitis-infected b lood a n d sugges ted t h a t n u t r i e n t d e p r i v a t i o n w a s t he c a u s e of r e d u c e d fecundi ty in infected m o s q u i t o e s . H a m a n d B a n y a (1984) found a r e d u c t i o n in feeding r a t e in blackflies fed o n infected b lood .

IV. Cestodes

A l t h o u g h ces tode p a r a s i t i z a t i o n of insec ts does no t resu l t in hos t c a s t r a t i o n , r e p r o d u c t i v e o u t p u t is r e d u c e d in h y m e n o l e p i d infect ions of T e n e b r i o n i d a e ( C o l e o p t e r a ) . E m b r y o n a t e d " e g g s " of t he r a t t a p e w o r m Hymenolepis diminuta a r e pass ive ly t r a n s m i t t e d to i n t e r m e d i a t e hos t s w h e n these s to red g r a i n pests

Page 105: Parasites and Pathogens of Insects. Parasites

4. Reproductive Disturbances Induced by Parasites and Pathogens 9 7

feed o n feces f rom infected defini t ive hos t s . T h e o n c o s p h e r e is r e l eased in t h e gu t , p e n e t r a t e s t h e m i d g u t wal l , a n d deve lops i n to a m e t a c e s t o d e in 8 - 1 2 d a y s a t 26°C. T h e p a r a s i t e s a b s o r b n u t r i e n t s from t h e h e m o l y m p h a n d n o t i ssue i nvas ion o c c u r s .

A m a r k e d l o n g - t e r m d e p r e s s i o n of hos t p o p u l a t i o n s w a s o b s e r v e d in Hy-menolepis diminuta infect ions of Tribolium castaneum ( K e y m e r , 1981) a n d r e d u c ­t ion of h o s t fecundi ty w a s r e l a t ed to t o t a l p a r a s i t e b i o m a s s ( K e y m e r , 1980). M a e m a (1986) a s soc ia t ed hos t egg o u t p u t w i t h age of infect ion, finding a s ignif icant r e d u c t i o n 14 or m o r e d a y s pos t infec t ion . H u r d a n d A r m e (1986a) a lso d e m o n s t r a t e d r e d u c e d ovipos i t ion in t he l a rge r Tenebrio molitor 1 3 - 1 6 d a y s pos t in fec t ion w i t h H. diminuta, a l t h o u g h on ly w h e n t h e hos t s w e r e m a i n ­t a i n e d in very c r o w d e d c o n d i t i o n s w a s th is r e d u c t i o n still e v i d e n t 30 d a y s pos t in fec t ion . E g g v iabi l i ty w a s d e p r e s s e d by 9 . 4 % in p a r a s i t i z e d Tenebrio molitor k e p t as s ingle p a i r s a n d by 1 2 % in bee t les k e p t in c r o w d e d c o n d i t i o n s ( H u r d a n d A r m e , 1986b) . I n a d d i t i o n , a s ignif icant r e d u c t i o n in t h e n u m b e r of l a rvae p r o d u c e d d u r i n g a 6-week pe r iod w a s r e c o r d e d ( H u r d , 1990b) .

T h e r e p r o d u c t i v e phys io logy of Tenebrio molitor-'mfected w i t h Hymenolepis diminuta h a s b e e n extens ive ly inves t iga t ed by the a u t h o r . T h e s e findings h a v e b e e n rev iewed recen t ly ( H u r d , 1990a ,b) a n d t h u s will n o t b e d e a l t w i t h in g r e a t de t a i l in th is c h a p t e r . Howeve r , p e r t u r b a n c e of hos t egg p r o d u c t i o n in th is s y s t e m a p p e a r s to have s o m e pa ra l l e l s w i t h t h e m e r m i t h i d infect ions of locus t s , a d d r e s s e d ear l ier , a n d t h u s these a spec t s will b e d i s cus sed . H o s t r e p r o d u c t i v e c u r t a i l m e n t p r o b a b l y resu l t s f rom a r e t a r d a t i o n of oocy te m a t u ­r a t i o n a n d is u n d o u b t e d l y t he resu l t of i m p a i r e d v i te l logenes is . D e s p i t e a s ignif icant r e d u c t i o n in yolk v o l u m e in eggs f rom bee t les infected w i t h H. diminuta ( H u r d a n d A r m e , 1986b) , h e m o l y m p h p r o t e i n t i te rs w e r e n o t d e ­p l e t ed , b u t i n c r e a s e d by 4 6 . 7 % , in females h a r b o r i n g m a t u r e p a r a s i t e s . D e n -s i t o m e t r i c ana lys i s of h e m o l y m p h s e p a r a t e d on S D S - P A G E gels r evea led t h a t th is i nc r ea se w a s en t i re ly d u e to i n c r e a s e d t i te rs of t h e v i te l logenin s u b u n i t s ( H u r d a n d A r m e , 1984). T h u s , in c o m m o n w i t h t h e m e r m i t h i d / l o c u s t a s so ­c ia t ion , v i t e l logen in is p r e s e n t in a b u n d a n c e a n d r e d u c e d egg o u t p u t is n o t a d i r ec t r esu l t of n u t r i e n t d e p r i v a t i o n . O v a r i a n s e q u e s t r a t i o n of yolk w a s inves ­t i ga t ed in vivo b y m o n i t o r i n g t h e i n c o r p o r a t i o n of 1 4 C - l a b e l e d v i te l logen in a n d s h o w n to b e d e c r e a s e d b y 5 1 . 5 % in p a r a s i t i z e d females ( H u r d a n d A r m e , 1986a) . T h e t e r m i n a l follicles of these t e lo t rop ic ovar ies exh ib i t a s ignif icant r e d u c t i o n in p a t e n c y ( H u r d a n d A r m e , 1987) a n d it is p r o p o s e d t h a t th is r e d u c t i o n resu l t s in a n i m p a i r m e n t of yolk u p t a k e a n d h e n c e a r e d u c t i o n in fecundi ty.

T h e m e c h a n i s m s u n d e r l y i n g th is p a r a s i t e - i n d u c e d p e r t u r b a n c e of vi ­te l logenesis a r e n o t k n o w n . I t is t h o u g h t t h a t j u v e n i l e h o r m o n e I I I r egu l a t e s v i te l logenes is in Tenebrio molitor ( L a v e r d u r e , 1970). H o w e v e r , C A secre t ion , c i r c u l a t i n g t i t e r s , a n d r a t e of d e g r a d a t i o n of j u v e n i l e h o r m o n e a r e n o t af-

Page 106: Parasites and Pathogens of Insects. Parasites

9 8 Hilary Hurd

fected b y infect ion ( H u r d a n d Weaver , 1987; H u r d et aL, 1990). A t t e m p t s to d e m o n s t r a t e c h a n g e s in ecdys t e ro id t i ters in infected bee t les h a v e a l so failed ( H u r d et aL, 1987) a n d , a l t h o u g h ecdys te ro ids h a v e b e e n d e m o n s t r a t e d in a d u l t H. diminuta ( M e r c e r et aL, 1987), n o free ecdys te ro id ac t iv i ty w a s found in t h e m e t a c e s t o d e s u s i n g R I A m e t h o d s ( M e r c e r et aL, 1987) o r i m m u -n o c h e m i s t r y ( H . D . F . H . Schal l ig a n d H . H u r d , p e r s o n a l o b s e r v a t i o n s ) . D e ­sp i te t h e a p p a r e n t n o r m a l i t y of h o r m o n e t i te rs in infected females , a j u v e n i l e h o r m o n e a n a l o g u e , m e t h o p r e n e , a p p l i e d to bee t les a t t h e t i m e of infect ion, p r o d u c e d a r e scue effect b y p r e v e n t i n g t h e e leva t ion of h e m o l y m p h p r o t e i n t i ters a s soc ia t ed w i t h infect ion ( H u r d et aL, 1990). I n a d d i t i o n , o t h e r j u v e n i l e h o r m o n e - c o n t r o l l e d even t s s u c h as fat b o d y v i te l logenin syn thes i s ( H u r d a n d A r m e , 1986a) a n d sex p h e r o m o n e p r o d u c t i o n ( H u r d a n d Par ry , 1991) a r e a lso d o w n - r e g u l a t e d by H. diminuta m e t a c e s t o d e s . I s it a p p a r e n t t h a t a l ­t h o u g h n o n e of t h e inves t iga t ions p e r f o r m e d so far d i rec t ly s u p p o r t s t h e p r o p o s i t i o n t h a t m e t a c e s t o d e s m a n i p u l a t e hos t e n d o c r i n e c o n t r o l of r e p r o ­d u c t i o n , n e w avenues n e e d to b e exp lo red . Pa ras i t e s m a y n o t c h a n g e hor ­m o n e t i te r b u t cou ld , for e x a m p l e , i n d u c e a c h a n g e in hos t r e s p o n s e to m e d i a t o r s u b s t a n c e s (i .e. , J H ) in t h e t a r g e t t i ssues .

V. Endoparasitic Insects

I n s e c t p a r a s i t o i d s u sua l ly a t t a c k i m m a t u r e insec ts ( K u r i s , 1974) a n d kill t he i r hos t s before t hey r each sexua l m a t u r i t y . H o s t c a s t r a t i o n is t h u s r a re ly obse rved in i n s e c t - i n s e c t a s soc ia t ions . Howeve r , J u n n i k k a l a (1985) n o t e d a r e d u c t i o n in t h e v o l u m e a n d wal l th i ckness of d e v e l o p i n g tes tes in Pieris brassicae l a rvae p a r a s i t i z e d b y Apanteles glomeratus, w i t h t h e d e g r e e of r e t a r d a ­t ion n o t b e i n g r e l a t ed to p a r a s i t e b u r d e n . B u n d l e s of s p e r m w e r e , however , p r o d u c e d before t he p a r a s i t o i d kil led its hos t a t t h e p r e p u p a l s t age , i n d i c a t ­ing t h a t t h e g o n a d w a s still func t iona l a t th is s t age . T h e t i m i n g of a t t a c k d e t e r m i n e d t h e d e g r e e of g o n a d a l d a m a g e in t h e c o d l i n g m o t h , Cydia pomonella, p a r a s i t i z e d b y Ascogaster quadridentata ( R e e d - L a r s o n a n d B r o w n , 1990). C a s t r a t i o n o c c u r r e d in l a rvae deve lop ing f rom eggs exposed to a d u l t w a s p s d u r i n g t h e first 36 h ; however , s o m e la rvae d e v e l o p e d s m a l l tes tes if a t t a c k e d b e t w e e n 36 a n d 48 h a n d those p a r a s i t i z e d a t 6 4 h h a d tes tes t h a t , a t t h e four th s t a d i u m , exh ib i t ed p recoc ious d e v e l o p m e n t . R e e d - L a r s o n a n d B r o w n (1990) d i scussed the p o t e n t i a l benefi t to p a r a s i t o i d s of h o s t c a s t r a t i o n a n d sugges t ed t h a t t h e e l im ina t i on of hos t t a r g e t o r g a n s m a y m a k e m o r e e c d y s o n e ava i l ab le to ac t as a cue for A. quadridentata d e v e l o p m e n t , a n d a l so r e m o v e p o t e n t i a l c o m p e t i t i o n for g lycogen a n d l ip id reserves .

T w o w e l l - d o c u m e n t e d cases in w h i c h t h e infected female hos t r e a c h e s

Page 107: Parasites and Pathogens of Insects. Parasites

4. Reproductive Disturbances Induced by Parasites and Pathogens 9 9

a d u l t h o o d a r e o u t l i n e d in t h e following. I n b o t h e x a m p l e s , i n t e r ac t i on b e ­t w e e n t h e p a r a s i t e a n d h o s t e n d o c r i n e s y s t e m h a s b e e n inves t iga t ed .

T r i u n g u l i n i d l a rvae of t h e p a r a s i t i c w a s p Xenos vesparum i n v a d e Polistis s pp . ( H y m e n o p t e r a ) l a rvae in t h e s p r i n g . P a r a s i t e g r o w t h p r o c e e d s slowly in h o s t l a rvae a n d t h e las t l a rva l i n s t a r s a n d n y m p h a l a n d i m a g i n a l m o l t s o c c u r in y o u n g a d u l t w a s p hos t s . M a l e p a r a s i t e s e m e r g e from the i r h o s t s , m a t e , a n d d i e , w h e r e a s females , infect ing fu tu re q u e e n w a s p s , ove rwin t e r in the i r hos t s (Nassonov, 1910; H o f f m a n n , 1914). Pa ra s i t i c c a s t r a t i o n ( s ty lop iza t ion syn­d r o m e ) is i n d u c e d b y s u p p r e s s i o n of oocy te m a t u r a t i o n a n d t h e o c c u r r e n c e of in te r sexes in s ty lop ized bees is well k n o w n (Wulker , 1975).

S t r a m b i et al. (1982) d e m o n s t r a t e d t h a t , a t t h e t i m e of h o s t e m e r g e n c e from d i a p a u s e , t e r m i n a l oocy tes w e r e s ignif icant ly r e d u c e d in infected fe­m a l e s . C o n t r o l X. vesparum females h a d h i g h e r b lood p r o t e i n t i te rs a t th i s t i m e ( S t r a m b i et al., 1982) a n d , a l t h o u g h p r e s e n t , v i te l logenin t i te rs w e r e r e d u c e d in p a r a s i t i z e d females ( R o u x , 1973). In fec ted a d u l t s w e r e found to h a v e r e d u c e d fat bod i e s , ovar ies , a n d C A v o l u m e . After ove rwin t e r i ng , syn thes i s of j u v e n i l e h o r m o n e by t h e C A r e a c h e d 4 p m o l e s p e r p a i r of g l a n d s p e r h o u r in c o n t r o l w a s p s b u t on ly 0.2 p m o l e s w e r e p r o d u c e d b y C A from infected w a s p s (Roseler et al., 1980). I n a d d i t i o n , h e m o l y m p h j u v e n i l e h o r m o n e t i te rs w e r e s ignif icant ly r e d u c e d in infected females (A. S t r a m b i , p e r s o n a l o b s e r v a t i o n s ) a n d C A i m p l a n t a t i o n in to p a r a s i t i z e d females i n d u c e d v i te l logenes is a n d o v a r i a n d e v e l o p m e n t ( S t r a m b i a n d G i r a r d i e , 1973). T h u s , S t r a m b i et al. (1982) m a i n t a i n e d t h a t it w a s a j u v e n i l e h o r m o n e deficiency t h a t i n h i b i t e d egg m a t u r a t i o n in infected insec t s . Cy to log ica l ev idence sugges t t h a t , un l ike in un in fec ted c o u n t e r p a r t s , l a rge a m o u n t s of n e u r o s e c r e t o r y m a t e r i a l a r e r e l eased f rom infected w a s p s a n d t h a t th is m a y con t ro l C A func t ion ing (e .g. , S t r a m b i , 1966; S t r a m b i a n d S t r a m b i , 1973). T h e m e t h o d b y w h i c h t h e p a r a ­si te exer t s i ts inf luence o n t h e n e u r o s e c r e t o r y cells r e m a i n s to b e e l u c i d a t e d .

I n Metacemyia calloti ( D i p t e r a , T a c h i n i d a e ) infect ions of t h e g r a s s h o p p e r Anacridium aegyptium, i m p a i r m e n t of h o s t oocy te d e v e l o p m e n t h a s b e e n assoc i ­a t e d w i t h a d e p l e t i o n of h e m o l y m p h p r o t e i n s . Syn thes i s of v i te l logenic p r o ­te ins w a s r e d u c e d a n d v i te l logenins were s h o w n to b e invo lved in t h e n u t r i ­t iona l r e q u i r e m e n t s of t h e p a r a s i t e s ( G i r a r d i e , 1977). U n l i k e t h e s t r e p s i p t e r a n infect ion o u t l i n e d ear l ier , h o s t j u v e n i l e h o r m o n e p r o d u c t i o n w a s n o t r e d u c e d , b u t e leva ted in infected females ( G i r a r d i e a n d Jo ly , 1975). U l t r a s t r u c t u r a l s tud ie s conf i rmed t h e s t a t u s of C A from infected insec t s a n d C A i m p l a n t a t i o n failed to in i t i a t e oocy te d e v e l o p m e n t in p a r a s i t i z e d females ( G i r a r d i e a n d G r a n i e r , 1974). Howeve r , a c o m b i n a t i o n of r ad ioac t ive t r a ce r s tud i e s a n d l ight a n d e lec t ron m i c r o s c o p y d e m o n s t r a t e d t h e lack of ac t iv i ty in t h e m e d i a n n e u r o s e c r e t o r y cells of infected g r a s s h o p p e r s . E lec t r i ca l s t i m u l a ­t ion of t h e p a r s i n t e r ce r eb ra l i s e n h a n c e d o v a r i a n d e v e l o p m e n t ( G i r a r d i e a n d

Page 108: Parasites and Pathogens of Insects. Parasites

100 Hilary Hurd

G i r a r d i e , 1977). G i r a r d i e (1977) p o s t u l a t e d t h a t h e m o l y m p h p r o t e i n defi­c iency m a y be t he resu l t of b o t h p a r a s i t e n u t r i t i o n a l r e q u i r e m e n t s a n d h y p o -act iv i ty of t he m e d i a n n e u r o s e c r e t o r y cells r e su l t i ng in d e c r e a s e d p r o t e i n syn thes i s , poss ib ly v ia J H con t ro l .

VI. Conclusions

T h e assoc ia t ions se lected for d i scuss ion in this c h a p t e r a p t l y i l l u s t r a t e t h e w i d e s p r e a d o c c u r r e n c e of p a r a s i t e - i n d u c e d r e d u c t i o n in hos t fecundi ty . D a w -kins (e.g. , 1982, 1990) r e g a r d e d p a r a s i t i c c a s t r a t i o n as a n e x a m p l e of p a r a s i t e m a n i p u l a t i o n of hos t s v ia a n ex tens ion of t he inf luence of p a r a s i t e genes . T h e p o t e n t i a l t h a t th is s t r a t egy p rov ides for e n h a n c i n g s y m b i o n t su rv iva l b y d ive rs ion of m e t a b o l i c r e sources a w a y from hos t r e p r o d u c t i o n h a s b e e n d i s ­cussed b y m a n y a u t h o r s (e.g. , B a u d o i n , 1975; H u r d , 1990a) .

T h e ma jo r i ty of m e t h o d s w h e r e b y hos t r e p r o d u c t i o n is s u p p r e s s e d fall i n t o o n e of t h r e e ca tegor ies : t he i nh ib i t i on of hos t m a t i n g d u e to m o r p h o l o g i c a l o r b e h a v i o r a l c h a n g e s , t h e d e s t r u c t i o n of hos t r e p r o d u c t i v e t i ssue , a n d t h e re ­d u c t i o n of egg o u t p u t d u e to ma l func t ion of o v a r i a n yolk s e q u e s t r a t i o n . I n all t h r ee cases , n u t r i e n t s , w h i c h in con t ro l insec ts w o u l d b e u t i l ized b y deve lop ­ing oocytes , a r e m a d e ava i l ab le to s u s t a i n t h e hos t a n d d e v e l o p i n g p a r a s i t e s . O u r u n d e r s t a n d i n g of t h e m o d e of p a r a s i t e ac t ion is r u d i m e n t a r y b u t in m o s t a s soc ia t ions it a p p e a r s to involve a m o r e sub t l e i n t e r p l a y t h a n t h e s i m p l e s cena r io of p a r a s i t e u t i l i za t ion of n u t r i e n t s d e s t i n e d for egg p r o d u c t i o n . I n d i ­rec t d ive rs ion of n u t r i e n t s v ia a l t e r a t i o n of fat b o d y m e t a b o l i s m a n d / o r p e r t u r b a n c e of n e u r o e n d o c r i n e con t ro l m e c h a n i s m s a r e u n d o u b t e d l y in­volved in s o m e assoc ia t ions a n d p u t a t i v e p a r a s i t e sec re t ion of m e d i a t o r s u b ­s t ances , w h i c h m a y a l t e r g o n a d a l sens i t iv i ty o r affect h o r m o n e m e t a b o l i s m , h a s b e e n d i scussed recen t ly ( H o l m e s a n d Z o h a r , 1990). H o w e v e r , a t t h e m o m e n t t h e r e is n o e x a m p l e of p a r a s i t e - i n d u c e d d i s t u r b a n c e of insec t r e p r o ­d u c t i o n in w h i c h t h e u n d e r l y i n g m e c h a n i s m s have b e e n fully e l u c i d a t e d a n d th is r e m a i n s a cha l l enge for t he fu ture .

References

Anderson, R. M., and May, R. M. (1981). The population dynamics of microparasites and their invertebrate hosts. Philos. Trans R. Soc. London 291:451-524.

Andreadis, T. G. (1986). Dissemination of Nosema pyrausta in feral populations of the European corn borer, Ostrinia nubilalis. J. Invertebr. Pathol. 48:335-343.

Armstrong, E. (1977). Transmission of Nosema kingi to offspring of Drosophila willistoni during copulation. Z. Parasitenkd. 53:311-315.

Armstrong, E., and Bass, L. K. (1986). Effects of infection by Nosema whitei on the mating frequency and fecundity of Tribolium castaneum. J. Invertebr. Pathol. 47:310—316.

Page 109: Parasites and Pathogens of Insects. Parasites

4. Reproductive Disturbances Induced by Parasites and Pathogens 101

Ashraf, M., and Berryman, A. A. (1970). Biology of Sulphuretylenchus elongates (Nematoda: Sphae-rulariidae), and its effect on its host, Scolytus ventralis (Goleoptera: Scolytidae). Can. Entomol. 102:197-213.

Barker, G. C , and Rees, Η. H. (1990). Ecdysteroids in nematodes. Parasitol. Today 6:384-387. Baudoin, M. (1975). Host castration as a parasitic strategy. Evolution (Lawrence, Kans.) 2 9 : 3 3 5 -

352. Bauer, L. S., and Nordin, G. L. (1989). Effect of Nosema Jiimiferanae (Microsporida) on fecundity,

fertility, and progeny performance of Choristoneura fiimiferana (Lepidoptera: Torticidae). Envi­ron. Entomol. 18:261-265.

Cheke, R. Α., Garms, R., and Kerner, M. (1982). The fecundity of Simulium damnosum s.l. in northern Toga and infections with Onchocerca spp. Ann. Trop. Med. Parasitol. 54:561-568.

Christensen, Β. M. (1981). Effect of Dirofilaria immitis on the fecundity of Aedes trivittatus. Mosq. Λ « ι * 4 1 : 7 8 - 8 1 .

Condon, W. J., and Gordon, R. (1977). Some effects of mermithid parasitism on the larval blackflies Prosimulium mixtum Juscum and Simulium venustum. J. Invertebr. Pathol. 29 :56-62 .

Courtney, C. C , Christensen, Β. M., and Goodman, W. G. (1985). Effect οϊ Dirofilaria immitis on blood meal size and fecundity in Aedes aegypti (Diptera: Culicidae). J. Entomol. 22:389-400.

Dawkins, R. (1982). "The Extended Phenotype." Oxford Univ. Press, Oxford. Dawkins, R. (1990). Parasites, desiderata lists and the paradox of the organism. Parasitology

100:S63-S75. Dobson, A. P. (1988). The population biology of parasite-induced changes in host behaviour, (λ

Rev. Biol. 63:139-165. Fisher, F. M., Jr., and Sanborn, R. C. (1962). Production of insect juvenile hormone by the

microsporidian parasite Nosema. Nature (London) 194:1193. Fisher, F. M., Jr., and Sanborn, R. C. (1964). Nosema as a source of juvenile hormone in

parasitised insects. Biol. Bull. (Woods Hole, Mass.) 126:235-252. Freier, J. E., and Friedman, S. (1976). Effect of host infection with Plasmodium gallinaceum on the

reproductive capacity of Aedes aegypti. J. Invertebr. Pathol. 28:161-166. Gaaboub, I. A. (1976). Observations on the basal follicle numbers developed per female of two

strains οϊ Aedes aegypti after being fed on hosts with different levels of microfilariae of Brugia pahangi. J. Invertebr. Pathol. 28:203-207.

Gaugler, R. R., and Brooks, W. M. (1975). Sublethal effects of infection by Nosema heliothis zea.J. Invertebr. Pathol. 26:57-63 .

Germida, J. J., Onofriechuk, Ε. E., and Ewen, A. B. (1987). Effect οϊ Nosema locustae (Canning) microsporidia and three chemical insecticides on microbial activity in soil. Can. J. Soil Sci. 67:631-638.

Girardie, J. (1977). Controle neuroendocrine des proteines sanguines vitellogenes dAnacridium aegyptium sains et parasites. J. Insect Physiol. 23:569-577.

Girardie, J., and Granier, S. (1974). Role des corps allates dans la castration parasitaire dAn­acridium aegyptium (Insecte, Orthoptere) infeste par Metacemya calloti (Insecte, Diptore). Arch. Anat. Microsc. Morphol. Exp. 63:269-280.

Girardie, J., and Girardie, A. (1977). Intervention des cellules neurosecretrices mediances dans la castration parasitaire dAnacridium aegyptium (Orthoptores). J. Insect Physiol. 23:461-467.

Girardie, J., and Joly, L. (1975). Dosage biologique de l'hormone juvenile dans l'hemolymphe d'adultes dAnacridium aegyptium (Insectes, Orthoptores) sains et parasites, pendant et apres rupture experimentale de la diapause. C.R. Hebd. Seances Acad. Sci., Ser. D 281:719—722.

Gordon, R. (1981). Mermithid nematodes: Physiological relationships with their insect hosts. J. Nematol. 13:266-274.

Gordon, R., Webster, J. M., and Hislop, T. G. (1973). Mermithid parasitism, protein turnover and vitellogenesis in the desert locust, Schistocerca gregaria. Comp. Biochem. Physiol. Β 46B:575—593.

Page 110: Parasites and Pathogens of Insects. Parasites

102 Hilary Hurd

Hacker, C. S. (1971). The differential effect of Plasmodium gallinaceum on the fecundity of several strains of Aedes aegypti. J. Invertebr. Pathol. 18:373-377.

Hacker, C. S., and Kilama, W. L. (1974). The relationship between Plasmodium gallinaceum density and the fecundity of Aedes aegypti. J. Invertebr. Pathol. 23:101-105.

Ham, P. J., and Banya, A. J. (1984). The effect of experimental Onchocerca infections on the fecundity and oviposition of laboratory reared Simulium sp. (Diptera, Simuliidae). Tropenmed. Parasitol. 35:61-66 .

Ham, P. J., and Gale, L. (1984). Blood meal enhanced Onchocerca development and its correla­tion with fecundity in laboratory reared blackflies (Diptera, Simuliidae). Tropenmed. Parasitol. 35:212-216.

Han, M.-S., and Watanabe, H. (1988). Transovarial transmission of two microsporidia in the silkworm, Bombyx mori, and disease occurrence in the progeny population. J. Invertebr. Pathol. 51:41-45 .

Hoffmann, R. W. (1914). Die embryonalen Vorgange bei der Strepsiteren and ihre Deutung. Verh. Dtsch. Zool. Ges. 24:192-216.

Holmes, J. C., and Zohar, S. (1990). Pathology and host behaviour. In "Parasitism and Host Behaviour" (C.J. Barnard and J. M. Behnke, eds.), pp. 34-64 . Taylor & Francis, London.

Hurd, H. (1990a). Physiological and behavioural interactions between parasites and inverte­brate hosts. Adv. Parasitol. 29:271-318.

Hurd, H. (1990b). Parasite induced modulation of insect reproduction. Adv. Invertebr. Reprod. 5:163-168.

Hurd, H., and Arme, C. (1984). Pathology of Hymenolepis diminuta infections in Tenebno molitor: Effect of parasitism on haemolymph proteins. Parasitology 89:253-262.

Hurd, H., and Arme, C. (1986a). Hymenolepis diminuta: Influence of metacestodes upon synthesis and secretion of fat body protein and its ovarian sequestration in the intermediate host, Tenebrio molitor. Parasitology 93:111-120.

Hurd, H., and Arme, C. (1986b). Hymenolepis diminuta: The effect of metacestodes upon egg production and viability in the intermediate host, Tenebrio molitor. J. Invertebr. Pathol. 4 7 : 2 2 5 -231.

Hurd, H., and Arme, C. (1987). Hymenolepis diminuta: Effect of infection upon the patency of the follicular epithelium of the intermediate host Tenebrio molitor. J. Invertebr. Pathol. 49:227-234.

Hurd, H., and Parry, G. (1991). Metacestode-induced depression of the production of, and response to, sex pheromone in the intermediate host Tenebrio molitor. J. Invertebr. Pathol. 5 8 : 8 2 -87.

Hurd, H., and Weaver, R. J. (1987). Evidence against the hypothesis that metacestodes of Hymenolepis diminuta inhibit corpora allata functioning in the intermediate host, Tenebrio molitor. Parasitology 95:93-97 .

Hurd, H., Mercer, J. G., and Munn, A. E. (1987). The effect of Hymenolepis diminuta upon ecdysteroid activity in the haemolymph of the intermediate host Tenebrio molitor. Parasitol. Res. 74:198-199.

Hurd, H., Strambi, C., and Beckage, Ν. E. (1990). Hymenolepis diminuta: An investigation of juvenile hormone titre, degradation and supplementation in the intermediate host, Tenebrio molitor. Parasitology 100:445-452.

Jackson, L. L., Baker, G. L., and Henry, J. E. (1968). Effect of Malamoeba locustae infection on the egg lipids of the grasshopper Melanoplus bivittatus. J. Insect Physiol. 14:1773-1778.

Javadian, E., and Macdonald, W. W. (1974). The effect of infection with Brugia pahangi and Dirofilaria repens on the egg-production of Aedes aegypti. Ann. Trop. Med. Parasitol. 68:477-481 .

Johnson, D. L., and Henry, J. E. (1987). Low rates of insecticides and Nosema locustae (Micro­sporidia, Nosematidae) on baits applied to roadsides for grasshopper control. J. Econ. Ento­mol. 80:685-689.

Page 111: Parasites and Pathogens of Insects. Parasites

4. Reproductive Disturbances Induced by Parasites and Pathogens 103

Junnikkala, E. (1985). Testis development in Pieris brassicae parasitized by Apanteles glomeratus. Entomol. Exp. Appl. 37:283-288.

Karavaeva, Ν. N. (1987). Juvenile hormone activity in the spores of Nosema bombycis, the patho­gen of nosematosis in the silkworm. Uzb. Biol. Zh. 3 :6 -10 .

Kellen, W. R., and Lindegren, J. E. (1971). Modes of transmission of Nosema plodiae Kellen and Lindegren, a pathogen of Plodia interpunctella (Hubner). J. Stored Prod. Res. 7:31-34.

Keymer, A. E. (1980). The influence of Hymenolepis diminuta on the survival and fecundity of the intermediate host Tnbolium confusum. Parasitology 81:405-421.

Keymer, A. E. (1981). Population dynamics of Hymenolepis diminuta in the intermediate host. J. Anim. Ecol. 50:941-950.

Khan, A. R., and Selman, B.J. (1989). Nosema spp. (Microspora: Microsporidia: Nosematidae) of stored-product Coleoptera and their potential as microbial agents. Ague. Rev. 3:193-223.

Kuris, A. M. (1974). Trophic interactions: Similarity of parasitic castrators to parasitoids. Q. Rev. Biol. 49:129-148.

Laverdure, A.-M. (1970). Action de l'ecdysone et de Tester methylique du farnesol sur l'ovaire nymphal de Tenebrio molitor (Coleoptore) cultive in vitro. Ann. Endocrinol. 31:516-524.

Lieutier, F. (1981). Influence des nematodes parasites sur Tessaimage du scolytide Ips sexdentatus (Boern.). action regulatrice du froid. Acta Oecol. Oecol. Appl. 2:357-368.

Lieutier, F. (1982a). Les variations ponderales du tissu adipeux et des ovaries, et les variations de longueur des ovocytes, chez Ips sexdentatus Boern (Coleoptera: Scolytidae); relations avec le parasitisme par les nematodes. Ann. Parasitol. Hum. Comp. 57:407-418.

Lieutier, F. (1982b). Action des nematodes endoparasites sur la ponte du scolytide Ips sexdentatus Boerner (Insecta: Coleoptera). Acta Oecol. Oecol. Appl. 3:191-204.

Lieutier, F. (1984a). Ovarian and fat body protein concentrations in Ips sexdentatus (Coleoptera: Scolytidae) parasitized by nematodes. J. Invertebr. Pathol. 43 :21 -31 .

Lieutier, F. (1984b). Observations sur le parasitisme dTps sexdentatus (Insecta: Scolytidae) par Parasitorhabditis ipsophila (Nematoda: Rhabditidae). Ann. Parasitol. Hum. Comp. 59:507-520.

Listov, Μ. V. (1977). The effect of pathogenic protozoa on hormone balance of flour beetles (Coleoptera, Tenebrionidae). Entomol. Obozr. 56:731-735.

Liu, T. P. (1986). Comparative fine structure of the corpus allatum from healthy and Nosema infected honeybees. J. Apic. Res. 25:163-170.

Liu, T. P. (1989). Juvenile hormone III induced ultrastructural changes in the hypopharangeal glands of honeybee Apis mellifera L. (Hymenoptera: Apidae) without and with infection by Nosema apis Zander (Microsporidae; Nosematidae). Int. J. Insect Morphol. Embryol. 18:73-83 .

Liu, Τ P. (1990). Ultrastructure of mitochondria in the corpora allata of honeybees infected by Nosema apis before and after treatment with anti-nosema drugs. Tissue Cell 22:511-515.

MacGuidwin, A. E., Smart, G. C , Jr., Wilkinson, R. C , and Allen, G. E. (1980). Effect of the nematode Contortylenchus brevicornis on gallery construction and fecundity of the southern pine beetle. J. Nematol. 12:278-282.

Maema, M. (1986). Experimental infection of Tribolium confusum (Coleoptera) by Hymenolepis diminuta (Cestoda): Host fecundity during infection. Parasitology 92:405-412.

Malone, L. A. (1987). Longevity and fecundity of Argentine stem weevils, Listronotus bonariensis (Coleoptera: Curculionidae), infected with Microsporidium itiiti (Protozoa: Microspora). J. Invertebr. Pathol. 50:113-117.

Malone, L. Α., and Wigley, P. J. (1981). Quantitative studies on the pathogenicity of Nosema carpocapsae, a microsporidian pathogen of the codling moth, Cydia pomonella, in New Zealand. J. Invertebr. Pathol. 38:330-334.

Massey, C. L. (1964). The nematode parasites and associates of the fir engraver beetle, Scolytus ventralis, LeConte, in New Mexico. J. Insect Pathol. 6:133-155.

May, R. M., and Anderson, R. M. (1990). Parasite-host coevolution. Parasitology 100:S89-S101.

Page 112: Parasites and Pathogens of Insects. Parasites

104 Hilary Hurd

Mercer, C. F., and Wigley, P.J. (1987). A microsporidian pathogen of the Poroporo stem borer, Sceliodes cordalis (Dbld.) (Lepidoptera: Pyralidae). J. Invertebr. Pathol. 49:108-115.

Mercer, J. G., Munn, A. E., Munn, Arme, C., and Rees, Η. H. (1987). Analysis of ecdysteroids in different developmental stages of Hymenolepis diminuta. Mol. Biochem. Parasitol. 25 :61 -71 .

Milner, R.J. (1972). Nosema whitei, a microsporidian pathogen of some species of Tribolium. III. EfTect on T. castaneum. J. Invertebr. Pathol. 19:248-255.

Molyneux, D. H., and Jefferies, D. (1986). Feeding behaviour of pathogen infected vectors. Parasitology 92:721-736.

Nassonov, Ν. V. (1910). Untersuchungen zur Naturgeschichte der Strepsiteren. Ber. Naturwiss.-Med. Ver. Inssbruck 33:1-205 .

Nnakumusana, E. S. (1986). Effect οϊ Nosema algerae Vavra and Undeen spores infection on longevity and fecundity of larval instars of Aedes aegypti L. and Culex fatigans Weid. Indian J. Exp. Biol. 24:786-788.

Onstad, D. W., and Maddox, J. V. (1989). Modeling the effects of the microsporidium, Nosema pyrausta, on the population dynamics of the insect Ostnnia nubilalis. J. Invertebr. Pathol. 5 3 : 4 1 0 -421.

Papillon, M., and Cassier, P. (1978). Perturbations morphologiques et physiologiques dues a la presence du protozoaire parasite Malameba locustae (K. et T.) chez Schistocerca gregaria (Forsk.). Acrida 7:101-114.

Rabindra, R. J., Balasubramanian, M., and Jayaraj, S. (1981). The effects of Farnocystis tribolii on the growth and development of the flour beetle Tribolium castaneum. J. Invertebr. Pathol. 3 8 : 3 4 5 -351.

Raina, S. K., Rai, Μ. M., and Khurad, A. M. (1987). Grasshopper and locust control using microsporidian insecticides. In "Biotechnology of Invertebrate Pathology and Cell Culture" (K. Maramorosch ed.), pp. 345-366. Academic Press, Orlando, FL.

Read, A. F. (1990). Parasites and the evolution of host sexual behaviour. In "Parasitism and Host Behaviour" (C. B. Barnard and J. M. Behnke, eds.), pp. 117-158. Taylor & Francis, London.

Reed-Larson, D. Α., and Brown, J. J. (1990). Embryonic castration of the codling moth, Cydia pomonella, by an endoparasitoid, Ascogaster quadridentata. J. Insect Physiol. 36:111-118.

Reynolds, D. G. (1971). Parasitization of Culex fatigans by Nosema stegomyiae. J. Invertebr. Pathol. 18:429.

Rogers, W. P. (1973). Juvenile and moulting hormones from nematodes. Parasitology 67:105—113. Roseler, I., and Roseler, P. F. (1973). Anderungen im Muster der Haemolymphproteine von

Adulten Koniginen der Hummelart Bombus terrestris. J. Insect Physiol. 19:1741-1752. Roseler, P. F., Roseler, I., and Strambi, A. (1980). The activity of corpora allata in dominant and

subordinated females of the wasp Polistes gallicus. Insect Soc. 27:97-107. Roux, C. (1973). Etude comparee de la proteinemie chez les imagos de Polistes (Hymenoptores,

Vespides) sains ou parasites par le Strepsiptore Xenos vesparum Rossi. C.R. Hebd. Seances Acad. Sci. 276:3159-3162.

Sajup, A. S., and Lewis, L. C. (1988). Histopathology of transovarial transmission οϊ Nosema pyrausta in the European corn borer, Ostrinia nubilalis. J. Invertebr. Pathol. 52:147-153.

Schvester, D. (1957). Contribution de l'etude de Coleopteres scolytids. Ann. Inst. Natl. Rech. Agron., Ser. C 8:1-162.

Shieh, J.-N., and Rossignol, P. A. (1992). Opposite effects of host anaemia on blood feeding rate and fecundity of mosquitos. Parasitology 105:159-163.

Siegel, J. P., Maddox, J. V., and Ruesink, W. G. (1986). Lethal and sublethal effects οϊ Nosema pyrausta on the European corn borer (Ostrinia nubilalis) in central Illinois. J. Invertebr. Pathol. 48:167-173.

Smith, J. E., and Dunn, A. M. (1991). Transovarial transmission. Parasitol. Today 7:146-148.

Page 113: Parasites and Pathogens of Insects. Parasites

4. Reproductive Disturbances Induced by Parasites and Pathogens 105

Strambi, A. (1966). Action de Xenos vesparum Rossi (Strepsiptere) sur la neurosecretion des fondatrices filles de Polistes gallicus L. (Hymenoptere, Vespide) en diapause. C.R. Hebd. Seances Acad. Sci. 263:533-535.

Strambi, Α., and Girardie, A. (1973). Effect de l'implanation de corpora allata actifs de Locusta migratoria (Orthoptere) dans des femelles de L. (Hymenoptere) saines et parasitees par Xenos vesparum Rossi (Insecte, Strepsiptere). C.R. Hebd. Seances Acad. Sci. 276:3319-3322.

Strambi, Α., and Strambi, C. (1973). Influence du developpement du parasite Xenos vesparum Rossi (Insecte, Strepsiptere) sur le systeme neuroendocrinien des femelles de Polistes (Hy­menoptere, Vespide) au debut de leur vie imaginale. Arch. Anat. Microsc. Morphol. Exp. 6 2 : 3 9 -54.

Strambi, C., Strambi, Α., and Augier, R. (1982). Protein levels in the haemolymph of the wasp Polistes gallicus L. at the beginning of imaginal life and during overwintering. Action of the strepsipteran parasite Xenos vesparum Rossi. Experientia 38:1189-1191.

Thompson, A. C., and Sikorowski, P. P. (1979). Effects of Nosema heliothidis on fatty and amino acids in larvae and pupae of the bollworm, Heliothis zea. Comp. Biochem. Physiol. A. 6 3 A : 3 2 5 -328.

Thong, C.H.S., and Webster, J. M. (1975a). Effects of Contortylenchus reversus (Nematoda: Sphae-rulariidae) on haemolymph composition and oocyte development in the beetle Dendroctonus pseudopsugae (Coleoptera: Scolytidae). J. Invertebr. Pathol. 26:91-98 .

Thong, G.H.S., and Webster, J. M. (1975b). Effects of the bark beetle nematode, Contortylenchus reversus, on gallery construction, fecundity, and egg viability of the Douglas fir beetle, Dendroc­tonus pseudotsugae (Coleoptera: Scolytidae). J. Invertebr. Pathol. 26:235-238.

Tomalak, M., Michalski, J., and Grocholski, J. (1984). The influence of nematodes on the structure and genitalia of Tomicus piniperda (Coleoptera: Scolytidae). J. Invertebr. Pathol. 43:358-362 .

Tomalak, M., Welch, Η. E., and Galloway, T. (1990). Pathogenicity of allantonematidae (Nema­toda) infecting bark beetles (Coleoptera: Scolytidae) in Manitoba. Can. J. Zool. 68:89-100 .

Weiser, J. (1974). Microsporidia in invertebrates: host-parasite relations at the organismal level. In "Comparative Pathobiology" (T. C. Cheng, ed.), pp. 163-201. Plenum, New York.

Windels, Μ. B., Chaing, H. C , and Furgala, B. (1976). Effects οϊ Nosema pyrausta on pupa and adult stages of the European corn borer Ostrinia nubilalis. J. Invertebr. Pathol. 27:239-242.

Wulker, W. (1975). Parasite-induced castration and intersexuality in insects. In "Intersexuality in the Animal Kingdom" (R. Reinboth, ed.), pp. 121-134. Springer-Verlag, New York.

Page 114: Parasites and Pathogens of Insects. Parasites

Chapter 5

ΗBehavioral Effects of Parasites and Pathogens in Insect Hosts David R. Horton Janice Moore Yakima Agricultural Laboratory Department of Biology USDA-ARS Colorado State University Yakima, Washington Fort Collins, Colorado

I. Introduction

II. Review of Altered Behavior in Parasitized Insects A. Changes in Microhabitat Preference B. Changes in Level of Activity C. Reproductive Behavior by Castrated

Insects

III. Potential Benefits to Parasite

A. Increased Parasite Dissemination B. Increased Parasite Survival

IV. Potential Benefits to Host A. Increased Survival of Kin B. Host Defense: Behavioral Fever

V. Considerations for Future Research Acknowledgments References

I. Introduction

R e s p o n s e s of insec t hos t s to p a r a s i t i s m i n c l u d e phys io log ica l , m o r p h o l o g i c a l , a n d b e h a v i o r a l effects, m a n y of w h i c h affect p a r a s i t e o r h o s t f i tness. C h a n g e s in h o s t b io logy a s soc ia t ed w i t h p a r a s i t i s m a r e often infer red to b e u n d e r p a r a s i t e con t ro l , p a r t i c u l a r l y w h e n t h e c h a n g e s benefi t t h e p a r a s i t e (e .g . , V i n s o n a n d I w a n t s c h , 1980). T h e e n t o m o l o g i c a l l i t e r a t u r e e m p h a s i z e s t h e effects of p a r a s i t i s m o n h o s t phys io logy ( V i n s o n a n d I w a n t s c h , 1980; Beck­age , 1985; J o n e s , 1985); effects o n hos t b e h a v i o r a r e less well d e s c r i b e d ( b u t see M c A l l i s t e r a n d R o i t b e r g , 1987; B r o d e u r a n d M c N e i l , 1989). N o n e t h e l e s s , b e h a v i o r a l c h a n g e s c a u s e d b y p a r a s i t i s m a r e c o m m o n , a n d o n e m a y h y p o t h ­esize t h a t t h e c h a n g e s a r e p r o d u c t s of n a t u r a l se lec t ion ac t i ng on t h e h o s t o r t h e p a r a s i t e .

H e r e we s u m m a r i z e a diffuse l i t e r a t u r e d e s c r i b i n g p a r a s i t e - i n d u c e d b e ­h a v i o r a l c h a n g e s , cover ing a va r i e ty of m i c r o - (e.g. , fungi a n d v i ruses ) a n d m a c r o p a r a s i t i c (e.g. , p a r a s i t o i d s a n d n e m a t o d e s ) o r g a n i s m s (sensu A n d e r s o n a n d M a y , 1979). T h r e e b r o a d ca tegor ies of b e h a v i o r a l a l t e r a t i o n s i n c l u d e : (1)

Parasites and Pathogens of Insects Copyright © 1993 by Academic Press, Inc. Volume 1: Parasites 107 All rights of reproduction in any form reserved.

Page 115: Parasites and Pathogens of Insects. Parasites

108 David R. Horton and Janice Moore

c h a n g e s in m i c r o h a b i t a t p references , i n c l u d i n g d i u r n a l ac t iv i ty b y n o r m a l l y n o c t u r n a l hos t s ; (2) c h a n g e s in act ivi ty level; a n d (3) r e p r o d u c t i v e ac t iv i ty expres sed u n d e r i n a p p r o p r i a t e cond i t i ons , t h a t is, by c a s t r a t e d hos t s . M o d ­ifications of feeding b e h a v i o r in insec t vec tors a r e exc luded , as th is l i t e r a t u r e h a s b e e n rev iewed ( M o l y n e u x a n d Jeffries, 1986).

Behav io ra l modi f i ca t ions c a u s e d by p a r a s i t i s m c a n be i n t e r p r e t e d to h a v e a r i sen (see a lso M i n c h e l l a , 1985): (1) t h r o u g h n a t u r a l se lec t ion a n d benefi­cial to t h e p a r a s i t e ; (2) t h r o u g h n a t u r a l se lect ion a n d beneficial to t h e hos t ; a n d (3) as a c o n s e q u e n c e of p a t h o l o g y o r s t ress , w h i c h m a y o r m a y n o t benefi t e i the r par ty . M o o r e (1984) , J o n e s (1985) , M o o r e a n d Gote l l i (1990) , a n d C o m b e s (1991) e m p h a s i z e d the i m p o r t a n c e of d e c i d i n g a m o n g these h y p o t h e s e s if o n e is to u n d e r s t a n d the evo lu t i ona ry s ignif icance of b e h a v i o r a l a l t e r a t i ons . We will first cons ide r how b e h a v i o r a l c h a n g e s m i g h t benefi t t h e p a r a s i t e , e m p h a s i z i n g p a r a s i t e d i s s e m i n a t i o n a n d surv iva l . Second , behav­iora l c h a n g e s t h a t m a y benefi t t he hos t t h r o u g h e i the r k in se lec t ion ( "hos t su i c ide" ; S h a p i r o , 1976) o r i nc r ea sed hos t b o d y t e m p e r a t u r e ( " b e h a v i o r a l fever") a r e d i scussed . Finally, r e s e a r c h a r e a s t h a t s h o u l d e n h a n c e o u r u n d e r ­s t a n d i n g of b e h a v i o r a l modi f ica t ions will be p r o p o s e d .

II. Review of Altered Behavior in Parasitized Insects

A. Changes in Microhabitat Preference

Paras i t i zed insec ts often show c h a n g e s in m i c r o h a b i t a t p re fe rence (Tab le 1), i n c l u d i n g m o v e m e n t to e leva ted loca t ions , m o v e m e n t to concea l ed o r ex­posed loca t ions , c h a n g e s in t e m p e r a t u r e pre fe rences , a n d a l t e r e d r e s p o n s e to l ight ; add i t iona l ly , n o c t u r n a l insec ts m a y b e c o m e act ive d u r i n g t h e day. E leva t ion - seek ing b e h a v i o r a p p e a r s c o m m o n l y in hos t s infected b y fungal a n d v i ra l p a t h o g e n s [e.g. , fungal " s u m m i t d i s e a s e " (Mar ikovsky , 1962) a n d v i ra l " t r e e - t o p d i s e a s e " ( S t e i n h a u s , 1949) ] , a l t h o u g h m a c r o p a r a s i t e s s u c h as p a r a s i t o i d s a n d the t r e m a t o d e " b r a i n - w o r m " ( A n o k h i n , 1966) a lso i n d u c e t he behav ior . In sec t s no t typica l ly found o n p l a n t s m a y c l i m b to t h e tops of vege t a t i on ( T h a x t e r , 1888; Biinzli a n d Bii t t iker , 1959); s u b t e r r a n e a n insec ts often move to t he soil surface u p o n b e i n g p a r a s i t i z e d (Tab le 1).

M o v e m e n t to exposed loca t ions is i n d u c e d by a va r i e ty of p a r a s i t e s , in­c l u d i n g fungi, v i ruses , p a r a s i t o i d s , t r e m a t o d e s , a n d ces todes (Tab le 1). M o v e m e n t to concea led loca t ions by a p h i d s p a r a s i t i z e d by a b r a c o n i d w a s p h a s b e e n d o c u m e n t e d ( B r o d e u r a n d M c N e i l , 1989, 1990). B o t h of these effects poss ib ly reflect c h a n g e s in l ight reac t ions of p a r a s i t i z e d hos t s (Bro-

Page 116: Parasites and Pathogens of Insects. Parasites

5. Behavioral Effects of Parasites and Pathogens in Insect Hosts 109

A. Elevation-seeking behavior Fungi Lepidoptera: several species 24, 43, 48, 49

of caterpillars Orthoptera: grasshoppers 24, 32, 38, 43

cricket 43 Hymenoptera: ants 7, 19, 24 Coleoptera 28*, 43 Diptera 3 Homoptera: aphids 14*, 31

Viruses Lepidoptera: several species 1, 9, 11*, 16*, 17, of caterpillars 21, 22, 29, 41, <

Rickettsiella Coleoptera 27* Parasitoids Lepidoptera 37, 42

Hymenoptera: ant 12 Trematodes Hymenoptera: ants 2, 33

Diptera: mosquito larva 45 '

. Behavior seeking exposed locations Fungi Diptera 23, 25 Viruses Lepidoptera 15, 36, 47

Hymenoptera: sawfly 39 Parasitoid Homoptera: aphid 5 Trematode Hymenoptera: ant 8 Cestode Coleoptera 13 '

(continues)

"References: (1) Allen (1921); (2) Anokhin (1966); (3) Baird (1957); (4) Boorstein and Ewald (1987); (5) Brodeur and McNeil (1989); (6) Brodeur and McNeil (1990); (7) Bunzli and Buttiker (1959); (8) Carney (1969); (9) Edland (1965); (10) Eilenberg (1987); (11) Fowler and Robertson (1972); (12) Gosswald (cited in Wickler, 1976); (13) Graham (1966); (14) Harper (1958); (15) Hostetter and Biever (1970); (16) Kalmakoff and Moore (1975); (17) King and Atkinson (1928); (18) Lewis (1960); (19) Loos-Frank and Zimmerman (cited in Romig et al., 1980); (20) Louis et al. (1986); (21) Lounsbury (1913); (22) Lower (1954); (23) MacLeod et al., 1973; (24) Marikovsky (1962); (25) Miller and McClanahan (1959); (26) Moore (1983a); (27) Niklas (cited in Martignoni, 1964); (28) Nirula (1957); (29) Paschke and Hamm (1961); (30) Poinar and Gyrisco (1964); (31) Rockwood (1950); (32) Roffey (1968); (33) Romig et al. (1980); (34) Sato et al. (1983); (35) Schmid-Hempel and Schmid-Hempel (1990); (36) Semel (1956); (37) Shapiro (1976); (38) Skaife (1925); (39) Smirnoff (1960); (40) SmirnofT(1965); (41) Stairs (1965); (42) Stamp (1981); (43) Thaxter (1888); (44) Watson et al. (1993); (45) Webber et al. (1987a); (46) Whitlock (1974); (47) Wygant (1941); (48) Y e n (1962); (49) Y e n d o l and Paschke (1967). * Soil-dwelling insects to surface. 'Parasitized higher in water column. 'Decreased photophobia.

Table 1 Change in Microhabitat Preference by Parasitized Insects

Parasite or pathogen Host References 0

Page 117: Parasites and Pathogens of Insects. Parasites

110 David R. Horton and Janice Moore

Table 1 (continued)

Parasite or pathogen Host References'1

C. Behavior seeking concealed locations Parasitoid Homoptera: aphid 5, 6

D. Change in reaction to light Parasitoid Lepidoptera 18' Acanthocephala Dictyoptera: cockroach 26*

E. Diurnal behavior by nocturnal insects Virus Lepidoptera 40 Parasitoid Lepidoptera 34 Nematode Coleoptera 30

F. Change in temperature preference Rickettsiella Orthoptera: cricket 20 Microsporidium Orthoptera: grasshopper 4 Fungus Diptera 44

G. Change in oviposition or foraging sites Fungus Diptera 10 Diptera Hymenoptera: bumblebee 35

'Increased photophobia.

d e u r a n d M c N e i l , 1989), as n o t e d a lso in o t h e r hos t s (Lewis , 1960; G r a h a m , 1966; M o o r e , 1983a) . D i u r n a l act ivi ty by n o r m a l l y n o c t u r n a l hos t s w a s o b ­served in p a r a s i t i z e d ca te rp i l l a r s a n d beet les (Tab le 1). Final ly , p a r a s i t i z e d cr ickets , g r a s s h o p p e r s , a n d flies select t e m p e r a t u r e s h i g h e r t h a n those se­lec ted by h e a l t h y conspecif ics (Tab le 1).

B. Changes in Level of Activity

V i r u s e s c a u s e g r e g a r i o u s sawflies to e n g a g e in so l i t a ry w a n d e r i n g b e h a v i o r (Smirnoff, 1960, 1961 , 1965); v i rus- infec ted l e p i d o p t e r a n l a rvae m a y l ikewise exh ib i t u n d i r e c t e d w a n d e r i n g (Lower , 1954; S m i t h et al., 1956; T a m a s h i r o a n d H u a n g , 1963). C o c k r o a c h e s pa r a s i t i z ed b y Moniliformis moniliformis s p e n d m o r e t i m e in act iv i ty ( M o o r e , 1983a) a n d m o v e a g r e a t e r d i s t a n c e in a n a r e n a (Wi l son a n d E d w a r d s , 1986) t h a n d o paras i te - f ree insec t s . F o r a g i n g w o r k e r b u m b l e b e e s (Bombus) p a r a s i t i z ed by c o n o p i d flies s p e n d m o r e t i m e a w a y from t h e nes t t h a n d o h e a l t h y bees ( S c h m i d - H e m p e l a n d M u l l e r , 1991). Q u e e n b u m b l e b e e s p a r a s i t i z e d by t h e n e m a t o d e Sphaerularia bombi fly close to t he g r o u n d , occas iona l ly a l i gh t ing a n d d igg ing a d e p r e s s i o n in t h e soil (Po ina r a n d v a n d e r L a a n , 1972; L u n d b e r g a n d Svensson , 1975). J u v e ­ni le n e m a t o d e s a r e expel led in to t h e ho le , a n d t h e p rocess is r e p e a t e d . F l i gh t is c o n t i n u e d long after h e a l t h y bees h a v e in i t i a t ed a b r o o d , h e n c e p a r a s i t i z e d bees have b e e n ca l led " t h e e t e r n a l s eeke r s " (Po ina r a n d v a n d e r L a a n , 1972).

Page 118: Parasites and Pathogens of Insects. Parasites

5. Behavioral Effects of Parasites and Pathogens in Insect Hosts 111

O t h e r p a r a s i t i z e d insec ts show r e d u c e d activity. A l t h o u g h th i s effect m a y ar i se la rge ly from pa tho logy , t h e d e c r e a s e in act iv i ty c a n affect p a r a s i t e o r hos t fi tness (see t h e fol lowing). S o m e p a t h o g e n s c a u s e hos t s to b e c o m e s lug­gish ( H e n r y a n d O m a , 1981; J o h n s o n , 1989); o t h e r s p r o d u c e pa ra ly s i s ( K u l i n c e v i c et al., 1970; R e i n g a n u m et al., 1970). A n t s p a r a s i t i z e d b y ces todes ( P l a t e a u x , 1972) o r t r e m a t o d e s (Carney , 1969) m o v e slowly c o m p a r e d to h e a l t h y conspecif ics . T r e m a t o d e - p a r a s i t i z e d a n t s (Leptothorax) m a y s t ay in t h e nes t , un l ike h e a l t h y a n t s ( P l a t e a u x , 1972). L a r v a l Aedes aegypti p a r a s i t i z e d w i t h a t r e m a t o d e (Plagiorchis noblei) s how r e d u c e d ac t iv i ty ( W e b b e r et al., 1987a) .

C. Reproductive Behavior by Castrated Insects

H o s t s t h a t h a v e b e e n c a s t r a t e d b y n e m a t o d e s m a y none the l e s s r e t a i n n o r m a l o r s l ight ly modif ied r e p r o d u c t i v e behav io r . Blackflies (S imul i idae ) c a s t r a t e d b y m e r m i t h i d n e m a t o d e s exh ib i t b e h a v i o r s imi l a r to t h a t s h o w n b y h e a l t h y flies. B o t h h e a l t h y a n d p a r a s i t i z e d females fly u p s t r e a m to ovipos i t , b u t p a r a s i t i z e d females re lease n e m a t o d e s i n s t e a d of eggs ( G r u n i n , 1949; H u n t e r a n d M o o r h o u s e , 1976; C o l b o a n d Por te r , 1980; Molloy, 1981). M u s c i d a n d sc ia r id flies s h o w " m o c k ov ipos i t i on" ( N a p p i , 1973), d e p o s i t i n g n e m a t o d e s i n s t e a d of fly eggs (Poinar , 1965; Stoffolano, 1970, 1973). P a r a s i t i s m b y n e m ­a t o d e s p r o d u c e s in te r sexes in s o m e c h i r o n o m i d s ; m i d g e s r e t a i n female r e p r o ­d u c t i v e b e h a v i o r s , b u t depos i t n e m a t o d e s i n s t e a d of eggs ( R e m p e l , 1940).

F u n g i in t h e g e n u s Massospora infect c i c a d a s ( H o m o p t e r a ) . I n t h e a d u l t insec t , t hey a r e res t r i c t ed to t he a b d o m i n a l t i ssues ( T h a x t e r , 1888). Succes ­sive a b d o m i n a l s e g m e n t s b e c o m e infected a n d s lough off, even tua l l y p r o d u c ­ing a c i c a d a c o m p o s e d p r i m a r i l y of h e a d a n d t h o r a x (Go lds t e in , 1929). M. cicadina c o n s u m e s t he eggs of i ts hos t (Go lds t e in , 1929); even a t ea r ly s t ages of infect ion, females fail to oviposi t (L loyd et al., 1982). D e s p i t e t h e loss of b o d y s e g m e n t s , infected c i cadas c i r cu la t e a m o n g the m a t i n g p o p u l a t i o n ( S p e a r e , 1921; Soper , 1963). Infec ted m a l e s c o n t i n u e to s ing (Sope r et al., 1976) a n d a t t r a c t h e a l t h y females w i t h w h i c h they a t t e m p t to c o p u l a t e (Soper , 1963). H e a l t h y m a l e s m a y a t t e m p t to c o p u l a t e w i t h infected females (Sope r et al., 1976).

III. Potential Benefits to Parasite

A. Increased Parasite Dissemination

Severa l b e h a v i o r a l a l t e r a t i o n s s h o u l d e n h a n c e p a r a s i t e d i s s e m i n a t i o n . For e x a m p l e , a fungus - o r v i r u s - l o a d e d c a d a v e r o n t he g r o u n d s h o u l d b e a p o o r e r sou rce of i n o c u l u m t h a n o n e a t t r e e t o p level. V i r u s e s t h a t c a u s e e leva t ion-

Page 119: Parasites and Pathogens of Insects. Parasites

112 David R. Horton and Janice Moore

seeking b e h a v i o r in ca te rp i l l a r s w e a k e n t h e hos t ' s e p i d e r m i s ; flaccid c a d a v e r s ("wil t d i s ease" ) even tua l ly b r e a k a n d spill infect ious v i rus o n t o t h e foliage be low (e.g. , T a n a d a , 1963). E leva t ion - seek ing b e h a v i o r by hos t s infected b y fungal p a t h o g e n s exposes n e i g h b o r s to a n infective r a i n of spo res ( M a c L e o d et al., 1966). Fungus - in fec t ed so ld ier beet les (Chauliognathus) g r i p t h e p l a n t w i t h m a n d i b l e s a n d s p r e a d e ly t rae a n d h i n d w ings . T h e b e h a v i o r exposes t h e surface of t he a b d o m e n , from w h i c h fungal spores a r e p r o d u c e d ( C a r n e r , 1980).

D i s s e m i n a t i o n m a y a lso be e n h a n c e d by inc reases in hos t activity. P a t h o ­gens t h a t a t t a ck t he hos t ' s gu t often a r e re leased in t he hos t ' s feces o r r egu rg i ­t a t i ons (e.g. , Smirnoff, 1961), c o n t a m i n a t i n g foliage e a t e n by h e a l t h y insec t s . T h e s e p a t h o g e n s t e n d to kill the i r hos t s slowly, p r o l o n g i n g d i s s e m i n a t i o n . For e x a m p l e , a l a rva l sod w e b w o r m (Crambus trisectus) m a y p a s s u p to 100 mi l l ion Nosema spores in its feces p r io r to d e a t h , a n d c o n t a i n a n a d d i t i o n a l 200 mi l l ion spores a t d e a t h ( M a d d o x , 1973). G r a s s h o p p e r s (Melanoplus) m a y p r o d u c e u p w a r d s of 1 0 9 spores of Nosema locustae (Henry , 1972). P a t h o g e n s t h a t c a u s e s lugg i shness m a k e the hos t v u l n e r a b l e to c a n n i b a l i s m by h e a l t h y conspecif ics ( H e n r y a n d O m a , 1981), o r to p r e d a t o r s t h a t in t u r n d i s s e m i n a t e t he p a t h o g e n (Young a n d Year ian , 1989).

For p a r a s i t e s r e q u i r i n g a v e r t e b r a t e hos t , e l eva t ion-seek ing behav io r , c h a n g e s in activity, a n d inc reased e x p o s u r e all e n h a n c e t r a n s m i s s i o n ( M o o r e , 1984). For i n s t a n c e , a n t s p a r a s i t i z e d by the " b r a i n - w o r m " t r e m a t o d e a t t a c h themse lves to t he t ips of g rass s t e m s w h e r e they a r e inges t ed by g r a z i n g sheep , t he defini t ive hos t of t he p a r a s i t e ( A n o k h i n , 1966). T h e i n c r e a s e d act ivi ty a n d d e c r e a s e d p h o t o p h o b i a s h o w n by cockroaches p a r a s i t i z e d by M. moniliformis cou ld m a k e cockroaches c o n s p i c u o u s to t he p a r a s i t e ' s def ini te hos t , Rattus ( M o o r e , 1983a) . S imi l a r benefi ts resu l t f rom r e d u c e d hos t activ­ity. T r e m a t o d e s c a u s e r e d u c t i o n s in act iv i ty of l a rva l Aedes aegypti, l e a d i n g to i nc r ea sed p r e d a t i o n by the vole defini t ive hos t ( W e b b e r et al., 1987a ,b) .

Behav io r of c a s t r a t e d hos t s d i s s e m i n a t e s t he p a r a s i t e . T h e n e m a t o d e -d e p o s i t i n g act ivi t ies of b u m b l e b e e s (Sect ion I I . B ) likely s p r e a d n e m a t o d e s over t he w i n t e r i n g h a b i t a t of t he bee , p r o d u c i n g infect ions t he fol lowing s p r i n g (Po ina r a n d v a n d e r L a a n , 1971). U p s t r e a m "ov ipos i t i on" b e h a v i o r b y c a s t r a t e d blackflies he lps m a i n t a i n t he m e r m i t h i d p a r a s i t e in t h e s t r e a m (Golbo a n d Por ter , 1980). " M o c k ov ipos i t ion" by m u s c i d s s p r e a d s n e m a t o d e s over a r e a s f r equen ted by h e a l t h y flies ( N a p p i , 1973). M a t i n g a t t e m p t s by Atomr/wra- infec ted c i cadas m a y t r a n s m i t fungal spores to h e a l t h y insec ts (Sope r et al., 1976).

B. Increased Parasite Survival

M o v e m e n t to n e w m i c r o h a b i t a t s by hos t s c a n favor p a r a s i t e s by r e d u c i n g p r e d a t i o n or h y p e r p a r a s i t i s m . S t a m p (1981) n o t e d t h a t Euphydryas phaeton

Page 120: Parasites and Pathogens of Insects. Parasites

5. Behavioral Effects of Parasites and Pathogens in Insect Hosts 113

ca t e rp i l l a r s p a r a s i t i z e d by a b r a c o n i d w a s p m o v e d to e leva ted loca t ions , lower ing r a t e s of h y p e r p a r a s i t i s m . A p h i d s c o n t a i n i n g p a r a s i t o i d s m o v e d to concea l ed loca t ions , r e su l t i ng in d e c r e a s e d r a t e s of h y p e r p a r a s i t i s m ( B r o d e u r a n d M c N e i l , 1989) a n d , potent ia l ly , i nc r ea sed w i n t e r su rv iva l for t he p a r a ­s i toid ( B r o d e u r a n d M c N e i l , 1990). A l i t e r a t u r e rev iew (Fr i t z , 1982) c o n c l u d ­ed t h a t p r e d a t i o n r a t e s often w e r e lower on p a r a s i t i z e d hos t s t h a n o n h e a l t h y hos t s , poss ib ly b e c a u s e of c h a n g e s in hos t behav ior . H o s t c a s t r a t i o n c a n be v iewed as a p a r a s i t e surv iva l s t r a t e g y if it r ed i rec t s r e sou rces u s e d by the h o s t for r e p r o d u c t i o n t o w a r d p rocesses beneficial to t h e p a r a s i t e ( B a u d o i n , 1975).

IV. Potential Benefits to Host

A. Increased Survival of Kin

S h a p i r o (1976) h y p o t h e s i z e d t h a t b e h a v i o r a l c h a n g e s cou ld i n c r e a s e t h e hos t ' s inc lus ive fitness. L a r v a l Chlosyne harrissii p a r a s i t i z e d by a b r a c o n i d w a s p p e r c h a t t he tops of vege ta t ion w h e r e they a r e h igh ly c o n s p i c u o u s ( S h a p i r o , 1976). S h a p i r o s p e c u l a t e d t h a t if n e a r b y ca t e rp i l l a r s w e r e r e l a t e d to t h e p a r a s i t i z e d hos t , t he hos t cou ld ga in in inc lus ive fitness by expos ing itself to p r e d a t o r s ( "hos t su i c ide" ) . P r e d a t i o n w o u l d kill t h e p a r a s i t o i d a n d e l i m i n a t e d a n g e r to re la t ives from t h e act ivi t ies of t h a t p a r t i c u l a r w a s p .

T h e hos t su ic ide h y p o t h e s i s w o u l d s e e m to r e q u i r e severa l fairly res t r ic t ive c o n d i t i o n s ( S h a p i r o , 1976; S m i t h T r a i l , 1980; S t a m p , 1981; M o o r e , 1984; M c A l l i s t e r a n d Ro i tbe rg , 1987): p a r a s i t i z e d hos t s s h o u l d b e r e p r o d u c t i v e l y d e a d ; k in s h o u l d b e a g g r e g a t e d [e.g. , as in social insec ts (see M c A l l i s t e r a n d R o i t b e r g , 1987) ] ; hos t a n d p a r a s i t e p h e n o l o g y s h o u l d al low t h e d e v e l o p i n g p a r a s i t e to even tua l ly p a r a s i t i z e k in of t he infected hos t ; a n d b e h a v i o r a l c h a n g e s s h o u l d inc rease m o r t a l i t y of t he hos t . A n u m b e r of these c o n d i t i o n s qua l i t a t i ve ly a p p e a r to b e m e t in insec t h o s t / p a r a s i t e a s soc ia t ions . P a r a ­s i t ized insec ts suffer f rom p r e d a t i o n by a va r i e ty of a n i m a l s ( W h i t e a n d Du tky , 1940; Smirnoff, 1959; H o s t e t t e r a n d Biever, 1970; Tos towaryk , 1971). Social insec ts show p a r a s i t i s m - i n d u c e d b e h a v i o r a l c h a n g e s t h a t m a y i nc r ea se mor ta l i ty . For e x a m p l e , t he e leva t ion-seek ing r e s p o n s e of p a r a s i t i z e d a n t s i nc reases the i r risk of p r e d a t i o n (Sec t ion I I I . A ) . Final ly , p a r a s i t i c c a s t r a t i o n is c o m m o n , a n d s h o u l d m i n i m i z e t h e cost of su ic ide to t h e hos t ; t h a t is, benefi ts n e e d n o t b e too g r e a t for su ic ide to b e a d v a n t a g e o u s ( M o o r e , 1984), s ince t h e hos t is evo lu t ionar i ly d e a d ( K u r i s , 1974).

M c A l l i s t e r a n d R o i t b e r g (1987) showed t h a t p e a a p h i d s (Acyrthosiphon pisum) p a r a s i t i z e d by a b r a c o n i d w a s p e n g a g e d in b e h a v i o r t h a t t h e a u t h o r s i n t e r p r e t e d as b e i n g su ic ida l . Pa ra s i t i zed a p h i d s f rom h o t d r y h a b i t a t s d r o p p e d from t h e hos t p l a n t , r e su l t i ng in des i cca t ion , in r e s p o n s e to t he a p p r o a c h of a p r e d a t o r . I n we t t e r a r e a s , w h e r e t he b e h a v i o r w a s unl ike ly to

Page 121: Parasites and Pathogens of Insects. Parasites

114 David R. Horton and Janice Moore

resu l t in des icca t ion , a p h i d s were less likely to d r o p f rom t h e hos t (see a lso L a t t a , 1987; T o m l i n s o n , 1987; McAl l i s t e r a n d R o i t b e r g , 1988; M c A l l i s t e r et al, 1990).

Final ly, kin m a y benefi t from hos t b e h a v i o r even if t h e b e h a v i o r a l c h a n g e is n o t " s u i c i d a l . " Pa thogen- in fec ted hos t s t h a t m o v e to n e w m i c r o h a b i t a t s m a y avoid b e i n g c a n n i b a l i z e d b y h e a l t h y k in . Also , a l t h o u g h s o m e behav ­iora l c h a n g e s (e.g. , e leva t ion-seeking) m a y d i s s e m i n a t e infective p r o p a g u l e s over l a rge a r e a s , t he b e h a v i o r cou ld r e d u c e t r a n s m i s s i o n to n e a r b y hos t s ; t h a t is, un less t he p a t h o g e n is h igh ly infective a n d r equ i r e s on ly a few p r o p a g u l e s to beg in a n e w infect ion, w i d e s p r e a d d i s s e m i n a t i o n of p r o p a g u l e s cou ld r e ­d u c e i n o c u l u m dens i t y to t he ex t en t t h a t n e a r b y k in a r e unl ike ly to c o n t a c t a n infective dose ( C . M a c V e a n , p e r s o n a l c o m m u n i c a t i o n ) .

B. Host Defense: Behavioral Fever

H o s t s w o u l d benefi t if a l t e r ed b e h a v i o r ass i s ted in c o m b a t i n g t h e p a r a s i t e . M a n y e c t o t h e r m s r e s p o n d to p a r a s i t i s m b y ra i s ing b o d y t e m p e r a t u r e s ; t h a t is, p a r a s i t i z e d i n d i v i d u a l s select w a r m e r m i c r o h a b i t a t s t h a n d o h e a l t h y a n i ­m a l s ( "behav io ra l fever"; see K l u g e r , 1979, 1990). T h i s o p t i o n m a y b e avai l ­ab l e to insec ts , s ince i nc reased t e m p e r a t u r e s a r e often d e t r i m e n t a l to p a r a s i t e success (Tab le 2; see a lso H e i n r i c h , 1981). Severa l b e h a v i o r a l c h a n g e s a r e cons i s t en t w i t h a fever e x p l a n a t i o n . M o v e m e n t to exposed loca t ions m a y inc rease b o d y t e m p e r a t u r e s . M a r i k o v s k y (1962) sugges t ed t h a t fungus -infected insec ts benef i ted from " so l a r i r r a d i a t i o n " a n d n o t e d t h a t b a s k i n g g r a s s h o p p e r s occas iona l ly recovered f rom the p a t h o g e n . D i u r n a l ac t iv i ty b y n o r m a l l y n o c t u r n a l hos t s m a y ra i se b o d y t e m p e r a t u r e s , a s m i g h t m o v e m e n t to t h e surface b y s u b t e r r a n e a n hos t s . I n c r e a s e d activity, p a r t i c u l a r l y flight, a lso ra ises b o d y t e m p e r a t u r e ( H e i n r i c h , 1981).

Five s tud ies have s h o w n t h a t insec ts cha l l enged w i t h tox ins o r p a t h o g e n s e leva ted the i r b o d y t e m p e r a t u r e s (Brons te in a n d C o n n e r , 1984; Lou i s et al., 1986; Boors t e in a n d E w a l d , 1987; M c C l a i n et al., 1988; W a t s o n et al., 1993); in two cases this was s h o w n to i nc rease hos t su rv iva l (Boors te in a n d E w a l d , 1987; W a t s o n et al., 1993; see a lso Lou i s et al., 1986; C a r r u t h e r s et al., 1992).

V. Considerations for Future Research

W i t h s o m e excep t ions (e.g. , S t a m p , 1981; Boors t e in a n d E w a l d , 1987; McAl l i s t e r a n d R o i t b e r g , 1987; B r o d e u r a n d M c N e i l , 1990), ev idence ty ing b e h a v i o r a l a l t e r a t i ons to hos t o r p a r a s i t e success h a s b e e n a n e c d o t a l . Fu l l u n d e r s t a n d i n g will r e q u i r e e x p e r i m e n t a t i o n , specifically: (1) q u a n t i t a t i v e d e ­sc r ip t ions of b e h a v i o r a l c h a n g e s f rom e x p e r i m e n t s t h a t i n c o r p o r a t e s u i t a b l e

Page 122: Parasites and Pathogens of Insects. Parasites

5. Behavioral Effects of Parasites and Pathogens in Insect Hosts 115

Table 2 Selected Examples of Effects of High Temperature on Survival of Parasitized Hosts or Mortality of Parasites

Parasite or Effects of temperature pathogen Host on host or parasite Reference*

Viruses Caterpillars Host survival at 32.2°C > 26.7°C, 21.1°C, 15.6°C

Host survival at 35°C > 25°C Host survival at 35°C, 30°C > 25°C Host survival at 40°C > 37°C > 33°C

> 30°C

2

7 11 10

Fungi Aphids Fungal growth on agar ceased at 27— 36°C

5

Caterpillar Host survival at 31°C > 26°C, 21°C, 16°C

Host survival at 30°C > 25°C, 20°C, 15°C

3

8

Microsporidium Caterpillar Loss of parasite at culture temperatures of 35°C

12

Bacterium Grasshopper Host survival at 28°C > 20°C 9

Parasitoids Aphid Upper lethal temperature lower for para­sitoid than for host

4

Caterpillar Upper lethal temperature lower for para­sitoid than for host

1, 6

"References: (1) Allen and Smith (1958); (2) Boucias et al. (1980); (3) Boucias et al. (1984); (4) Force and Messenger (1964); (5) Hall and Bell (1960); (6) Kaya and Tanada (1969); (7) Kobayashi et al. (1981); (8) Mohamed et al. (1977); (9) Pospelov (1926); (10) Steinhaus and Dineen (1960); (11) Tanada and Tanabe (1965); (12) Wilson and Sohi (1977).

con t ro l s ; (2) q u a n t i t a t i v e tests of w h e t h e r e i the r p a r t y benefi ts ; a n d (3) tes ts s e p a r a t i n g b e h a v i o r a l c h a n g e s t h a t a r e p r e s e n t b e c a u s e of n a t u r a l se lec t ion o p e r a t i n g o n t h e c o n t e m p o r a r y a s soc ia t ion f rom those t h a t a r e p r e s e n t o n l y for tu i tous ly [i .e. , as ca r ryovers f rom s o m e h i s to r ica l a s soc ia t ion ( M o o r e a n d Gote l l i , 1990) o r as c o n s e q u e n c e s of p a t h o l o g y ] . T h e l a t t e r t w o a p p r o a c h e s a r e i m p o r t a n t in t h a t t r e a t m e n t s of a l t e r e d hos t b io logy m a y o v e r e m p h a s i z e t h e i m p o r t a n c e of t h e p a r a s i t e in t h e i n t e r ac t i on (see a lso M i n c h e l l a , 1985) ; e x p e r i m e n t a t i o n s h o u l d r e d u c e th is t e m p t a t i o n . We c o n c l u d e b y d i s cus s ing these t h r e e a p p r o a c h e s .

A l t h o u g h it is t e m p t i n g to infer b e h a v i o r a l a l t e r a t i ons f rom differences in t h e d i s t r i b u t i o n s of h e a l t h y a n d p a r a s i t i z e d i n d i v i d u a l s , th i s c a n b e m i s l e a d ­i n g ( S t a m p , 1981). J a y n e s (1954) n o t e d t h a t s p r u c e b u d w o r m l a rvae col lec ted f rom t h e u p p e r t ree c r o w n w e r e m o r e likely to b e p a r a s i t i z e d b y Apanteles w a s p s t h a n w e r e ca t e rp i l l a r s lower in t he t ree , w h e r e a s t h e r e w e r e n o d i s t r i -

Page 123: Parasites and Pathogens of Insects. Parasites

116 David R. Horton and Janice Moore

b u t i o n differences for ca te rp i l l a r s pa r a s i t i z ed by Glypta w a s p s . H e n c e , o n e m a y h y p o t h e s i z e e i the r t h a t Apanteles i n d u c e d b e h a v i o r a l c h a n g e s in t h e h o s t whi le Glypta d id no t , o r t h a t t he two p a r a s i t o i d s differed in fo rag ing behav io r . D o a n e (1970) i n d i c a t e d t h a t the t r e e top a c c u m u l a t i o n of v i rus-ki l led gypsy m o t h s (Lymantria dispar) was d u e to t he act ivi t ies of b o t h h e a l t h y a n d infected ca te rp i l l a r s ; infected ca te rp i l l a r s d i ed a t t r e e t o p level, w h e r e a s h e a l t h y in­sects m o v e d d o w n the t ree as they a g e d . I n s u m , d e m o n s t r a t i n g t r u e behav­iora l modi f ica t ions r equ i r e s e x p e r i m e n t a t i o n w i t h su i t ab l e con t ro l s .

Second , from s tud ies r e p o r t e d h e r e , it is n o t poss ib le to d e t e r m i n e t he benef ic iary of a g iven behav io ra l a l t e r a t i on ; i n d e e d , s o m e a l t e r a t i o n s , d e ­p e n d i n g u p o n the p a r a s i t e , cou ld be cons i s t en t w i t h all four h y p o t h e s e s p r e s e n t e d in this p a p e r (Tab le 3). C o s t s a n d benefi ts m a y a c c r u e to b o t h p a r a s i t e a n d hos t . For e x a m p l e , d e v e l o p m e n t r a t e s of M. moniliformis in cock­roaches inc rease as t e m p e r a t u r e inc reases from 20 to 28°C; a t t e m p e r a t u r e s h i g h e r t h a n 28°C, p a r a s i t e s show d e v e l o p m e n t a l a b n o r m a l i t i e s (Lack ie , 1972). T h a t is, a s l ight i nc rease in hos t t e m p e r a t u r e benefi ts t h e p a r a s i t e , w h e r e a s a l a rge inc rease does no t . Moreove r , t r a n s m i s s i o n r e q u i r e s inges t ion by a v e r t e b r a t e hos t . H e n c e , even if a b e h a v i o r a l c h a n g e w e r e , say, a fever r e s p o n s e , if t he act ivi ty a lso i nc reased hos t c o n s p i c u o u s n e s s , t h e p a r a s i t e m i g h t benefi t t h r o u g h e n h a n c e d d i s s e m i n a t i o n .

Table 3

Potential Benefits of Host Behavioral Changes to Parasite or Host*

Parasite adaptive Host adaptive

Increased Increased Increased Behavioral Host behavioral modification dissemination survival survival of kin fever

Elevation-seeking Movement to exposed locations Movement to concealed locations Preference for higher tempera­

ture Altered light reaction Increase in activity Decrease in activity Diurnal activity by nocturnal in­

sects Reproductive activity by cas­

trated hosts or castration itself

a*-Modification potentially consistent with hypothesis for at least a subset of parasites that induce the behavioral change; representative examples discussed in text. O-Modification not obviously consistent with hypothesis or not explored in text.

* * * * 0 * 0 0

* 0 0 *

* 0 * *

* ο * * * 0 * 0

* ο * *

* * 0 0

Page 124: Parasites and Pathogens of Insects. Parasites

5. Behavioral Effects of Parasites and Pathogens in Insect Hosts 117

T h u s , e x p e r i m e n t a t i o n is cr i t ica l for d e t e r m i n i n g t h e benef ic iary of a c h a n g e in behav io r . G i v e n the n u m b e r of poss ib le o u t c o m e s (Tab le 3), th i s a p p r o a c h cou ld b e c o m e q u i t e c o m p l e x . Fami l i a r i t y w i t h t h e s y s t e m m a y e l i m i n a t e s o m e h y p o t h e s e s . For e x a m p l e , s o m e sys t ems m a y b e less sub jec t to k in se lec t ion t h a n a r e o t h e r s ( S m i t h T r a i l , 1980; S t a m p , 1981; M o o r e , 1984; M c A l l i s t e r a n d R o i t b e r g , 1987). I n o n e c a t e r p i l l a r - p a r a s i t o i d s y s t e m , S t a m p (1981) n o t e d t h a t t h e g r e g a r i o u s n a t u r e of t h e hos t m i g h t in i t ia l ly l ead o n e to look for hos t su ic ide . However , s h e a lso n o t e d t h a t su ic ide w a s un l ike ly to evolve b e c a u s e t he hos t w a s a p o s e m a t i c a n d u n p a l a t a b l e ; resu l t s of h e r s t u d y w e r e cons i s t en t w i t h t he l a t t e r h y p o t h e s i s . O n the bas i s of hos t a n d p a r a s i t e biology, M o o r e (1984) c o n c l u d e d t h a t hos t su ic ide w a s unl ike ly to evolve in a r t h r o p o d - A c a n t h o c e p h a l a a s soc ia t ions . Converse ly , in a s y s t e m m o r e a m e n a b l e to k in se lec t ion , b e h a v i o r cons i s t en t w i t h hos t su ic ide w a s d e m o n ­s t r a t e d (McAl l i s t e r a n d R o i t b e r g , 1987).

Last ly , we sugges t t h a t a c o m p a r a t i v e a p p r o a c h , o p t i m a l l y o n e t h a t con­s iders h o s t a n d p a r a s i t e phy logen ie s , m a y b e neces sa ry to fully u n d e r s t a n d t h e evo lu t ion of b e h a v i o r a l a l t e r a t i ons ( J o n e s , 1985; M o o r e a n d Gote l l i , 1990). A b e h a v i o r a l a l t e r a t i o n m a y show u p in a p a r a s i t e / h o s t a s soc i a t i on b e c a u s e it evolved in a n a n c e s t r a l a s soc ia t ion a n d w a s r e t a i n e d in d e s c e n d a n t t a x a ( M o o r e a n d Gote l l i , 1990); benefi ts to d e s c e n d a n t t a x a m i g h t h a v e c h a n g e d or b e a b s e n t a l toge the r . Pa ra s i t e s cou ld benefi t f rom a n evolved h o s t behav io r ; t h a t is, t h e p a r a s i t e m a y elicit a p reex i s t i ng h o s t b e h a v i o r r a t h e r t h a n i n d u c e a novel b e h a v i o r ( M o o r e , 1984). For e x a m p l e , W i c k l e r (1976) sugges t ed t h a t t h e b e h a v i o r s h o w n b y t r e m a t o d e - p a r a s i t i z e d a n t s , t h a t is, a t t a c h i n g themse lves by m a n d i b l e s to t he u p p e r p o r t i o n of a p l a n t , is s imi l a r to a phy logene t i ca l l y old " s l e e p i n g " b e h a v i o r found in o t h e r H y m e n o p t e r a . Fever m a y m a k e hos t s c o n s p i c u o u s , s u c h t h a t t he p a r a s i t e benefi ts v ia d i s ­s e m i n a t i o n to t he defini t ive hos t . Last ly , t he p a r a s i t e m a y benefi t f rom a h o s t p a t h o l o g i c r e s p o n s e . C r a m (1931) n o t e d t h a t g r a s s h o p p e r s infected w i t h t h e n e m a t o d e Tetrameres americana w e r e d r o o p y ( the p a r a s i t e encys t s in g r a s s h o p ­p e r m u s c l e ) , h e n c e m i g h t b e v u l n e r a b l e to t h e gal l i form final hos t . A l t h o u g h cho ice of e n c y s t m e n t si te m a y h a v e evolved t h r o u g h se lec t ion favor ing in­c reased p r e d a t i o n by t h e defini t ive hos t , th is i n t e r p r e t a t i o n is p r e l i m i n a r y in t h e a b s e n c e of o t h e r i n fo rma t ion .

T h e c o m p a r a t i v e a p p r o a c h c a n t ake o n e of two d i r ec t ions : s t u d y of a s ingle p a r a s i t e t a x o n in a va r i e ty of hos t s , o r s t u d y of a va r i e ty of p a r a s i t e s in a s ingle hos t t a x o n [for a n e x a m p l e of t he former , see J o n e s ' (1985) d i scuss ion a b o u t t h e effects of Chelonus p a r a s i t e s o n m e t a m o r p h o s i s in L e p i d o p t e r a ] . T h e p r e s e n t r ev iew sugges t s t h a t t h e r e is a g r e a t d e a l of c o n v e r g e n c e in t h e b e h a v i o r of p a r a s i t i z e d insec t s . I n d e e d , a n u m b e r of b e h a v i o r a l c h a n g e s n o t e d h e r e have pa ra l l e l s in non - in sec t sy s t ems ( H o l m e s a n d Be the l , 1972; M o o r e , 1983b, 1984; M o o r e a n d Gote l l i , 1990). E l eva t ion - seek ing b e h a v i o r is

Page 125: Parasites and Pathogens of Insects. Parasites

118 David R. Horton and Janice Moore

p a r t i c u l a r l y w i d e s p r e a d . T h e fact t h a t p a r a s i t e s as d i s t a n t l y r e l a t ed as fungi ,

v i ruses , p a r a s i t o i d s , a n d t r e m a t o d e s i n d u c e this s a m e b e h a v i o r in the i r insec t

hos t s m i g h t sugges t t h a t e leva t ion-seek ing is a gene ra l i zed insec t r e s p o n s e to

p a r a s i t i s m , a n d t h a t a n y benefi ts to t he p a r a s i t e a r e fo r tu i tous . I n s o m e

n o n i n s e c t sys t ems hos t b e h a v i o r (hence benefits?) differs d e p e n d i n g u p o n the

p a r a s i t e (Be the l a n d H o l m e s , 1973; R a u , 1983, 1984; M o o r e a n d Lasswel l ,

1986). C o m p a r i s o n s of hos t b e h a v i o r in a s ingle insec t species p a r a s i t i z e d by

t a x o n o m i c a l l y u n r e l a t e d p a r a s i t e s w o u l d be of va lue .

Acknowledgments

For comments on versions of this manuscript we thank Ann Baker, John Capinera, Deb Kendall, Jim Krysan, Chuck MacVean, and Tom Unruh. Support for this project was received from the National Science Foundation (Grant BSR-8452076), the Monsanto Company, the Burroughs Wellcome Fund, the Exxon Education Foundation, and the Whitehall Foundation, as well as from NSF grant BSR-8817495 to J. Moore and N. Gotelli. Additional support for D. Horton was obtained from the Colorado Agricultural Experiment Station, USDA-ARS, the Washington Tree Fruit Research Commission, Yakima, and the Winter Pear Bureau, Portland, Oregon.

References

Allen, H. W. (1921). Notes on a bombylid parasite and a polyhedral disease of the southern grass worm, Laphygma fiugiperda. J. Econ. Entomol. 14:510—511.

Allen, W. W., and Smith, R. F. (1958). Some factors influencing the efficiency of Apanteles medicaginis Muesebeck (Hymenoptera: Braconidae) as a parasite of the alfalfa caterpillar, Colias philodice eurytheme Boisduval. Hilgardia 28 :1 -42 .

Anderson, R. M., and May, R. M. (1979). Population biology of infectious diseases. Part I. Nature {London) 280:361-367.

Anokhin, I. A. (1966). Daily rhythm in ants infected with metacercariae of Dicrocoelium lanceatum. Dokl. Akad. Nauk SSSR 166:757-759.

Baird, R. B. (1957). Notes on a laboratory infection of Diptera caused by the fungus Empusa muscae Cohn. Can. Entomol. 89:432-435.

Baudoin, M. (1975). Host castration as a parasitic strategy. Evolution (Lawrence, Kans.) 2 9 : 3 3 5 -352.

Beckage, Ν. E. (1985). Endocrine interactions between endoparasitic insects and their hosts. Annu. Rev. Entomol. 30:371-413.

Bethel, W. M., and Holmes, J. C. (1973). Altered evasive behavior and responses to light in amphipods harboring acanthocephalan cystacanths. J. Parasitol. 59:945-956.

Boorstein, S. M., and Ewald, P. W. (1987). Costs and benefits of behavioral fever in Melanoplus sanguinipes infected by Nosema acndophagus. Physiol. Zool. 60:586-595.

Boucias, D. G., Johnson, D. W., and Allen, G. E. (1980). Effects of host age, virus dosage, and temperature on the infectivity of a nucleopolyhedrosis virus against velvetbean caterpillar, Anticarsia gemmatalis, larvae. Environ. Entomol. 9 :59-61 .

Boucias, D. G., Bradford, D. L., and Barfield, C. S. (1984). Susceptibility of the velvetbean caterpillar and soybean looper (Lepidoptera: Noctuidae) to Nomuraea rileyi: Effects of pa-thotype, dosage, temperature, and host age. J. Econ. Entomol. 77 , 247-253.

Page 126: Parasites and Pathogens of Insects. Parasites

5. Behavioral Effects of Parasites and Pathogens in Insect Hosts 119

Brodeur, J., and McNeil, J. N. (1989). Seasonal microhabitat selection by an endoparasitoid through adaptive modification of host behavior. Science 244 , 226-228.

Brodeur, J., and McNeil, J. N. (1990). Overwintering microhabitat selection by an endo­parasitoid (Hymenoptera: Aphidiidae): Induced phototactic and thigmokinetic responses in dying hosts. J. Insect Behav. 3:751-763.

Bronstein, S. M., and Conner, W. E. (1984). Endotoxin-induced behavioural fever in the Mad­agascar cockroach, Gromphadorhina portentosa. J. Insect Physiol. 30:327-330.

Bunzli, G. H., and Buttiker, W. W. (1959). Fungous diseases of lamellicorn larvae in southern Rhodesia. Bull. Entomol. Res. 50:89-96 .

Carner, G. R. (1980). Entomophthora lampyridarum, a fungal pathogen of the soldier beetle, Chauliognathus pennsylvanicus. J. Invertebr. Pathol. 36:394-398.

Carney, W. R (1969). Behavioral and morphological changes in carpenter ants harboring dicrocoeliid metacercariae. Am. Midi. Nat. 82:605-611.

Carruthers, R. I., Larkin, T. S., and Firstencel, H. (1992). Influence of thermal ecology on the mycosis of a rangeland grasshopper. Ecology 73:190-204.

Colbo, Μ. H., and Porter, G. N. (1980). Distribution and specificity of Mermithidae (Nema-toda) infecting Simuliidae (Diptera) in Newfoundland. Can. J. Zool. 58:1483-1490.

Combes, C. (1991). Ethological aspects of parasite transmission. Am. Nat. 138:866-880. Cram, Ε. B. (1931). Developmental stages of some nematodes of the Spiruoidea parasitic in

poultry and game birds. U.S. Dep. Agric, Tech. Bull. 227 . Doane, C. C. (1970). Primary pathogens and their role in the development of an epizootic in the

gypsy moth. J. Invertebr. Pathol. 15:21-33. Edland, T. (1965). A granulosis of Eupsilia transversa Hufn. (Lepidoptera, Noctuidae) in west

Norway. Entomophaga 10:331-333. Eilenberg, J. (1987). Abnormal egg-laying behaviour of female carrot flies (Psila rosae) induced

by the fungus Entomophthora muscae. Entomol. Exp. Appl. 43:61-65 . Force, D. C , and Messenger, P. S. (1964). Duration of development, generation time, and

longevity of three hymenopterous parasites of Therioaphis maculata, reared at various constant temperatures. Ann. Entomol. Soc. Am. 57:405-413.

Fowler, M., and Robertson, J. S. (1972). Iridescent virus infection in field populations of Wiseana cervinata (Lepidoptera: Hepialidae) and Witlesia sp. (Lepidoptera: Pyralidae) in New Zea­land. J. Invertebr. Pathol. 19:154-155.

Fritz, R. S. (1982). Selection for host modification by insect parasitoids. Evolution (Lawrence, Kans.) 36:283-288.

Goldstein, B. (1929). A cytological study of the fungus Massospora cicadina, parasitic on the 17-year cicada, Magicicada septendecim. Am. J. Bot. 16:394-401.

Graham, G. L. (1966). The behavior of beetles, Tribolium confusum, parasitized by the larval stage of a chicken tapeworm, Raillietina cesticillus. Trans. Am. Microsc. Soc. 85:163.

Grunin, Κ. Y. (1949). A mistake in instinct resulting from parasitic castration in Prosimulium hirtipes Fries (Diptera, Simuliidae). Dokl. Akad. Nauk SSSR 66:305-307.

Hall, I. M., and Bell, J. V. (1960). The effect of temperature on some entomophthoraceous fungi. J. Insect Pathol. 2:247-253.

Harper, A. M. (1958). Notes on behaviour of Pemphigus betae Doane (Homoptera: Aphididae) infected with Entomophthora aphidis Hoffm. Can. Entomol. 90:439-440.

Heinrich, B. (1981). Ecological and evolutionary perspectives. In "Insect Thermoregulation" (B. Heinrich, ed.), pp. 235-302. Wiley, New York.

Henry, J. E. (1972). Epizootiology of infection by Nosema locustae Canning (Microsporidia: Nose-matidae) in grasshoppers. Acrida 1:111-120.

Henry, J. E., and Oma, E. A. (1981). Pest control by Nosema locustae, a pathogen of grasshoppers

Page 127: Parasites and Pathogens of Insects. Parasites

120 David R. Horton and Janice Moore

and crickets. In "Microbial Control of Pests and Plant Diseases 1970-1980" (H. D. Burges, ed.), pp. 573-586. Academic Press, New York.

Holmes, J. C , and Bethel, W. M. (1972). Modification of intermediate host behaviour by parasites. Zool. J. Linn. Soc. 51:123-149.

Hostetter, D. L., and Biever, K. D. (1970). The recovery of virulent nuclear-polyhedrosis virus of the cabbage looper, Trichoplusia ni, from the feces of birds. J. Invertebr. Pathol. 15:173-176.

Hunter, D. M., and Moorhouse, D. E. (1976). Sexual mosaics and mermithid parasitism in Austrosimulium bancrofli (Tayl.) (Diptera, Simuliidae). Bull. Entomol. Res. 65:549-553.

Jaynes, H. A. (1954). Parasitization of spruce budworm larvae at different crown heights by Apanteles and Glypta. J. Econ. Entomol. 47:355-356.

Johnson, D. L. (1989). The effects of timing and frequency of application of Nosema locustae (Microspora: Microsporida) on the infection rate and activity of grasshoppers (Orthoptera: Acrididae). J. Invertebr. Pathol. 54:353-362.

Jones, D. (1985). Endocrine interaction between host (Lepidoptera) and parasite (Cheloninae: Hymenoptera): Is the host or the parasite in control? Ann. Entomol. Soc. Am. 78:141-148.

Kalmakoff, J., and Moore, S. G. (1975). The ecology of nucleopolyhedrosis virus in porina (Wiseana spp.) (Lepidoptera: Hepialidae). N.Z. Entomol. 6:73-76.

Kaya, Η. K., and Tanada Y. (1969). Responses to high temperature of the parasite Apanteles militaris and of its host, the armyworm, Pseudaletia unipuncta. Ann. Entomol. Soc. Am. 62 :1303-1306.

King, Κ. M., and Atkinson, N.J. (1928). The biological control factors of the immature stages of Euxoa ochrogaster Gn. (Lepidoptera, Phalaenidae) in Saskatchewan. Ann. Entomol. Soc. Am. 21:167-188.

Kluger, M. J. (1979). "Fever: Its Biology, Evolution and Function." Princeton Univ. Press, Princeton, NJ.

Kluger, M.J . (1990). The febrile response. In "Stress Proteins in Biology and Medicine" (R. I. Morimoto, A. Tissieres, and C. Geogopoulos, eds.), pp. 61-78 . Cold Spring Harbor Lab. Press, Cold Spring Harbor, New York.

Kobayashi, M., Inagaki, S., and Kawase, S. (1981). Effect of high temperature on the develop­ment of nuclear polyhedrosis virus in the silkworm, Bombyx mori. J. Invertebr. Pathol. 3 8 : 3 8 6 -394.

Kulincevic, J. M., Stairs, G. R., and Rothenbuhler, W. C. (1970). Virus causing paralysis of adult honeybees in Ohio. J. Invertebr. Pathol. 16:423-426.

Kuris, A. M. (1974). Trophic interactions: Similarity of parasitic castrators to parasitoids. Q. Rev. Biol. 49:129-148.

Lackie, J. M. (1972). The effect of temperature on the development of Moniliformis dubius (Acan-thocephala) in the intermediate host, Periplaneta americana. Parasitology 65:371-377.

Latta, B. (1987). Adaptive and non-adaptive suicide in aphids. Nature (London) 330:701. Lewis, F. B. (1960). Factors affecting assessment of parasitization by Apanteles fixmiferanae Vier.

and Glypta fiimiferanae (Vier.) on spruce budworm larvae. Can. Entomol. 92:881-891 . Lloyd, M., White, J., and Stanton, N. (1982). Dispersal of fungus-infected periodical cicadas to

new habitat. Environ. Entomol. 11:852-858. Louis, C , Jourdan, M., and Cabanac, M. (1986). Behavioral fever and therapy in a rickettsia-

infected Orthoptera. Am. J. Physiol. 250:R991-R995. Lounsbury, C. P. (1913). Caterpillar wilt disease. Agric. J. Union S. Afr. 5:448-452. Lower, H. F. (1954). A granulosis virus attacking the larvae of Persectania ewingii Westw. (Lep­

idoptera: Agrotidae) in South Australia. Aust. J. Biol. Sci. 7:161-167. Lundberg, H., and Svensson, B. G. (1975). Studies on the behaviour of Bombus Latr. species

(Hym., Apidae) parasitized by Sphaerularia bombi Dufour (Nematoda) in an alpine area. Nor. J. Entomol. 22:129-134.

Page 128: Parasites and Pathogens of Insects. Parasites

5. Behavioral Effects of Parasites and Pathogens in Insect Hosts 121

MacLeod, D. M., MacBain Cameron, J. W., and Soper, R. S. (1966). The influence of environ­mental conditions on epizootics caused by entomogenous fungi. Rev. Roum. Biol., Ser. Bot. 11:125-134.

MacLeod, D. M., Tyrrell, D. , Soper, R. S., and De Lyzer, A.J. (1973). Entomophthora bullata as a pathogen of Sarcophaga aldnchi. J. Invertebr. Pathol. 22:75-79 .

Maddox, J. V. (1973). The persistence of the Microsporidia in the environment. Misc. Publ. Entomol. Soc. Am. 9:99-104.

Marikovsky, R I. (1962). On some features of behavior of the ants Formica rufa L. infected with fungous disease. Insectes Soc. 9:173-179.

Martignoni, Μ. E. (1964). Pathophysiology in the insect. Anna. Rev. Entomol. 9:179-206. McAllister, Μ. K., and Roitberg, B. D. (1987). Adaptive suicidal behaviour in pea aphids.

Nature (London) 328:797-799. McAllister, Μ. K., and Roitberg, B. D. (1988). Assumptions about suicidal behaviour of aphids.

Nature (London) 332:494-495. McAllister, Μ. K., Roitberg, B. D., and Laurence Weldon, K. (1990). Adaptive suicide in pea

aphids: Decisions are cost sensitive. Anim. Behav. 40:167-175. McClain, E., Magnuson, P., and Warner, S. J. (1988). Behavioural fever in a Namib Desert

tenebrionid beetle Onymacns plana. J. Insect Physiol. 34:279-284. Miller, L. Α., and McClanahan, R.J . (1959). Note on occurrence of the fungus Empusa muscae

Cohn on adults of the onion maggot, Hylemya antiqua (Meig.) (Diptera: Anthomyiidae). Can. Entomol. 91:525-526.

Minchella, D. J. (1985). Host life-history variation in response to parasitism. Parasitology 90:205-216.

Mohamed, A.K.A., Sikorowski, P. P., and Bell, J. V. (1977). Susceptibility of Heliothis zea larvae to Nomuraea rileyi at various temperatures. J. Invertebr. Pathol. 30:414-417.

Molloy, D. P. (1981). Mermithid parasitism of blackflies (Diptera: Simuliidae). J. Nematol. 13:250-256.

Molyneux, D. H., and Jeffries, D. (1986). Feeding behaviour of pathogen-infected vectors. Parasitology 92:721-736.

Moore, J. (1983a). Altered behavior in cockroaches (Periplaneta americana) infected with an Archi-acanthocephalan, Moniliformis moniliformis. J. Parasitol. 69:1174-1176.

Moore, J. (1983b). Responses of an avian predator and its isopod prey to an acanthocephalan parasite. Ecology 64:1000-1015.

Moore, J. (1984). Altered behavioral responses in intermediate hosts—an acanthocephalan parasite strategy. Am. Nat. 123:572-577.

Moore, J., and Gotelli, N. J. (1990). A phylogenetic perspective on the evolution of altered host behaviours: A critical look at the manipulation hypothesis. In "Parasitism and Host Behaviour" (C. J. Barnard and J. M. Behnke, eds.), pp. 193-233. Taylor & Francis, New York.

Moore, J., and Lasswell, J. (1986). Altered behavior in isopods (Armadillidium vulgare) infected with the nematode Dispharynx nasuta. J. Parasitol. 72:186-189.

Nappi, A. J. (1973). Effects of parasitization by the nematode, Heterotylenchus autumnalis, on mating and oviposition in the host, Musca autumnalis. J. Parasitol. 59:963—969.

Nirula, Κ. K. (1957). Observations on the green muscardine fungus in populations of Oryctes rhinoceros L. J. Econ. Entomol. 50:767-770.

Paschke, J. D., and Hamm, J. J. (1961). A nuclear polyhedrosis of Rachiplusia ou (Guenee). J. Insect Pathol. 3:333-334.

Plateaux, L. (1972). Sur les modifications produites chez une formi par la presence d'un parasite cestode. Ann. Sci. Nat.: Zool. Biol. Anim. [12] 14:203-220.

Poinar, G. O., Jr. (1965). The bionomics and parasitic development of Tripius sciarae (Bovien)

Page 129: Parasites and Pathogens of Insects. Parasites

122 David R. Horton and Janice Moore

(Sphaerulariidae: Aphelenchoidea), a nematode parasite of sciarid flies (Sciaridae: Diptera). Parasitology 55:559-569.

Poinar, G. O., Jr., and Gyrisco, G. G. (1964). Effect of light on the behavior of the alfalfa weevil, Hypera postica. Ann. Entomol. Soc. Am. 57:213-215.

Poinar, G. O., Jr., and van der Laan, P. A. (1972). Morphology and life history of Sphaerularia bombi. Nematologica 18:239-252.

Pospelov, V. P. (1926). The influence of temperature on the maturation and general health of Locusta migratoria L. Bull. Entomol. Res. 16:363-367.

Rau, Μ. E. (1983). The open-field behaviour of mice infected with Trichinella spiralis. Parasitology 86:311-318.

Rau, Μ. E. (1984). The open-field behaviour of mice infected with Trichinella pseudospiralis. Parasitology 88:415-419.

Reinganum, C., O'Loughlin, G. T , and Hogan, T. W. (1970). A nonoccluded virus of the field crickets Teleogryllus oceanicus and T. commodus (Orthoptera: Gryllidae). J. Invertebr. Pathol. 16:214-220.

Rempel, J. G. (1940). Intersexuality in Chironomidae induced by nematode parasitism. J. Exp. Zool. 84:261-289.

Rockwood, L. P. (1950). Entomogenous fungi of the family Entomophthoraceae in the Pacific Northwest. J. Econ. Entomol. 43:704-707.

Roffey, J. (1968). The occurrence of the fungus Entomophthora grylli Fresenius on locusts and grasshoppers in Thailand. J. Invertebr. Pathol. 11:237-241.

Romig, T , Lucius, R., and Frank, W. (1980). Cerebral larvae in the second intermediate host of Dicrocoelium dendriticum (Rudolphi, 1819) and Dicrocoelium hospes Looss, 1907 (Trematodes, Dicrocoeliidae). Z. Parasitenkd. 63:277-286.

Sato, Y., Tanaka, T , Imafuku, M., and Hidaka, T. (1983). How does diurnal Apanteles kariyai parasitize and egress from a nocturnal host larva? Konchu 51:128-139.

Schmid-Hempel, P., and Schmid-Hempel, R. (1990). Endoparasitic larvae of conopid flies alter pollination behavior of bumblebees. Naturwissenschqflen 77:450-452.

Schmid-Hempel, R., and Muller, C. B. (1991). Do parasitized bumblebees forage for their colony? Anim. Behav. 41:910-912.

Semel, M. (1956). Polyhedrosis wilt of cabbage looper on Long Island. J. Econ. Entomol. 4 9 : 4 2 0 -421.

Shapiro, A. M. (1976). Beau geste? Am. Nat. 110:900-902. Skaife, S. H. (1925). The locust fungus, Empusa grylli, and its effects on its host. S. Afr. J. Sci.

22:298-308. Smirnoff, W. A. (1959). Predators of Neodiprion swainei Midd. (Hymenoptera: Tenthredinidae)

larval vectors of virus diseases. Can. Entomol. 91:246-248. Smirnoff, W. A. (1960). Observations on the migration of larvae of Neodiprion swainei Midd.

(Hymenoptera: Tenthredinidae). Can. Entomol. 92:957-958. Smirnoff, W. A. (1961). A virus disease of Neodiprion swainei Middleton. J. Insect Pathol. 3 : 2 9 -

46. Smirnoff, W. A. (1965). Observations on the effect of virus infection on insect behavior. J.

Invertebr. Pathol. 7:387-388. Smith, O. J. } Hughes, Κ. M., Dunn, P. H., and Hall, I. M. (1956). A granulosis virus disease of

the western grape skeletonizer and its transmission. Can. Entomol. 88:507-515. Smith Trail, D. R. (1980). Behavioral interactions between parasites and hosts: Host suicide and

the evolution of complex life cycles. Am. Nat. 116:77-91 . Soper, R. S. (1963). Massospora levispora, a new species of fungus pathogenic to the cicada,

Okanagana rimosa. Can J. Bot. 41:875-878. Soper, R. S., Delyzer, A. J., and Smith, L.F.R. (1976). The genus Massospora entomopathogenic

Page 130: Parasites and Pathogens of Insects. Parasites

5. Behavioral Effects of Parasites and Pathogens in Insect Hosts 123

for cicadas. Part II. Biology of Massospora levispora and its host Okanagana rimosa, with notes on Massospora cicadina on the periodical cicadas. Ann. Entomol. Soc. Am. 69:89-95 .

Speare, A. T. (1921). Massospora cicadina Peck, a fungous parasite of the periodical cicada. Mycologia 13:72-82.

Stairs, G. R. (1965). Artificial initiation of virus epizootics in forest test caterpillar populations. Can. Entomol. 97:1059-1062.

Stamp, Ν. E. (1981). Behavior of parasitized aposematic caterpillars: Advantageous to the parasitoid or the host? Am. Nat. 118:715-725.

Steinhaus, E. A. (1949). "Principles of Insect Pathology." McGraw-Hill, New York. Steinhaus, Ε. Α., and Dineen, J. P. (1960). Observations on the role of stress in a granulosis of

the variegated cutworm. J. Insect Pathol. 2:55-65. Stoffolano, J. G., Jr. (1970). Nematodes associated with the genus Musca (Diptera: Muscidae).

Bull. Entomol. Soc. Am. 16:194-203. Stoffolano, J. G., Jr. (1973). Host specificity of entomophilic nematodes—a review. Exp. Parasitol.

33:263-284. Tamashiro, M., and Huang, S. (1963). A cytoplasmic polyhedrosis of Cactoblastis cactorum (Berg).

J. Insect Pathol. 5:397-399. Tanada, Y. (1963). Epizootiology of infectious diseases. In "Insect Pathology" (E. A. Steinhaus,

ed.), Vol. 2, pp. 423-475. Academic Press, New York. Tanada, Y., and Tanabe, A. M. (1965). Resistance of Galleria mellonella (Linnaeus) to the Tipula

iridescent virus at high temperatures. J. Invertebr. Pathol. 7:184-188. Thaxter, R. (1888). The Entomophthoreae of the United States. Mem. Boston Soc. Nat. Hist.

4:133-201. Tomlinson, I. (1987). Adaptive and non-adaptive suicide in aphids. Nature (London) 330:701. Tostowaryk, W. (1971). Relationship between parasitism and predation of diprionid sawflies.

Ann. Entomol. Soc. Am. 64:1424-1427. Vinson, S. B., and Iwantsch, G. F. (1980). Host regulation by insect parasitoids. Q. Rev. Biol.

55:143-165. Watson, D. W., Mullens, Β. Α., and Petersen, J. J. (1993). Behavioral fever response οϊ Musca

domestica (Diptera: Muscidae) to infection by Entomophthora muscae (Zygomycetes: Ento-mophthorales). J. Invertebr. Pathol. 61:10-16 .

Webber, R. Α., Rau, Μ. E., and Lewis, D.J . (1987a). The effects of Plagiorchis noblei (Trematoda: Plagiorchiidae) metacercariae on the behavior οϊ Aedes aegypti larvae. Can. J. Zool. 65 :1340-1342.

Webber, R. Α., Rau, Μ. E., and Lewis, D.J . (1987b). The effects οϊ Plagiorchis noblei (Trematoda: Plagiorchiidae) metacercariae on the susceptibility οϊ Aedes aegypti larvae to predation by gup-pies (Poecilia reticulata) and meadow voles (Microtuspennsylvanicus). Can. J. Zool. 65:2346-2348.

White, R. T , and Dutky, S. R. (1940). Effect of the introduction of milky diseases on populations of Japanese beetle larvae. J. Econ. Entomol. 33:306-309.

Whitlock, V. H. (1974). Symptomology of two viruses infecting Heliothis armigera. J. Invertebr. Pathol. 23:70-75 .

Wickler, W. (1976). Evolution-oriented ethology, kin selection, and altruistic parasites. Z. Tierpsychol. 42:206-214.

Wilson, G. G., and Sohi, S. S. (1977). Effect of temperature on healthy and microsporidia-infected continuous cultures of Malacosoma dissitna hemocytes. Can. J. Zool. 55:713-717.

Wilson, K., and Edwards, J. (1986). The effects of parasitic infection on the behaviour of an intermediate host, the American cockroach, Periplaneta amencana, infected with an acan­thocephalan, Moniliformis moniliformis. Anim. Behav. 34:942-944.

Wygant, N. D. (1941). An infestation of the pandora moth, Coloradia pandora Blake, in lodgepole pine in Colorado. J. Econ. Entomol. 34:697-702.

Page 131: Parasites and Pathogens of Insects. Parasites

124 David R. Horton and Janice Moore

Yen, D. F. (1962). An Entomophthora infection in the larva of the tiger moth, Creatonotus gangis (Linnaeus). J. Insect Pathol. 4 :88-94.

Yendol, W. G., and Paschke, J. D. (1967). Infection of a looper complex by Entomophthora sphaerosperma. J. Invertebr. Pathol. 9:274-276.

Young, S. Y , and Yearian, W. C. (1989). Nuclear polyhedrosis virus-infected and healthy Anticarsia gemmatalis larvae as prey for Nabis roseipennis adults in the laboratory. J. Invertebr. Pathol. 54:139-143.

Page 132: Parasites and Pathogens of Insects. Parasites

Chapter 6

^Hfl Redirection of Host JHfl Metabolism and Effects on ^flH Parasite Nutrition

S. N. Thompson Department of Entomology University of California Riverside, California

I. Introduction

II. Insect Parasitism and Host Viability

III. Altered Metabolite Levels in Host Tissues A. Carbohydrates B. Proteins and Amino Acids C. Lipids

IV. Metabolic Alteration in Insect Hosts A. Trichoplusia ni Parasitized by

Hyposoter exiguae B. Manduca sexta Parasitized by Cotesia

congregata

V. Basis for Metabolic Alterations: Hormones, Viruslike Particles, and Parasite Mediation

VI. Nutritional Consequences of Metabolic Redirection and Physiological Alteration

VII. "Host Regulation" and Its Role in Redirecting Host Metabolism and Physiology

VIII. Enantiostastis and Metabolic Regulation

IX. Conclusion References

I. Introduction

T h i s c h a p t e r ou t l ines t he effects of p a r a s i t i s m by p r o t e l e a n insec t p a r a s i t e s o r

p a r a s i t o i d s 1 on t he i n t e r m e d i a r y m e t a b o l i s m of the i r insect hos t s . Successful

p a r a s i t i c r e l a t i onsh ip s invo lv ing k o i n o b i o n t i c p a r a s i t o i d s (Sec t ion I I ) r e q u i r e

t h a t t h e p a r a s i t e be " a d a p t e d to t he p h y s i o c h e m i c a l c o n d i t i o n s of t h e h o s t "

a n d "u t i l i ze hos t n u t r i e n t in a m a n n e r c o m p a t i b l e w i t h hos t s u r v i v a l "

( S m y t h , 1976). T o fulfill t hese r e q u i r e m e n t s , a l t e r a t i ons in t h e hos t ' s phys io l -

l rThe term parasite is used here to describe the activity and behavior of the parasitic larval stages of "protelean insect parasites" (Askew, 1971). Parasitoid is used in reference to the free-living adult stage.

Parasites and Pathogens of Insects Volume I: Parasites 125

Copyright © 1993 by Academic Press, Inc. All rights of reproduction in any form reserved.

Page 133: Parasites and Pathogens of Insects. Parasites

126 S. Ν. Thompson

ogy often a r e necessa ry (V inson , 1984). T h i s " r e d i r e c t i o n " of t h e h o s t is a m u l t i d i m e n s i o n a l p h e n o m e n o n usua l ly a c c o m p a n i e d by o b s e r v a b l e c h a n g e s in g r o w t h , d e v e l o p m e n t , a n d b e h a v i o r ( T h o m p s o n , 1990). T h e h o s t r e m a i n s a d i s t inc t a n d v iab le enti ty, b u t its fate is p e r m a n e n t l y a l t e r ed ( T h o m p s o n , 1983a) . T h e p rocess of r ed i rec t ion is cr i t ica l for t h e success of t h e p a r a s i t e a n d h a s i m p o r t a n t c o n s e q u e n c e s in t he evolu t ion of these p a r a s i t e - h o s t re la­t i onsh ips .

T h e phys io logy of t he p a r a s i t i z e d hos t reflects c h a n g e s in t he n o r m a l funct ion a n d act ivi ty of t he hos t ' s t i ssues a n d o r g a n sy s t ems . T h e o b s e r v e d effects a r e man i fes t ed t h r o u g h c h a n g e s in m e t a b o l i s m . I n d e e d , m e t a b o l i s m is r e spons ib l e for m a i n t a i n i n g phys io log ica l funct ion a n d a l t h o u g h n o t m a c r o -scopica l ly ev iden t , phys io logica l i n t e g r a t i o n is ach ieved t h r o u g h m e t a b o l i c , t h a t is, b i o c h e m i c a l , r egu la t i on . E v e n the s imples t phys io log ica l a d j u s t m e n t involves c o m p l e x n e t w o r k s of b i o c h e m i c a l r eac t ions a n d the i r a s soc ia t ed r e g u l a t o r y m e c h a n i s m s i n t e g r a t e d t h r o u g h the hos t ' s n e r v o u s a n d e n d o c r i n e sy s t ems . T h e m o l e c u l a r a n d b i o c h e m i c a l bases for t h e r ed i r ec t i on of hos t phys io logy a r e t he sub jec t of i n t ense s tudy. C h a n g e s in i n t e r m e d i a r y m e t a b o ­l ism t h a t m a y b e a d a p t i v e in r e l a t ion to n o u r i s h m e n t of t h e d e v e l o p i n g p a r a s i t e l a rvae a r e t he sub jec t of th is d i scuss ion .

II. Insect Parasitism and Host Viability

P r o t e l e a n insec t p a r a s i t e s c o m p r i s e t h e la rges t g r o u p of p a r a s i t i c a n i m a l s . However , b e c a u s e t he fate of t he insect hos t is, in m o s t cases , d e a t h , insec t p a r a s i t e s were h is tor ica l ly cons ide red to b e p r i m i t i v e — " the i r feeding b e h a v ­ior i n t e r m e d i a t e b e t w e e n the p a r a s i t i c a n d p r e d a c e o u s e n d s of t h e b e h a v i o r a l c o n t i n u u m " ( K n u t s o n a n d Berg , 1966). I t is now a p p r e c i a t e d t h a t t h e p a r a ­sit ic s tages of insect p a r a s i t e s exh ib i t a g r e a t d ivers i ty of " feeding b e h a v i o r . " A s k e w a n d S h a w (1986) d i s t i ngu i shed id iob ion t i c p a r a s i t o i d s , w h i c h p a r a ­lyze a n d kill t he i r hos t quickly, a n d ko inob ion t i c species , w h i c h deve lop in a h o s t t h a t r e m a i n s al ive a n d c o n t i n u e s to feed. I n t h e l a t t e r case , t h e h o s t a n d p a r a s i t e often exh ib i t a n a r r a y of phys io log ica l , b e h a v i o r a l , a n d d e v e l o p m e n ­ta l i n t e r ac t i ons .

E s t a b l i s h i n g t h e v iabi l i ty of t he p a r a s i t e - h o s t c o m p l e x is i m p o r t a n t for assess ing the p a t h o l o g i c a l c o n s e q u e n c e s of p a r a s i t i s m to t h e hos t . V iab i l i t y is i nex t r i cab ly l inked w i t h energy. T h e o rde r ly p roces s ing of ene rgy is t h e func­t ion of m e t a b o l i s m a n d is ach ieved t h r o u g h the r e g u l a t i o n of b i o c h e m i c a l p a t h w a y s . I n this r e g a r d , t he a d e n y l a t e nuc l eo t i de pool p l ays a u b i q u i t o u s a n d p ivo ta l role . A d e n y l a t e s inf luence t he act ivi ty of m a n y r e g u l a t o r y en ­z y m e s a n d the i r ra t ios a r e m e a s u r e s of t h e p h o s p h o r y l a t i o n p o t e n t i a l as p r e d i c t e d by the t heo ry of m e t a b o l i c r egu l a t i on t h r o u g h f rac t ional ampl i f ica -

Page 134: Parasites and Pathogens of Insects. Parasites

6. Host Metabolism and Parasite Nutrition 127

t ion (see N e w s h o l m e a n d S t a r t , 1973). B e c a u s e m a n y r e g u l a t o r y e n z y m e s a r e affected b y a d e n y l a t e ra t ios r a t h e r t h a n by t h e a b s o l u t e c o n c e n t r a t i o n s of i n d i v i d u a l nuc l eo t ide s , t h e ene rgy c h a r g e r a t i o [ E C = A T P + J A D P ) / A T P + A D P + A M P ) ] h a s p r o v e n to b e of c o n s i d e r a b l e i m p o r t a n c e in m e t a b o l i c r e g u l a t i o n (A tk inson , 1968). C h a p m a n et al. (1971) d e m o n s t r a t e d E C to b e a n overa l l i n d i c a t o r of v iabi l i ty in vivo. E C is a q u a l i t a t i v e m e a s u r e of t h e p o t e n t i a l ene rgy of t h e o r g a n i s m a n d therefore p rov ides a p a r a m e t e r for e v a l u a t i o n t h e overal l m e t a b o l i c s t ress i n d u c e d by p a r a s i t i s m .

S tud i e s b y T h o m p s o n a n d Y a m a d a (1984) o n the a d e n y l a t e n u c l e o t i d e poo l of t h e insec t hos t Trichoplusia ni ( H u b n e r ) p a r a s i t i z e d by t h e so l i t a ry i c h n e u m o n i d Hyposter exiguae (Viereck) c lear ly d e m o n s t r a t e d t h a t t h e e n e r g y s t a t u s of t h e insec t hos t is m a i n t a i n e d following p a r a s i t i z a t i o n d e s p i t e ex t en ­sive a l t e r a t i o n s in phys io logy a n d behav io r . T h e c o n c e n t r a t i o n s a n d r a t io s of a d e n y l a t e nuc l eo t ides in t h e fat b o d y of four th - ins t a r T. ni w e r e d e t e r m i n e d 3 d a y s pos tov ipos i t ion . T h e level of A M P t e n d e d to i nc rea se a n d A T P d e ­c reased , b u t t h e E C was on ly s l ight ly a l t e r ed . S u b s e q u e n t in vivo 1 3 P - N M R s tud ie s w i t h Manduca sexta ( L i n n a e u s ) p a r a s i t i z e d by t h e g r e g a r i o u s b r a c o n i d Cotesia congregata ( M a s s o n ) [=Apanteles congregatus (Say) ] d e m o n s t r a t e d t h a t t he overal l e n e r g y s t a t u s of th is insec t hos t a lso w a s m i n i m a l l y affected b y p a r a s i t i s m ( T h o m p s o n et al., 1988).

III. Altered Metabolite Levels in Host Tissues

A. Carbohydrates

D a h l m a n a n d V i n s o n (1975) w e r e t he first to obse rve e l eva ted h e m o l y m p h t r e h a l o s e levels in p a r a s i t i z e d insec ts . T h e m e a n t r eha lo se c o n c e n t r a t i o n in Heliothis virescens (Fabr i c ius ) p a r a s i t i z e d l a te in t h e s econd i n s t a r b y t h e b r a ­con id Microplitis croceipes (Cres son) i n c r e a s e d from a p p r o x i m a t e l y 5 to 40 mM b y 6 d a y s pos tov ipos i t ion , a n d the rea f te r dec l ined . I n c o n t r a s t , t h e t r e h a l o s e level in h e m o l y m p h of con t ro l insec ts i n c r e a s e d from 4 to 16 mM d u r i n g t h e s a m e p e r i o d . T h e fat b o d y g lycogen level of p a r a s i t i z e d H. virescens a l so i n c r e a s e d fol lowing p a r a s i t i z a t i o n , f rom a m e a n of 81 μ g / m g fresh w e i g h t to a p p r o x i m a t e l y 100 μ g / m g 5 d a y s pos tov ipos i t ion . The rea f t e r , g lycogen level d e c r e a s e d a n d , a t t h e t i m e of p a r a s i t e e m e r g e n c e , t h e fat b o d y of p a r a s i t i z e d l a rvae w a s a l m o s t g lycogen d e p l e t e d ( D a h l m a n a n d V i n s o n , 1980). G l y c o g e n a lso i n c r e a s e d in fat b o d y of con t ro l l a rvae , b u t to a lesser ex t en t . T h e a u t h o r s sugges t ed t h a t g lycogen m o b i l i z a t i o n m a y h a v e c o n t r i b u t e d to t h e e leva t ion in h e m o l y m p h t r eha lo se o b s e r v e d in p a r a s i t i z e d insec t s . E l e v a t e d h e m o ­l y m p h t r e h a l o s e in H. virescens w a s l a t e r r e p o r t e d by D a h l m a n a n d V i n s o n

Page 135: Parasites and Pathogens of Insects. Parasites

128 S. Ν. Thompson

(1976) d u r i n g p a r a s i t i z a t i o n by the i c h n e u m o n i d p a r a s i t o i d Campoletis so­norensis ( C a m e r o n ) .

Trichoplusia ni l a rvae pa r a s i t i z ed la te in t h e th i rd s t a d i u m by H. exiguae d i sp l ayed s h a r p l y e leva ted t i ssue c a r b o h y d r a t e levels d u r i n g the i r deve lop ­m e n t ( T h o m p s o n , 1982a) . H e m o l y m p h t r eha lose c o n c e n t r a t i o n i n c r e a s e d from 12 to 15 mM a t t he t i m e of ovipos i t ion to a m e a n of a p p r o x i m a t e l y 35 mM d u r i n g the fifth s t a d i u m , 2 to 4 d a y s after p a r a s i t i z a t i o n . T h e t r eha lo se level in con t ro l l a rvae r e m a i n e d a l m o s t c o n s t a n t . T h e g lycogen level in t h e fat b o d y of p a r a s i t i z e d la rvae a lso i nc reased d u r i n g the four th s t a d i u m from a m e a n of a p p r o x i m a t e l y 50 μ g / m g fresh we igh t to 140 μ g / m g b y 2 d a y s pos tov ipos i t ion . The rea f t e r , g lycogen dec l ined . I n c o n t r a s t , t h e g lycogen lev­el in fat b o d y of con t ro l l a rvae dec l ined t h r o u g h o u t t h e four th s t a d i u m from 50 μ g / m g to a p p r o x i m a t e l y 10 μ g / m g , a n d i nc rea sed d u r i n g the fifth s t ad i ­u m to a p p r o x i m a t e l y 120 μ g / m g .

A l t e r ed hos t t i ssue c a r b o h y d r a t e levels have a lso b e e n r e p o r t e d d u r i n g o t h e r insec t p a r a s i t e - h o s t r e l a t i onsh ips . F u h r e r (1972) r e p o r t e d a n i n c r e a s e d level of g lycogen in fat body, m i d g u t , a n d h y p o d e r m i s of Pieris brassicae L i n -n e a u s p a r a s i t i z e d by Cotesia (=Apanteles) glomeratus ( L i n n e a u s ) . O n the bas i s of h is to logica l s tud ie s , H a w l i t z k y a n d B o u l a y (1986) sugges t ed t h a t t i ssues of Anagasta kuehniella Ze l le r pa r a s i t i z ed by Phanerotoma flavitestacea F i sch . h a d h i g h e r levels of g lycogen t h a n were obse rved in con t ro l l a rvae . T h o m p s o n et al. (1990) obse rved e leva ted g lycogen in h is to logica l sec t ions of Μ. sexta fat b o d y following p a r a s i t i z a t i o n by C. congregata. T h e h e m o l y m p h t r eha lo se level of M. sexta, however , was r e d u c e d by p a r a s i t i s m , verifying ear l i e r r e p o r t s by D a h l m a n (1969, 1975) on this p a r a s i t e - h o s t r e l a t i onsh ip .

B. Proteins and Amino Acids

J u n n i k k a l a (1966) w a s a m o n g the first to r e p o r t a l t e r a t i o n s in n i t r o g e n m e ­tabo l i t es following p a r a s i t i z a t i o n by a n insec t p a r a s i t o i d . T i s s u e a m i n o ac ids a n d p r o t e i n s were e x a m i n e d in P. brassicae l a rvae p a r a s i t i z e d w h e n o n e d a y old by the g r e g a r i o u s p a r a s i t o i d C. glomerata. Fol lowing p a r a s i t i z a t i o n , t h e to ta l c o n c e n t r a t i o n of n inhyd r in -pos i t i ve c o m p o u n d s in t h e hos t ' s h e m o ­l y m p h fluctuated a n d was on ly occas iona l ly h i g h e r t h a n t h e levels in h e m o ­l y m p h of u n p a r a s i t i z e d con t ro l s . D u r i n g the fifth s t a d i u m , however , t h e level of h e m o l y m p h p r o t e i n w a s s ignif icant ly lower in p a r a s i t i z e d l a rvae . T h e p r e d o m i n a n t p ro t e in , d e s i g n a t e d " p e p t i d e 1" a n d p r o b a b l y a s t o r age p r o t e i n , in h e m o l y m p h of u n p a r a s i t i z e d last i n s t a r l a rvae was a b s e n t f rom h e m o ­l y m p h of p a r a s i t i z e d insec ts .

T h e h e m o l y m p h a m i n o acid compos i t i ons of p a r a s i t i z e d a n d u n p a r ­as i t ized P. brassicae were qua l i t a t ive ly a n d q u a n t i t a t i v e l y s imi l a r un t i l t h e e n d of t he fifth s t a d i u m . A t t h a t t ime t h e levels of several a m i n o ac ids , i n c l u d i n g

Page 136: Parasites and Pathogens of Insects. Parasites

6. Host Metabolism and Parasite Nutrition 129

pro l i ne , se r ine , g l u t a m a t e / g l u t a m i n e , a n d g lyc ine , w e r e s ignif icant ly h i g h e r in h e m o l y m p h of p a r a s i t i z e d l a rvae . I n c o n t r a s t , t y ros ine w a s p r e s e n t in h e m o l y m p h from p a r a s i t i z e d l a rvae a t m u c h lower levels t h a n in con t ro l s . T h e c h a n g e s in n i t r o g e n m e t a b o l i t e s a p p e a r e d to reflect t h e a l t e r ed d e v e l o p ­m e n t a l p a t t e r n of t he p a r a s i t i z e d l a rvae . T h e l a t t e r failed to m e t a m o r p h o s e to t h e p u p a l s t age . T h e a u t h o r p o i n t e d ou t , however , t h a t , d u r i n g its s econd s t a d i u m , t h e p a r a s i t e feeds o n t h e hos t ' s fat body, w h i c h is a l m o s t c o m p l e t e l y a b s e n t b y t he t i m e the p a r a s i t e mo l t s to t he t h i r d i n s t a r a n d e m e r g e s f rom t h e hos t to p u p a t e . S o m e of t he c h a n g e s in n i t r o g e n m e t a b o l i t e s may , therefore , h a v e b e e n d u e to t i ssue d a m a g e .

Severa l o t h e r s tud ies have d e m o n s t r a t e d q u a l i t a t i v e a n d q u a n t i t a t i v e c h a n g e s in h e m o l y m p h p r o t e i n c o m p o s i t i o n in p a r a s i t i z e d insec t hos t s as la rge ly e v i d e n c e d by e l ec t ropho re t i c p a t t e r n s (see V i n s o n a n d I w a n t s c h , 1980; B e c k a g e et al., 1987, 1989; J o n e s , 1989). B e c a u s e t h e n a t u r e a n d func­t ions of these p r o t e i n s a r e la rge ly u n k n o w n , a n d the i r p o t e n t i a l roles in i n t e r m e d i a r y m e t a b o l i s m unc lea r , p r o t e i n s will no t b e d i scussed fu r the r h e r e .

B a r r a s et al. (1969) e x a m i n e d h e m o l y m p h a m i n o acid levels in t h e hos t H. virescens d u r i n g p a r a s i t i s m b y t h e so l i t a ry p a r a s i t e Cardiochiles nigriceps V ie r -eck. A l t h o u g h n o q u a l i t a t i v e differences were r e p o r t e d , t h e h e m o l y m p h a m i ­n o acid c o n c e n t r a t i o n of f ou r th - i n s t a r hos t l a rvae p a r a s i t i z e d in t h e s econd s t a d i u m w a s a p p r o x i m a t e l y ha l f t h a t of h e m o l y m p h f rom u n p a r a s i t i z e d con­t ro ls . P a r a s i t e l a rvae were la te first o r ear ly second i n s t a r s a t t h a t s t age of hos t d e v e l o p m e n t . B e c a u s e these p a r a s i t e s tages d e v e l o p w i t h i n t h e hos t h e m o c o e l a n d feed o n h e m o l y m p h , t h e a u t h o r s c o n c l u d e d t h a t t h e d e c r e a s e d a m i n o ac ids o b s e r v e d in t he hos t were t h e resu l t of p a r a s i t e u t i l i za t ion . T h o m p s o n (1986a) a lso obse rved d e c r e a s e d h e m o l y m p h a m i n o acid levels in t h e hos t T. ni p a r a s i t i z e d by H. exiguae. I n c o n t r a s t to these r e su l t s , V i n s o n a n d I w a n t s c h (cf. V i n s o n , 1990b) obse rved a n inc rease in a m i n o acid levels in t he h e m o l y m p h of H. virescens p a r a s i t i z e d b y M. croceipes o r C. sonorensis.

C. Lipids

Severa l s tud ie s sugges t ed t h a t q u a l i t a t i v e a n d q u a n t i t a t i v e c h a n g e s in l ipid m e t a b o l i t e s m a y a c c o m p a n y p a r a s i t i s m . B a r r a s et al. (1970) r e p o r t e d t h a t t h e re la t ive levels of v a r i o u s l ipid classes in t h e h e m o l y m p h a n d solid t i ssues of H. virescens w e r e s l ight ly a l t e r ed following p a r a s i t i z a t i o n b y Cardiochiles nigriceps V ie reck , a l t h o u g h t r ig lycer ide w a s t he m a j o r l ipid of t i ssues of b o t h p a r a s i t i z e d a n d u n p a r a s i t i z e d i n d i v i d u a l s . Differences in t h e re la t ive levels of fat ty ac ids in v a r i o u s l ipid fract ions were a lso ev iden t b e t w e e n con t ro l a n d p a r a s i t i z e d insec t s . T h e t r ig lycer ides of p a r a s i t i z e d H. virescens, for e x a m p l e , c o n t a i n e d s ignif icant ly lower re la t ive a m o u n t s of u n s a t u r a t e d fat ty ac ids .

T h o m p s o n (1982b) r e p o r t e d t h a t t h e c o n c e n t r a t i o n of to ta l l ip id in w h o l e

Page 137: Parasites and Pathogens of Insects. Parasites

130 S. Ν. Thompson

fifth-instar l a rvae of T. ni w a s n e a r c o n s t a n t following p a r a s i t i z a t i o n b y H. exiguae, w h e r e a s t he c o n c e n t r a t i o n in con t ro l s i nc r ea sed t h r o u g h o u t t h e fifth s t a d i u m . Moreove r , t he re la t ive level of t r ig lycer ide w a s c o n s t a n t in p a r a ­si t ized l a rvae a n d the i nc reased l ipid in con t ro l s w a s la rge ly d u e to t r i ­g lycer ide depos i t i on .

I n h i b i t i o n of l i p o p h o r i n - m e d i a t e d l ipid t r a n s p o r t in h e m o l y m p h of Phi-losamia cynthia ( D r u r y ) d u r i n g p a r a s i t i s m by the d i p t e r o u s p a r a s i t e Blepharipa sericariae C o r n a l i a [=B. zebina (Walke r ) ] w a s d e m o n s t r a t e d b y H a y a k a w a (1986) . A sma l l p e p t i d e secre ted b y the p a r a s i t e l a rva w a s d e m o n s t r a t e d to b e r e spons ib l e . L a t e r , H a y a k a w a (1987) r e p o r t e d t h a t t h e factor i n h i b i t e d l i p o p h o r i n u p t a k e of d iacy lg lycer ide f rom locus t fat body. Recent ly , H o r w o o d a n d H a l e s (1991) r e p o r t e d t h a t t h e l ipid c o n t e n t of t h e o r t h o p t e r a n hos t Chortoicetes terminifera (Walker ) w a s s ignif icant ly e leva ted d u r i n g p a r a s i t i s m b y t h e d i p t e r o u s p a r a s i t e Tnchopsidea oestracea (Wes twood) a n d sugges t ed t h a t th is effect m a y h a v e re su l t ed from a n inh ib i t i on of l ipid t r a n s p o r t .

IV. Metabolic Alteration in Insect Hosts

T h e foregoing s tud ies d e m o n s t r a t i n g t h a t hos t t i ssue m e t a b o l i t e levels a r e a l t e r ed d u r i n g p a r a s i t i s m s t rong ly sugges t t h a t hos t m e t a b o l i s m is d i rec t ly affected b y p a r a s i t i s m . Very few s tud ie s , however , have b e e n c o n d u c t e d to d e m o n s t r a t e t he n a t u r e of those b i o c h e m i c a l les ions . A t t h e p r e s e n t t i m e o u r k n o w l e d g e is l imi ted to a few s tud ies of t he i n t e r m e d i a r y m e t a b o l i s m of c a r b o h y d r a t e s .

A. Trichoplusia ni Parasitized by Hyposoter exiguae

Fol lowing the d e m o n s t r a t i o n by T h o m p s o n (1982a) t h a t e l eva ted h e m o ­l y m p h t r eha lose c o n c e n t r a t i o n a n d i nc rea sed fat b o d y g lycogen d e p o s i t i o n o c c u r r e d in T. ni following p a r a s i t i z a t i o n b y H. exiguae, T h o m p s o n a n d C o h e n (1984) r e p o r t e d t h a t excre t ion of u r i c ac id by p a r a s i t i z e d l a rvae w a s signifi­can t l y g r e a t e r t h a n t h a t of con t ro l s . T h e a u t h o r s sugges t ed t h a t t h e u r i c ac id p r o d u c t i o n r e su l t ed from a m i n o acid d e a m i n a t i o n a n d t h a t u t i l i za t ion of g lucogen ic a m i n o ac ids for de novo c a r b o h y d r a t e syn thes i s m a y h a v e b e e n r e spons ib l e for t he e leva ted c a r b o h y d r a t e reserves in p a r a s i t i z e d hos t s .

T h o m p s o n a n d B i n d e r (1984) d e m o n s t r a t e d e leva ted g l u c o n e o g e n i c en ­z y m e act iv i ty in T. ni l a rvae 3 d a y s pos tov ipos i t ion . T h e m a x i m a l e n z y m e veloci ty of b o t h p h o s p h o f r u c t o k i n a s e ( P F K a s e - c a t a l y z i n g glycolyt ic conver ­s ion of g lucose to p y r u v a t e ) a n d fructose b i s p h o s p h a t a s e ( F B P a s e - c a t a l y z i n g g luconeogenes i s ) w a s s ignif icant ly h i g h e r in fat b o d y i so la ted f rom p a r a ­si t ized l a rvae . T h e act ivi ty of F B P a s e , however , w a s e leva ted to a g r e a t e r ex ten t , r e su l t i ng in a p o t e n t i a l severalfold inc rease in g l u c o n e o g e n i c flux.

Page 138: Parasites and Pathogens of Insects. Parasites

6. Host Metabolism and Parasite Nutrition 131

S u b s e q u e n t l y , T h o m p s o n (1986a) r e p o r t e d t h a t t h e to ta l h e m o l y m p h g lu­cogen ic a m i n o ac id c o n c e n t r a t i o n in p a r a s i t i z e d l a rvae w a s d e c r e a s e d a p ­p r o x i m a t e l y 3 5 % t h r e e d a y s after p a r a s i t i z a t i o n .

T h e r e g u l a t i o n of F B P a s e in fat b o d y of f ou r th - i n s t a r T. ni w a s e x a m i n e d b y T h o m p s o n (1985) . A d e n o s i n e m o n o p h o s p h a t e ( A M P ) a n d f ruc tose-2 ,6-b i s p h o s p h a t e ( F 2 , 6 B P a t e ) , m a j o r effectors of F B P a s e in l iver (Pilkis et al., 1981), w e r e a lso m o d u l a t o r s of th is e n z y m e in T. ni. T h e i r effects in T. ni w e r e s imi l a r to t hose r e p o r t e d in r a t l iver (Van Schaf t ingen a n d H e r s , 1981). B o t h effectors w e r e i n h i b i t o r y a n d t h e i nh ib i t i on c a u s e d b y each w a s e n h a n c e d in t h e p r e s e n c e of t he o the r . B e c a u s e p r e v i o u s resu l t s d e m o n s t r a t e d t h a t fat b o d y A M P level w a s e leva ted following p a r a s i t i z a t i o n ( T h o m p s o n a n d Y a m a d a , 1984), these f indings r e g a r d i n g A M P m o d u l a t i o n in i t ia l ly a p p e a r e d i ncons i s t en t w i t h t h e conc lus ion t h a t i n c r e a s e d c a r b o h y d r a t e rese rves in p a r a s i t i z e d T. ni r e su l t ed f rom e n h a n c e d g luconeogenes i s . I n fat b o d y p r e p a ­r a t i o n s f rom p a r a s i t i z e d l a rvae , however , b o t h A M P a n d F 2 , 6 B P a t e w e r e less inh ib i to ry . T h e findings d e m o n s t r a t e d t h a t g luconeogenes i s m a y i nc r ea se d e s p i t e m i n o r inc reases in A M P level, a l t h o u g h t h e bas i s for t h e d e c r e a s e d sens i t iv i ty of F B P a s e to A M P w a s u n e x p l a i n e d .

N u t r i t i o n a l s tud ie s fu r the r i n d i c a t e d t h a t t h e r e g u l a t i o n of de novo c a r b o h y ­d r a t e syn thes i s in T. ni m a y b e a l t e r ed b y p a r a s i t i z a t i o n ( T h o m p s o n , 1986b) . H e m o l y m p h t r eha lo se level of insec ts r e a r e d o n art if icial m e d i a w i t h in­c r ea sed levels of suc rose w a s c o n s t a n t . I n p a r a s i t i z e d l a rvae , however , t h e h e m o l y m p h t r eha lo se level w a s m a r k e d l y e leva ted b y i n c r e a s i n g t h e d i e t a r y c a r b o h y d r a t e level. T h u s , i t w a s c o n c l u d e d t h a t t h e r e g u l a t i o n of c a r b o h y ­d r a t e b iosyn thes i s in r e s p o n s e to d i e t a r y s u g a r m a y b e a b n o r m a l l y r e g u l a t e d in p a r a s i t i z e d T. ni.

B. Manduca sexta Parasitized by Cotesia congregata

Severa l in vivo Ν M R s tud ie s have b e e n c o n d u c t e d to d i s c e r n t h e m e t a b o l i c bas i s for e l eva ted g lycogen d e p o s i t i o n in M. sexta p a r a s i t i z e d b y C. congregata. M e t a b o l i s m of [ 1 3 C ] 2 - p y r u v a t e b y fifth-ins t a r l a rvae w a s e x a m i n e d b y T h o m p s o n et al. (1988) . T h e l abe led s u b s t r a t e w a s m e t a b o l i z e d m u c h s lower b y p a r a s i t i z e d l a rvae a n d t h e p r o d u c t s i n to w h i c h t h e l abe l w a s i n c o r p o r a t e d differed m a r k e d l y b e t w e e n p a r a s i t i z e d a n d u n p a r a s i t i z e d insec t s . I n con t ro l l a rvae , p y r u v a t e w a s i n c o r p o r a t e d p r i m a r i l y i n t o fat fol lowing o x i d a t i o n to ace ty l -CoA. T h e difference in fat c o n t e n t b e t w e e n con t ro l a n d p a r a s i t i z e d l a rvae w a s s t r ik ing a n d e v i d e n t f rom the i r respec t ive n a t u r a l a b u n d a n c e 1 3 C -N M R s p e c t r a . I n p a r a s i t i z e d l a rvae 1 3 C from p y r u v a t e w a s i n c o r p o r a t e d i n t o a m i n o ac ids after d e c a r b o x y l a t i o n to o x a l o a c e t a t e a n d m e t a b o l i s m t h r o u g h t h e K r e b s cycle . Signif icant g luconeogenes i s f rom p y r u v a t e , however , w a s n o t o b s e r v e d in e i the r con t ro l o r p a r a s i t i z e d l a rvae .

S u b s e q u e n t N M R s tud ies r e p o r t e d b y T h o m p s o n et al. (1990) d e m o n -

Page 139: Parasites and Pathogens of Insects. Parasites

132 S. Ν. Thompson

s t r a t e d t h a t i n c o r p o r a t i o n of [ 1 3 C ] 1-glucose in to s t o r a g e m e t a b o l i t e s differed b e t w e e n p a r a s i t i z e d a n d u n p a r a s i t i z e d M. sexta. C o n t r o l insec ts i n c o r p o r a t e d labe l f rom glucose in to fat a n d [ 1 3 C ] 1-trehalose. [ I 3 C ] 1-Trehalose a n d [ 1 3 C ] 1-glycogen were t he m a j o r p r o d u c t s of l abe led g lucose in p a r a s i t i z e d l a rvae . I n c o n t r a s t to con t ro l l a rvae , pa r a s i t i z ed insec ts d id n o t i n c o r p o r a t e l abe l i n to fat. Differences in t he m e t a b o l i s m of p r e f o r m e d (d ie ta ry ) g lucose , therefore , pa r t i a l l y e x p l a i n e d the differences in s t o r a g e m e t a b o l i t e levels o b ­served b e t w e e n p a r a s i t i z e d a n d u n p a r a s i t i z e d M. sexta.

V. Basis for Metabolic Alterations: Hormones, Viruslike Particles, and Parasite Mediation

Red i rec t ion of hos t phys io logy is often in i t i a t ed in r e s p o n s e to p a r a s i t o i d -de r ived factors injected in to t he hos t w i th t he p a r a s i t e egg d u r i n g ov ipos i t ion . T h u s , effects of p a r a s i t i s m a r e often n o t e d even before t h e p a r a s i t e egg h a t c h e s . Severa l ent i t ies a r e r e spons ib l e (Stol tz , 1986). A l t h o u g h these va r i ­ous factors m a y in te rac t , often p r o d u c i n g synerg i s t i c effects (see, e.g., T a n a k a a n d V i n s o n , 1991), p e r h a p s t he m o s t n o t a b l e a r e t he p o l y d n a v i r u s e s ( P o l y d n a v i r i d a e — S t o l t z et al., 1984; Whi t f ie ld , 1990), v i rus l ike pa r t i c l e s (see Feder ic i , 1991) o r i g i n a t i n g from t h e ca lyx reg ion of t h e r e p r o d u c t i v e t r ac t of m o s t i c h n e u m o n i d a n d b r a c o n i d p a r a s i t o i d s (Stol tz et al., 1981). N u m e r ­ous s tud ies have d e m o n s t r a t e d t h a t p o l y d n a v i r u s e s p l a y a cr i t ica l ro le in s u p p r e s s i o n of t he hos t ' s defense r e sponse ( S c h m i d t a n d S c h u c h m a n n -F e d d e r s e n , 1989; V i n s o n , 1990a), as well as m a n y o t h e r phys io log ica l effects.

S o m e effects of p a r a s i t i s m on hos t m e t a b o l i t e levels a l so a p p e a r to be in i t i a t ed by p o l y d n a v i r u s a n d / o r act ivi ty of o t h e r p a r a s i t o i d - d e r i v e d factors ini t ia l ly o c c u r r i n g i n d e p e n d e n t of t he p a r a s i t e itself. C h a n g e s in c a r b o h y ­d r a t e reserves in H. virescens a n d T. ni in r e sponse to p a r a s i t i s m b y M. croceipes ( D a h l m a n a n d V i n s o n , 1975) a n d H. exiguae ( T h o m p s o n , 1982a) , r e spec ­tively, we re obse rved i m m e d i a t e l y following p a r a s i t i z a t i o n before p a r a s i t e h a t c h i n g a n d d e v e l o p m e n t . D a h l m a n a n d V i n s o n (1977) d e m o n s t r a t e d t h a t e leva t ion of h e m o l y m p h t r eha lose in H. virescens cou ld b e i n d u c e d b y in jec t ion of ca lyx fluid of M. croceipes.

M a n y phys io log ica l effects of p a r a s i t i s m / p o l y d n a v i r u s ac t iv i ty a r e hor -m o n a l l y m e d i a t e d (Beckage , 1985; L a w r e n c e , 1986). For e x a m p l e , a l ter ­a t ions of hos t g r o w t h a n d d e v e l o p m e n t a l p a t t e r n s a r e closely r e l a t ed to t i te rs of e c d y s o n e a n d j u v e n i l e h o r m o n e (Dover et al., 1988a) , a n d p r e v i o u s inves t i ­g a t i o n sugges t ed t h a t t he p r o t h o r a c i c g l a n d s m a y be a m o n g the h o s t t i ssues t h a t p o l y d n a v i r u s i n v a d e s (Dover et al., 1988b) . L i t t l e is k n o w n of t h e effects

Page 140: Parasites and Pathogens of Insects. Parasites

6. Host Metabolism and Parasite Nutrition 133

of d e v e l o p m e n t a l h o r m o n e s o n i n t e r m e d i a r y m e t a b o l i s m (see Keeley, 1978) a n d the se h o r m o n e s h a v e n o t b e e n d i rec t ly i m p l i c a t e d in t h e m e t a b o l i c c h a n g e s o b s e r v e d in p a r a s i t i z e d insec ts . I n sec t s , however , have a d d i t i o n a l h o r m o n e s t h a t a r e k n o w n to p l a y a f u n d a m e n t a l role in m e t a b o l i c r e g u l a t i o n .

H o r m o n e s w i t h insu l in - a n d g lucagon l ike act ivi t ies have b e e n i so la ted f rom t issues of n u m e r o u s insec ts (Steele , 1983). I n M. sexta l a rvae , for e x a m ­p le , a d i p o k i n e t i c h o r m o n e o r i g i n a t i n g from the c o r p o r a c a r d i a c a s t i m u l a t e s g lycogen p h o s p h o r y l a s e act iv i ty (Ziegler , 1990) in a m a n n e r s imi l a r to t h a t k n o w n for t h e v e r t e b r a t e h o r m o n e g l u c a g o n . I n this r e g a r d , s t ud i e s b y T h o m p s o n (1985) o n g l u c o n e o g e n i c act iv i ty in T. ni a r e of i n t e r e s t b e c a u s e t h e d e c r e a s e d i n h i b i t o r y r e s p o n s e of f ructose b i s p h o s p h a t a s e to r e g u l a t i o n b y A M P a n d F 2 , 6 B P a t e in p a r a s i t i z e d l a rvae is cons i s t en t w i t h t h e effect of g l u c a g o n o n th is m e t a b o l i c p a t h w a y in l iver (Van Schaf t ingen et al., 1980). A l t h o u g h p r e v i o u s inves t iga t ions have failed to d e m o n s t r a t e a n y effect of factors de r ived from t h e c o r p o r a c a r d i a c a on g luconeogenes i s ( J . E . Steele , p e r s o n a l c o m m u n i c a t i o n ) , Steele et al. (1988) r e p o r t e d t h a t g lycogen p h o s ­p h o r y l a s e s t i m u l a t i o n a lone is n o t sufficient to exp la in t r e h a l o s e syn thes i s i n d u c e d by c o r p u s c a r d i a c u m h o r m o n e s .

T h e resu l t s of n u t r i t i o n a l inves t iga t ions i n d i c a t i n g t h a t d i e t a r y r e g u l a t i o n of g luconeogenes i s w a s a l t e r ed in p a r a s i t i z e d T. ni ( T h o m p s o n , 1986b; Sec­t ion IV .A) m a y fu r the r sugges t t h a t a g lucagon l ike r e g u l a t i o n of de novo c a r b o h y d r a t e syn thes i s is involved in e l eva t ing h e m o l y m p h t r e h a l o s e level in p a r a s i t i z e d l a rvae . R o c h a et al. (1973) obse rved m a r k e d l y e leva ted g l u c a g o n levels in sep t i c h u m a n sub jec t s . Subsequen t l y , L o n g et al. (1976) r e p o r t e d t h a t t he r a t e of g luconeogenes i s f rom a m i n o ac ids w a s e l eva ted d u r i n g seps is , a n d t h a t t h e a d m i n i s t r a t i o n of s u g a r failed to m e d i a t e th is r e s p o n s e . T h e a u t h o r s sugges t ed t h a t t h e resu l t s w e r e likely c a u s e d b y a h o r m o n a l i m b a l ­a n c e . A l t h o u g h inves t iga t ions w i t h v e r t e b r a t e a n i m a l s c a n n o t b e d i rec t ly c o m p a r e d to s tud i e s w i t h insec ts , t h e p o t e n t i a l role of h o r m o n e s in i n d u c i n g the m e t a b o l i c c h a n g e s o b s e r v e d in p a r a s i t i z e d insec ts n e e d s to b e inves t i ­g a t e d .

A l m o s t n o t h i n g is k n o w n c o n c e r n i n g t h e role of t h e d e v e l o p i n g p a r a s i t e l a rvae in m e d i a t i n g effects of p a r a s i t i s m on hos t physiology. S u c h effects m i g h t b e expec t ed as t he p a r a s i t e l a rvae m a t u r e a n d grow, a n d b e p a r t i c ­u la r ly e v i d e n t d u r i n g hos t a s soc ia t ions of g r e g a r i o u s species in w h i c h t h e b i o m a s s of p a r a s i t e s is c o n s i d e r a b l e re la t ive to t h a t of t h e hos t . I n d e e d , B e c k a g e a n d R idd i fo rd (1983) d e m o n s t r a t e d t h a t heavi ly p a r a s i t i z e d M. sexta have a l a r g e r hos t m a s s t h a n l ight ly p a r a s i t i z e d l a rvae , i n d e p e n d e n t of t h e c o n t r i b u t i o n b y t h e p a r a s i t e s . T h e resu l t s sugges t t h a t t h e n u t r i t i o n a l p h y s i ­ology of t h e hos t is carefully s y n c h r o n i z e d w i t h p a r a s i t e d e v e l o p m e n t a n d modif ied in r e l a t ion to p a r a s i t e b u r d e n to satisfy t he n u t r i t i o n a l r e q u i r e m e n t s of t h e d e v e l o p i n g p a r a s i t e s .

Page 141: Parasites and Pathogens of Insects. Parasites

134 S. Ν. Thompson

Prev ious inves t iga t ions sugges t t h a t p a r a s i t e r e s p i r a t i o n m a y i n d u c e m e t ­abo l i c c h a n g e s in t he hos t . F i she r (1963) d e m o n s t r a t e d t h a t t h e 0 2 level in h e m o l y m p h of Ephestia kuhniella H i i b n e r G r a v e n h o r s t d e c r e a s e d d r a m a t i c a l l y d u r i n g p a r a s i t i s m by Venturia (=Nemeritis) canescens G r a v e n h o r s t . B a s e d o n t h e r a t e of oxygen c o n s u m p t i o n of t he deve lop ing p a r a s i t e , it w a s c o n c l u d e d t h a t t he d e c r e a s e d oxygen level in t he hos t ' s h e m o l y m p h w a s d u e to p a r a s i t e r e sp i r a t i on . T h e oxygen c o n s u m p t i o n of newly h a t c h e d p a r a s i t e l a rvae w a s a p p r o x i m a t e l y e q u a l to t he to ta l oxygen c o n t e n t of t h e hos t ' s h e m o l y m p h a t a n y given t ime . B e c a u s e t he t r a chea l sy s t em p rov ides oxygen d i rec t ly to insec t t i ssues , t h e p o t e n t i a l effects of h e m o l y m p h oxygen d e p l e t i o n o n hos t phys io logy a n d m e t a b o l i s m a r e difficult to e v a l u a t e . H o w e v e r , o x y g e n con­s u m p t i o n by p a r a s i t i z e d E. kuhniella l a rvae was d e c r e a s e d d u r i n g p a r a s i t i s m . D a h l m a n a n d H e r a l d (1971) d e m o n s t r a t e d t h a t t he cyclic p a t t e r n of 0 2

c o n s u m p t i o n d u r i n g d e v e l o p m e n t of M. sexta w a s d a m p e n e d in p a r a s i t i z e d l a rvae . Moreove r , pa r a s i t i z ed l a rvae d i sp l ayed s ignif icant ly lower 0 2 con­s u m p t i o n t h a n the i r u n p a r a s i t i z e d c o u n t e r p a r t s d u r i n g t h e l a t t e r p a r t of each s t a d i u m . D e c r e a s e d h e m o l y m p h 0 2 a n d r e sp i r a t i on of M. sexta p a r a s i t i z e d b y C. congregata w o u l d be cons i s t en t w i t h t he d e c r e a s e d r a t e of g lucose u t i l i za t ion in p a r a s i t i z e d hos t s de sc r ibed in t he foregoing (Sec t ion I V ) .

VI. Nutritional Consequences of Metabolic Redirection and Physiological Alteration

D a h l m a n a n d V i n s o n (1975) sugges ted t h a t a l t e r a t i ons in t h e c h e m i c a l c o m ­pos i t ion of hos t t issues m a y p l ay a n u t r i t i o n a l role a n d inf luence t h e insec t p a r a s i t e - h o s t r e l a t ionsh ip . T h e s e a u t h o r s p r o p o s e d t h a t t h e e leva ted t r e ­ha lose c o n c e n t r a t i o n in H. virescens i n d u c e d following p a r a s i t i z a t i o n b y M. croceipes p r o v i d e d n u t r i e n t d i rec t ly to t he deve lop ing p a r a s i t e . T h i s p a r a s i t e species c o m p l e t e s its en t i r e l a rva l d e v e l o p m e n t feeding o n hos t h e m o l y m p h . T h e hos t ' s fat b o d y a n d o t h e r t issues a r e no t c o n s u m e d . Resu l t s a n d conc lu ­s ions of these e x p e r i m e n t s w i t h M. croceipes w e r e c o n t r a s t e d w i t h t hose of s tud ies involv ing a n o t h e r b r a c o n i d , C. nigriceps. H e m o l y m p h t r eha lo se in H. virescens w a s n o t e leva ted after p a r a s i t i z a t i o n by this spec ies . Cardiochiles nigriceps, however , feeds act ively o n hos t t issues t h r o u g h o u t i ts d e v e l o p m e n t , a n d the a u t h o r s sugges t ed t h a t t he p a r a s i t e l a rvae o b t a i n sufficient c a r b o h y ­d r a t e as well as l ipid n u t r i e n t b y c o n s u m p t i o n of fat body.

T h e n a t u r e of t h e c h a n g e s in s t o r age c a r b o h y d r a t e levels in T. ni p a r a ­si t ized b y H. exiguae (Sect ion I I I ) a lso sugges t s t h e p o t e n t i a l for d i r ec t n u t r i ­t iona l benefi t . T h e p a r a s i t i c l a rvae of this species feed o n h e m o l y m p h d u r i n g the i r ea r ly s t a d i a a n d s u b s e q u e n t l y on fat b o d y a n d o t h e r solid hos t t i ssues .

Page 142: Parasites and Pathogens of Insects. Parasites

6. Host Metabolism and Parasite Nutrition 135

T h u s , e l eva ted h e m o l y m p h t r eha lo se levels m a y p rov ide a n i m p o r t a n t sou rce of n u t r i e n t for t h e ea r ly i n s t a r s of t h e p a r a s i t e , w h e r e a s h i g h levels of gly­cogen s to red in t h e fat b o d y a r e c o n s u m e d in the t h i r d s t a d i u m .

N u t r i t i o n a l s tud ie s e m p l o y i n g in vitro c u l t u r e of insec t p a r a s i t e s o n def ined art if icial m e d i a w o u l d p r o v i d e cr i t ica l a n s w e r s r e g a r d i n g t h e p o t e n t i a l n u t r i ­t i ona l effects of a l t e r ed hos t t i ssue m e t a b o l i t e levels o n p a r a s i t e g r o w t h a n d d e v e l o p m e n t . Unfo r tuna t e ly , s u c h t e c h n i q u e s a r e c u r r e n t l y u n a v a i l a b l e for k i o n o b i o n t i c spec ies . In vitro c u l t u r e m e t h o d s a n d art if icial d ie t s a r e , however , ava i l ab le for r e a r i n g a few id iob ion t i c p a r a s i t e s , a n d the resu l t s of n u t r i t i o n a l i nves t iga t ions sugges t t h a t t h e i nc rea se in h e m o l y m p h c a r b o h y d r a t e t i te r o b s e r v e d in hos t s p a r a s i t i z e d by k o i n o b i o n t i c p a r a s i t e s m a y b e sufficient to p r o v i d e n u t r i t i o n a l benefi t to t he d e v e l o p i n g la rvae . T h o m p s o n (1983b) d e m ­o n s t r a t e d t h a t i n c r e a s i n g t h e level of d i e t a r y g lucose in a n art if icial m e d i u m from 0.5 to 1 .5%, a n inc rease a p p r o x i m a t e l y e q u a l to t h a t o b s e r v e d in b o t h T. ni fol lowing p a r a s i t i z a t i o n by H. exiguae ( T h o m p s o n , 1982a; Sec t ion I I I ) a n d H. virescens d u r i n g p a r a s i t i s m by M. croceipes ( D a h l m a n a n d V i n s o n , 1975; Sec t ion I I I ) , r e su l t ed in a n i nc rea se in m e a n re la t ive g r o w t h r a t e of l a rvae of t h e so l i t a ry cha lc id p a r a s i t e Brachymeria lasus (Walker ) f rom 200 to 250 m g / g / d a y . A s imi l a r i nc rease in d i e t a r y g lucose in a def ined art i f icial d i e t for t h e i c h n e u m o n i d p a r a s i t e Exeristes roborator (Fabr ic ius ) i n c r e a s e d t h e m e a n g r o w t h r a t e f rom a p p r o x i m a t e l y 5 to 12 m g / g / d a y ( T h o m p s o n , 1982c).

D e s p i t e ev idence sugges t ing n u t r i t i o n a l benefi t for t he a l t e r e d h o s t t i ssue c a r b o h y d r a t e levels obse rved in p a r a s i t i z e d hos t s , t h e conc lu s ion a p p e a r s i ncons i s t en t w i t h t he resu l t s of s tud ies o n s o m e insec t p a r a s i t e - h o s t r e l a t ion ­sh ips . T h e so l i ta ry p a r a s i t e C. sonorensis, l ike H. exiguae, feeds o n t h e hos t ' s h e m o l y m p h d u r i n g its ea r ly s t a d i a a n d d i rec t ly o n solid hos t t i ssues d u r i n g t h e las t t w o s t a d i a . I n th is case , h e m o l y m p h t r eha lose in t h e h o s t H. virescens w a s e leva ted on ly s l ight ly d u r i n g t h e ea r ly s tages of p a r a s i t e d e v e l o p m e n t , a n d m o r e d r a m a t i c a l l y l a t e r w h e n it w a s unl ike ly t h a t t h e h e m o l y m p h w o u l d s u p p l y s ignif icant n u t r i e n t over t h a t o b t a i n e d b y c o n s u m p t i o n of t h e o t h e r hos t t i ssue ( D a h l m a n a n d V i n s o n , 1976; Sec t ion I I I ) . C o n c l u s i o n s r e g a r d i n g t h e s ignif icance of g lycogen s tores d u r i n g s o m e p a r a s i t e - h o s t r e l a t i o n s h i p s m a y b e s imi la r ly cr i t ic ized. I n M. sexta p a r a s i t i z e d b y C. congregata, for e x a m ­ple , t h e fat b o d y g lycogen level w a s i n c r e a s e d b u t t h e h e m o l y m p h t r eha lo se level dec l i ned . Cotesia congregata, however , feeds on ly o n the h o s t h e m o l y m p h a n d therefore t h e g lycogen s tores a r e unl ike ly to be of d i r ec t n u t r i t i o n a l benefi t for th is species .

W h e n e v a l u a t i n g t h e p o t e n t i a l n u t r i t i o n a l s ignif icance of hos t m e t a b o l i t e levels for d e v e l o p i n g p a r a s i t e s , c a r e m u s t b e t a k e n to cons ide r t h e overa l l effects of p a r a s i t i s m o n to ta l n u t r i e n t avai labi l i ty . For e x a m p l e , in m a n y cases , i n c l u d i n g H. virescens a n d T. ni p a r a s i t i z e d by M. croceipes a n d H. exiguae, respect ively, hos t g r o w t h is severely r e t a r d e d following p a r a s i t i z a t i o n . T h e

Page 143: Parasites and Pathogens of Insects. Parasites

136 S. Ν. Thompson

to ta l n u t r i e n t ava i l ab le for the deve lop ing pa ra s i t e ( s ) may , therefore , b e less, de sp i t e t he finding t h a t t he c o n c e n t r a t i o n of i n d i v i d u a l m e t a b o l i t e s m a y have i nc rea sed . D u r i n g p a r a s i t e - h o s t r e l a t ionsh ips in w h i c h t h e p a r a s i t e c o m ­ple tes its d e v e l o p m e n t on hos t h e m o l y m p h a lone , for e x a m p l e , M. croceipes, e leva ted levels of h e m o l y m p h n u t r i e n t s may, neve r the les s , b e i m p o r t a n t for o p t i m a l p a r a s i t e g r o w t h a n d d e v e l o p m e n t . However , in cases w h e r e t h e en­t i re hos t c o n t e n t s a r e c o n s u m e d a t t he c o m p l e t i o n of p a r a s i t e d e v e l o p m e n t , as is t he case w i t h H. exiguae, e leva ted hos t h e m o l y m p h m e t a b o l i t e levels likely p rov ide n u t r i t i o n a l benefi t on ly for t he ear ly p a r a s i t i c s t ages .

I n a d d i t i o n to a l t e r a t i ons in t he c h e m i c a l c o m p o s i t i o n of hos t t i ssues b r o u g h t a b o u t by c h a n g e s in i n t e r m e d i a r y m e t a b o l i s m , o t h e r p a r a s i t o i d -i n d u c e d c h a n g e s in hos t b e h a v i o r a n d phys io logy m a y p l a y a n in t e rac t ive ro le in in f luenc ing p a r a s i t e n u t r i t i o n . Slow g r o w t h , de l ayed o r p r ecoc ious deve lop ­m e n t , a n d / o r i n t e r r u p t e d hos t m e t a m o r p h o s i s m a y act to e n s u r e a n a d e q u a t e t i m e pe r iod for p a r a s i t e n o u r i s h m e n t a n d d e v e l o p m e n t , as well as m a x i m a l exp lo i t a t ion of a n often l imi ted food supply . D e c r e a s e d food c o n s u m p t i o n , a c o m m o n b e h a v i o r d u r i n g p a r a s i t i s m , m a y p l a y a role b e c a u s e " n u t r i e n t -d e p r i v e d " insec ts deve lop slower ( T h o m p s o n , 1982a) . M o r e o v e r , p r e v i o u s s tud ies i n d i c a t e t h a t modif ied n u t r i t i o n a l phys io logy r e su l t i ng f rom d e c r e a s e d food c o n s u m p t i o n m a y a lso have s ignif icant c o n s e q u e n c e s . T h o m p s o n (1983c) d e m o n s t r a t e d t h a t d e c r e a s e d food c o n s u m p t i o n d i s p l a y e d by T. ni p a r a s i t i z e d by H. exiguae was a c c o m p a n i e d by a ne t i nc rease in a s s imi l a t ion , g r e a t e r t h a n t h a t obse rved in u n p a r a s i t i z e d pair-fed la rvae . T h i s m a y b e i m p o r t a n t for p r o v i d i n g a d e q u a t e n u t r i e n t to t he hos t a n d t h u s for m a i n t a i n i n g h e m o l y m p h n u t r i e n t levels for deve lop ing p a r a s i t e s . S u b s e q u e n t inves t iga t ions d e m o n ­s t r a t e d t h a t d i e t a r y c a r b o h y d r a t e level h a d li t t le effect o n t h e h e m o l y m p h t r eha lose level in u n p a r a s i t i z e d T. ni, b u t m a r k e d l y i n c r e a s e d the c o n c e n t r a ­t ion in p a r a s i t i z e d l a rvae ( T h o m p s o n , 1986b; Sec t ion IV .A) .

VII. "Host Regulation" and Its Role in Redirecting Host Metabolism and Physiology

V i n s o n a n d I w a n t s c h (1980) de sc r ibed the overal l effects of p a r a s i t i s m o n the insec t hos t as reflect ing p a r a s i t o i d r egu l a t i on of hos t physiology. " H o s t r egu ­l a t i o n " is r e spons ib l e for modi fy ing the hos t ' s phys io logy to e n s u r e p a r a s i t e surv iva l ( V i n s o n , 1984). J o n e s (1989) s u b s e q u e n t l y u sed the t e r m " r e d i r e c ­t i o n . " Recent ly , in te res t in hos t r egu l a t i on h a s focused o n i nh ib i t i on of t h e hos t ' s defense following p a r a s i t i z a t i o n . Clear ly , " i m m u n o s u p p r e s s i o n " is cr i t ­ical for successful p a r a s i t i s m a n d p a r a s i t o i d s have evolved a va r i e ty of m e a n s

Page 144: Parasites and Pathogens of Insects. Parasites

6. Host Metabolism and Parasite Nutrition 137

b y w h i c h th is is a c c o m p l i s h e d ( V i n s o n , 1990a) , in m a n y cases b e i n g in i t i a t ed b y p o l y d n a v i r u s a n d / o r o t h e r p a r a s i t o i d - d e r i v e d factors (Stol tz , 1986). T h u s , v i ewing t h e insec t p a r a s i t o i d - h o s t r e l a t i o n s h i p as o n e in w h i c h t h e p a r a s i t o i d is " in c o n t r o l " ( J o n e s , 1985a ,b) a s a r e su l t of its ab i l i ty to r e g u l a t e t h e phys io logy of t h e hos t is a p p r o p r i a t e . I n d e e d , this p a r a d i g m fo rmed t h e bas i s of D a w k i n s ' (1982) def ini t ion of a p a r a s i t i z e d hos t as a n " e x t e n d e d p h e -n o t y p e " of t h e p a r a s i t e .

I n c o n t r a s t to t h e i nh ib i t i on of hos t defense , t h e r e is a p a u c i t y of exper i ­m e n t a l ev idence d e m o n s t r a t i n g a n y benefi t to m o s t o t h e r phys io log ica l a n d m e t a b o l i c a l t e r a t i o n s obse rved in p a r a s i t i z e d insec ts . A l t h o u g h it h a s b e e n d e m o n s t r a t e d t h a t m a n y a l t e r a t i o n s a r e b r o u g h t a b o u t b y p a r a s i t o i d - d e r i v e d factors , in fer r ing p a r a s i t o i d r e g u l a t i o n of hos t biology, th is by i tself does n o t d e m o n s t r a t e a n y a d a p t i v e s ignif icance of t h e effects obse rved . I n m o s t cases t h e " h o s t r e g u l a t i o n " p a r a d i g m necess i t a tes a subjec t ive a s s e s s m e n t of p h y s i ­o logica l a l t e r a t i o n in r e l a t ion to p a r a s i t e surv iva l . T o u n d e r s t a n d phys io log i ­cal a l t e r a t i o n w i th in t he overal l con t ex t of " h o s t r e g u l a t i o n , " s o m e re ­s e a r c h e r s have e m p h a s i z e d the necess i ty to exp l a in t he bas i s of a l t e r a t i o n s t h a t fail to m e e t a d e m o n s t r a t e d o r h y p o t h e s i z e d c r i te r ia of benefi t . T h u s , J o n e s et al. (1986) d i s t i n g u i s h e d beneficial effects f rom " i n d i r e c t s t ress ef­fects" ; t h e l a t t e r b e i n g " u n i n t e n t i o n a l " ( J o n e s et al., 1981). A r a t i o n a l ex ten ­sion w a s t h e s u b s e q u e n t c h a r a c t e r i z a t i o n of p a r a s i t e s as " h o s t r e g u l a t o r s " o r " h o s t c o n f o r m e r s " ( L a w r e n c e , 1986). I n t he l a t t e r case , p a r a s i t i s m fails to resu l t in o b s e r v a b l e d e v e l o p m e n t a l c h a n g e s .

D e s p i t e l imi ted e x p e r i m e n t a l ev idence , it is r e a s o n a b l e to a s s u m e t h a t m a n y a l t e r a t i o n s in hos t phys io logy a r e of s ignif icance for successful p a r a s i t i s m — f o r e x a m p l e , to e n s u r e a su i t ab l e e n v i r o n m e n t a n d n u t r i t i o n a l mi l ieu for t he d e v e l o p i n g p a r a s i t e (Sec t ion V I ) . V i n s o n (1984) s t a t ed : " T h e p r o b l e m of n u t r i t i o n a l su i t ab i l i ty m a y n o t b e lack of specific n u t r i e n t s o r accessory g r o w t h factors in t he hos t , b u t t h e q u a l i t y of a n d t h e ab i l i ty to o b t a i n c e r t a i n n u t r i e n t s p r e s e n t in hos t t i ssues a t t he p r o p e r t i m e a n d to c o m p e t e w i t h hos t t i ssues for ava i l ab le n u t r i e n t s . . . t he p a r a s i t o i d m a y ac­tively affect these las t two c o n d i t i o n s . " V i e w i n g the insec t p a r a s i t e - h o s t i n t e r ac t i on as a p r o d u c t of " h o s t r e g u l a t i o n , " however , cons ide r s a l t e r e d hos t phys io logy in t e r m s of specific p a r a s i t o i d surv iva l s t ra teg ies a n d fails to exp l a in h o w s u c h s t r a teg ies have evolved. Moreove r , it p rov ides l i t t le i n s igh t i n to h o w the r e l a t i o n s h i p c o n t i n u e s to evolve. C o n s i d e r i n g t h e r e l a t i o n s h i p w i t h i n t h e un ive r sa l p a r a d i g m of a d a p t a t i o n p rov ides a n o t h e r pe r spec t i ve a n d n e w ins igh t i n to t h e n a t u r e of these p a r a s i t i c a s soc ia t ions .

T h e benefi t of phys io log ica l a l t e r a t i o n s to p a r a s i t e su rv iva l a r i ses by n a t u ­ra l se lec t ion t h r o u g h e v o l u t i o n a r y p rocesses . T h i s evo lu t ion w a s d e s c r i b e d b y B a r n a r d (1990) as a n " a r m s r a c e " d u r i n g w h i c h t h e r e o c c u r s c o n s t a n t ac t ion a n d r eac t ion by b o t h s y m b i o n t s in r e s p o n s e to t he act ivi t ies of the i r p a r t n e r s .

Page 145: Parasites and Pathogens of Insects. Parasites

138 S. Ν. Thompson

S p r e n t (1969) d i scussed i m m u n o l o g i c a l i n t e r ac t ion w i t h i n th is f r amework . H i s " a d a p t a t i o n t o l e r a n c e " hypo thes i s p rov ides a bas i s for u n d e r s t a n d i n g t h e d y n a m i c n a t u r e of p a r a s i t e - h o s t coevolu t ion . D a w k i n s a n d K r e b s (1979) ou t l i ned the l imi t a t ions a n d costs of s u c h a d a p t i v e i n t e r ac t ion . L i t t l e is u n ­d e r s t o o d c o n c e r n i n g such i n t e r ac t i ons d u r i n g t h e p a r a s i t i c p h a s e of t h e insec t p a r a s i t o i d - h o s t r e l a t i o n s h i p b e c a u s e t he p a r a s i t e does n o t r e p r o d u c e in t h e hos t . Moreove r , the hos t d ies following p a r a s i t e d e v e l o p m e n t . T h u s , V i n s o n a n d I w a n t s c h (1980) s t a t ed t h a t t he hos t p l ays n o role in t h e evo lu t ion of t he assoc ia t ion . A l t h o u g h phys io log ica l i n t e r ac t ion m a y n o t r e p r e s e n t a s t r o n g coevo lu t iona ry force, it is a cr i t ical c o m p o n e n t of p a r a s i t o i d evo lu t ion . If, for e x a m p l e , t he hos t ' s m e t a b o l i c r e sponse d u r i n g p a r a s i t i s m h a s s ignif icant n u t r i t i o n a l c o n s e q u e n c e s , t h e n the d e g r e e to w h i c h these r e sponses a r e ex­p res sed d i rec t ly i m p a c t s p a r a s i t e surv iva l a n d , in t u r n , fitness a n d fecund i ty of the a d u l t p a r a s i t o i d . A less su i t ab l e hos t p r o d u c e s a less fit p a r a s i t o i d , a n d converse ly a m o r e su i t ab l e hos t p r o d u c e s a m o r e fit p a r a s i t o i d .

D u r i n g the e s t a b l i s h m e n t of t he p a r a s i t e - h o s t r e l a t i onsh ip , a l t e r a t i o n s in hos t phys io logy reflect r e sponses to va r ious phys io log ica l a n d m e t a b o l i c s t resses i n d u c e d b y p a r a s i t i s m . T h o s e r e sponses p r o v i d e a bas i s u p o n w h i c h n a t u r a l se lect ion ac ts , t h e r e b y e n a b l i n g t he p a r a s i t e to explo i t t he modi f ied phys io logica l s t a t e of t he hos t . C h a r a c t e r i s t i c s of p a r a s i t e s o r factors in jec ted in to the hos t by t he p a r a s i t o i d t h a t i n d u c e c h a n g e s h a v i n g beneficial effects for p a r a s i t e surv iva l a r e selected for. W h e n the phys io log ica l a n d m e t a b o l i c a l t e r a t i ons t h a t o c c u r d u r i n g p a r a s i t i s m a r e e x a m i n e d f rom a n e v o l u t i o n a r y pe r spec t ive , a n d t h e s y m b i o n t s as i n t e r ac t i ng p a r t n e r s , t h e d iv i s ion of p a t h o ­logical ve r sus beneficial c h a n g e s takes o n a n e w a n d m o r e p r o f o u n d signifi­c a n c e . Effects t h a t m i g h t o the rwi se be cons ide red " d u l l p a t h o l o g i c a l by­p r o d u c t s of in fec t ion" ( D a w k i n s , 1982) a r e n o longer i gno red , b u t a r e recog­n ized as factors p l a y i n g a po ten t i a l ly s ignif icant role in t h e evo lu t ion of t h e p a r a s i t e - h o s t r e l a t ionsh ip . All effects of p a r a s i t i s m have t h e p o t e n t i a l to inf luence p a r a s i t e fitness b y c o n t r i b u t i n g to t he va r i ab i l i ty u p o n w h i c h selec­t ion c a n act .

T h e evo lu t ion is ev iden t u p o n cons ide r ing the in te rac t ive n a t u r e of p a r a ­sit ic effects in in f luenc ing p a r a s i t e n u t r i t i o n d e s c r i b e d ea r l i e r (Sec t ion V I ) . D e c r e a s e d food c o n s u m p t i o n , a c o m m o n b e h a v i o r d u r i n g p a r a s i t i s m , m i g h t b e cons ide red a n ind i rec t s t ress effect (see L a w r e n c e , 1988). A l t h o u g h per­h a p s n o t r e g u l a t e d by the p a r a s i t e , d e c r e a s e d food c o n s u m p t i o n is n e v e r t h e ­less i n d u c e d as a r e su l t of p a r a s i t i s m , a n d m a y have s ignif icant c o n s e q u e n c e s for t h e deve lop ing p a r a s i t e by d e l a y i n g d e v e l o p m e n t . E v e r y effect of p a r a s i t ­i sm t h a t is d e e m e d beneficial for t he p a r a s i t e n e e d n o t b e r e g u l a t e d , a n d every effect cons ide red r e g u l a t e d does n o t necessar i ly p r o v i d e benefi t to t h e p a r a s i t e . B e c a u s e of t he in te rac t ive n a t u r e of p a r a s i t i c effects in in f luenc ing

Page 146: Parasites and Pathogens of Insects. Parasites

6. Host Metabolism and Parasite Nutrition 139

t h e o u t c o m e of t h e p a r a s i t e - h o s t r e l a t i onsh ip , t he u t i l i ty of " h o s t r e g u l a t i o n " is bes t a p p r e c i a t e d by c o n s i d e r i n g a l t e r ed hos t phys io logy as b e i n g of overal l benefi t to t h e d e v e l o p i n g p a r a s i t e , as imp l i ed by V i n s o n (1975 , 1990b) .

VIII. Enantiostasis and Metabolic Regulation

T h e difficulty in u n d e r s t a n d i n g a n d e v a l u a t i n g t h e s ignif icance of t h e p h y s i ­o logica l a n d m e t a b o l i c a l t e r a t i o n s o c c u r r i n g in p a r a s i t i z e d insec ts is con ­f o u n d e d b y t h e e n a n t i o s t a t i c c h a r a c t e r of m a n y processes in insec t s . M a i n t e ­n a n c e of phys io log ica l func t ion in t h e face of c h a n g i n g e n v i r o n m e n t a l c o n d i t i o n s h a s l ong b e e n r ecogn ized as f u n d a m e n t a l for su rv iva l of a n y or­g a n i s m . H o m e o s t a s i s , t h e m a i n t e n a n c e of a n e a r - c o n s t a n t i n t e r n a l s t a t e , is c h a r a c t e r i s t i c of m a n y a n i m a l s . Less spec ia l ized a n i m a l s , however , p a r t i c ­u l a r ly i n v e r t e b r a t e s , typica l ly funct ion over a w i d e r a n g e of i n t e r n a l c o n d i ­t ions a n d a r e n o t h o m e o s t a t i c . T h e h e m o l y m p h s u g a r level of insec t s , for e x a m p l e , is m a i n t a i n e d on ly w i t h i n a very b r o a d c o n c e n t r a t i o n r a n g e . I n M. sexta t h e h e m o l y m p h s u g a r level fluctuates great ly , a n d a l t h o u g h h o r m o n e s a r e involved in r e g u l a t i n g h e m o l y m p h s u g a r levels in insec ts (Sec t ion V ) , h e m o l y m p h s u g a r m a y d e c r e a s e to n e a r u n d e t e c t a b l e levels w h e n l a rvae a r e s t a r v e d ( D a h l m a n , 1969, 1973; S ieger t , 1987).

P ros se r (1955; see a lso Prosser , 1986) d i s t i n g u i s h e d phys io log ica l ad jus t ­m e n t o r confo rmi ty from phys io log ica l r e g u l a t i o n . M a g n u m a n d Towle (1977) refer red to t h e c o n d i t i o n of conse rved phys io log ica l func t ion in n o n -h o m e o s t a t i c sy s t ems as enan t i o s t a s i s . E n a n t i o s t a s i s is often c h a r a c t e r i z e d b y b a l a n c i n g a d j u s t m e n t s in o n e phys io log ica l p rocess w i t h c o u n t e r c h a n g e s in o t h e r s . T h u s , c a u t i o n m u s t b e exerc ised w h e n e v a l u a t i n g c h a n g e s in t h e i n t e r n a l mi l i eu of p a r a s i t i z e d insec ts b e c a u s e m a n y a l t e r a t i o n s m a y s i m p l y reflect o p p o s i n g a d j u s t m e n t s in s eeming ly u n r e l a t e d p rocesses . T h e e l eva ted t r e h a l o s e level in T. ni p a r a s i t i z e d b y H. exiguae (Sec t ion I I I . A ) , for e x a m p l e , m a y r e p r e s e n t a c o m p e n s a t o r y a d a p t a t i o n to t h e s i m u l t a n e o u s d e c r e a s e in t h e level of a m i n o ac ids . I n th is m a n n e r t h e s y s t e m is m a i n t a i n e d in a func t iona l s t e a d y s t a t e . O s m o t i c p r e s s u r e m a y reflect t h e specific func t ion p r e s e r v e d .

A l t h o u g h r e s e a r c h e r s h a v e s p e c u l a t e d o n the p o t e n t i a l of e l eva ted h e m o ­l y m p h t r e h a l o s e to p rov ide n u t r i e n t for d e v e l o p i n g p a r a s i t e s , a m i n o ac ids may , in fact, b e m o r e i m p o r t a n t . A d e c r e a s e d a m i n o acid level o b s e r v e d in s o m e hos t s m a y resu l t f rom r a p i d a b s o r p t i o n b y the p a r a s i t e ( s ) . A m i n o ac ids often o c c u r in insec t b lood a t levels exceed ing t h a t of t r eha lo se . I n u n p a r ­as i t i zed fifth-instar T. ni, t h e level of g l u t a m i n e a lone is a p p r o x i m a t e l y t h r e e -

Page 147: Parasites and Pathogens of Insects. Parasites

140 S. Ν. Thompson

fold t h a t of t r eha lose . Moreove r , in vitro n u t r i t i o n a l s tud ie s o n t h e id iob ion t i c p a r a s i t e s d e s c r i b e d in Sec t ion V I I i nd i ca t e t h a t a m i n o ac ids m a y to ta l ly s p a r e c a r b o h y d r a t e as a n ene rgy sou rce for l a rva l d e v e l o p m e n t ( T h o m p s o n , 1976).

IX. Conclusion

Red i rec t ion of hos t phys io logy cha rac t e r i ze s m a n y insec t p a r a s i t e - h o s t re la­t ionsh ips . A l t h o u g h o u r u n d e r s t a n d i n g of the m e t a b o l i c bas i s for these c h a n g e s is still r u d i m e n t a r y , r ed i rec t ion often inc ludes a l t e r a t i o n s in t i ssue levels of l ip ids , c a r b o h y d r a t e s , a n d n i t r ogen m e t a b o l i t e s . M e t a b o l i c s tud ies sugges t t h a t s o m e c h a n g e s reflect expec t ed a d j u s t m e n t s b r o u g h t a b o u t b y t he hos t ' s n o r m a l e n a n t i o s t a t i c r e g u l a t o r y m e c h a n i s m s in r e s p o n s e to t he s t ress of p a r a s i t i s m . I n o t h e r cases , however , t he n o r m a l r e g u l a t o r y m e c h a n i s m s a p p e a r to be a l t e red o r i nope ra t i ve . I n those i n s t ances it m i g h t be c o n c l u d e d t h a t r egu l a t i on of hos t m e t a b o l i s m by the p a r a s i t e h a s s u p e r s e d e d t h e hos t ' s n o r m a l r egu l a to ry func t ions . I n e i the r case the c h a n g e s o b s e r v e d m a y have n u t r i t i o n a l c o n s e q u e n c e s for the deve lop ing p a r a s i t e l a rvae .

T h e va r ious m a n n e r s in w h i c h we v iew insect p a r a s i t i s m reflect m o r e t h a n " s e m a n t i c " differences (Fisher , 1986). T h e y inf luence in a f u n d a m e n t a l w a y o u r u n d e r s t a n d i n g of insec t p a r a s i t i s m (see Goff, 1 9 8 2 ) — o u r i n t e r p r e t a t i o n of e x p e r i m e n t a l d a t a a n d o u r a p p r o a c h to fu r ther r e s e a r c h . T h e c o n c e p t of " h o s t r e g u l a t i o n " h a s a n d c o n t i n u e s to p rov ide a v a l u a b l e f r a m e w o r k w i t h i n w h i c h the n a t u r e of t he insect p a r a s i t e - h o s t r e l a t i o n s h i p c a n b e u n d e r s t o o d . I t is i m p o r t a n t to recognize t he d y n a m i c n a t u r e of t he insec t p a r a s i t e - h o s t i n t e rac t ion a n d t h e evo lu t iona ry bas is for the d e v e l o p m e n t of th is c o m p l e x symbios i s .

References

Askew, R. R. (1971). "Parasitic Insects." American Elsevier, New York. Askew, R. R., and Shaw, M. R. (1986). Parasitoid communities: Their size, structure and

development. In "Insect Parasitoids" (J. Waage and D. Greathead, eds.), pp. 225-264. Academic Press, London.

Atkinson, D. E. (1968). The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry 7:4030-4034.

Barnard C.J. (1990). Parasitic relationships. In "Parasitism and Host Behaviour" (C.J. Barnard and J. M. Behnke, eds.), pp. 1-33. Taylor & Francis, New York.

Barras, D. J., Wiygul, G., and Vinson, S. B. (1969). Amino acids in the haemolymph of the tobacco budworm, Heliothis virescens Fab. as affected by its habitual parasite Cardiochiles nigriceps Viereck. Comp. Biochem. Physiol. 31:707-714.

Barras, D. J., Joiner, R. L., and Vinson, S. B. (1970). Neutral lipid composition of the tobacco budworm, Heliothis virescens (Fab.) as affected by its habitual parasite, Cardiochiles nigriceps Viereck. Comp. Biochem. Physiol. 36:775-783.

Page 148: Parasites and Pathogens of Insects. Parasites

6. Host Metabolism and Parasite Nutrition 141

Beckage, Ν. E. (1985). Endocrine interactions between endoparasitic insects and their hosts. Anna. Rev. Entomol. 30:271-413.

Beckage, Ν. E., and Riddiford, L. M. (1983). Growth and development of the endoparasitic wasp Apanteles congregatus: Dependence on host nutritional status and parasite load. Physiol. Entomol. 8:231-241.

Beckage, Ν. E., Templeton, T. J., Nielsen, B. D., Cook, D. I., and Stoltz, D. B. (1987). Parasitism-induced hemolymph polypeptides in Manduca sexta (L.) larvae parasitized by the braconid wasp Cotesia congregata (Say). Insect Biochem. 17:439-455.

Beckage, Ν. E., Nesbit, D. J., Nielsen, B. D., Spence, K. D., and Barman, M.A.E. (1989). Alteration of hemolymph polypeptides in Manduca sexta larvae parasitized by Cotesia congre­gata: A two-dimensional electrophoretic analysis and comparison with major bacteria-induced proteins. Arch. Insect Biochem. Physiol. 10:29-45.

Chapman, A. G., Fall, L., and Atkinson, D. E. (1971). Adenylate energy change in Escherichia coli during growth and starvation. J. Bacteriol. 108:1072-1086.

Dahlman, D. L. (1969). Trehalose levels in parasitized and nonparasitized tobacco hornworm, Manduca sexta, larvae. Ann. Entomol. Soc. Am. 63:615-617.

Dahlman, D. L. (1973). Starvation of the tobacco hornworm, Manduca sexta. 1. Changes in hemolymph characteristics of 5th-stage larvae. Ann. Entomol. Soc. Am. 66:1023-1029.

Dahlman, D. L. (1975). Trehalose and glucose levels in hemolymph of diet-reared, tobacco leaf-reared and parasitized tobacco hornworm larvae. Comp. Biochem. Physiol. A 50A:165-167.

Dahlman, D. L., and Herald, F. (1971). Effects of the parasite, Apanteles congregatus, on respira­tion of tobacco hornworm, Manduca sexta, larvae. Comp. Biochem. Physiol. A 40A:871-880 .

Dahlman, D. L., and Vinson, S. B. (1975). Trehalose and glucose levels in the hemolymph of Heliothis virescens parasitized by Microplitis croceipes or Cardiochiles nigriceps. Comp. Biochem. Physiol. Β 52B:465-468.

Dahlman, D. L., and Vinson, S. B. (1976). Trehalose level in the hemolymph οϊ Heliothis virescens parasitized by Campoletis sonorensis. Ann. Entomol. Soc. Am. 69:523-524.

Dahlman, D. L., and Vinson, S. B. (1977). Effect of calyx fluid from an insect parasitoid on host hemolymph dry weight and trehalose content. J. Invertebr. Pathol. 29:227-229.

Dahlman, D. L., and Vinson, S. B. (1980). Glycogen content in Heliothis virescens parasitized by Microplitis croceipes. Comp. Biochem. Physiol. A 66A:625-630.

Dawkins, R. (1982). Host phenotypes of parasite genes. In "The Extended Phenotype: The Gene as the Unit of Selection," pp. 209-227. Freeman, Oxford.

Dawkins, R., and Krebs, J. R. (1979). Arms races between and within species. Proc. R. Soc. London, Ser. 5 205:489-511 .

Dover, Β. Α., Davies, D. H., and Vinson, S. B. (1988a). Dose-dependent influence οϊ Campoletis sonorensis polydnavirus on the development and ecdysteroid titers of last-instar Heliothis virescens larvae. Arch. Insect Biochem. Physiol. 8:113-126.

Dover, Β. Α., Davies, D. H., and Vinson S. B. (1988b). Degeneration of last-instar Heliothis virescens prothoracic glands by Campoletis sonorensis polydnavirus. J. Invertebr. Pathol. 51 :80 -91 .

Federici, B. F. (1991). Viewing polydnaviruses as genetic secretions of endoparasitic Hymenop­tera. Redia 74:463-466.

Fisher, R. C. (1963). Oxygen requirements and the physiological suppression of supernumerary insect parasitoids. J. Exp. Biol. 40:531-540.

Fisher, R. C. (1986). George Salt and the development of experimental insect parasitology. J. Insect Physiol. 32:249-253.

Fuhrer, E. (1972). Abnorme glycogenspeicherung in larven von Pieris brassicae L. als folge des parasitismus von Apanteles glomeratus L. Z. Angew. Entomol. 70:370-374.

Goff, L .J . (1982). Symbiosis and parasitism: Another viewpoint. BioScience 34:255-256. Hawlitzky, N., and Boulay, C. (1986). Effects of the egg-larval parasite, Phanerotoma flavitestacea

Page 149: Parasites and Pathogens of Insects. Parasites

142 S. Ν. Thompson

Fisch. (Hymenoptera, Braconidae) on the dry weight and chemical composition of its host Anagasta kuehniella Zell. (Lepidoptera, Pyralidae). J. Insect Physiol. 32:269-274.

Hayakawa, Y. (1986). Inhibition of lipid transport in insects by a factor secreted by the parasite, Blepharipa sericariae. FEBS Lett. 195:122-124.

Hayakawa, Y. (1987). Inhibition of lipid transport in insects by a parasitic factor. Comp. Biochem. Physiol. Β 87B:279-283.

Horwood, Μ. Α., and Hales, D. F. (1991). Fat body changes in a locust, Chortoicetes termini/era (Walker) (Orthoptera: Acrididae), parasitized by a nemestrinid fly. Arch. Insect Biochem. Physiol. 17:53-63.

Jones, D. (1985a). Endocrine interaction between host (Lepidoptera) and parasite (Cheloninae: Hymenoptera): Is the host or the parasite in control? Ann. Entomol. Soc. Am. 7:141-148.

Jones, D. (1985b). Parasite regulation of host insect metamorphosis: A new form of regulation in pseudoparasitized larvae of Trichoplusia ni. J. Comp. Physiol. Β 155B:583-590.

Jones, D. (1989). Protein expression during parasite redirection of host (Trichoplusia ni) bio­chemistry. Insect Biochem. 19:445-455.

Jones, D., Jones, G., and Hammock, B. D. (1981). Developmental and behavioral responses of larval Trichoplusia ni to parasitization by an imported braconid parasite Chelonus sp. Physiol. Entomol. 6:387-394.

Jones, D., Jones, G., Rudnicka, M., Click, Α., Reck-Malleczewen, V., and Iwaya, M. (1986). Pseudoparasitism of host Trichoplusia ni by Chelonus spp. as a new model system for parasite regulation of host physiology. J. Insect Physiol. 32:315-328.

Junnikkala, E. (1966). Effect of braconid parasitization on the nitrogen metabolism of Pieris brassicae L.: A study of the nitrogenous compounds in the hemolymph of larvae at different ages reared in controlled laboratory conditions. Ann. Acad. Sci. Fenn., Ser. A4 100:1-83 .

Keeley, L. L. (1978). Endocrine regulation of fat body development and function. Annu. Rev. Entomol. 23:329-352.

Knutson, L. V., and Berg, C. O. (1966). Parasitoid development in snail-killing sciomyzid flies. Trans. Am. Microsc. Soc. 85:164-165.

Lawrence, P. O. (1986). Host-parasite hormonal interactions: An overview. J. Insect Physiol. 32:295-298.

Lawrence, P. O. (1988). Hormonal interactions between parasitoids and hosts: Adaptations to stress. In "Endocrinological Frontiers in Physiological Insect Ecology" (F. Sehnal, D. Den-linger, and A. Zabza, eds.), pp. 423-435. Wroclaw Tech. Univ. Press, Wroclaw, Poland.

Long, C. L., Kinney, J. M., and Geiger, J. W. (1976). Nonsuppressibility of gluconeogenesis by glucose in septic patients. Metab., Clin. Exp. 25:193-201.

Magnum, C. P., and Towle, D. W. (1977). Physiological adaptation to unstable environments. Am. Sci. 65:67-75 .

Newsholme, Ε. Α., and Start, C. (1973). "Regulation in Metabolism." Wiley, New York. Pilkis, S. J., El-Maghrabi, M. R., Pilkis, J., and Claus, T. (1981). Inhibition of fructose-1,6-

bisphosphatase by fructose-2,6-bisphosphate. J. Biol. Chem. 256:3619-3622. Prosser, C. L. (1955). Physiological adaptation in animals. Biol. Rev. Cambridge Philos. Soc.

30:229-262. Prosser, C. L. (1986). "Adaptational Biology: Molecules to Organisms." Wiley, New York. Rocha, D. M., Santeanio, F., Faloona, G. R., and Unger, R. H. (1973). Abnormal pancreatic

α-cell function in bacterial infections. N. Engl. J. Med. 288:700. Schmidt, O., and Schuchmann-Feddersen, I. (1989). Role of virus-like particles in parasitoid-

host interaction of insects. Subcell. Biochem. 15:91-119. Siegert, K. J. (1987). Carbohydrate metabolism in starved fifth instar larvae οϊ Manduca sexta.

Arch. Insect Biochem. Physiol. 4:151-160. Smyth, J. D. (1976). "Introduction to Animal Parasitology." Hodder & Stoughton, London.

Page 150: Parasites and Pathogens of Insects. Parasites

6. Host Metabolism and Parasite Nutrition 143

Sprent, J.F.A. (1969). Evolutionary aspects of immunity in zooparasitic infections. In "Immu­nity to Parasitic Animals" (G.J.Jackson, R. Herman, and I. Singer, eds.), pp. 3 - 62 . North-Holland Publ., Amsterdam.

Steele, J. E. (1983). Control of carbohydrate metabolism in insects. In "Endocrinology of In­sects" (R.G.H. Downer, and H. Laufer, eds.), pp. 429-439. Liss, New York.

Steele, J. E., McDougall, G. E., and Shadwick, R. (1988). Trehalose efflux from cockroach fat body in vitro: Paradoxical effects of corpus cardiacum and methylxanthines. Insect Biochem. 18:585-590.

Stoltz, D. B. (1986). Interactions between parasitoid-derived products and host insects: An overview. J. Insect Physiol. 32:347-350.

Stoltz, D. B., Krell, P. J., and Vinson, S. B. (1981). Polydisperse viral DNA's in ichneumonid ovaries: A survey. Can. J. Microbiol. 27:123-130.

Stoltz, D . B., Krell, P., Summers, M. D. , and Vinson, S. B. (1984). Polydnaviridae—a proposed family of insect viruses with segmented, double-stranded, circular D N A genomes. Intervirol-

2 1 : 1 - 4 . Tanaka, T., and Vinson, S. B. (1991). Interaction of venoms with the calyx fluids of three

parasitoids, Cardiochiles nigriceps, Microplitis croceipes (Hymenoptera: Braconidae), and Cam­poletis sonorensis (Hymenoptera: Ichneumonidae) in effecting a delay in the pupation of Helio­this virescens (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 84:87-92 .

Thompson, S. N. (1976). Effects of dietary amino acid level and nutritional balance on larval survival and development of the hymenopterous parasitoid Exeristes roborator. Ann. Entomol. Soc. Am. 69:835-838.

Thompson, S. N. (1982a). Effects of parasitization by the insect parasite Hyposoter exiguae on the growth, development and physiology of its host Trichoplusia ni. Parasitology 84:491-510.

Thompson, S. N. (1982b). Effects of the insect parasite, Hyposoter exiguae, on the total body glycogen and lipid levels of its host, Trichoplusia ni. Comp. Biochem. Physiol. Β 72B:233—237.

Thompson, S. N. (1982c). Exeristes roborator: Quantitative determination of in vitro larval growth rates in synthetic media with different glucose concentrations. Exp. Parasitol. 54:229-234.

Thompson, S. N. (1983a). Biochemical and physiological effects of metazoan endoparasites on their host species. Comp. Biochem. Physiol. Β 74B: 183-211.

Thompson, S. N. (1983b). Brachymeria lasus: Effects of nutrient level on in vitro larval growth of a chalcid insect parasite. Exp. Parasitol. 55:312-319.

Thompson, S. N. (1983c). The nutritional physiology of Trichoplusia ni parasitized by the insect parasite. Hyposoter exiguae, and the effects of parallel-feeding. Parasitology 87:15-28 .

Thompson, S. N. (1985). Effects of A M P and fructose 2,6 bisphosphate on fructose 1,6 bi-sphosphatase activity in Trichoplusia ni parasitized by the insect parasite, Hyposoter exiguae. J. Parasitol. 71:117-119.

Thompson, S. N. (1986a). Effect of the insect parasite Hyposoter exiguae (Viereck) on the carbohy­drate metabolism of its host Trichoplusia ni (Hubner). J. Insect Physiol. 32:287-293.

Thompson, S. N. (1986b). Effects of dietary carbohydrate on the nutritional physiology and blood sugar level of Trichoplusia ni parasitized by the insect parasite, Hyposoter exiguae. Para­sitology 92:25-30 .

Thompson, S. N. (1990). Physiological alterations during parasitism and their effects on host behavior. In "Parasitism and Host Behavior" (C.J. Barnard and J. M. Behnke, eds.), pp. 6 4 -94. Taylor & Francis, New York.

Thompson, S. N., and Binder, B. F. (1984). Altered carbohydrate levels and gluconeogenic enzyme activity in Trichoplusia ni parasitized by the insect parasite, Hyposoter exiguae. J. Para­sitol. 70:644-651.

Thompson, S. N., and Cohen, A. C. (1984). Nitrogen elimination in Trichoplusia ni parasitized by the insect parasite, Hyposoter exiguae. Comp. Biochem. Physiol. A 78A:785-786.

Page 151: Parasites and Pathogens of Insects. Parasites

144 S. Ν. Thompson

Thompson, S. N., and Yamada, K. A. (1984). Energy status in the fat body of Trichoplusia ni parasitized by the insect parasite Hyposoter exiguae. J. Invertebr. Pathol. 44:46—51.

Thompson, S. N., Lee, R.W.-K., and Beckage, Ν. E. (1988). Preliminary studies in the metabo­lism of [ 1 3 C] labelled metabolites in Manduca sexta parasitized by the insect parasite, Cotesia congregata. Colloq. IRNA 48:73-79 .

Thompson, S. N., Lee, R.W.-K, and Beckage, Ν. E. (1990). Metabolism of parasitized Manduca sexta examined by nuclear magnetic resonance. Arch. Insect Biochem. Physiol. 13:127-143.

Van Schaftingen, E., and Hers, H.-G. (1981). Inhibition of fructose-1,6-bisphosphatase by fructose-2,6-bisphosphate. Proc. Natl. Acad. Sci. U.S.A. 78:2861-2863.

Van Schaftingen, E., Hue, L., and Hers, H.-G. (1980). Control of fructose-6-phosphate/ fructose-1,6-bisphosphate cycle in isolated hepatocytes by glucose and glucagon. Biochem. J. 192:887-901.

Vinson, S. B. (1975). Biochemical coevolution between parasitoids and their hosts. In "Evolu­tionary Strategies of Parasitic Insects and Mites" (P. W. Price, ed.), pp. 14-48. Plenum, New York.

Vinson, S. B. (1984). Parasitoid-host relationship. In "Chemical Ecology of Insects" (W.J. Bell and R. T. Carde, eds.), pp. 205-233. Chapman & Hall, London.

Vinson, S. B. (1990a). How parasites deal with the immune system of their host: An overview. Arch. Insect Biochem. Physiol. 13:3-27.

Vinson S. B. (1990b). Physiological interactions between the host genus Heliothis and its guild of parasitoids. Arch. Insect Biochem. Physiol. 13:63-81.

Vinson, S. B., and Iwantsch, G. F. (1980). Host regulation by insect parasitoids. Q. Rev. Biol. 55:143-165.

Whitfield, J. B. (1990). Parasitoids, polydnaviruses and endosymbiosis. Parasitol. Today 6 : 3 8 1 -384.

Ziegler, R. (1990). Biological effects of synthetic Α Κ Η in Manduca sexta and estimates of the amount of Α Κ Η in corpora cardiaca. Arch. Insect Biochem. Physiol. 15:111-116.

Page 152: Parasites and Pathogens of Insects. Parasites

Chapter 7

Teratocytes: Developmental and Biochemical Characteristics Douglas L Dahlman Department of Entomology University of Kentucky Lexington, Kentucky

S. Bradleigh Vinson Department of Entomology Texas A&M University College Station, Texas

I. Introduction

II. Origins

III. Distribution within Taxonomic Groups

IV. Developmental Characteristics A. Morphology B. Comparisons among Egg, Egg-

Larval, Larval, Larval-Pupal, and Adult Parasitoids

C. Comparisons between Single and Multicell Tissues

V. Physiological and Biochemical Characteristics A. Trophic Functions B. Immunosuppressive Functions C. Secretory Functions D. General Effects on Host Growth and

Development

VI. Interactions of Teratocytes, Venoms, and Polydnavirus

VII. Conclusion and Summary Acknowledgments References

I. Introduction

Scient i s t s h a v e r e p o r t e d u n u s u a l l y l a rge cells d i s p e r s e d t h r o u g h o u t t h e h e ­m o l y m p h of c e r t a in p a r a s i t i z e d insec t s . T h e s e cells w e r e a s s igned v a r i o u s n a m e s t h a t reflected a p r o p o s e d funct ion a n d / o r e m b r y o l o g i c a l sou rce , b u t they r e m a i n e d a cur ios i ty un t i l t he 1960s, w h e n i n c r e a s e d k n o w l e d g e a b o u t insec t i m m u n o l o g y , physio logy, b iochemis t ry , virology, a n d m o l e c u l a r b io lo­gy, as well as a d v a n c e s in i n s t r u m e n t a t i o n t e c h n i q u e s , m a d e it poss ib le to look b e y o n d desc r ip t ive biology. T h e funct ion of these cells, m o s t c o m m o n l y cal led t e r a tocy t e s , w a s first r ev iewed by Sal t (1968) . T w o i m p o r t a n t rev iews on the i r e m b r y o l o g i c a l o r ig in ( the serosa l m e m b r a n e of t he p a r a s i t o i d e m ­bryo) s u b s e q u e n t l y a p p e a r e d ( I v a n o v a - K a s a s , 1972; T r e m b l a y a n d C a l -t a g i r o n e , 1973). H a w l i t z k y a n d L a u g e (1979) d i scussed t h e h y p o t h e t i c a l roles of t h e serosa l m e m b r a n e in a s ingle egg- la rva l p a r a s i t o i d a n d V i n s o n

Parasites and Pathogens of Insects Volume 1: Parasites 145

Copyright © 1993 by Academic Press, Inc. All rights of reproduction in any form reserved.

Page 153: Parasites and Pathogens of Insects. Parasites

146 Douglas L Dahlman and S. Bradleigh Vinson

a n d I w a n t s c h ' s 1980 rev iew on hos t r egu l a t i on b y insec t p a r a s i t o i d s i n c l u d e d a m a j o r sec t ion o n t e r a tocy te s . I n t e r e s t in t h e ro le of t e r a tocy t e s in t h e r e g u l a t i o n of hos t physiology, b iochemis t ry , endocr ino logy , i m m u n o l o g y , e tc . , h a s acce le ra t ed d u r i n g t h e las t 10 yea r s . D a h l m a n (1990, 1991) p r o v i d e d overv iews of t e r a tocy t e funct ions a n d rev iews b y B e c k a g e (1990) a n d C o u -d r o n (1991) i n c l u d e d sec t ions on t e r a tocy te s .

P r io r to 1980, t e r a tocy te s w e r e genera l ly t h o u g h t to r a p i d l y a b s o r b n u t r i ­en t s t h a t w e r e c o n s u m e d l a t e r b y t h e deve lop ing p a r a s i t o i d . C l e a r l y t h e v iew t o d a y is t h a t t e r a tocy te s d o m o r e t h a n s imp ly s u p p l y a n a d d i t i o n a l s o u r c e of n u t r i e n t s to t h e deve lop ing p a r a s i t o i d l a rva . I m p o r t a n t i n t e r ac t i ons b e t w e e n t e r a tocy te s a n d o t h e r c o m p o n e n t s of t he p a r a s i t o i d s y s t e m ( v e n o m , accessory g l a n d p r o d u c t s , a n d , in s o m e cases , p o l y d n a v i r u s ) a r e b e i n g inves t iga t ed .

II. Origins

D e v e l o p i n g e m b r y o s of ce r t a in p a r a s i t i c H y m e n o p t e r a a r e enc losed w i t h i n a n e x t e r n a l m e m b r a n e t h a t , for different species , m a y h a v e different o r ig ins a n d fates. T h e p o l a r bod ies a r e cons ide red to b e t h e m o s t l ikely u l t i m a t e sou rce of these e m b r y o n i c m e m b r a n e s . A c c o r d i n g to T r e m b l a y a n d C a l -t a g i r o n e (1973) t h e p o l a r bod ies a r e t h e d a u g h t e r cells of t h e p r i m a r y a n d s e c o n d a r y oocy tes fo rmed d u r i n g egg m a t u r a t i o n . T h e specific t e r m s a s ­s igned to t he m e m b r a n e s t h a t deve lop f rom these cells v a r y w i t h t h e insec t t a x o n . I n t he B r a c o n i d a e , w h i c h c o n t a i n t he ma jo r i ty of r e p o r t e d i n s t a n c e s of t e r a tocy te s , t h e p o l a r bod ie s give r ise to a serosa l m e m b r a n e t h a t in t u r n d i ssoc ia tes to yield i n d i v i d u a l cells after t h e egg h a t c h e s (Fig . 1).

T r e m b l a y a n d C a l t a g i r o n e (1973) s t a t e d t h a t t h e se rosa l m e m b r a n e envel ­o p i n g t h e e m b r y o falls in to o n e of t h r e e types : (1) a t r u e se rosa , (2) a d e u t o s e r o s a ( p s e u d o s e r o s a ) , o r (3) a t r o p h a m n i o n . T h e se rosa is de r ived from t h e first c leavage n u c l e u s . Sources of t he t r u e se rosa in b r a c o n i d s m a y b e from e i the r se rosa l d e l a m i n a t i o n o r pro l i fe ra t ion of p o l a r bod ie s ( T r e m ­b lay a n d C a l v e r t , 1971; T r e m b l a y a n d C a l t a g i r o n e , 1973). A serosa l m e m ­b r a n e o r i g i n a t i n g by d e l a m i n a t i o n a lso h a s b e e n d e s c r i b e d for a n ich-n e u m o n i d , a l t h o u g h n o ev idence of t e r a tocy tes h a s b e e n r e p o r t e d for th is g r o u p . T h e d e u t o s e r o s a l m e m b r a n e , in c o n t r a s t to a t r u e se rosa , is ex t en ­sively de r ived f rom t h e e m b r y o p r o p e r b u t a l so c o n t a i n s cells f rom p o o r l y def ined e x t r a e m b r y o n i c t i ssues . T h e t r o p h a m n i o n i c m e m b r a n e h a s n o co r re ­s p o n d i n g s t r u c t u r e in t h e e m b r y o n i c d e v e l o p m e n t of insec ts in g e n e r a l a n d , in t h e o p i n i o n of T r e m b l a y a n d C a l t a g i r o n e (1973) , t h e t e r m is n o t e m b r y -ological ly a p p r o p r i a t e b u t it h a s b e e n used so f requen t ly " t h a t it s eems a d v i s a b l e to p re se rve i t . "

U n d o u b t e d l y va r ious c o m b i n a t i o n s of these m e m b r a n e s will b e found u p o n closer e x a m i n a t i o n of t h e embryo log ica l d e v e l o p m e n t of v a r i o u s species of

Page 154: Parasites and Pathogens of Insects. Parasites

7. Teratocytes: Developmental and Biochemical Characteristics 147

Figure 1 Well-developed (left) and hatching larvae (right) of Cardiochiles nigriceps showing the location of the two types of serosal cells that enclose the embryo. Only Type I I cells form teratocytes when liberated from the embryo. The Type I serosal cells degrade (F. Pennacchio, S. B. Vinson, and E. Tremblay, Texas A & M University, unpublished).

H y m e n o p t e r a . I n fact, a t leas t o n e i n t e r m e d i a t e e x a m p l e is k n o w n w h e r e t h e t r o p h a m n i o t i c m e m b r a n e is de r ived from b o t h p o l a r nuc le i a n d c leavage nuc le i ( T r e m b l a y a n d C a l v e r t , 1971). M e m b r a n e s of t h e t r o p h a m n i o t i c t y p e a lso a r e found in e n d o p a r a s i t i c H y m e n o p t e r a t h a t d e v e l o p p o l y e m b r y o n i c a l l y ( I v a n o v a - K a s a s , 1972).

III. Distribution within Taxonomic Groups

I f t h e s t r ic t def in i t ion of t e r a tocy te s is followed (i .e. , i n d i v i d u a l cells r e l eased in to t h e h o s t h e m o c o e l as t h e r e su l t of t h e d i s soc ia t ion of t h e se rosa l m e m ­b r a n e of t h e e m b r y o ) , t hese cells a r e r e s t r i c t ed to a few famil ies of t h e H y ­m e n o p t e r a ( B r a c o n i d a e , P l a t y g a s t e r i d a e , a n d Sce l ion idae) . A s ingle ter-

Page 155: Parasites and Pathogens of Insects. Parasites

148 Douglas L Dahlman and S. Bradleigh Vinson

a t o c y t e p e r p a r a s i t o i d was r e p o r t e d for o n e t r i c h o g r a m m a t i d species (Voegele et aL, 1974), b u t S t r a n d (1986) conv inc ing ly a r g u e d t h a t th is s ingle cell is a p o l a r b o d y a n d shou ld no t be cons ide red a t e r a t o c y t e . H o w e v e r , in a b r o a d e r sense , n o n d i s s o c i a t e d t issues of t he s a m e or ig in (i .e. , p o l a r bod ies ) have b e e n d e s c r i b e d from severa l species of t he supe r fami ly C h a l c i d o i d e a . S p e c u l a t i o n on p r e r equ i s i t e s for c o n t i n u e d act iv i ty of p o s t e m e r g e n c e e x t r a ­e m b r y o n i c t i ssue wou ld be t h a t t he p a r a s i t o i d egg m u s t be d e p o s i t e d w i t h i n t he hos t so t h a t the t issues have access to h o s t b o d y fluids for s u s t e n a n c e . T h u s , for e x a m p l e , e x a m i n a t i o n of h o m o p t e r a n hos t s p a r a s i t i z e d b y P i p u n -cu l idae ( D i p t e r a ) m i g h t p rov ide a d d i t i o n a l ins igh t i n to t he i m p o r t a n c e of these e x t r a e m b r y o n i c t i ssues . Neve r the l e s s , o t h e r factors m u s t be neces sa ry for success b e c a u s e t e ra tocy tes have n o t been r e p o r t e d f rom m a n y o t h e r families of p a r a s i t i c H y m e n o p t e r a .

IV. Developmental Characteristics

A. Morphology

1. A b u n d a n c e , P e r s i s t e n c e , a n d G r o w t h

S o m e of t he s y n o n y m s used for t e r a tocy te s reflect o b s e r v a t i o n s o n t h e size, funct ion , a n d poss ib le or ig ins of these spec ia l ized e x t r a e m b r y o n i c cells. T h e y h a v e been cal led g i a n t cells, t r o p h i c cells, t r o p h a m n i o n cells, a n d t r o -p h o s e r o s a cells, b u t t he t e r m t e ra tocy te s , o r ig ina l ly sugges t ed by H o l l a n d e (1920) , is c u r r e n t l y m o s t c o m m o n l y used . A l t h o u g h a c o n t i n u u m b e t w e e n n o d i s soc ia t ion a n d to ta l d i s soc ia t ion of t h e e x t r a e m b r y o n i c m e m b r a n e p r o b a ­bly c a n be found in va r ious species , th is d i scuss ion will b e p r i m a r i l y re ­s t r ic ted to those m e m b r a n e s t h a t d i s soc ia te .

N e w l y ovipos i ted eggs of e n d o p a r a s i t i c H y m e n o p t e r a typ ica l ly a r e s m a l l w i t h re la t ively l i t t le yolk. D u r i n g e m b r y o g e n e s i s , egg v o l u m e inc reases sev­era l h u n d r e d f o l d w i t h c o n c o m i t a n t g r o w t h of t he serosa l m e m b r a n e a n d s t r e t c h i n g of t h e cho r ion . Dif ferent ia t ion a m o n g the cells fo rming t h e serosa l m e m b r a n e p r o b a b l y occu r s d u r i n g e m b r y o g e n e s i s . I n Cardiochiles nigriceps t he serosa l m e m b r a n e cells have two fates. T h o s e cells nex t to t he ep i the l i a l cells of t h e e m b r y o beg in to d e g e n e r a t e j u s t p r i o r to l a rva l h a t c h i n g , a l t h o u g h they m a y r e m a i n for a whi le even after h a t c h i n g . S m i t h (1952) d e s c r i b e d a s imi l a r p h e n o m e n o n . However , a n t e r i o r a n d pos t e r io r to t he e m b r y o the se rosa is severa l layers th ick (Fig. 1) a n d w h e n these cells s e p a r a t e f rom t h e e m b r y o , i n s t e a d of d e g e n e r a t i n g , they a r e re leased a n d deve lop in to t h e t e r a tocy t e s ( F . P e n n a c c h i o , S. B . V i n s o n , a n d E . T r e m b l a y , u n p u b l i s h e d ) . T h e s i t u a t i o n in o t h e r species h a s no t b e e n d e s c r i b e d in de ta i l , b u t t h e serosa l m e m b r a n e is t h o u g h t to d i s soc ia te i n to i n d i v i d u a l t e r a tocy te s . T h e n u m b e r of t e r a tocy t e s

Page 156: Parasites and Pathogens of Insects. Parasites

7. Teratocytes: Developmental and Biochemical Characteristics 149

r e p o r t e d f rom i n d i v i d u a l p a r a s i t o i d species r a n g e s f rom as few as 8 to as m a n y as 800 ( V i n s o n a n d I w a n t s c h , 1980). O n c e d i s soc ia t ed , t hey d o n o t u n d e r g o fu r the r cell d iv is ion , a l t h o u g h t h e p lo idy level m a y inc rea se m a n y -fold ( S t r a n d a n d W o n g , 1991). A l t h o u g h prec i se de ta i l s a r e species specific, t h e v o l u m e of i n d i v i d u a l t e r a tocy te s usua l ly inc reases manyfo ld d u r i n g the i r r e s idence w i t h i n t h e hos t . In i t i a l d i a m e t e r s r a n g e from 5 to 86 μ π ι w i t h a 5-to 10-fold i nc rea se in d i a m e t e r b e i n g q u i t e c o m m o n ( V i n s o n a n d I w a n t s c h , 1980). O n e e x a m p l e of over a 3000-fold inc rease in size h a s b e e n r e c o r d e d in a n a t u r a l l y p a r a s i t i z e d hos t ( S m i t h , 1952), wh i l e even l a rge r sizes h a v e b e e n o b t a i n e d w h e n t h e t e r a tocy te s w e r e t r ans fe r r ed to n o n p a r a s i t i z e d hos t s ( V i n ­son , 1970; S t r a n d a n d W o n g , 1991). T e r a t o c y t e s w i t h d i a m e t e r s as g r e a t as 1 m m h a v e b e e n found in Heliothis virescens p u p a e t h a t w e r e in jec ted as fifth-i n s t a r l a rvae w i t h C. nigriceps t e r a tocy te s ( P e n n a c c h i o et al., 1993b) .

I n m o s t r e p o r t e d cases , t he in i t ia l n u m b e r of t e r a tocy te s w a s s ignif icant ly r e d u c e d b y t h e t i m e t h e p a r a s i t o i d c o m p l e t e d its l a rva l d e v e l o p m e n t (see n u m b e r w i t h t i m e for Perilitus coccinellae, F ig . 2). T h e c a u s e for th is loss is r e l a t ed to t h e s t age of hos t p a r a s i t i z e d , t he phys io logy of t h e paras i to id—host i n t e r ac t i on , a n d t h e b e h a v i o r of t h e p a r a s i t o i d . S o m e p a r a s i t o i d l a rvae feed

C. nigriceps 150

1 1 9 119 100 88 , ,

Ο Ο Ο Ο 100^m

O A 6 8 10 12 1A Days after paras i t i zat ion

Figure 2 T h e diameters and numbers of teratocytes for three species of braconids are depicted. The teratocytes of Perilitus coccinellae reach over 450 μπι in diameter whereas those of Apanteles kariyai rarely exceed 100 μπι. Data for Cardiochiles nigriceps provided by S. B. Vinson (Texas A & M University, unpublished), for P. coccinellae provided by K. Kadono-Okuda (Tsukuba University, unpublished), and for A. kariyai provided by T. Okuda (National Institute of Sericulture and Entomological Science, Tsukuba, J a p a n , unpublished).

Page 157: Parasites and Pathogens of Insects. Parasites
Page 158: Parasites and Pathogens of Insects. Parasites

7. Teratocytes: Developmental and Biochemical Characteristics 151

a l m o s t exclusively on t h e e n l a r g e d t e r a t o c y t e cells (Sch l inge r a n d H a l l , 1960). T h e r e is c lear ev idence of t e r a tocy te s p r e s e n t in t he d iges t ive t r ac t of s o m e p a r a s i t o i d l a rvae (Sluss a n d L e u t e n e g g e r , 1968; A r a k a w a a n d K i t a n o , 1989; S t r a n d a n d W o n g , 1991). I n o t h e r cases it is p r e s u m e d t h a t t h e cells a r e phys ica l ly de s t royed as t he resu l t of t he g r o w t h of t he p a r a s i t o i d w i t h i n t h e l imi ted confines of t h e hos t ( L o a n a n d H o l d a w a y , 1961). I n t hose p a r a s i t o i d species t h a t d o n o t comple t e ly c o n s u m e the i r hos t , it is m o r e c o m m o n t h a t a t leas t s o m e of t h e t e r a tocy te s pers i s t a l ive in t he hos t after t h e p a r a s i t o i d h a s ex i ted (Tawfik, 1961; K i t a n o , 1965). O n the o t h e r h a n d , t h e in i t ia l c o m p l e ­m e n t of t e r a tocy te s re leased u p o n h a t c h of a Microplitis croceipes egg w a s still found in t h e b o d y cavi ty of i ts hos t after t h e p a r a s i t o i d l a rva ex i ted ( V i n s o n a n d Lewi s , 1973). T h e ava i l ab le d a t a sugges t t h a t t he evo lu t ion of t e r a tocy t e s h a s t a k e n two p a t h w a y s . I n s o m e p a r a s i t o i d - h o s t r e l a t i o n s h i p s t h e ter­a t o c y t e n u m b e r s d e c r e a s e p r i o r to t h e g e n e r a l c o n s u m p t i o n of h o s t t i ssues b y t h e d e v e l o p i n g p a r a s i t o i d , w h e r e a s in o t h e r s t he t e r a tocy te s e i the r d o n o t s ignif icant ly d e c r e a s e in n u m b e r o r t hey a r e on ly c o n s u m e d w h e n t h e t i ssues of t h e hos t a r e c o n s u m e d . For e x a m p l e , in t h e m i d p o i n t of the i r d e v e l o p m e n t in t h e hos t , t h e n u m b e r of t e r a tocy te s f rom Apanteles kariyai eggs h a s n o t d e c r e a s e d a t all (Fig . 2) . I n c o n t r a s t , 6 % of t h e C. nigriceps t e r a tocy t e s a r e lost by t h e m i d p o i n t of i ts d e v e l o p m e n t a n d a b o u t 2 0 % of t h e t e r a tocy t e s f rom P. coccinellae a r e g o n e b y 7 d a y s .

2. S E M a n d T E M U l t r a s t r u c t u r e

E a r l y r e p o r t s of t e r a tocy te s in p a r a s i t i z e d hos t s i n c l u d e d l ine d r a w i n g s , p h o t o g r a p h s of w h o l e cells , sec t ions d y e d w i t h va r ious cy to logica l s t a i n s , e tc . ( V i n s o n , 1970). M o r e r ecen t r e p o r t s have i n c l u d e d exce l len t t r a n s m i s s i o n e lec t ron m i c r o s c o p y ( T E M ) p h o t o m i c r o g r a p h s s h o w i n g u l t r a s t r u c t u r e (Sluss a n d L e u t e n e g g e r , 1968; T r e m b l a y a n d I a c c a r i n o , 1971 ; V i n s o n a n d Sco t t , 1974; S t r a n d et al., 1985, 1986; T a n a k a a n d W a g o , 1990; P e n n a c c h i o et al., 1993a; d e B u r o n et al., 1993). I n f o r m a t i o n from s c a n n i n g e lec t ron m i c r o s ­copy ( S E M ) s tud ies a l so h a s a p p e a r e d ( D a h l m a n , 1991). B o t h T E M a n d S E M s tud ie s s h o w t h a t t e r a tocy te s a r e covered w i t h a d e n s e m a t of microvi l l i (F ig . 3A) . T h i s e x p a n d e d surface a r e a is cons ide r ed to e n h a n c e b o t h t h e p o t e n t i a l a b s o r p t i v e a n d sec re to ry funct ions of t he t e r a tocy t e s . U l t r a s t r u c -t u r a l s t ud i e s show l a rge extens ive ly ramif ied nuc le i , ex tens ive r e t i c u l a r a n d swol len e n d o p l a s m i c r e t i c u l u m (Fig . 3B) , s e q u e s t e r i n g m i t o c h o n d r i a , o r g a -

Figure 3 (A) Scanning electron micrograph of a fixed teratocyte of Microplitis cro­ceipes (5 days after hatching) showing extensive microvillae. (B) Thin section of a fixed teratocyte of Cardiochiles nigriceps showing the extensive swollen vacuoles surrounded by ribosomes and rough endoplasmic reticulum.

Page 159: Parasites and Pathogens of Insects. Parasites

152 Douglas L Dahlman and S. Bradleigh Vinson

nized Golg i , myel in l ike s t r u c t u r e s , p u t a t i v e a u t o p h a g i c vacuoles , a n d ce l lu la r o u t p o c k e t i n g s . M a n y of these fea tures a r e a lso s h a r e d b y n o n d i s s o c i a t e d serosa l m e m b r a n e s ( L a w r e n c e , 1990), t r o p h a m n i o n s (Koscielski et al., 1978), a n d g u t ep i the l ia l cells.

B. Comparisons among Egg, Egg-Larval, Larval, Larval-Pupal, and Adult Parasitoids

All s t ages of t he life cycle of insec ts a r e suscep t ib le to p a r a s i t i z a t i o n by o n e o r m o r e species of p a r a s i t i c insec ts . W i t h t he excep t ion of p a r a s i t o i d s t h a t on ly a t t a ck t he p u p a l s t age , t e ra tocy tes have b e e n obse rved in p a r a s i t i z e d hos t s of all o t h e r life s t ages .

T h r e e species of scel ionid egg p a r a s i t o i d s have b e e n r e p o r t e d to have t e r a tocy te s (Ge r l i ng a n d O r i o n , 1973; S t r a n d et al., 1985; Volkoff a n d C o l -azza , 1992). T e r a t o c y t e s have b e e n d o c u m e n t e d in severa l species of Chelonus (Bracon idae ) ( B u h l e r et al., 1985; J o n e s , 1987), w h i c h a r e e g g / l a r v a l p a r a ­s i to ids . T h e s ingle r e p o r t of t e r a tocy tes in a p l a t y g a s t e r i d a lso is a n e g g / l a r ­val p a r a s i t o i d (Hi l l a n d Emery , 1937).

T h e la rva l s t age of hos t s is b y far t he m o s t c o m m o n in w h i c h t e r a tocy t e s have b e e n r e p o r t e d . However , it a lso is poss ib le t h a t th is s imp ly reflects t h e fact t h a t m o s t of t he e x a m p l e s t h u s far s t u d i e d h a v e b e e n l a rva l p a r a s i t o i d s . O r d e r s h o s t i n g p a r a s i t o i d s w i t h t e ra tocy tes i n c l u d e L e p i d o p t e r a , H e m i p t e r a , a n d H o m o p t e r a . A few of t he species p a r a s i t i z i n g l e p i d o p t e r o u s l a rvae a r e g r e g a r i o u s ( K i t a n o , 1965; Beckage , 1990) a n d p a r t i c u l a r l y l a rge n u m b e r s of t e r a tocy te s a r e p r e s e n t in t he h e m o c o e l . N y m p h s ( larvae) of a p h i d s (Spencer , 1926) a n d m i r i d s ( C o h e n a n d D e B o l t , 1984) a r e hos t s for severa l species of b r a c o n i d s t h a t yield t e r a tocy te s , a n d a d u l t s of c e r t a in famil ies of C o l e o p t e r a ( J ackson , 1928; S m i t h , 1952; Sluss , 1968), as well as a d u l t a p h i d s , a r e hos t s for b r a c o n i d s t h a t re lease t e r a tocy te s . Diachasmimorpha (=Biosteres) long-icaudata, t he l a r v a l / p u p a l b r a c o n i d p a r a s i t o i d of t he t e p h r i t i d fruit fly, An­astrepha suspensa, re leases a n in tac t serosa l m e m b r a n e t h a t m a y p l a y a role s imi l a r to t h a t of t he t e ra tocy tes ( L a w r e n c e , 1990). I t is i n t e r e s t i ng to n o t e t h a t we have no t found a n y r eco rds of t e r a tocy te s a s soc ia t ed w i t h p u p a l p a r a s i t o i d s . P e r h a p s t he i n t e r n a l his tolysis of t i ssues a s soc ia t ed w i t h rea l loca ­t ion of s t r u c t u r a l c o m p o n e n t s obv ia t e s t he need for t e r a tocy te s t h a t m a y serve a l y t i c /d i s soc i a t i on funct ion in o t h e r types of hos t s .

C. Comparisons between Single and Multicell Tissues

As def ined, t e r a tocy te s a r e i n d i v i d u a l cells re leased f rom a n e x t r a e m b r y o n i c m e m b r a n e s u b s e q u e n t to t he h a t c h of t he p a r a s i t o i d egg. As such , they a r e r e s t r i c t ed to a few families of H y m e n o p t e r a . However , f rom a func t iona l

Page 160: Parasites and Pathogens of Insects. Parasites

7. Teratocytes: Developmental and Biochemical Characteristics 153

p o i n t of view, e x t r a e m b r y o n i c t i ssue f rom t h e p a r a s i t o i d t h a t pers i s t s in t h e h o s t pos tec los ion m a y b e s imi l a r w h e t h e r o r n o t t he cells of t he m e m b r a n e h a v e d i s soc ia t ed . G i v e n t h a t t h e t e r a tocy t e s a r i se from p o l a r bod ie s , it c a n b e a r g u e d t h a t t i ssues f rom t h e s a m e s o u r c e m i g h t have s imi l a r func t ions . T h e ro le of p o l a r bod ie s in e n d o p a r a s i t i s m h a s b e e n d i scussed ( T r e m b l a y a n d C a l t a g i r o n e , 1973), a n d I v a n o v a - K a s a s (1972) a d d r e s s e d a s o m e w h a t m o r e spec ia l ized a s p e c t of th is sub jec t in a r ev iew o n insect p o l y e m b r y o n y . C l e a r l y a va r i e ty of e x t r a e m b r y o n i c t issues m a y pers i s t w i t h i n t he hos t s a n d these t i ssues m o r e t h a n likely express a d ivers i ty of b io logica l act ivi t ies t h a t con­t r i b u t e to t h e success of t h e p a r a s i t o i d .

V. Physiological and Biochemical Characteristics

Since e x p e r i m e n t a l s tud ies on t he func t ions of t e r a tocy te s h a v e on ly r ecen t ly b e e n in i t i a t ed , m u c h r e m a i n s to b e e x p l a i n e d w i t h r e spec t to specific roles p l a y e d by these cells in t h e p a r a s i t o i d - h o s t i n t e r ac t i on . T h i s is especia l ly t r u e w i t h egg p a r a s i t o i d s b u t t h e i n fo rma t ion from even the m o s t f r equen t ly s t u d i e d g r o u p ( l e p i d o p t e r o u s l a rva l p a r a s i t o i d s ) is very l imi ted . His tor ica l ly , t h e p r i m a r y roles of t e r a tocy te s have b e e n r e p o r t e d to b e t r o p h i c , i m m u ­n o s u p p r e s s i v e , a n d secretory.

A. Trophic Functions

T h e t r e m e n d o u s i nc rea se in v o l u m e of t e r a tocy te s followed by the i r d i s a p ­p e a r a n c e t o w a r d t h e c o m p l e t i o n of t h e p a r a s i t o i d ' s l a rva l g r o w t h l eads to t h e c o n c l u s i o n t h a t t e r a tocy te s serve as a sou rce of specific n u t r i e n t s , p a r t i c u l a r l y for t h e l a t e r i n s t a r s of t h e p a r a s i t o i d . I n fact, c o m p l e t e cells a n d f r a g m e n t s h a v e b e e n found in t he d iges t ive t r ac t s of s o m e p a r a s i t o i d s (Sluss , 1968; A r a k a w a a n d K i t a n o , 1989; S t r a n d a n d W o n g , 1991). T h e d e n s e m a t of microvi l l i o b s e r v e d o n t e r a tocy te s (Fig . 3A) cou ld b e c o n s i d e r e d a n a d a p t a ­t ion for a b s o r p t i o n of n u t r i e n t s f rom t h e hos t ' s h e m o l y m p h . A l t h o u g h it is poss ib le t h a t t e r a tocy te s m a y syn thes i ze specific n u t r i e n t s r e q u i r e d for suc ­cessful p a r a s i t o i d d e v e l o p m e n t , it is a l so poss ib le t h a t t e r a tocy t e s re lease factors t h a t e i the r a l t e r hos t n u t r i e n t s o r inf luence t h e phys io log ica l e n v i r o n ­m e n t in w h i c h the p a r a s i t o i d deve lops . For e x a m p l e , t h e t e r a tocy t e s of Tele-nomus heliothidis secre te h i s to ly t ic e n z y m e s t h a t d iges t t he c o n t e n t of t h e egg hos t ( S t r a n d et al., 1986).

I n a t l eas t two species , t he success of in vitro r e a r i n g of p a r a s i t o i d l a rvae w a s e n h a n c e d b y i n c l u d i n g t e r a tocy t e s in t h e r e a r i n g m e d i a ( S t r a n d et al., 1988; G r e a n y et al., 1989), p e r h a p s as t he resu l t of t h e p r o d u c t i o n of h i s to ly t ic

Page 161: Parasites and Pathogens of Insects. Parasites

154 Douglas L Dahlman and S. Bradleigh Vinson

TC Μ 669 440

^ - 2 3 2 200

140

/

69"

4 6 ^

A Β Figure 4 (A) Native PAGE (2.5 to 20% gradient) of an 11-day teratocyte homoge-nate of Perilitus coccinellae stained with Coomassie Brilliant Blue (T. Okuda, National Institute of Sericulture and Entomological Science, Tsukuba, J apan , unpublished). (B) Autoradiograph of 3 5 S- labeled proteins from an SDS-PAGE of a 9-day teratocyte homogenate of Cardiochiles nigriceps (A. Mourad and S. B. Vinson, Texas A & M Uni­versity, unpublished). TC = teratocytes, Μ = marker.

Μ TC

Page 162: Parasites and Pathogens of Insects. Parasites

7. Teratocytes: Developmental and Biochemical Characteristics 155

e n z y m e s t h a t h y d r o l y z e c o m p l e x molecu le s found in t h e r e a r i n g m e d i a . I n o n e r e p o r t w h e r e t e r a tocy t e s d i d n o t i m p r o v e in vitro g r o w t h , t h e r e a r i n g m e d i a m a y h a v e b e e n deficient in o n e o r m o r e cr i t ica l c o m p o n e n t s b e c a u s e it s u p p o r t e d on ly m a r g i n a l g r o w t h w i t h o u t t e r a tocy te s ; therefore , it m a y n o t h a v e b e e n poss ib le to d e m o n s t r a t e a n y s u p p l e m e n t a l effects of t e r a tocy t e s ( R o t u n d o et al., 1988). I n c o n t r a s t , in vitro s t ud ie s w i t h C. nigriceps b y P e n n a c -ch io et al. (1992b) d e m o n s t r a t e d b o t h g r o w t h a n d m o l t i n g f rom first to s econd i n s t a r w i t h o u t ac t ive t e r a tocy t e s .

I t is un l ike ly t h a t t e r a tocy t e s a r e e a t e n b y M. croceipes l a rvae b e c a u s e t h e o r ig ina l n u m b e r r e m a i n in t h e h o s t after t h e p a r a s i t o i d h a s ex i ted ( V i n s o n a n d Lewi s , 1973). A s ignif icant p r o p o r t i o n of t h e t e r a tocy t e s f rom Cotesia (=Apanteles) glomerata a l so r e m a i n a t t h e t e r m i n a t i o n of p a r a s i t o i d l a rva l d e v e l o p m e n t ( H a s h i m o t o a n d K i t a n o , 1971). I t h a s b e e n sugges t ed t h a t t h e t e r a tocy t e s m i g h t d i s i n t e g r a t e in t h e hos t ' s h e m o l y m p h a n d t h u s re lease o r r e p l e n i s h n u t r i e n t supp l i e s t h a t a r e t h e n ava i l ab le to t h e p a r a s i t o i d . H o w ­ever , t h e bes t ev idence for t r u e t r o p h i c func t ion c o m e s f rom T. O k u d a (per­sona l c o m m u n i c a t i o n ) . H e found t h a t t e r a tocy te s f rom P. coccinellae c o n t a i n o n e m a j o r p r o t e i n b a n d (Fig . 4A) , w h e r e a s t h e r e d u c t i o n in t e r a t o c y t e n u m ­be r s f rom 600 to less t h a n 50 (see F ig . 2, K . K o d o n o - O k u d a , p e r s o n a l c o m ­m u n i c a t i o n ) sugges t s t h a t t e r a tocy te s f rom P. coccinellae a r e ac tua l ly con­s u m e d b y t h e p a r a s i t o i d . A s m e n t i o n e d ear l ier , t e r a tocy te s co u l d a l so p l a y a t r o p h i c ro le b y d iges t ing hos t h e m o l y m p h p r o t e i n s , e tc .

B. Immunosuppressive Functions

I n 1968 G e o r g e Sa l t s p e c u l a t e d t h a t t e r a tocy te s a id in r e s i s t ance to h o s t defense m e c h a n i s m s . H e a r g u e d t h a t t e r a tocy t e g r o w t h is ach ieved b y a b ­s o r b i n g n u t r i e n t s f rom h o s t h e m o l y m p h w i t h t h e c o n c o m i t a n t d e p l e t i o n of h e m o l y m p h m a t e r i a l . As a c o n s e q u e n c e , h e m a t o p o i e s i s is r e t a r d e d a n d p o ­t en t i a l h e m o c y t i c r eac t ions of t h e h o s t to t h e y o u n g p a r a s i t o i d a r e d e p r e s s e d . H e fu r the r a r g u e d t h a t t h e p r e s e n c e of l a rge n u m b e r s of t e r a tocy t e s after t h e p a r a s i t o i d left i ts h o s t " w a s a shee r w a s t e of t h e t e r a tocy t e s if t he i r func t ion w a s to n o u r i s h ; b u t was u n d e r s t a n d a b l e if t hey h a d a l r e a d y p e r f o r m e d the i r func t ion of p r o t e c t i n g t h e y o u n g l a rvae f rom a defense r e a c t i o n . " Sa l t (1971) r e p o r t e d severa l i n t e r e s t i ng o b s e r v a t i o n s in w h i c h eggs a n d l a rvae of t h e i c h n e u m o n i d w a s p Nemeritis canescens, w h i c h does n o t p r o d u c e t e r a t o c y t e s , w e r e i m p l a n t e d in to u n n a t u r a l hos t s . H e o b s e r v e d t h a t t h e eggs a n d l a rvae w e r e r a p i d l y e n c a p s u l a t e d , excep t in severa l hos t s t h a t h a d previous ly , b u t u n k n o w n to Sa l t , b e e n p a r a s i t i z e d b y a b r a c o n i d . I n e ach case h e o b s e r v e d t e r a tocy t e s a n d c o n s i d e r e d this to b e ev idence t h a t t e r a tocy t e s a r e a gene r i c w a y to p r e v e n t h o s t defense r eac t ions . Howeve r , t hese resu l t s m a y t o d a y b e

Page 163: Parasites and Pathogens of Insects. Parasites

156 Douglas L Dahlman and S. Bradleigh Vinson

i n t e r p r e t e d to be d u e to the p r e s e n c e of t he p o l y d n a v i r u s e s ( V i n s o n a n d Stol tz , 1986).

K i t a n o (1969, 1974) a n d V i n s o n (1972) conf i rmed Sal t ' s o b s e r v a t i o n s b y d e m o n s t r a t i n g t h a t p a r a s i t o i d l a rvae were n o t e n c a p s u l a t e d w h e n t e r a tocy t e s were i n t r o d u c e d in to t he hos t ' s h e m o c o e l , even in t h e a b s e n c e of e i the r h o s t v e n o m o r ca lyx fluid (po lydnav i ru s ) . However , s u c h resu l t s m u s t b e in te r ­p r e t e d w i t h c a u t i o n as p o l y d n a v i r u s D N A s e q u e n c e s a lso o c c u r in t e r a tocy t e s ( D a h l m a n , 1991). I n o t h e r species , t he t e r a tocy te s c o n t r i b u t e to , b u t a r e n o t en t i re ly r e spons ib l e for, i nh ib i t ion of e n c a p s u l a t i o n ( T a n a k a a n d W a g o , 1990). V i n s o n (1972) found t h a t e n c a p s u l a t i o n w a s less effective w h e n the t e r a tocy te s h a d b e e n in t he hos t for severa l d a y s before t h e i n t r o d u c t i o n of t he p a r a s i t o i d l a rva . Genera l ly , y o u n g e r t e ra tocy tes were m o r e effective t h a n o lde r t e ra tocy tes in i nh ib i t i ng e n c a p s u l a t i o n .

Te ra tocy t e s m a y also c o n t r i b u t e to hos t i m m u n o s u p p r e s s i o n by i n h i b i t i n g h e m o l y m p h p h e n o l o x i d a s e ( P O ) activity. T h o u g h d e p r e s s e d P O act iv i ty in p a r a s i t i z e d la rvae was r e p o r t e d by S roka a n d V i n s o n (1978) , t he i n d e p e n ­d e n t c o n t r i b u t i o n of t e r a tocy tes to this p rocess h a s on ly recen t ly b e e n r e p o r t ­ed . K i t a n o et al. (1990) found t h a t P O inh ib i t i on w a s g r e a t e r in y o u n g e r p a r a s i t o i d s of C. glomerata (i .e. , y o u n g t e ra tocy tes ) . Howeve r , P O inh ib i t i on m a y no t have a n y re la t ion to p r e v e n t i o n of e n c a p s u l a t i o n b e c a u s e w h e n p r o P O w a s ac t iva ted w i t h in ject ions of z y m o s a n , as ev idenced by s ignif icant m e l a n i z a t i o n fo rma t ion , t he p a r a s i t o i d l a rvae were n o t e n c a p s u l a t e d . I n a n ­o t h e r species , only o lde r t e ra tocy tes of A. kariyai h a d a n i n h i b i t o r y effect o n hos t P O act ivi ty ( T a n a k a a n d W a g o , 1990). I n this case , t he P O i n h i b i t o ry factor was re leased in to t he m e d i u m w h e n t e r a tocy te s were i n c u b a t e d in Grace ' s m e d i u m for 48 hr .

C. Secretory Functions

E v i d e n c e a c q u i r e d from u l t r a s t r u c t u r a l s tud ies (Fig . 3A) a n d e x p e r i m e n t a l a p p r o a c h e s u s i n g in vitro t e c h n i q u e s c a n be used to d e m o n s t r a t e t h e sec re to ry n a t u r e of t e r a tocy te s . T h e u l t r a s t r u c t u r a l fea tures of t e r a tocy te s i n d i c a t e t h a t t hey a r e c a p a b l e of the syn thes i s a n d secre t ion of p r o t e i n a n d p e r h a p s o t h e r s u b s t a n c e s . M a n y of these s a m e fea tures a r e s h a r e d by t r o p h a m n i o n m e m ­b r a n e s (Koscielski et al., 1978) a n d nond i s soc i a t ed serosa l m e m b r a n e s (Law­rence , 1990). T h e specific a spec t s of the secre to ry role will va ry a c c o r d i n g to t he phys io logica l r e q u i r e m e n t s d i c t a t e d by the p a r a s i t o i d .

A l t h o u g h on ly o n e species of egg p a r a s i t o i d (Telenomus heliothidis, a. scel ionid) h a s b e e n s t ud i ed in de ta i l ( S t r a n d et al., 1985, 1986; S t r a n d , 1986), a m a j o r role of t e r a tocy tes in th is sys t em is to re lease e n z y m e s t h a t d iges t t h e hos t t issues a n d p rov ide n u t r i e n t s for t h e d e v e l o p i n g p a r a s i t o i d . T h e s e ter-

Page 164: Parasites and Pathogens of Insects. Parasites

7. Teratocytes: Developmental and Biochemical Characteristics 157

a tocy te s p r o d u c e l a rge n u m b e r s of e l e c t r o n - d e n s e ves icu la r bod ie s t h a t a r e p r e s u m a b l y re leased in to t he hos t egg. D e t e c t a b l e levels of ac id p h o s p h a t a s e , e s t e ra se , a n d l euc ine a m i n o p e p t i d a s e w e r e found in t e r a t o c y t e ex t r ac t s . I n a d d i t i o n , in vitro m e d i a to w h i c h t e r a tocy te s were a d d e d " c l e a r e d u p , " sug ­ges t ing a h y d r o l y t i c role of t he t e r a tocy te s o r a t e r a tocy t e sec re to ry p r o d u c t . T o o u r k n o w l e d g e , th is is t he on ly species ' t e r a tocy te s t h a t have b e e n s t u d i e d for sec re to ry e n z y m e s , b u t it s eems likely t h a t t e r a tocy te s of o t h e r egg p a r a ­s i to ids a l so w o r k in a s imi l a r m a n n e r . I t is unl ike ly t h a t t e r a tocy t e s assoc i ­a t e d w i t h p a r a s i t o i d s u s i n g l a rva l a n d a d u l t hos t s will secre te e n z y m e s t h a t i n d i s c r i m i n a t e l y d iges t hos t t i ssue b e c a u s e t he in tegr i ty of m o s t hos t s is m a i n t a i n e d by t h e p a r a s i t o i d un t i l t h e p a r a s i t o i d comple t e ly d e v o u r s t h e hos t ' s i n t e r n a l o r g a n s j u s t before t h e c o m p l e t i o n of l a rva l d e v e l o p m e n t . H o w ­ever, it is poss ib le t h a t t e r a tocy te s re lease e n z y m e s t h a t a t t a c k on ly specific t i ssues , for e x a m p l e , co l lagenese , w h i c h w o u l d a t t a ck t h e co l lagen s h e a t h s u r r o u n d i n g the fat body. S u c h ac t ion w o u l d p e r m i t select ive re lease of fat b o d y cells, w h i c h w o u l d n o t kill t he hos t , b u t w o u l d c o n t r i b u t e e x t r a n u t r i ­en t s to t h e p a r a s i t i z e d l a rva . T h i s m a y in fact a c c o u n t for t h e o f t en -no ted fr iabi l i ty of fat b o d y a n d t h e o p a l e s c e n c e of p a r a s i t i z e d hos t b lood . I t w o u l d a lso exp l a in e n h a n c e d in vitro t e r a t o c y t e g r o w t h in t he p r e s e n c e of fat b o d y ( G r e a n y et al., 1989) a n d d e c r e a s e d fat b o d y m a s s in p a r a s i t i z e d l a rvae ( D a h l m a n a n d V i n s o n , 1980; Z h a n g et al, 1992).

B r e w e r et al. (1973) , u s i n g na t ive p o l y a c r y l a m i d e gel e l ec t rophores i s , found severa l p r o t e i n s in t e r a tocy te s of C. nigriceps t h a t w e r e a b s e n t in n o n ­p a r a s i t i z e d h e m o l y m p h , b u t they d id no t c o m p a r e t h e p r o t e i n profile to h e m o l y m p h of n a t u r a l l y p a r a s i t i z e d l a rvae . I t s eems likely t h a t t e r a tocy t e s a r e a s o u r c e of these p r o t e i n s t h a t a p p e a r t o w a r d the e n d of t h e p a r a s i t o i d ' s life w i t h i n its hos t (Brewer et al., 1973; Beckage , 1990; L a w r e n c e , 1990). I n the i r 1980 review, V i n s o n a n d I w a n t s c h m e n t i o n e d t h a t t e r a tocy t e s r a p i d l y a b s o r b e d 1 4 C - l a b e l e d a m i n o ac ids , syn thes i zed p r o t e i n s , a n d sec re ted s o m e of t h e m back i n t o t he m e d i u m (Fig . 4B) . Beckage (1990) , u s i n g s imi l a r t e c h n i q u e s , r e p o r t e d t h a t t e r a tocy te s of Cotesia congregata syn thes i zed p r o t e i n s in vitro t h a t differed from those a s soc ia t ed w i t h t h e p a r a s i t o i d . D a h l m a n (1991) m a d e s imi la r o b s e r v a t i o n s w i t h t e r a tocy te s f rom M. croceipes, a p a r a ­s i toid of H. virescens a n d Helicoverpa zea.

I n a d d i t i o n to re lease of e n z y m e s , on ly two specific funct ions h a v e b e e n sugges t ed for t h e p r o t e i n a c e o u s t e r a t o c y t e sec re to ry p r o d u c t s . B o t h K i t a n o et al. (1990) a n d T a n a k a a n d W a g o (1990) bel ieve t h a t t e r a tocy t e s a r e r e spons i ­b le for i n h i b i t i n g P O act iv i ty in t h e h e m o l y m p h . I t is t h o u g h t t h a t P O inh ib i t i on m a y in ter fere w i t h t h e hos t ' s ab i l i ty to defend itself a g a i n s t t h e p a r a s i t o i d l a rva . A second specific ac t iv i ty of t e r a tocy t e s is t h e i n h i b i t i o n of h e m o l y m p h j u v e n i l e h o r m o n e es t e rase ( J H E ) . I t h a s b e e n k n o w n for severa l yea r s t h a t t h e J H E t i ters in H. virescens p a r a s i t i z e d b y M. croceipes w e r e

Page 165: Parasites and Pathogens of Insects. Parasites

158 Douglas L Dahlman and S. Bradleigh Vinson

r e d u c e d ( D a h l m a n et al., 1990). Z h a n g a n d D a h l m a n (1989) a n d Z h a n g et al. (1992) conclus ive ly d e m o n s t r a t e d t h a t in ject ion of t e r a tocy t e s de r ived f rom in vivo sou rces comple t e ly i nh ib i t ed p r o d u c t i o n of J H E w h e n a t l eas t o n e e m b r y o e q u i v a l e n t of M. croceipes t e r a tocy te s w a s u sed . D a h l m a n (1991) found t h a t c u l t u r e m e d i a in w h i c h in vitro M. croceipes t e r a tocy t e s h a d b e e n he ld ( b u t no t con t ro l m e d i a ) c a u s e d l a rva l m o r t a l i t y a n d d e l a y e d g r o w t h w h e n injected i n t o y o u n g fifth-ins t a r H. virescens. I t a l so is i m p o r t a n t to n o t e t h a t H a y a k a w a (1990) pur i f ied a n d r e p o r t e d o n t h e s t r u c t u r e of ( H a y a k a w a , 1991) a 4 . 5 -kD p e p t i d e from t h e h e m o l y m p h of Pseudaletia separata p a r a s i t i z e d b y A. kariyai t h a t r ep re s sed J H E act ivi ty w h e n in jec ted i n t o n o n p a r a s i t i z e d hos t s . I t is r e a s o n a b l e to p o s t u l a t e t h a t it is a t e r a t o c y t e p r o d u c t .

Sec re t ion of n o n p r o t e i n p r o d u c t s by t e r a tocy te s is a l so poss ib le . F u h r e r a n d Elsufty (1979) found a fungis ta t ic s u b s t a n c e in t h e t e r a tocy te s of C. glomerata. J o i n e r et al. (1973) r e p o r t e d j u v e n i l e h o r m o n e ( J H ) ac t iv i ty in ex t rac t s f rom C. nigriceps t e r a tocy te s . E x t r a c t s f rom o lde r t e r a tocy te s h a d g r e a t e r J H act iv i ty in t he Galleria b ioassay. T h e y w e r e n o t su r e , a n d it h a s n o t b e e n d e m o n s t r a t e d in a n y o t h e r sy s t em w h e t h e r t he t e r a tocy t e s syn thes i zed J H o r w h e t h e r t hey s imp ly se rved as a d e p o t for J H poss ib ly a c q u i r e d f rom the hos t . A l t h o u g h Locusta migratoria is n o t a p a r a s i t o i d , t h e fact t h a t i ts serosa l cells syn thes ize J H ( H a r t m a n n et aL, 1987) gives c red ib i l i ty to t h e r e p o r t of J o i n e r et al. (1973) . G r o s s n i k l a u s - B u r g i n a n d L a n z r e i n (1990) sug ­ges ted t h a t t e r a tocy tes from a Chelonus species r e l eased J H (no ev idence p r o v i d e d ) , w h e r e a s Beckage a n d Ridd i fo rd (1982) found on ly s l ight J H activ­ity in t he ce l lu la r fraction (which w o u l d i n c l u d e t h e t e ra tocy tes ) f rom h e m o ­l y m p h of Manduca sexta p a r a s i t i z e d b y C. congregata.

D. General Effects on Host Growth and Development

E x p e r i m e n t s t h a t inves t iga ted t he poss ib le role of t e r a tocy te s in t h e a b s e n c e of c o n f o u n d i n g factors such as t h e p a r a s i t o i d l a rva , po i son g l a n d p r o d u c t s , a n d / o r ca lyx fluid (po lydnav i ru s ) were first c o n d u c t e d by V i n s o n (1970) . H e showed t h a t y o u n g e r t e ra tocy tes f rom C. nigriceps d e l a y e d H. virescens l a rva l d e v e l o p m e n t m o r e t h a n o lde r t e r a tocy te s . M o s t of t h e t r e a t e d l a rvae e v e n t u ­ally p u p a t e d or deve loped a b n o r m a l i t i e s r e su l t i ng from i n c o m p l e t e l a r v a l -p u p a l ecdyses . Z h a n g a n d D a h l m a n (1989) , in the i r s tud ies w i t h M. croceipes, o b s e r v e d b o t h age - a n d d o s e - d e p e n d e n t effects of t e r a tocy t e s . T h e s e effects w e r e exp res sed as de l ayed la rva l g r o w t h a n d m o r t a l i t y a n d i n c o m p l e t e l a r v a l - p u p a l ecdys is . W a n i et al. (1990) found t h a t o lde r t e r a tocy t e s of A. kariyai p r o l o n g e d the l a rva l s t age of i ts hos t , P. separata. Recen t ly P e n n a c c h i o et al. (1992a) c o n d u c t e d a de t a i l ed e x a m i n a t i o n of t h e C. nignceps-H. virescens p a r a s i t e - h o s t c o m p l e x . T h e y showed t h a t h i g h e r doses of t e r a tocy t e s (equiv­a l en t to 2, 4 , o r 8 e m b r y o equ iva len t s ) h a d a g r e a t e r i m p a c t o n t h e p r e v e n t i o n

Page 166: Parasites and Pathogens of Insects. Parasites

7. Teratocytes: Developmental and Biochemical Characteristics 159

of l a r v a l - p u p a l ecdys is . T h e a g e of t h e h o s t a t t h e t i m e of t r e a t m e n t a l so w a s i m p o r t a n t , w i t h o lde r l a rvae b e i n g less r e spons ive . I t a l so w a s i n t e r e s t i n g to n o t e t h a t even t h e a p p a r e n t l y " n o r m a l " p u p a e o b t a i n e d f rom t e r a t o c y t e -t r e a t e d l a rvae failed to deve lop i n t o a d u l t s . Z h a n g a n d D a h l m a n (1989) found t h a t even a 0 .25 e m b r y o e q u i v a l e n t of t e r a tocy te s p r e v e n t e d p u p a t i o n of 8 0 % of t h e t r e a t e d m a t u r e H. virescens l a rvae . Howeve r , a t l eas t s o m e of t h e p u p a e t h a t d id form d e v e l o p e d i n t o a d u l t s . T h e y a lso r e p o r t e d t h a t y o u n g e r hos t s w e r e m o r e sensi t ive a n d t h a t y o u n g e r t e r a tocy te s w e r e m o r e p o t e n t .

Z h a n g a n d D a h l m a n (1989) o b s e r v e d t h a t in jected t e r a tocy t e s of M. cro­ceipes c a u s e d m a n y of t h e s a m e d e v e l o p m e n t a l a b e r r a t i o n s o b s e r v e d in t r u ly p a r a s i t i z e d hos t s . D a h l m a n et al. (1990) r e p o r t e d r e d u c e d levels of ec­d y s t e r o i d in p a r a s i t i z e d H. virescens a t t h e t i m e of t h e n o r m a l s u r g e a s soc i a t ed w i t h la rva l—pupal ecdys is . Z h a n g et al. (1992) found a s imi l a r r e d u c t i o n in ecdys t e ro id t i te r in t e r a t o c y t e - t r e a t e d l a rvae . I n c o n t r a s t , in t h e ve ry s a m e h o s t b u t w i t h a different b r a c o n i d p a r a s i t o i d (C. nigriceps), P e n n a c c h i o et al. ( 1 9 9 1 , 1992a) r e p o r t e d a threefold e leva t ion of ecdys t e ro id t i te r in l a rvae rece iv ing two e m b r y o e q u i v a l e n t s of t e r a tocy te s a s n e w fifth i n s t a r s . T h e y a t t e m p t e d to exp la in th is difference b y sugges t i ng i n c r e a s e d p r o d u c t i o n of e cdys t e ro id s as t h e resu l t of in te r fe rence w i t h n o r m a l feedback m e c h a n i s m s t h a t con t ro l t h e r a t e of ecdys t e ro id syn thes i s . T h e y a lso r ecogn ized t h a t inac t ive ecdys t e ro id d e g r a d a t i o n p r o d u c t s m i g h t r e s p o n d in t h e R I A u s e d to quan t i fy ecdys t e ro id t i ter , t h u s g iv ing falsely h igh resu l t s .

I t is c u r i o u s t h a t t he t e r a tocy te s f rom two la rva l e n d o p a r a s i t o i d s u s i n g t h e s a m e h o s t species w o u l d p r o d u c e s u c h different resu l t s in ecdys t e ro id t i ter . H o w e v e r , w h e n t h e hos t is t ru ly p a r a s i t i z e d b y e i the r spec ies , e cdys t e ro id t i t e rs a r e r e d u c e d (Dover et al., 1987; D a h l m a n et al., 1990; P e n n a c c h i o et al., 1991 , 1993b) . I t m u s t b e k e p t in m i n d t h a t t h e m o d e of feeding b y these t w o p a r a s i t o i d s is q u i t e different . Cardiochiles nigriceps feeds o n h e m o l y m p h t h r o u g h t h e first few d a y s following h a t c h b u t t h e n beg ins to feed o n se lec ted h o s t t i ssue un t i l t h e t i m e it e m e r g e s from its hos t a n d c o n s u m e s t h e e n t i r e c a r c a s s ( V i n s o n a n d B a r r a s , 1970). P e n n a c c h i o et al. (1992 , 1993b) p r o p o s e d t h a t t h e t e r a tocy t e s f rom C. nigriceps r e g u l a t e p r o t e i n m e t a b o l i s m , poss ib ly b y i nac t i va t i on of 2 0 - h y d r o x y e c d y s o n e . T h i s resu l t s in i n c r e a s e d t i t e rs of h e m o ­l y m p h p r o t e i n s a t a t i m e c o r r e l a t e d w i t h r a p i d p a r a s i t o i d l a rva l g r o w t h . T h u s , t h e p a r a s i t o i d m o r e efficiently explo i t s its n a t u r a l food s o u r c e a n d r e a c h e s t h e cr i t ica l size neces sa ry for m o l t i n g a n d ex i t ing f rom its hos t . I n c o n t r a s t , M. croceipes a p p a r e n t l y der ives its n u t r i e n t s f rom its hos t ' s h e m o ­l y m p h a l t h o u g h t h e hos t ' s fat b o d y fails to p r o p e r l y d e v e l o p ( D a h l m a n a n d V i n s o n , 1980). T h e hos t m a y r e m a i n al ive ( a l t h o u g h inac t ive a n d d e v e l o p i n g n o fu r the r t h a n t h e cell f o r m a t i o n s t age ; W e b b a n d D a h l m a n , 1985) for m o r e t h a n a week after t h e p a r a s i t o i d e m e r g e s ( V i n s o n a n d Lewis , 1973). U n ­d o u b t e d l y v a r i o u s feedback m e c h a n i s m s m u s t b e involved w i t h b o t h of t hese

Page 167: Parasites and Pathogens of Insects. Parasites

160 Douglas L Dahlman and S. Bradleigh Vinson

p a r a s i t o i d - h o s t i n t e rac t ions wi th respec t to the i r different m e a n s of interfer­ing w i t h t h e h o r m o n a l t i ters of the i r hos t s .

VI. Interactions of Teratocytes, Venoms, and Polydnavirus

A s u b s t a n t i a l n u m b e r of s tud ies have b e e n c o n d u c t e d o n t h e i m p o r t a n c e of i n t e r ac t ions b e t w e e n the p o l y d n a v i r u s e s a n d v e n o m s of p a r a s i t i c w a s p s ( T a n ­aka , 1987; D o v e r et al., 1987, 1988; Stol tz etal, 1988; S t r a n d a n d Dover , 1991; T a n a k a a n d V i n s o n , 1991). However , re la t ively l i t t le of th is r e s e a r c h h a s i n c l u d e d t e r a tocy te s as a t h i rd c o m p o n e n t in t he tes ts . W a n i et al. (1990) showed t h a t y o u n g t e r a tocy te s from A. kariyai d id n o t i nh ib i t g r o w t h a n d d e v e l o p m e n t of t he hos t . However , w h e n hos t s were first in jec ted w i t h v e n o m a n d ca lyx fluid a n d s u b s e q u e n t l y in jec ted w i t h y o u n g t e r a tocy t e s a t t h e a p p r o x i m a t e t i m e t e ra tocy tes w o u l d n o r m a l l y be re leased in a p a r a s i t i z e d hos t , b o t h l a r v a l - l a r v a l a n d l a r v a l - p u p a l d e v e l o p m e n t w e r e i m p a i r e d . S t r a n d a n d W o n g (1991) found t h a t a n e m b r y o e q u i v a l e n t dose of Microplitis demolitor t e r a tocy tes h a d a n incons i s t en t effect on t he d e v e l o p m e n t of its hos t , Pseudoplusia includens, b u t w h e n the inject ion of t e r a tocy tes w a s p r e c e d e d w i t h a n inject ion of ca lyx fluid o r p o l y d n a v i r u s p lus v e n o m , t h e d e v e l o p m e n t a l a l t e r a t i ons were very s imi la r to those obse rved d u r i n g n o r m a l p a r a s i t i s m . I n fact, D. molitor t e r a tocy tes were e n c a p s u l a t e d w h e n in jec ted in to n o n ­p a r a s i t i z e d P. includens l a rvae b u t r e m a i n e d u n e n c a p s u l a t e d w h e n in jec ted in to hos t s t h a t h a d p rev ious ly b e e n injected w i t h a m i x t u r e of p o l y d n a v i r u s a n d v e n o m ( S t r a n d a n d N o d a , 1991). P e n n a c c h i o et al. (1992a) sugges t t h a t i nh ib i t i on of ecdys te ro id p r o d u c t i o n by v e n o m a n d p o l y d n a v i r u s exp l a in s w h y ecdys te ro id t i ters a r e low in p a r a s i t i z e d hos t s as c o m p a r e d to t h e h i g h t i ters seen w h e n hos t s a r e on ly t r e a t e d w i th t e r a tocy te s . J o n e s (1987) con­c l u d e d t h a t p o l y d n a v i r u s a n d v e n o m ( b u t n o t t e ra tocy tes ) w e r e n e c e s s a r y for t h e p r o d u c t i o n of a factor t h a t c a u s e d p recoc ious m e t a m o r p h o s i s / s u p p r e s s e d p r e p u p a l d e v e l o p m e n t in Trichoplusia ni p a r a s i t i z e d by a Chelonus sp . T a n a k a (1987) found t h a t a b o u t 5 0 % of t h e Microplitis mediator eggs w i t h comple t e ly d e v e l o p e d se rosa l m e m b r a n e s (nond i s soc i a t ed t e ra tocy tes ) w e r e p r o t e c t e d f rom e n c a p s u l a t i o n w h e n injected w i t h ca lyx fluid, w h e r e a s n o n e w e r e p r o ­tec ted w i t h o u t t he ca lyx fluid.

VII. Conclusion and Summary

Tera tocy t e s a r e u n u s u a l e x t r a e m b r y o n i c cells a s soc ia t ed w i t h ce r t a in g r o u p s of e n d o p a r a s i t i c H y m e n o p t e r a . T h e y p l a y a n i m p o r t a n t , b u t i n c o m p l e t e l y

Page 168: Parasites and Pathogens of Insects. Parasites

7. Teratocytes: Developmental and Biochemical Characteristics 161

def ined , role in t h e to ta l i n t e r ac t i on b e t w e e n the l a rva l s t age of t h e p a r a s i t o i d

a n d its hos t . I t is n o t c lea r w h y they a r e r e s t r i c t ed to on ly c e r t a i n famil ies ,

a l t h o u g h it is l ikely t h a t r e l a t ed t i ssues p e r f o r m s imi l a r roles in o t h e r g r o u p s

of p a r a s i t o i d s . Specific funct ions v a r y b e t w e e n p a r a s i t o i d species a n d t h e

d e v e l o p m e n t a l s t age of t he hos t . T r o p h i c , i m m u n o s u p p r e s s i v e , a n d sec re to ry

func t ions h a v e b e e n well d o c u m e n t e d . T i t e r s of t he p r inc ip l e h o r m o n e s in t h e

h o s t m a y b e a l t e r e d by t e r a tocy t e s . I n t e r a c t i o n s a t severa l levels of c o m p l e x ­

ity a r e poss ib le , n o t on ly b e t w e e n t h e t e r a tocy te s a n d t h e hos t b u t a l so

b e t w e e n o t h e r p a r a s i t o i d - d e r i v e d factors s u c h a s v e n o m a n d n o n p a t h o g e n i c

p o l y d n a v i r u s e s r e s i d e n t w i t h i n b o t h t h e p a r a s i t o i d a n d t h e e x t r a e m b r y o n i c

t i ssues . I t is likely t h a t t he success of t h e p a r a s i t o i d is d e p e n d e n t u p o n each

t ype of i n t e r ac t i on . M u c h r e m a i n s to b e l e a r n e d a n d t h e c o m i n g d e c a d e will

y ie ld c o n s i d e r a b l e i n fo rma t ion o n th is c o m p l e x a n d i n t e r e s t i ng a s p e c t of

insec t pa ras i to logy .

Acknowledgments

We gratefully acknowledge the support of USDA Competitive Research Grant 89-37250-4705 (D.L.D.) and a grant from R.J . Reynolds (D.L.D.). We are grateful for the critical review and constructive suggestions provided by Dr. P. D. Greany. This is paper 91-07-147 of the Kentucky Agriculture Experiment Station, Lexington, KY 40546-0091.

References

Arakawa, T., and Kitano, H. (1989). A possible reason for the decrease of the number of teratocytes in the body cavities of Peiris rapae crucivora Boisduval (Lepidoptera:Pieridae) parasitized by Apanteles glomeratus L. Appl. Entomol. Zool. 24:229-231.

Beckage, Ν. E. (1990). Parasitic effects on host development. In "New Directions in Biological Control: Alterations for Suppressing Agricultural Pests and Diseases" (R. Baker and P. Dunn, eds.), pp. 497-515. Liss, New York.

Beckage, Ν. E., and Riddiford, L. M. (1982). Effects of parasitism by Apanteles congregatus on the endocrine physiology of the tobacco hornworm Manduca sexta. Gen. Comp. Endocrinol. 47:308— 322.

Brewer, F. D., Glick, B., and Vinson, S. B. (1973). A comparative study of selected tissues from the parasitoid Cardiochiles nigriceps, its susceptible host Heliothis virescens and a resistant host Heliothis zea by polyacrylamide gel electrophoresis. Comp. Biochem, Physiol. Β 46B:567-574 .

Buhler, Α., Hanzlik, Τ. N., and Hammock, B. D. (1985). Effects of parasitization of Trichoplusia ni by Chelonus sp. Physiol. Entomol. 10:383-394.

Cohen, A. C , and DeBolt, J. W. (1984). Fatty acid and amino acid composition of teratocytes from Lygus hesperus (Miridae:Hemiptera) parasitized by two species of parasites, Leiophron uniformis (Braconidae:Hymenoptera) and Peristenus stygicus (Braconidae:Hymenoptera). Comp. Biochem. Physiol. Β 79B:335-337.

Coudron, T. (1991). Host-regulating factors associated with parasitic Hymenoptera. In "Natu­rally Occurring Pest Bioregulators" (P. A. Hedin ed.), pp. 41 -65 . Am. Chem. S o c , Washing­ton, D.C.

Dahlman, D. L. (1990). Evaluation of teratocyte functions: An overview. Arch. Insect Biochem. Physiol. 13:159-166.

Page 169: Parasites and Pathogens of Insects. Parasites

162 Douglas L Dahlman and S. Bradleigh Vinson

Dahlman, D. L. (1991). Teratocytes and host/parasitoid interactions. Biol. Control 1:118-126. Dahlman, D. L., and Vinson, S. B. (1980). Glycogen content in Heliothis virescens parasitized by

Microplitis croceipes. Comp. Biochem. Physiol. A 66A:625-630. Dahlman, D. L., Coar, D. L., Koller, C. N., and Neary, T.J . (1990). Contributing factors to

reduced ecdysteroid titers in Heliothis virescens parasitized by Microplitis croceipes. Arch. Insect Biochem. Physiol. 13:29-39.

de Buron, I., Nesbit, D. J., Tan, F. F., and Beckage, Ν. E. (1993). Development of Cotesia congregata teratocytes in host larvae of the tobacco hornworm, Manduca sexta: Correlation with morphological and biochemical changes in the cells. Dev. Biol, (in press).

Dover, Β. Α., Davies, D. H., Strand, M. R., Gray, R. S., and Vinson, S. B. (1987). Ecdysteroid-titre reduction and developmental arrest of last-instar Heliothis virescens larvae by calyx fluid from the parasitoid Campoletis sonorensis. J. Insect Physiol. 33:333-338.

Dover, Β. Α., Davies, D. H., and Vinson, S. B. (1988). Degeneration of last instar Heliothis virescens prothoracic glands by Campoletis sonorensis polydnavirus. J. Invertebr. Pathol. 51 :80 -91 .

Fuhrer, E., and Elsufty, R. (1979). Producktion fungistatischer metabolite durch teratocyten von Apanteles glomeratus L. (Hym., Braconidae). Z. Parasitenkd. 59:21-25 .

Gerling, D., and Orion, T. (1973). The giant cells produced by Telenomus remus.J. Invertebr. Pathol. 21:164-171.

Greany, P. D., Ferkovich, S. M., and Clark, W. R. (1989). Progress towards development of an artificial diet and in vitro rearing system for Microplitis croceipes. Southwest. Entomol., Suppl. 12:89-94.

Grossniklaus-Burgin, C , and Lanzrein, B. (1990). Endocrine interrelationship between the parasitoid Chelonus sp. and its host Trichoplusia ni. Arch. Insect Biochem. Physiol. 14:201-216.

Hartmann, R., Jendrsczok, C , and Peter, M. G. (1987). The occurrence of a juvenile hormone binding protein and in vitro synthesis of juvenile hormone by the serosa of Locusta migratoria embryos. Roux's Arch. Dev. Biol. 196:347—355.

Hashimoto, K., and Kitano, H. (1971). Studies on the number of "giant cells" in the body cavity of Peris rapae crucivora attacked by Apanteles glomeratus L. Zool. Mag. 80:323-329.

Hawlitzky, N., and Lauge, G. (1979). Roles presumes de la membrane embryonnaire d'un parasite ovo-larvaire de Pyralidae Phanerotoma flavitestacea [Hym.:Braconidae]. Entomophaga 24:247-253.

Hayakawa, Y. (1990). Juvenile hormone esterase activity repressive factor in the plasma of parasitized insect larvae. J. Biol. Chem. 265:10813-10816.

Hayakawa, Y. (1991). Structure of a growth-blocking peptide present in parasitized insect hemolymph. J. Biol. Chem. 226:7982-7984.

Hill, C. C , and Emery, W. T. (1937). The biology of Platygaster herrickii, a parasite of the Hessian fly. J. Agric. Res. 55:199-213.

Hollande, A.-C. (1920). Oenocytoides et teratocytes du sang des chenilles. C. R. Hebd. Seances Acad. Sci. 179:1341-1344.

Ivanova-Kasas, Ο. M. (1972). Polyembryony in insects. In "Developmental Systems: Insects" (S.J. Counce and C. H. Waddington, eds.), Vol. 1, pp. 243-271. Academic Press, New York.

Jackson, D . J . (1928). The biology of Dinocampus (Perilitus) rutilus Nees, a braconid parasite of Sitona lecanium L. Part I. Proc. Zool. Soc. London pp. 597-630.

Joiner, R. L., Vinson, S. B., and Benskin, J. B. (1973). Teratocytes as a source of juvenile hormone activity in a parasitoid-host relationship. Nature (London) New Biol. 246:120-121 .

Jones, D. (1987). Material from adult female Chelonus sp. directs expression of altered develop­mental programme of host Lepidoptera. J. Insect Physiol. 33:129-134.

Kitano, H. (1965). Studies on the origin of giant cells in the body fluid of Pieris rapae crucivora attacked by Apanteles glomeratus L. II. Determination of their origin and speculation on their biological significance. Zool. Mag. 74:192-197.

Page 170: Parasites and Pathogens of Insects. Parasites

7. Teratocytes: Developmental and Biochemical Characteristics 163

Kitano, H. (1969). Experimental studies on the parasitism of Apanteles glomeratus L. with special reference to its encapsulation-inhibiting capacity. Bull. Tokyo Gakugei Univ., Ser. 4 2 1 : 9 5 -136.

Kitano, H. (1974). Effects of the parasitization of a braconid, Apanteles, on the blood of its host, Pieris. J. Insect Physiol. 20:315-327.

Kitano, H., Wago, H., and Arakawa, T. (1990). Possible role of teratocytes of the gregarious parasitoid, Cotesia (—Apanteles) glomerata in the suppression of phenoloxidase activity in the larval host, Pieris rapae crucivora. Arch. Insect Biochem. Physiol. 13:177-185.

Koscielski, B., Koscielska, Μ. K., and Szroeder, J. (1978). Ultrastructure of the polygerm of Ageniaspis fiiscicollis Dalm. (Chalcidoidea, Hymenoptera). Zoomorphologie 89:279-288.

Lawrence, P. O. (1990). Serosal cells of Biosteres longicaudatus (Hymenoptera:Braconidae): ultra-structure and release of polypeptides. Arch. Insect Biochem. Physiol. 13:199-216.

Loan, C. C , and Holdaway, F. G. (1961). Pygostolus falcatus (Nees), a parasite of Sitona species. Bull. Entomol. Res. 52:473-488.

Pennacchio, F., Vinson, S. B., and Tremblay, E. (1991). Effects of Cardiochiles nigriceps Viereck (Hymenoptera, Braconidae) teratocytes on physiology of its host Heliothis virescens (F.) (Lep­idoptera, Noctuidae). Insect Parasitoids, 4th European Workshop, Perugia 305 April, 1991. Redia, 74:433-438.

Pennacchio, F., Vinson, S. B., and Tremblay, E. (1992a). Host regulation effects on Heliothis virescens (F.) larvae induced by teratocytes of Cardiochiles nigriceps Viereck (Lepidoptera, Noctuidae—Hymenoptera, Braconidae). Arch. Insect Biochem. Physiol. 19:177-192.

Pennacchio, F., Vinson, S. B., and Tremblay, E. (1992b). Preliminary results on in vitro rearing of the endoparasitoid Cardiochiles nigriceps from egg to second instar. Entomol. Exp. Appl. 64:209-216.

Pennacchio, F., Vinson, S. B., and Tremblay, E. (1993a). Embryonic membranes in Cardiochiles nigriceps Viereck: Development and ultrastructure. Int. J. Insect Morphol. Embryol. (in press).

Pennacchio, F., Vinson, S. B., and Tremblay, E. (1993b). Growth and development of Cardio­chiles nigriceps Viereck (Hymenoptera, Braconidae) larvae and their synchronization with the protein and lipid titers of the haemolymph of their host, Heliothis virescens (F.) (Lepidoptera, Noctuidae). J. Insect Physiol, (in press).

Rotundo, G., Cavalloro, R., and Tremblay, E. (1988). In vitro rearing of Lysiphlebus fabarum [Hym.:Braconidae]. Entomophaga 33:261-267.

Salt, G. (1968). The resistance of insect parasitoids to the defense reactions of their hosts. Biol. Rev. Cambridge Philos. Soc. 43:200-232.

Salt, G. (1971). Teratocytes as a means of resistance to cellular defense reactions. Nature (London) 232:639.

Schlinger, Ε. I., and Hall, J. C. (1960). The biology, behavior, and morphology of Praon palitans Muesebeck, an internal parasite of the spotted alfalfa aphid, Therioaphis maculata (Buckton) (Hymenoptera:Braconidae, Aphidiinae). Ann. Entomol. Soc. Am. 53:144-160.

Sluss, R. (1968). Behavioral and anatomical responses of the convergent lady beetle to parasit­ism by Perilitus coccinellae (Schrank). J. Invertebr. Pathol. 10:9—27.

Sluss, R. R., and Leutenegger, R. (1968). The fine structure of the trophic cells of Perilitus coccinellae (Hymenoptera.Braconidae). J. Ultrastruct. Res. 25:441-451.

Smith, O.J. (1952). Biology and behavior of Microctonus vittatae Muesebeck. Univ. Calif., Berkeley, Publ. Entomol. 9:315-344.

Spencer, H. (1926). Biology of the parasites and hyperparasites of aphids. Ann. Entomol. Soc. Am. 19:119-157.

Sroka, P., and Vinson, S. B. (1978). Phenoloxidase activity in the haemolymph of parasitized and unparasitized Heliothis virescens. Insect Biochem. 8:399-402.

Stoltz, D. B. Guzo, D. , Belland, E. R., Lucarotti, C. J., and Mackinnon, E. A. (1988). Venom

Page 171: Parasites and Pathogens of Insects. Parasites

164 Douglas L Dahlman and S. Bradleigh Vinson

promotes uncoating in vitro and persistence in vivo of DNA from a braconid polydnavirus. J. Gen. Virol. 69:903-907.

Strand, M. R. (1986). The physiological interactions of parasitoids with their hosts and their influence on reproductive strategies. In "Insect Parasitoids" (J. Waage and D. Greathouse, eds.), pp. 97-136. Academic Press, New York.

Strand, M. R., and Dover, B. A. (1991). Developmental disruption of Pseudoplusia includens and Heliothis virescens larvae by the calyx fluid and venom of Microplitis demolitor. Arch. Insect Biochem. Physiol. 18:131-145.

Strand, M. R., and Noda, T. (1991). Alterations in the haemocytes of Pseudoplusia includens after parasitism by Microplitis demolitor. J. Insect Physiol. 37:839-850.

Strand, M. R., and Wong, E. A. (1991). The growth and role of Microplitis demolitor teratocytes in parasitism of Pseudoplusia includens. J. Insect Physiol. 37:503-515.

Strand, M. R., Quarles, J. M., Meola, S. M., and Vinson, S. B. (1985). Cultivation of teratocytes of the egg parasitoid Telenomus heliothidis (Hymenoptera:Scelionidae). In Vitro Cell. Dev. Biol. 21:361-367.

Strand, M. R., Meola, S. M., and Vinson, S. B. (1986). Correlating pathological symptoms in Heliothis virescens eggs with development of the parasitoid Telenomus heliothidis. J. Insect Physiol. 32:389-402.

Strand, M. R., Vinson, S. B., Nettles, W. C , Jr., and Xie, Ζ. N. (1988). In vitro culture of the egg parasitoid Telenomus heliothidis: The role of teratocytes and medium consumption in develop­ment. Entomol. Exp. Appl. 46:71-78 .

Tanaka, T. (1987). Effect of the venom of the endoparasitoid, Apanteles kariyai W'atanabe, on the cellular defence reaction of the host, Pseudaletia separata Walker. J. Insect Physiol. 33:413-420.

Tanaka, T , and Vinson, S. B. (1991). Interaction of venoms with the calyx fluids of three parasitoids, Cardiochiles nigriceps, Microplitis croceipes (Hymenoptera:Braconidae), and Cam­poletis sonorensis (Hymenoptera: Ichneumonidae) in effecting a delay in the pupation οϊ Helio­this virescens (Lepidoptera:Noctuidae). Ann. Entomol. Soc. Am. 84:87—92.

Tanaka, T , and Wago, H. (1990). Ultrastructural and functional maturation of teratocytes of Apanteles kariyai. Arch. Insect Biochem. Physiol. 13:187-197.

Tawfik, M.F.S. (1961). Teratocytes in the larva of Prodenia litura (Fabricius) parasitized by Microplitis demolitor Wilkinson. J. Insect Pathol. 3:221-224.

Tremblay, E., and Caltagirone, L. E. (1973). Fate of polar bodies in insects. Annu. Rev. Entomol. 18:421-444.

Tremblay, E., and Calvert, D. (1971). Embryosystematics in the Aphidiines (Hymenop-tera:Braconidae). Boll. Lab. Entomol. Agrar. "Filippo Silvestri" 29:223-249.

Tremblay, E., and Iaccarino, F. M. (1971). Notizie sulPultrastruttura dei trsofociti di Aphidius matricariae Hal. (Hymenoptera: Braconidae). Boll. Lab. Entomol. Agrar. "Filippo Silvestri" 29:305-314.

Vinson, S. B. (1970). Development and possible functions of teratocytes in the host-parasite association. J. Invertebr. Pathol. 16:93-101.

Vinson, S. B. (1972). Factors involved in successful attack on Heliothis virescens by the parasitoid Cardiochiles nigriceps. J. Invertebr. Pathol. 20:118-123.

Vinson, S. B., and Barras, D . J . (1970). Effects of the parasitoid, Cardiochiles nigriceps, on the growth, development, and tissues οϊ Heliothis virescens. J. Insect Physiol. 16:1329-1338.

Vinson, S. B., and Iwantsch, G. F. (1980). Host regulation by insect parasitoids. Q. Rev. Biol. 55:143-165.

Vinson, S. B., and Lewis, W.J. (1973). Teratocytes: Growth and numbers in the hemocoel of Heliothis virescens attacked by Microplitis croceipes. J. Invertebr. Pathol. 22:351-355.

Vinson, S. B., and Scott, J. R. (1974). Ultrastructure of teratocytes of Cardiochiles nigriceps Viereck (Hymenoptera:Braconidae). Int. J. Insect Morphol. Embryol. 3:293-304.

Page 172: Parasites and Pathogens of Insects. Parasites

7. Teratocytes: Developmental and Biochemical Characteristics 165

Vinson, S. B., and Stoltz, D. B. (1986). Cross-protection experiments with two parasitoid viruses. Ann. Entomol. Soc. Am. 79:216-218.

Voegele, J., Brun, P., and Daumal, J. (1974). Les Trichogrammes. I. Modalites de la prise de possession et de Pelimination de l'hote chez le parasite embryonnaire Trichogramma brasilien-sis. Ann. Soc. Entomol. Fr. 10:757-762.

Volkoff, N., and Colazza, S. (1992). Growth patterns of teratocytes in the immature stages of Trissolcus basalts (Woll.) (Hymenoptera:Scelionidae), an egg parasitoid of Nezara viridula (L.) (Heteroptera.Pentatomidae). Int. J. Morphol. & Embryol. 21:323-336.

Wani, M., Yagi, S., and Tanaka, Τ (1990). Synergistic effect of venom, calyx and teratocytes of Apanteles kariyai on the inhibition of larval pupal ecydsis of the host, Pseudaletia separata. Entomol. Exp. Appl. 57:101-104.

Webb, Β. Α., and Dahlman, D. L. (1985). Developmental pathology of Heliothis virescens larvae parasitized by Microplitis croceipes: Parasite-mediated host developmental arrest. Arch. Insect Biochem. Physiol. 2:131-143.

Zhang, D. , and Dahlman, D. L. (1989). Microplitis croceipes teratocytes cause developmental arrest of Heliothis virescens larvae. Arch. Insect Biochem. Physiol. 12:51-61 .

Zhang, D., Dahlman, D. L., and Gelman, D. B. (1992). Juvenile hormone esterase activity and ecdysteroid titer in Heliothis virescens larvae injected with Microplitis croceipes teratocytes. Arch. Insect Biochem. Physiol. 20:231-242.

Page 173: Parasites and Pathogens of Insects. Parasites

Chapter 8

The Polydnavirus Life Cycle Donald B. Stoltz Department of Microbiology and Immunology Dalhousie University Halifax, Nova Scotia, Canada

T h e p o l y d n a v i r u s e s c o m p r i s e a g r o u p of r e m a r k a b l e a g e n t s w h o s e life cycles a r e i nex t r i c ab ly l inked w i t h those of ce r t a in p a r a s i t i c H y m e n o p t e r a ( p a r a ­s i to ids) . T h e n a t u r e of t h a t l i nkage , a n d in p a r t i c u l a r its b io logica l conse ­q u e n c e s , is t he sub jec t of th is a r t ic le .

T h e s e v i ruses a r e a s s igned to t he family Po lydnav i r i dae p r i m a r i l y o n t h e bas i s of b o t h g e n o m e s t r u c t u r e a n d hos t r a n g e , a l t h o u g h o t h e r factors s u c h as m o r p h o l o g y a n d si te of r ep l i ca t ion a r e equa l l y va l id as d i a g n o s t i c i n d i c a t o r s for t h e family (Stol tz et al., 1984). W h e n ex t r ac t ed f rom pur i f ied v i r ions , t h e p o l y d n a v i r u s g e n o m e is seen to cons is t of a p o p u l a t i o n of d o u b l e - s t r a n d e d c i r cu l a r D N A s ; w i t h i n th is p o p u l a t i o n , t h e r e exist a n u m b e r of different c lasses of mo lecu le s t h a t differ in t e r m s of b o t h m o l e c u l a r w e i g h t a n d gene t i c c o n t e n t (Kre l l a n d Stol tz , 1980; K r e l l et al., 1982; T h e i l m a n n a n d S u m m e r s , 1988; G u z o , 1988). L i n e a r D N A s e q u e n c e s h o m o l o g o u s to e n c a p s i d a t e d v i ra l D N A s a r e cova len t ly l inked to p a r a s i t o i d c h r o m o s o m a l D N A ( F l e m i n g a n d S u m m e r s , 1986; X u a n d Stol tz , 1991; see references in F l e m i n g a n d K r e l l , V o l u m e 1, C h a p t e r 9 ) ; th is a p p e a r s to be a s t a b l e r e l a t i onsh ip , n o w t h o u g h t to be r e q u i r e d for t h e t r a n s m i s s i o n of p o l y d n a v i r u s e s w i t h i n p a r a s i t o i d p o p u ­l a t ions (Sto l tz , 1990).

T h e p o l y d n a v i r u s family cons is t s of two l a rge g r o u p s of v i ruses , w h i c h

I. Introduction III. Future Directions Acknowledgments References

II. Life Cycle A. Transmission and Replication B. Genetic Colonization of the Host

I. Introduction

Parasites and Pathogens of Insects Volume 1: Parasites 167

Copyright © 1993 by Academic Press, Inc. All rights of reproduction in any form reserved.

Page 174: Parasites and Pathogens of Insects. Parasites
Page 175: Parasites and Pathogens of Insects. Parasites

8. The Polydnavirus Life Cycle 169

have b e e n def ined o n t h e bas i s of cons i s t en t differences in b o t h m o r p h o l o g y a n d hos t r a n g e . Unofficially, these h a v e b e e n referred to as t h e b r a c o - a n d i chnov i ru s g r o u p s . Bracov i rus pa r t i c l e s cons is t of cy l ind r i ca l n u c l e o c a p s i d s e n v e l o p e d by a s ingle u n i t m e m b r a n e ; t hese have b e e n o b s e r v e d on ly in c e r t a i n species of b r a c o n i d p a r a s i t o i d s . I c h n o v i r u s pa r t i c l e s cons is t of fu­s i form n u c l e o c a p s i d s s u r r o u n d e d by two u n i t m e m b r a n e enve lopes ; t hese a r e r e s t r i c t ed to t h e I c h n e u m o n i d a e . Typ ica l e x a m p l e s of p o l y d n a v i r u s e s a n d ( e n c a p s i d a t e d ) p o l y d n a v i r u s g e n o m e s a r e i l l u s t r a t ed in F ig . 1.

V i r a l r ep l i ca t ion is r e s t r i c t ed to t h e p a r a s i t o i d ovary. W h e n m a t u r e , vir­ions e n t e r t h e l u m e n of t he r e p r o d u c t i v e t rac t , w h e r e t hey c o m p r i s e t h e p a r t i c u l a t e f ract ion of a so-cal led " ca lyx fluid" ( N o r t o n et al., 1975; S to l tz a n d V i n s o n , 1979a) ; th i s m a t e r i a l , t o g e t h e r w i t h o n e o r m o r e p a r a s i t o i d eggs , is in jec ted i n t o hos t a n i m a l s d u r i n g ovipos i t ion (Stol tz a n d V i n s o n , 1979a) . R e p l i c a t i o n in p a r a s i t i z e d a n i m a l s , however , h a s neve r b e e n o b s e r v e d (Stol tz a n d V i n s o n , 1979a; T h e i l m a n n a n d S u m m e r s , 1986; D o v e r et al., 1989), a n d is there fore a s s u m e d no t to occur .

II. Life Cycle Typical ly , a v i ru s life cycle cons is t s of t r a n s m i s s i o n a n d r ep l i ca t i on w i t h i n a su scep t ib l e hos t ; s t r ic t ly s p e a k i n g , b o t h of these events a r e in t h e case of p o l y d n a v i r u s e s r e s t r i c t ed to ce r t a in p a r a s i t o i d spec ies . T h e p o l y d n a v i r u s life cycle , however , m u s t b e c o n s i d e r e d in a m u c h b r o a d e r con tex t , s ince t r a n s ­mis s ion a n d r ep l i ca t ion w i t h i n p a r a s i t o i d p o p u l a t i o n s w o u l d n o t be poss ib le in t h e a b s e n c e of a n a d d i t i o n a l e l e m e n t , name ly , t hose insec ts t h a t serve as hos t s for p a r a s i t o i d s . A s w e n o w know, p o l y d n a v i r u s e s a r e i n v a r i a b l y p r e s e n t in hos t a n i m a l s w h e r e they ac t to e n s u r e successful p a r a s i t i s m (see Sec t ion I I . B ) . I n sho r t , t h e ob l i ga to ry l i nkage b e t w e e n p a r a s i t o i d a n d h o s t r e q u i r e s t he p r e s e n c e of p o l y d n a v i r u s in b o t h . I therefore a r g u e t h a t t h e p o l y d n a v i r u s life cycle , un l ike t h a t of o t h e r v i ruses , in fact c o m p r i s e s two a r m s . T h e s e — t r a n s m i s s i o n / r e p l i c a t i o n , a n d w h a t m a y b e referred to as a gene t i c co lon iza ­t ion of t h e hos t (Stol tz et al., 1 9 8 6 ) — a p p e a r , respect ively, to be m e d i a t e d b y two d i s t i nc t forms of virus-specif ic D N A . Specifically, t r a n s m i s s i o n a n d rep l i ­ca t i on w o u l d a p p e a r to b e d i r ec t ed b y a p e r m a n e n t l y i n t e g r a t e d v i ra l g e n o m e

Figure 1 Typical examples of polydnavirus particles and genomes extracted there­from. Below left is an electron micrograph of a bracovirus (from Protapanteles pal-eacritae) and, to the right, an ichnovirus (from Hyposoter exiguae). Above these, agarose gel electrophoretic profiles of DNAs extracted from virus particles are seen after ethidium bromide staining. Left, bracovirus DNA from Cardiochiles nigriceps; right, ichnovirus from H. rivalis.

Page 176: Parasites and Pathogens of Insects. Parasites

170 Donald Β. Stoltz

(i .e. , a p rov i rus ) , w h e r e a s a gene t i c co lon iza t ion of t h e h o s t is effected b y c i r cu l a r molecu les de l ivered in e n c a p s i d a t e d form to hos t cells a n d t i ssues d u r i n g ovipos i t ion .

I n w h a t follows, I will dea l briefly w i th t r a n s m i s s i o n , s ince th is sub jec t h a s b e e n recen t ly t r e a t e d in s o m e d e p t h (Stol tz , 1990), a n d even m o r e briefly w i t h r ep l i ca t ion , s ince a l m o s t n o t h i n g is k n o w n a b o u t h o w this o c c u r s ( F l e m ­ing a n d K r e l l , V o l u m e 1, C h a p t e r 9) . C o n s i d e r a b l y m o r e a t t e n t i o n will b e g iven to t he sub jec t of v i rus -d i r ec t ed act ivi ty in t he hos t , s ince th is a s p e c t of p o l y d n a v i r u s b io logy h a s n o t recen t ly b e e n rev iewed .

A. Transmission and Replication

I t h a s b e e n c lear for s o m e t i m e t h a t p o l y d n a v i r u s t r a n s m i s s i o n o c c u r s w i t h 1 0 0 % efficiency, m a k i n g ver t ica l t ransfer t h r o u g h g e r m l ine t i ssue likely. Neve r the l e s s , it was ini t ia l ly cons ide red poss ib le t h a t d e v e l o p i n g p a r a s i t o i d l a rvae cou ld b e c o m e infected per os, by c o n s u m i n g v i ra l D N A de l ive red to t h e h o s t d u r i n g ovipos i t ion . Moreove r , it is k n o w n t h a t s u c h D N A c a n pers i s t t h r o u g h o u t t h e n a t u r a l course of p a r a s i t i z a t i o n ( T h e i l m a n n a n d S u m m e r s , 1986; Stol tz et al., 1986). T h e avai labi l i ty of isofemale l ines (i .e. , d e r i ved f rom a s ingle female) c a r r y i n g m a r k e r p o l y d n a v i r u s D N A circles p e r m i t t e d t h e des ign of e x p e r i m e n t s a i m e d a t d e t e r m i n i n g w h e t h e r per os t r a n s m i s s i o n d i d in fact occur . I n o n e s u c h e x p e r i m e n t , w a s h e d eggs f rom a Cotesia melanoscela l ine w e r e co- injected a l o n g w i t h b racov i rus from a l ine t h a t c a r r i e d a n e x t r a g e n o m e s e g m e n t ; n o n e of t he a d u l t female w a s p s r e su l t i ng from th is expe r i ­m e n t ca r r i ed t h a t g e n o m e s e g m e n t , sugges t i ng t h a t l a rvae e i t he r d i d n o t c o n s u m e s u c h D N A , or else cou ld n o t b e c o m e infected b y t h a t r o u t e . I n t h e case of t he i c h n e u m o n i d p a r a s i t o i d Hyposoter fiigitivus, w a s h e d eggs w e r e a b l e to deve lop to m a t u r i t y in Malacosoma americana; a d u l t females still c a r r i e d t h e n o r m a l p o l y d n a v i r u s a s soc ia t ed w i t h t h a t species , sugges t ing that per os infec­t ion w o u l d p r o b a b l y b e i r r e l evan t to p o l y d n a v i r u s t r a n s m i s s i o n , even if it did o c c u r (Stol tz et al., 1986).

I sofemale l ines were a lso e m p l o y e d in gene t i c c ross ing e x p e r i m e n t s , t h e resu l t s of w h i c h c lear ly d e m o n s t r a t e d t h a t b o t h b r a c o - a n d i chnov i ru s ge ­n o m e s e g m e n t s s eg rega t e in M e n d e l i a n fashion. I t w a s c o n c l u d e d t h a t t r a n s ­mis s ion of t he p o l y d n a v i r u s g e n o m e m o s t likely r e q u i r e s a phys i ca l l i nkage to t he p a r a s i t o i d g e n o m e ; a c h r o m o s o m a l m o d e l for p o l y d n a v i r u s t r a n s m i s s i o n h a s b e e n d i scussed b y Stol tz (1990) . M o l e c u l a r ev idence for c h r o m o s o m a l i n t e g r a t i o n of i chnov i rus g e n o m e s e g m e n t s h a d p rev ious ly b e e n d e v e l o p e d b y F l e m i n g a n d S u m m e r s (1986) , a n d m o r e r ecen t o b s e r v a t i o n s n o w s t rong ly sugges t t h a t c h r o m o s o m a l i n t e g r a t i o n is a l m o s t ce r t a in ly a g e n e r a l f ea tu re of t h e p o l y d n a v i r u s family ( X u a n d Stol tz , 1991; F l e m i n g a n d K r e l l , V o l u m e 1, C h a p t e r 9) . I n sho r t , b o t h gene t i c a n d m o l e c u l a r a p p r o a c h e s to t h e q u e s t i o n

Page 177: Parasites and Pathogens of Insects. Parasites

8. The Polydnavirus Life Cycle 171

of p o l y d n a v i r u s t r a n s m i s s i o n h a v e i n d e p e n d e n t l y led to t h e s a m e conc lus ion : t h e p o l y d n a v i r u s g e n o m e is t r a n s m i t t e d in t h e form of a n e n d o g e n o u s p r o v i r u s .

P o l y d n a v i r u s r ep l i ca t ion is r e s t r i c t ed to t h e p a r a s i t o i d ovary, a n d rep l i ca ­t ion b e g i n s in t h e p u p a l s t age ( N o r t o n a n d V i n s o n , 1983; T h e i l m a n n a n d S u m m e r s , 1986) a n d c o n t i n u e s t h r o u g h o u t t h e life of t h e a d u l t female . I t h a s b e e n sugges t ed t h a t r ep l i ca t ion of v i ra l D N A m i g h t b e t r iggered b y h o r m o n a l c h a n g e s a s soc i a t ed w i t h m e t a m o r p h o s i s a n d / o r m o r p h o g e n e s i s of t h e ova ry ( N o r t o n a n d V i n s o n , 1983). I n k e e p i n g w i t h th is s u p p o s i t i o n , W e b b a n d S u m m e r s (1992) h a v e r ecen t ly d e m o n s t r a t e d t h a t v i ra l D N A rep l i c a t i on in e x p l a n t e d ovar ies c a n b e i n d u c e d b y t h e a d d i t i o n of e c d y s o n e . T h e ava i lab i l i ­ty of in vitro s y s t ems s u c h as these s h o u l d very qu ick ly l ead to a n u n d e r s t a n d ­i n g of t h e m o l e c u l a r bas i s of v i ra l r ep l i ca t ion .

T h e q u e s t i o n of w h i c h form of v i ra l D N A serves as t e m p l a t e for t h e syn thes i s of t h e c i r cu l a r mo lecu le s t h a t a r e d e s t i n e d for e n c a p s i d a t i o n r e ­m a i n s as ye t u n a n s w e r e d . I n th is r e g a r d , it s h o u l d first b e n o t e d t h a t b o t h l i nea r ( i n t e g r a t e d ) a n d c i r cu l a r ( e x t r a c h r o m o s o m a l ) fo rms of v i r a l D N A a r e t h o u g h t to b e p r e s e n t in m o s t if n o t all p a r a s i t o i d t i ssues ( F l e m i n g a n d S u m m e r s , 1986; Sto l tz et aL, 1986), even in t h e a b s e n c e of v i r a l r ep l i ca t i on . T h u s , it m i g h t r e a s o n a b l y b e a s s u m e d t h a t a t leas t a few e x t r a c h r o m o s o m a l v i ra l D N A s a r e p r e s e n t in o v a r i a n p r i m o r d i a , a n d therefore a r e p o t e n t i a l l y ava i l ab le to serve l a t e r on a s r ep l i ca t ion t e m p l a t e s . Howeve r , T h e i l m a n n a n d S u m m e r s (1986) w e r e u n a b l e to d e t e c t t h e c i r cu l a r form of C s V g e n o m e s e g m e n t Β d u r i n g t h e ea r ly p u p a l s t ages of Campoletis sonorensis; t h e c o g n a t e ( c o r r e s p o n d i n g ) l i nea r c h r o m o s o m a l s e q u e n c e s , o n t h e o t h e r h a n d , w e r e o b s e r v e d . T h i s s t u d y sugges t s t h a t e x t r a c h r o m o s o m a l p o l y d n a v i r u s D N A s a r e n o t p r e s e n t in t h e p a r a s i t o i d ova ry p r i o r to v i ra l D N A rep l i ca t i on , in t u r n sugges t i ng t h a t l i nea r t e m p l a t e s m a y b e u t i l ized . G e n e t i c e x p e r i m e n t a t i o n h a s p r o v i d e d a d d i t i o n a l ev idence to t h e effect t h a t e x t r a c h r o m o s o m a l m o l e ­cules p l a y n o role in d e t e r m i n i n g t h e c o m p o s i t i o n of t h e p o l y d n a v i r u s ge­n o m e (Sto l tz , 1990). T h e r e f o r e , s u c h molecu le s a r e e i the r in s o m e m a n n e r e l i m i n a t e d f rom t h e ova ry p r i o r to t h e onse t of v i ra l D N A rep l i ca t ion (or w e r e n e v e r p r e s e n t in t h a t p a r t i c u l a r o r g a n ) o r else d o n o t serve as D N A rep l i ca ­t ion t e m p l a t e s .

I n a n y case , g iven t h a t p o l y d n a v i r u s g e n o m e s a r e c h r o m o s o m a l l y t r a n s ­m i t t e d (Stol tz , 1990), it s eems likely t h a t l i nea r c h r o m o s o m a l D N A se­q u e n c e s m u s t — a t leas t i n i t i a l l y — r e p r e s e n t a p o i n t of d e p a r t u r e in t h e a m ­p l i f i c a t i o n / r e p l i c a t i o n of p o l y d n a v i r u s D N A ; h o w th is m i g h t o c c u r r e m a i n s to b e d e t e r m i n e d , b u t severa l poss ibi l i t ies a r e p l a u s i b l e . Fo r e x a m p l e , a m p l i ­fication of v i ra l D N A cou ld in t h e o r y o c c u r in situ ( i .e. , a t c h r o m o s o m a l loci) , c i r cu l a r v i ra l D N A s s u b s e q u e n t l y b e i n g g e n e r a t e d v ia h o m o l o g o u s r e c o m ­b i n a t i o n ; a l te rna t ive ly , excised, p r e s u m a b l y c i rcu la r , copies of c h r o m o s o m a l loci m i g h t serve as t e m p l a t e s for D N A rep l i ca t ion . Final ly, s u c h loci m i g h t b e

Page 178: Parasites and Pathogens of Insects. Parasites

172 Donald Β. Stoltz

excised in the i r en t i r e ty p r io r to ampl i f i ca t ion , leaving n o l inea r c h r o m o s o m ­al copy b e h i n d . As a w o r k i n g h y p o t h e s i s , I p r e s en t l y favor t he first m e c h a ­n i s m , s ince t h e resu l t s of gene t i c c ross ing e x p e r i m e n t s t e n d to mi l i t a t e a g a i n s t a n i n v o l v e m e n t of c i rcu lar , e x t r a c h r o m o s o m a l D N A t e m p l a t e s in p o l y d n a v i r u s r ep l i ca t ion (unless p o t e n t i a l c i r cu la r r ep l i ca t ion t e m p l a t e s a r e r e m o v e d from the ovary p r i o r to t he onse t of v i ra l D N A rep l i ca t ion ) . Exc i s ion of c i r cu l a r D N A s m u s t in a n y case p r e s u m a b l y o c c u r a t s o m e p o i n t in t h e r ep l i ca t ion cycle, a n d r ecen t s e q u e n c i n g d a t a h a v e b e e n i n t e r p r e t e d b y F l e m ­ing a n d S u m m e r s (1990) as sugges t ing a poss ib le role for t h e C s V 5 4 0 - b p r e p e a t e l e m e n t in t h a t p rocess . I t s h o u l d be n o t e d t h a t if p o l y d n a v i r u s ge­n o m e s e g m e n t s a r e g e n e r a t e d from l inea r c h r o m o s o m a l t e m p l a t e s , t h e n a m ­plif icat ion of a n y s u c h t e m p l a t e s need no t be ex tens ive ; i n s t e a d , excis ion cou ld in s o m e w a y be c o u p l e d to D N A rep l i ca t ion .

T h e so-cal led " o n i o n s k i n " m o d e l for in situ ampl i f i ca t ion (see O s h e i m a n d Mil le r , 1983; S t a r k et al., 1989) m a y n o t b e en t i re ly a p p r o p r i a t e h e r e , a n d w o u l d in a n y case be i n c o m p a t i b l e w i t h d a t a r e p o r t e d by T h e i l m a n n a n d S u m m e r s (1986) to t h e effect t h a t t he a m o u n t of c h r o m o s o m a l p o l y d n a v i r u s -specific D N A r e m a i n s c o n s t a n t d u r i n g p u p a t i o n , w h e n v i ra l r ep l i ca t ion first beg ins .

E a c h of t he r ep l i ca t ion scena r ios l is ted he r e a l lows ce r t a in p r e d i c t i o n s to be m a d e . A n in situ ampl i f i ca t ion m o d e l , for e x a m p l e , w o u l d n o t necessa r i ly r e q u i r e t h a t s e q u e n c e s r e s p o n d i n g to r ep l i ca t ion s igna ls b e loca t ed o n ex t r a -c h r o m o s o m a l D N A s ; they cou ld i n s t e a d b e loca ted w i t h i n flanking c h r o m o ­s o m a l s e q u e n c e s . O n the o t h e r h a n d , t he d e m o n s t r a t e d pe r s i s t ence of po lyd ­n a v i r u s D N A in t h e p a r a s i t i z e d hos t (see t he following) m i g h t well r e q u i r e s o m e t h i n g e q u i v a l e n t to a n a u t o n o m o u s l y r ep l i ca t i ng s e q u e n c e .

I have a r g u e d h e r e t h a t t he l inear , i n t e g r a t e d form of v i ra l D N A is neces ­sa ry for b o t h v i rus t r a n s m i s s i o n a n d D N A rep l i ca t ion ( w h e t h e r o r n o t th is occu r s f rom l inea r o r c i r cu la r t e m p l a t e s ) . W h a t t h e n is t he role of t h e c i r cu l a r form of v i ra l D N A ? A l t h o u g h its funct ion , if any, in t he p a r a s i t o i d itself is p r e sen t ly u n k n o w n , it s eems c lear t h a t c i r cu la r v i ra l g e n o m e s e g m e n t s a r e t r a n s c r i p t i o n a l l y act ive in t he p a r a s i t i z e d hos t , t h e r e b e i n g as ye t n o ev idence for i n t e g r a t i o n of p o l y d n a v i r u s D N A in s u c h a n i m a l s . T h i s a s p e c t of t h e p o l y d n a v i r u s life cycle is cons ide red in t h e nex t sec t ion .

B. Genetic Colonization of the Host

T h e resu l t s of e lec t ron mic roscop i c s tud ies ca r r i ed o u t in t he m i d to l a te 1970s c lear ly i n d i c a t e d t h a t p o l y d n a v i r u s pa r t i c l e s ( t hen c o m m o n l y refer red to as v i r u s l i k e / c a l y x fluid par t ic les ) w e r e d e s t i n e d for e x p o r t i n t o hos t a n i m a l t issues (Stol tz a n d V i n s o n , 1977, 1979b) . A t t he s a m e t ime , it b e c a m e in­c reas ing ly c lear t h a t a t least s o m e of t he obv ious c h a n g e s r e su l t i ng f rom

Page 179: Parasites and Pathogens of Insects. Parasites

8. The Polydnavirus Life Cycle 173

n a t u r a l p a r a s i t i s m cou ld a lso be o b s e r v e d following m a n u a l in jec t ion of ca lyx fluid ( V i n s o n , 1972, 1977; N o r t o n a n d V i n s o n , 1977; D a h l m a n a n d V i n s o n , 1977; V i n s o n et al., 1979); we n o w k n o w t h a t t he b io logica l ac t iv i ty of c r u d e ca lyx fluid c a n , in m a n y cases , b e d u p l i c a t e d u s i n g g r ad i en t -pu r i f i ed p o l y d ­n a v i r u s pa r t i c l e s . S tud ie s ca r r i ed o u t in two different l a b o r a t o r i e s h a v e clear­ly d e m o n s t r a t e d t h a t b io logica l ac t iv i ty c a n b e a b r o g a t e d by cova len t c ross -l ink ing of e n c a p s i d a t e d v i ra l g e n o m e s in situ (Cook et al., 1984; G u z o a n d Sto l tz , 1985, 1987; Stol tz a n d G u z o , 1986; Beckage et al., 1987, 1990). T h i s sugges t s t h a t b io logica l ac t iv i ty is for t h e m o s t p a r t n o t d u e to s o m e cy to tox ic s t r u c t u r a l c o m p o n e n t s c a r r i e d i n t o t h e hos t by i n v a d i n g v i ru s pa r t i c l e s . I n ­s t e a d , ac t iv i ty a p p e a r s to b e d e p e n d e n t u p o n the p r e s e n c e of a v i ab l e v i ra l g e n o m e . S tud i e s c lear ly i n d i c a t e t h a t c i r cu l a r v i ra l D N A s pers i s t t h r o u g h o u t t he n a t u r a l cou r se of p a r a s i t i z a t i o n (Stol tz et al., 1986; T h e i l m a n n a n d S u m ­m e r s , 1986) a n d a r e t r a n s c r i p t i o n a l l y act ive ( F l e m i n g et al., 1983; B l i s sa rd et al., 1986, 1987, 1989; T h e i l m a n n a n d S u m m e r s , 1988; Stol tz et al, 1988; W e b b a n d S u m m e r s , 1990) in o n e o r m o r e hos t t i ssues . T h u s , t h e r e is a t leas t i nd i r ec t ev idence to sugges t t h a t t r a n s c r i p t i o n — w h e t h e r e n c o d e d o r i n d u c e d b y p o l y d n a v i r u s — i s a p r o b a b l e r e q u i r e m e n t for successful p a r a s i t i s m ( G u z o a n d Sto l tz , 1987).

I n sho r t , t h e b e h a v i o r of p o l y d n a v i r u s D N A in hos t a n i m a l s h a s all t h e e a r m a r k s of a gene t i c co lon iza t ion . T h e t e r m genetic colonization h a s a p a r t i c u ­la r m e a n i n g in biology, s ince it ca r r i e s t h e i m p l i c a t i o n t h a t t h e p roces s is d i r e c t e d t o w a r d the a c c o m p l i s h m e n t of s o m e goa l t h a t is of benefi t to t h e co lon iz ing (pa ras i t i c ) ent i ty. A c u r s o r y rev iew of t he b io logica l act iv i t ies n o w a t t r i b u t e d to p o l y d n a v i r u s e s (Tab le 1) will sugges t severa l a r e n a s in w h i c h p o l y d n a v i r u s e s cou ld have c ruc ia l s ignif icance for successful p a r a s i t i s m . T h e m o s t o b v i o u s of these , of cou r se , is i m m u n o s u p p r e s s i o n .

1. I m m u n o s u p p r e s s i o n

I n s e c t l a rvae a r e c lear ly q u i t e c a p a b l e of m o u n t i n g effective i m m u n e re ­sponses a g a i n s t l a rge foreign ob jec t s . Pa ra s i t o id eggs a n d l a rvae , t h e n , m u s t e i t he r avoid s u c h a r e s p o n s e , o r s u p p r e s s it , o r have it s u p p r e s s e d b y m a t e ­r i a l s ) in jec ted by the female p a r a s i t o i d d u r i n g ovipos i t ion . I n t h e c o n t e x t of p o l y d n a v i r u s biology, t h e e x p e r i m e n t a l a p p r o a c h h a s b e e n la rge ly a i m e d a t d e m o n s t r a t i n g v i r u s - i n d u c e d i m m u n o s u p p r e s s i o n , p a r t i c u l a r l y d u r i n g t h e ea r ly s t ages of p a r a s i t i z a t i o n . S u p p r e s s i o n of ce l lu la r i m m u n i t y ( e n c a p s u l a ­t ion a n d n o d u l a t i o n ) u s i n g pur i f ied i chnov i rus w a s first d e s c r i b e d b y E d s o n et al. (1981) , a n d s u b s e q u e n t l y b y Stol tz a n d G u z o (1986) ; in each i n s t a n c e , i m m u n o s u p p r e s s i o n w a s in p a r t a t t r i b u t e d to a n i nh ib i t i on of p l a s m a t o c y t e a d h e s i v e a n d s p r e a d i n g capac i t y (Stol tz a n d G u z o , 1986; Dav ie s et al., 1987), a l t h o u g h d e p l e t i o n in t h e n u m b e r s of c i r cu l a t i ng p l a s m a t o c y t e s w a s a lso n o t e d in o n e case ( C s V in Heliothis virescens). As m e n t i o n e d ear l ier , c h a n g e s in

Page 180: Parasites and Pathogens of Insects. Parasites

174 Donald Β. Stoltz

Table 1

Physiological Changes in Host Animals Attributed to the Presence of Polydnavirus

Activity References"

Suppression of cellular im­mune response

Inhibition of weight gain Changes in hemocyte count

or behavior

Appearance of new hemo­lymph polypeptides

Inhibition of phenoloxidase activity

Inhibition of protein stor­age in fat body

Reduction in hemolymph viscosity

Change in hemolymph trehalose concentration

Degeneration of hemopoie­tic tissue

Pigmentation changes

Degeneration of the pro­thoracic gland

Prolongation or arrest of development

Perturbation of hormone levels

Vinson (1977); Edson efal. (1981) (V); Guzo and Stoltz (1985, 1987); Stoltz and Guzo (1986) (V); Vinson and Stoltz (1986) (V); Tanaka (1987a); Strand and Noda (1991) (V).

Vinson (1972); Vinson et al. (1979) (V).

Stoltz and Guzo (1986); Guzo and Stoltz (1987); Tanaka (1987b); Davies et al. (1987) (V); Wago and Tanaka (1989); Strand and Noda (1991) (V); D. B. Stoltz and Ν. E. Beckage (V; unpublished data); Stoltz, this re­port.

Cook et al. (1984) (V); Beckage et al. (1987).

Stoltz and Cook (1983) (V); Beckage et al. (1990) (V); Strand and Noda (1991) (V).

Tanaka (1986)

Davies et al. (1987) (V); Strand and Noda (1991); D. B. Stoltz (unpublished data).

Dahlman and Vinson (1977)

Guzo and Stoltz (1987)

Beckage et al. (1990) (V).

Dover et al. (1988a) (V).

Tanaka et al. (1987); Dover et al. (1988b) (V); Tanaka and Vinson (1991a); K. W. Schleifer and Ν. E. Beckage (un­published data)

Dover et al. (1987, 1988b) (V); Tanaka et al. (1987); Tan­aka and Vinson (1991b)

aV = gradient-purified virus used (otherwise, calyx fluid). Note that venom is required for full activity of some braconid polydnaviruses.

p l a s m a t o c y t e b e h a v i o r a r e likely no t d u e to a d i r ec t cy to tox ic effect c a u s e d b y

v i rus : C s V a d d e d to h e m o c y t e p r e p a r a t i o n s , for e x a m p l e , h a d n o effect o n

p l a s m a t o c y t e a d h e s i o n a n d s p r e a d i n g , w h e r e a s p l a s m a from p a r a s i t i z e d H.

virescens l a rvae d i d (Davies et al., 1987).

C o n s i d e r a b l y less i n fo rma t ion is ava i l ab le on t h e effects of pur i f ied bra-

coviruses; however , a n i nh ib i t i on of p l a s m a t o c y t e s p r e a d i n g h a s n o w b e e n

d e m o n s t r a t e d in two different sys t ems ( S t r a n d a n d N o d a , 1991; D . B . Sto l tz

Page 181: Parasites and Pathogens of Insects. Parasites

8. The Polydnavirus Life Cycle 175

a n d Ν . E . B e c k a g e , u n p u b l i s h e d ) . Cer ta in ly , ca lyx fluid—comprising p r i ­m a r i l y p o l y d n a v i r u s p a r t i c l e s — s e e m s to b e r e q u i r e d for successful p a r a s i t ­i s m in all of t h e b r a c o n i d p a r a s i t o i d / h o s t sy s t ems t h a t h a v e b e e n s t u d i e d to d a t e ( V i n s o n , 1974, 1977; G u z o a n d Sto l tz , 1985, 1987; K i t a n o , 1986; T a n ­a k a , 1987a; Ν . E . Beckage , ( p e r s o n a l c o m m u n i c a t i o n ) . A s w i t h ich-n o v i r u s / h o s t s y s t e m s , i m m u n o s u p p r e s s i o n is a s soc ia t ed w i t h o b v i o u s h e m a ­tological c h a n g e s ( G u z o a n d Sto l tz , 1987; T a n a k a , 1987b; W a g o a n d T a n a k a , 1989; D . B . Sto l tz a n d Ν . E . Beckage , u n p u b l i s h e d ) , i n c l u d i n g d e s t r u c t i o n of h e m o p o i e t i c t i ssue ( G u z o a n d Sto l tz , 1987); in o n e case , a d i r ec t effect of ca lyx fluid/venom o n hos t h e m o c y t e s h a s b e e n obse rved ( W a g o a n d T a n a k a , 1989). A r e q u i r e m e n t for v e n o m (for successful p a r a s i t i s m ) c o m p l i c a t e s t h e p i c t u r e in m o s t ( K i t a n o , 1982, 1986; G u z o a n d Stol tz , 1985, 1987; T a n a k a , 1987a) b u t no t all ( V i n s o n , 1977; B e c k a g e et aL, 1987, 1990) b r a c o v i r u s / h o s t s y s t e m s (see t h e following).

I m m u n o s u p p r e s s i o n i n d u c e d by p a r a s i t o i d s m i g h t logical ly b e e x p e c t e d to r e d u c e r e s i s t ance to m i c r o b i a l infect ion in hos t l a rvae , a n d th is h a s n o w b e e n d o c u m e n t e d (Stol tz a n d G u z o , 1986; G u z o a n d Sto l tz , 1987). I n t h e l ong t e r m , t h e n , a gene ra l i zed i m m u n o s u p p r e s s i o n w o u l d be l e tha l to p a r a ­s i toid as well as hos t un less e i the r (a) s o m e d e g r e e of ce l lu la r i m m u n i t y r e t u r n e d o r (b) o t h e r defense m e c h a n i s m s (e.g. , a n t i b a c t e r i a l p r o t e i n s ) w e r e e i t he r c a p a b l e of m a k i n g u p for t h a t loss o r else w e r e in fact a u g m e n t e d . As yet , very few s tud i e s have b e e n d i r e c t e d t o w a r d a n s w e r i n g th is q u e s t i o n ( b u t see Ross a n d D u n n , 1989). I n t h e case of t h e i chnov i ru s H f V (from Hyposoter

fitgitivus), w h i c h s u p p r e s s e s ce l lu la r i m m u n i t y in Malacosoma disstria, a d e g r e e of ce l lu la r i m m u n i t y r e t u r n s in 1 to 2 d a y s after h a t c h i n g of t he p a r a s i t o i d egg a n d t h e r e s u r g e n t e n c a p s u l a t i o n r e s p o n s e a p p e a r s to b e select ive, s ince p a r a ­s i toid l a rvae r e m a i n unaffected . S imi l a r e x a m p l e s of th is t ype of i n t e r a c t i o n m a y b e found e l sewhere in t he l i t e r a t u r e (e.g. , V i n s o n , 1972). I t is of cou r se poss ib le t h a t t he surfaces of p a r a s i t o i d l a rvae a r e in s o m e i n s t a n c e s n o t r ecogn ized as foreign, in w h i c h case a c o m p l e t e recovery of ce l lu la r i m m u n e r e s p o n s e s cou ld in t heo ry b e to l e ra t ed by the p a r a s i t o i d .

P a r t i c u l a r l y in t he case of b r a c o v i r u s / h o s t s y s t e m s , v e n o m g l a n d s e c r e t i o n s — i n a d d i t i o n to p o l y d n a v i r u s — m a y be r e q u i r e d for successful p a r a s i t i s m . T h e r e is s o m e q u e s t i o n , however , as to w h e t h e r t h e ro le of v e n o m in s u c h cases s h o u l d bes t b e d e s c r i b e d as p r i m a r y o r accessory. M o s t s t ud i e s t e n d to sugges t a n accessory func t ion . F i r s t , v e n o m a lone h a s n o o b v i o u s b io logica l activity, a t leas t in t he sy s t ems e x a m i n e d to d a t e ; conversely , ca lyx fluid o r p o l y d n a v i r u s e s a r e on the i r o w n fully ac t ive in a va r i e ty of s i t u a t i o n s . T h i s is espec ia l ly t r u e in t he case of t he i chnov i ruses ( E d s o n et aL, 1981; Sto l tz a n d G u z o , 1986), b u t h o l d s as well for a t l eas t two we l l - s tud ied b r a -covi ruses ( V i n s o n , 1977; B e c k a g e et aL, 1987, 1990). I n t h e case of t h e b r a ­covi rus C m V (from Cotesia melanoscela), v e n o m a p p e a r s to ac t a t a n ea r ly

Page 182: Parasites and Pathogens of Insects. Parasites

176 Donald Β. Stoltz

s t age of v i rus p e n e t r a t i o n (Stol tz et al., 1988), p r o m o t i n g the u n c o a t i n g of v i ra l D N A a n d s u b s e q u e n t gene t i c co lon iza t ion . T h o u g h necessary , th i s func­t ion is p r o b a b l y bes t i n t e r p r e t e d as p r o v i d i n g s u p p o r t for t h e m o r e i m p o r t a n t tasks m e d i a t e d by the act ivi ty of p o l y d n a v i r u s D N A .

Obvious ly , very l i t t le is as yet k n o w n c o n c e r n i n g the biological role of p a r a s i t o i d v e n o m g l a n d secre t ions , a n d it is therefore likely t h a t a s m o r e i n fo rma t ion is deve loped , we will find t h a t these p r o d u c t s a r e neces sa ry in ways as yet u n i m a g i n e d . T h i s a r g u m e n t is s u p p o r t e d by t h e r ecen t finding t h a t t he C s V g e n o m e a p p e a r s to have a c q u i r e d a p a r a s i t o i d v e n o m g l a n d g e n e ( W e b b a n d S u m m e r s , 1990); th is gene w o u l d of cou r se be c a r r i e d i n to p a r a ­si t ized a n i m a l s by C s V par t i c l es in jected d u r i n g ovipos i t ion . T h e r e w o u l d in this case be two p o t e n t i a l sources for v e n o m : the p a r a s i t o i d v e n o m g l a n d itself, a n d gene p r o d u c t s specified by the e n c a p s i d a t e d form of v i ra l D N A .

I t is still no t c lear t h a t m e l a n i z a t i o n p lays a p ivo ta l role in insec t defense r e sponses . S tud ie s w i t h Drosophila m u t a n t s sugges t t h a t t h e m e l a n i z a t i o n a n d h a r d e n i n g of h e m o c y t i c capsu les m a y be s e c o n d a r y to t h e in i t ia l non-se l f r ecogn i t ion even t (Rizki a n d Rizki , 1990). S o m e p o l y d n a v i r u s e s a r e k n o w n to i nh ib i t p h e n o l o x i d a s e act ivi ty (Stol tz a n d Cook , 1983; Beckage et al., 1990), w h e r e a s o t h e r s a p p a r e n t l y d o n o t (Davies et al., 1987). I n t e r e s t i n g , ca lyx fluid from Apanteles kariyai promotes m e l a n i z a t i o n (of fat b o d y cells; T a n a k a , 1986)! A t th is j u n c t u r e , it w o u l d seem r e a s o n a b l e to su spec t t h a t a n i nh ib i ­t ion of p h e n o l o x i d a s e act ivi ty m a y be r e q u i r e d for successful p a r a s i t i s m in s o m e biologica l sy s t ems , b u t no t o t h e r s . As w i t h p h e n o l o x i d a s e i nh ib i t i on , a n u m b e r of o t h e r p o l y d n a v i r u s - i n d u c e d c h a n g e s a r e of in t r ins i c in t e re s t in the i r o w n r e g a r d , a n d m a y (or m a y no t ) causa l ly r e l a t e to i m m u n o s u p p r e s ­s ion. T h e s e i n c l u d e t he a p p e a r a n c e of m a j o r n e w p o l y p e p t i d e s (Cook et al., 1984; Beckage et al., 1987, 1990) a n d a r e d u c t i o n in h e m o l y m p h viscosi ty (Davies et al., 1987; S t r a n d a n d N o d a , 1991; D . B . Sto l tz , u n p u b l i s h e d d a t a ) .

I m m u n o s u p p r e s s i o n p rov ides p e r h a p s t he m o s t obv ious a n d r ead i ly u n ­d e r s t o o d l inkage b e t w e e n the two forms of p o l y d n a v i r u s D N A . Surv iva l of t he linear, c h r o m o s o m a l l y i n t e g r a t e d g e n o m e — a s s u m e d to be c a r r i e d w i t h i n p a r a s i t o i d eggs a n d l a r v a e — d e p e n d s u p o n the p r e s e n c e in hos t t i ssues of t r a n s c r i p t i o n a l l y act ive , circular v i ra l D N A . However , as d e s c r i b e d in t he following, i m m u n o s u p p r e s s i o n is by n o m e a n s t h e on ly neces sa ry func t ion ca r r i ed o u t by t h e la t te r .

2. D e v e l o p m e n t a l R e g u l a t i o n

I t is of cou r se a x i o m a t i c t h a t t he life cycles of e n d o p a r a s i t o i d s m u s t b e well a d a p t e d to those of t he hos t s w i th in w h i c h they res ide . I n a d d i t i o n to a po t en t i a l l y l e tha l i m m u n e r e sponse , t he e n d o p a r a s i t i c life s t ages m u s t p r e s u m ­ab ly have to c o n t e n d w i t h o t h e r a spec t s of hos t phys io logy t h a t m a y b e equa l l y t h r e a t e n i n g ; of these , t he onse t of m e t a m o r p h o s i s cou ld r e p r e s e n t a se r ious

Page 183: Parasites and Pathogens of Insects. Parasites

8. The Polydnavirus Life Cycle 177

t h r e a t to successful p a r a s i t i s m . For e x a m p l e , t h e phys io logy of a p u p a l h o s t will be e x p e c t e d to differ g r ea t l y from t h a t of a l a rva l hos t ; a p a r a s i t o i d l a r v a d e v e l o p i n g w i t h i n a hos t l a rva w o u l d p r e s u m a b l y have to m a k e m a j o r ad jus t ­m e n t s in r e s p o n s e to hos t p u p a t i o n ( p e r h a p s by p u p a t i n g i tself) . I t is a l so w o r t h n o t i n g t h a t t h e p u p a l cu t ic le is, in g e n e r a l , likely to be m u c h t o u g h e r t h a n t h e l a rva l cu t ic le , a n d h e n c e m o r e difficult to p e n e t r a t e b y t h e e m e r g i n g p a r a s i t o i d .

A l t h o u g h m a n y p a r a s i t o i d s h a v e evolved in s u c h a w a y t h a t the i r eggs a n d l a rvae c a n a c c o m m o d a t e e x p o s u r e to two different hos t phys io log ies (e.g. , e g g / l a r v a l p a r a s i t o i d s ) , o t h e r s h a v e deve loped s t ra teg ies t h a t a l low t h e m to c o m p l e t e d e v e l o p m e n t w i t h i n a s ingle t y p e of hos t mi l i eu ( la rva l p a r a s i t o i d s ) . I t h a s b e e n a r g u e d t h a t th is r e q u i r e s t h a t t h e p a r a s i t o i d h a v e t h e capac i t y to m o d u l a t e , o r r e g u l a t e , hos t phys io logy ( V i n s o n a n d I w a n t s c h , 1980). S ince t h e t r a n s i t i o n f rom l a r v a to p u p a is u n d e r h o r m o n a l con t ro l , we m a y r e a s o n ­a b l y expec t t h a t m a n y p a r a s i t o i d s h a v e d e v e l o p e d t h e capac i t y to affect t h e e n d o c r i n e phys io logy of t he hos t . T h e l i t e r a t u r e is in fact r ep l e t e w i t h e x a m ­ples of h o s t / p a r a s i t o i d sys t ems in w h i c h t h e m e t a m o r p h o s i s of h o s t l a rvae is e i t he r d e l a y e d , acce le ra t ed , o r a r r e s t e d ; th is l i t e r a tu r e h a s r ecen t ly b e e n r ev iewed b y B e c k a g e (1985) a n d L a w r e n c e (1986) a n d will n o t b e t r e a t e d fu r the r h e r e . I will i n s t e a d confine myse l f to a c o n s i d e r a t i o n of w h a t is k n o w n c o n c e r n i n g t h e role of polydnaviruses in t h e r e g u l a t i o n of hos t e n d o c r i n e sys­t e m s . T h i s d i scuss ion will b e necessar i ly brief, s ince re la t ive ly few s tud ie s h a v e as yet t a r g e t e d t he p o l y d n a v i r u s e s as p o t e n t i a l m e d i a t o r s of d e v e l o p ­m e n t a l m o d u l a t i o n .

Po lydnav i ru se s cou ld in t heo ry affect hos t d e v e l o p m e n t in a n u m b e r of w a y s . For e x a m p l e , p r o l o n g a t i o n of t h e l a rva l s t age cou ld b e c a u s e d b y a n i nc r ea se in j u v e n i l e h o r m o n e t i te r o r a d e c r e a s e in e c d y s o n e levels; t h e fo rmer cou ld b e c a u s e d by a d e c r e a s e in j u v e n i l e h o r m o n e ( J H ) e s t e ra se ac t iv i ty (e .g. , H a y a k a w a , 1990), a n d t h e l a t t e r by a n i nh ib i t i on of p r o t h o r a c i c o t r o p i c h o r m o n e ( P T T H ) re lease o r by a d i r ec t effect o n t h e p r o t h o r a c i c g l a n d . T h e r e a r e o t h e r poss ibi l i t ies , m o s t of w h i c h h a v e in fact b e e n a s soc i a t ed w i t h e n d o p a r a s i t i s m in o n e s y s t e m o r a n o t h e r . E v i d e n c e for t he p a r t i c i p a t i o n of ca lyx fluids in h o r m o n a l p e r t u r b a t i o n w a s r e p o r t e d for b o t h a b r a c o v i r u s a n d a n i c h n o v i r u s in 1987 (Dover et al., 1987; T a n a k a et al., 1987). T a k i n g these in t u r n , ca lyx fluid a n d v e n o m from A. kariyai w e r e s h o w n to i nh ib i t a n i nc r ea se in ecdys t e ro id levels r e q u i r e d for p u p a t i o n , t h u s p r o l o n g i n g t h e final i n s t a r in Pseudaletia separata hos t l a rvae . S ince in ject ion of P T T H i n d u c e d p u p a t i o n , it w a s a s s u m e d t h a t t h e p r o t h o r a c i c g l a n d s of p a r a s i t i z e d l a rvae w e r e in t ac t ; it w a s a l so a s s u m e d t h a t t h e p r o t h o r a c i c g l a n d of ca lyx f l u i d / v e n o m - i n j e c t e d l a rvae r e m a i n e d i n t ac t too , a l t h o u g h P T T H injec t ions w e r e n o t specifically c a r r i e d o u t u s i n g these l a rvae . In jec t ions of e i the r ca lyx fluid o r v e n o m a l o n e h a d n o effect. I t s h o u l d be n o t e d t h a t in th is sy s t em, ca lyx f l u i d / v e n o m

Page 184: Parasites and Pathogens of Insects. Parasites

178 Donald Β. Stoltz

m e r e l y de l ay p u p a t i o n , w h e r e a s n a t u r a l l y p a r a s i t i z e d l a rvae c a n n o t p u p a t e . T h u s , o t h e r factors , poss ib ly i n c l u d i n g t e r a tocy te s ( Z h a n g a n d D a h l m a n , 1989), m u s t b e involved in p r e v e n t i n g p u p a t i o n . M o r e recent ly , ca lyx fluid in c o m b i n a t i o n w i t h v e n o m from the b r a c o n i d p a r a s i t o i d Cardiochiles nigriceps w a s s h o w n to d e p r e s s p r o t h o r a c i c g l a n d funct ion in Heliothis virescens ( T a n a k a a n d V i n s o n , 1991a) , a n d inh ib i t i on of ecdys te ro id re lease in r e s p o n s e to P T T H w a s obse rved following in vitro i n c u b a t i o n of p r o t h o r a c i c g l a n d s w i t h ca lyx a n d v e n o m fluids, sugges t ing a direct effect o n th is t i ssue . H o w this m i g h t o c c u r r e m a i n s to b e e luc ida t ed ; p e n e t r a t i o n of t h e p r o t h o r a c i c g l a n d by v i rus pa r t i c l e s h a s no t b e e n obse rved . I t s h o u l d b e n o t e d t h a t t he effect of v e n o m in this sy s t em is a p p a r e n t l y hos t (i .e. , p a r a s i t o i d ) specific: a c o m b i n a ­t ion of Microplitis croceipes v e n o m w i t h C. nicriceps ca lyx fluid h a d n o effect o n hos t p u p a t i o n ( T a n a k a a n d V i n s o n , 1991b). C a l y x fluid from t h e ich-n e u m o n i d w a s p Campoletis sonorensis h a s a lso b e e n s h o w n to i n d u c e a d e c r e a s e in ecdys t e ro id levels a n d d e v e l o p m e n t a l a r r e s t in l a s t - i n s t a r H. virescens l a rvae (Dover et al., 1987). I n this case , on ly t h e p a r t i c u l a t e fract ion of ca lyx fluid w a s act ive, sugges t i ng t h a t C s V v i r ions were involved; as w i t h o t h e r ich-n e u m o n i d / h o s t sy s t ems , t he re was n o a p p a r e n t r e q u i r e m e n t for w a s p v e n o m . L i g a t i o n e x p e r i m e n t s sugges t ed t h a t t he t a r g e t t i ssue r e s ided in t h e t h o r a x , w h i c h in t u r n sugges t ed t h a t ca lyx fluid m i g h t b e exe r t i ng s o m e effect o n t h e p r o t h o r a c i c g l a n d itself.

S u b s e q u e n t w o r k u s i n g puri f ied C s V h a s now clear ly e s t ab l i shed t h a t th is p o l y d n a v i r u s c a n i n d u c e d e v e l o p m e n t a l a r r e s t in H. virescens l a rvae (Dove r et al., 1988a ,b) . F u r t h e r m o r e , it a p p e a r s t h a t th is is c a u s e d b y a v i r u s - i n d u c e d d e g e n e r a t i o n of t he p r o t h o r a c i c g l a n d (Dover et al., 1988a) , w h i c h m a y in t u r n a c c o u n t for a n obse rved r e d u c t i o n in ecdys t e ro id t i te r (Dover et al., 1988b) . I t s h o u l d be no t i ced t h a t t he effect is d o s e - d e p e n d e n t : in jec t ion of lower doses of C s V resu l t ed in t h e d e g e n e r a t i o n of s o m e p r o t h o r a c i c g l a n d cells, b u t n o t al l , a n d d e v e l o p m e n t a l a r r e s t w a s r ep l aced by a p r o l o n g a t i o n of t h e las t l a rva l ins ta r .

T h e effect of p o l y d n a v i r u s o n the p r o t h o r a c i c g l a n d is p r o b a b l y n o t d i rec t , s ince t he r e is n o ev idence to sugges t t h a t v i rus pa r t i c l e s c a n i n v a d e th is t i ssue , w h i c h in t u r n ra ises the very i m p o r t a n t q u e s t i o n of h o w s o m e cells a r e a b l e to a p p a r e n t l y e scape be ing d a m a g e d . T o m y k n o w l e d g e , on ly o n e o t h e r a t t e m p t h a s b e e n m a d e to assoc ia te pur i f ied p o l y d n a v i r u s w i t h a n e n d o c r i n e funct ion: in th is case , a b racov i rus ( C c V ) from Cotesia congregata h a s b e e n s h o w n to de l ay t he d e v e l o p m e n t of Manduca sexta l a rvae (Ν . E . B e c k a g e , p e r s o n a l c o m m u n i c a t i o n ) , sugges t ing t h a t C c V act iv i ty c a n a p p a r e n t l y b e expres sed in t he a b s e n c e of w a s p v e n o m .

I t c a n b e p r e d i c t e d t h a t a n u m b e r of a d d i t i o n a l p o l y d n a v i r u s e s will in t h e n e a r fu ture b e e x a m i n e d in t e r m s of the i r p o t e n t i a l for in f luenc ing hos t e n d o c r i n e s y s t e m s , a n d it c a n conf ident ly be sugges t ed t h a t m a n y , if n o t

Page 185: Parasites and Pathogens of Insects. Parasites

8. The Polydnavirus Life Cycle 179

m o s t , will be found to d o so. I t s h o u l d a lso be k e p t in m i n d t h a t o t h e r v i ru s -i n d u c e d c h a n g e s in hos t physiology, p e r h a p s i n c l u d i n g i m m u n o s u p p r e s s i o n , m a y well have a h o r m o n a l bas i s . I t is, for e x a m p l e , well k n o w n t h a t s t r ik ing c h a n g e s in h e m o c y t e m o r p h o l o g y a n d func t ion c a n o c c u r d u r i n g m o l t i n g o r m e t a m o r p h o s i s (e.g. , K u r a t a et aL, 1989), p r e s u m a b l y in r e s p o n s e to c h a n g e s in t h e levels of o n e o r m o r e h o r m o n e s .

3 . C h a n g e s i n N u t r i e n t L e v e l s a n d / o r A c c e s s i b i l i t y

C h a n g e s in n u t r i e n t levels of va r i ous t i ssues h a v e o n severa l occas ions b e e n a t t r i b u t e d to t he act ivi ty of ca lyx fluid o r p o l y d n a v i r u s e s . For e x a m p l e , ca lyx fluid f rom t h e b r a c o n i d Microplitis croceipes is k n o w n to e leva te h e m o l y m p h t r e h a l o s e levels in H. virescens l a rvae ; v e n o m is no t r e q u i r e d ( D a h l m a n a n d V i n s o n , 1977). I t is of in te res t to n o t e t h a t t r eha lose is r ead i ly a b s o r b e d b y M. croceipes l a rvae ( E d s o n a n d V i n s o n , 1977). Pa r t i cu l a r l y in t h e case of h e m o ­l y m p h feeders , it m a y b e i m p o r t a n t to d ive r t n u t r i e n t s a w a y f rom t i ssues in w h i c h they m i g h t o t h e r w i s e b e s to r ed , a n d h e n c e b e u n a v a i l a b l e to t h e d e v e l o p i n g p a r a s i t o i d . Pseudaletia separata l a rvae p a r a s i t i z e d b y A. kariyai m a y b e a case in po in t : t he fat b o d y t i ssue of p a r a s i t i z e d l a rvae does n o t a c c u m u l a t e t h e p r o t e i n s t o r a g e g r a n u l e s cha rac te r i s t i ca l ly o b s e r v e d in n o r m a l l a rvae . I n h i b i t i o n of p r o t e i n d e p o s i t i o n in th is t i ssue c a n a lso b e d e m o n s t r a t e d follow­ing in jec t ion of ca lyx fluid a n d v e n o m ( T a n a k a , 1986). A n o t h e r poss ib le ex­a m p l e of nu t r i en t diversion m a y be presented by the p h e n o m e n o n of paras i t ized-i n d u c e d c a s t r a t i o n of hos t l a rvae ( R e e d - L a r s e n a n d B r o w n , 1990); conceiv­ably, p a r a s i t o i d l a rvae m a y have to c o m p e t e w i t h hos t g o n a d s for n u t r i e n t s . I t h a s b e e n s u g g e s t e d — b u t as yet n o t d e m o n s t r a t e d — t h a t p o l y d n a v i r u s e s cou ld b e involved in th is p rocess of p r e m a t u r e g o n a d a t r o p h y ( J u n n i k k a l a , 1985).

T h e scope of b io logica l act iv i t ies t h a t c a n be a t t r i b u t e d to p o l y d n a v i r u s e s will l ikely b e found , u l t imate ly , to be m u c h b r o a d e r t h a n is i n d i c a t e d b y t h e list p r o v i d e d in T a b l e 1. H o w e v e r , v i ewed m o r e closely, s o m e of these s e e m ­ingly d i s p a r a t e p h e n o m e n a cou ld well c o m p r i s e a c a s c a d e of r e l a t ed even t s , p r e c i p i t a t e d b y p o l y d n a v i r u s ac t ing u p o n s o m e p r i m a r y t a rge t . T h e s e u n u s u ­al v i ruses s h o u l d b e seen as e x t r e m e l y useful tools t h a t , u s e d jud ic ious ly , s h o u l d tell u s m u c h a b o u t n o r m a l h o s t physiology, a n d h o w it m a y b e m a n i p ­u l a t e d , if n e e d be , to o u r a d v a n t a g e . I n t h e following sec t ion , I p r o v i d e a b r ie f overv iew of h o w s o m e a spec t s of p o l y d n a v i r u s r e s e a r c h m a y b e e x p l o r e d in t h e n o t - t o o - d i s t a n t fu ture .

III. Future Directions

I n r e cen t yea r s , p o l y d n a v i r u s r e s e a r c h h a s m a d e s ignif icant p r o g r e s s o n a n u m b e r of i m p o r t a n t i ssues , a n d t h e e s t a b l i s h m e n t of a firm b a s e of knowl -

Page 186: Parasites and Pathogens of Insects. Parasites

180 Donald Β. Stoltz

edge u p o n w h i c h to bu i ld fur ther ; d e v e l o p m e n t of th is exc i t ing field s eems likely to a d v a n c e rapidly . I n a d d i t i o n , w i t h t he d e m o n s t r a t i o n t h a t pur i f ied v i rus h a s b iological ac t iv i ty in a va r i e ty of con tex t s , it w o u l d s e e m likely t h a t a n u m b e r of l a b o r a t o r i e s h a v i n g n o in te res t in p o l y d n a v i r u s e s p e r se m a y none the l e s s c o m e to perce ive t h e m as v a l u a b l e tools for s t u d y i n g insec t p h y s ­iology. Clear ly , g iven the complex i ty of p o l y d n a v i r u s / p a r a s i t o i d / h o s t sys­t e m s , a mul t i face ted a p p r o a c h will c o n t i n u e to be p r o d u c t i v e a n d s h o u l d b e e n c o u r a g e d w h e r e v e r poss ib le . I n a n y case , we a r e n o w a t a s t age w h e r e it h a s b e c o m e a t leas t poss ib le to f o r m u l a t e , a n d to s o m e ex t en t a d d r e s s , a n u m b e r of f u n d a m e n t a l q u e s t i o n s . A few of these a r e c o n s i d e r e d nex t .

1. I s t h e P o l y d n a v i r u s G e n o m e a G e n e t i c M o s a i c ?

C h r o m o s o m a l t r a n s m i s s i o n of p o l y d n a v i r u s g e n o m e s n a t u r a l l y ra i ses t h e q u e s t i o n of w h e t h e r these ent i t ies a r e i n d e e d v i ruses ( they cou ld j u s t as r ead i ly b e referred to as , say, n u c l e a r secre t ions) . T h i s in t u r n ra i ses t he q u e s t i o n of w h e t h e r it w o u l d have b e e n eas ie r for a p a r a s i t o i d to evolve a n e w " v i r u s " or, a l te rna t ive ly , co-op t t h e services of o n e a l r e a d y in ex i s tence . S u c h q u e s t i o n s a r e b y n o m e a n s idle ones , a n d i n d e e d the p o l y d n a v i r u s p h e n o m e ­n o n r equ i r e s t h a t s o m e t h o u g h t b e g iven as to w h a t t h e w o r d " v i r u s " rea l ly m e a n s . I n this r e g a r d , it is of in te res t to no t e t h a t def in i t ions for " v i r u s " a r e b o t h sca rce a n d , p e r h a p s for tunate ly , s o m e w h a t n e b u l o u s ; I therefore offer t he following:

virus: infectious entity whose genome, consisting of either DNA or RNA, is minimally packaged within a protein coat designed to facilitate entry into a susceptible host cell (we could add that lacking ribosomes, all viruses must necessarily replicate within cellular hosts).

T h e w o r d " in fec t ion" is used h e r e in t he b r o a d e s t poss ib le sense , so as to i n c l u d e s u c h p h e n o m e n a as oncogenes i s , gene t i c co lon iza t ion , a n d so on ; t h e t e r m " s u s c e p t i b l e " does no t necessar i ly i m p l y t h a t a p r o d u c t i v e r ep l i ca t ion cycle will en sue . I n fact, it m a t t e r s l i t t le w h e t h e r o n e th inks of p o l y d n a v i r u s e s as b e i n g v i ruses o r n u c l e a r secre t ions , s ince e i the r d e s i g n a t i o n w o u l d a p p e a r to b e l eg i t ima te . G i v e n t h a t , is t h e q u e s t i o n b e i n g a d d r e s s e d in this sec t ion rea l ly itself l eg i t imate? P u t a n o t h e r way, is it in fact poss ib le to d i s t i n g u i s h b e t w e e n ce l lu lar a n d v i ra l genes in t he p o l y d n a v i r u s con tex t? ( T h e r e a d e r s h o u l d k e e p in m i n d t h a t all v i ra l genes m u s t or ig ina l ly h a v e b e e n cel lu lar . )

To the q u e s t i o n of w h e t h e r t he r e a r e c lass ical v i ra l genes w i t h i n t h e p o l y d ­n a v i r u s r epe r to i r e , t he a n s w e r m u s t be : y e s — p r o v i d e d on ly t h a t o u r defini­t ion for " v i r u s " is r e a s o n a b l e . For e x a m p l e , p o l y d n a v i r u s pa r t i c l e s d e m o n ­s t r ab ly possess p r o t e i n coa ts t h a t a r e s t r u c t u r a l l y a n d func t iona l ly a n a l o g o u s to v i ra l c aps ids (Stol tz a n d V i n s o n , 1979a) . T h e r e is i n d e e d n o r e a s o n n o t to refer to t h e m as c aps id s , w h e t h e r o r no t t h e genes e n c o d i n g t h e m a r e t h o u g h t of as ce l lu la r o r v i ra l in t e r m s of or ig in . However , m o v i n g b e y o n d a cons ider -

Page 187: Parasites and Pathogens of Insects. Parasites

8. The Polydnavirus Life Cycle 181

a t i o n of t hose genes involved in pa r t i c l e m o r p h o g e n e s i s , t h e r e is a t p r e s e n t n o easy w a y to def ine o t h e r p a t e n t l y v i ra l genes in t h e p o l y d n a v i r u s con tex t . T h i s , however , s h o u l d n o t p r e c l u d e r e a s o n e d s p e c u l a t i o n , a n d to t h a t e n d I will specifically sugges t t h a t t h e p o l y d n a v i r u s g e n o m e will even tua l l y b e s h o w n to i n c l u d e n o t on ly v i ra l a n d p a r a s i t o i d genes , b u t t races of h o s t genes as well ( i .e. , f rom t h e p a r a s i t i z e d h o s t ) ; p r e s u m a b l y , all t h r e e of t he se en t i t i es have coevolved over mi l l ions of y e a r s . A n u m b e r of h y p o t h e s e s r e l e v a n t to th is i ssue m a y b e sub jec t to scientific inqui ry , t h e resu l t s of w h i c h cou ld b e of c o n s i d e r a b l e in te res t , r ega rd l e s s of w h e t h e r o r n o t t h e h y p o t h e s e s t h e m s e l v e s p rove va l id :

(a) I f t h e p o l y d n a v i r u s e s a r e de r ived f rom class ical v i ruses , t h e n s t r a t e ­gies e m p l o y e d b y t h e l a t t e r to m o d u l a t e hos t phys io logy (e.g. , t h e b a c u l o v i r u s ecdys t e ro id g lucosyl t r ans fe rase ; O 'Re i l l y a n d Mil le r , 1989) m a y well b e r e p r e s e n t e d w i t h i n p o l y d n a v i r u s g e n o m e s . S u c h genes , if p r e s e n t , wil l p r o b a ­bly t u r n o u t to have b e e n a s s imi l a t ed f rom t h e hos t o r g a n i s m . I t is of i n t e r e s t in th is r e g a r d to n o t e t h a t a po lydnav i ru s l i ke pa r t i c l e found in Venturia can-escens exh ib i t s i m m u n o l o g i c a l c ross - reac t iv i ty w i t h o n e o r m o r e h o s t (Ephestia kuhniella) p r o t e i n s , i n c l u d i n g h e m o l i n , a k n o w n a n t i b a c t e r i a l p r o t e i n (Berg et al, 1988; S c h m i d t a n d T h e o p o l d , 1991).

(b) Similar ly , genes e m p l o y e d by p a r a s i t o i d s to r e g u l a t e h o s t phys io logy m a y n o w have a c q u i r e d p o l y d n a v i r u s e x c i s i o n / e n c a p s i d a t i o n s igna l s . S u c h genes cou ld in t h e o r y r e p r e s e n t d u p l i c a t e copies of coex is t ing p a r a s i t o i d genes . A n in t e r e s t i ng e x a m p l e of th is m a y a l r e a d y have b e e n d i scovered ; specifically, W e b b a n d S u m m e r s (1990) p r o p o s e t h a t a p a r a s i t o i d v e n o m g l a n d g e n e is e n c a p s i d a t e d w i t h i n C s V pa r t i c l e s . P r e s u m a b l y , c o n t i n u o u s exp res s ion of th is gene in hos t l a rvae w o u l d be of benefi t to t h e d e v e l o p i n g p a r a s i t o i d .

(c) Converse ly , genes n o longer r e q u i r e d in (pa ra s i t i zed ) a n i m a l s , in w h i c h p o l y d n a v i r u s e s d o n o t r ep l i ca t e , m a y have lost t h e capac i t y to excise f rom t h e p a r a s i t o i d g e n o m e ; p r i m e c a n d i d a t e s he r e w o u l d b e genes r e q u i r i n g exp re s s ion on ly in t h e p a r a s i t o i d ova ry (e .g. , t hose e n c o d i n g v i r ion s t r u c t u r a l p r o t e i n s ) . Stil l , it is of i n t e re s t to n o t e t h a t s o m e C s V genes n o t e x p r e s s e d in h o s t l a rvae a r e neve r the le s s e n c a p s i d a t e d ( T h e i l m a n n a n d S u m m e r s , 1988; B l i s sa rd et al, 1989). T h e s ignif icance of s u c h o b s e r v a t i o n s , wh i l e u n d o u b t e d , r e m a i n s to be clarif ied.

(d) I f t h e p o l y d n a v i r u s e s a r e phy logene t i ca l l y r e l a t e d to o n e o r m o r e " c l a s s i ca l " v i ruses , t h e n it m a y be useful in th is c o n t e x t to e x a m i n e v i ruses h a v i n g s imi l a r morpho logy . I t h a s b e e n a r g u e d p rev ious ly t h a t t h e bacu lov i ruses b e a r a t leas t a superf ic ia l r e s e m b l a n c e to t h e b racov i ruses (Stol tz a n d V i n s o n , 1979a) . I t is therefore conce ivab le t h a t genes d e t e r m i n ­ing t h e s t r u c t u r e / p a c k a g i n g of b r acov i rus n u c l e o c a p s i d s m a y s h a r e h o m o -

Page 188: Parasites and Pathogens of Insects. Parasites

182 Donald Β. Stoltz

logy w i t h c o g n a t e bacu lov i rus genes . I t will be of p a r t i c u l a r i n t e re s t in th is r e g a r d to e x a m i n e a n u n u s u a l bacu lov i rus t h a t r ep l i ca tes in t h e ova ry of t h e i c h n e u m o n i d p a r a s i t o i d Mesoleius tenthredinis (Stol tz , 1981).

2 . W h a t A r e t h e F u n c t i o n a l R o l e s o f P o l y d n a v i r u s G e n e P r o d u c t s ?

T h i s sec t ion shou ld of cou r se be prefaced w i t h a c a u t i o n a r y n o t e to t he effect t h a t w h a t a r e referred to he r e as p o l y d n a v i r u s func t ions c a n j u s t as l eg i t ima te ly be cons ide red to r e p r e s e n t p a r a s i t o i d func t ions . As d i s cus sed in t h e p r e v i o u s sec t ion , t h e r e is n o easy d i s t inc t ion to b e m a d e h e r e ( p e r h a p s , concep tua l ly , n o n e n e e d be m a d e ) . I n a n y case , in k e e p i n g w i t h t h e h y p o t h e ­sis t h a t p o l y d n a v i r u s e s a r e phy logene t i ca l ly r e l a t ed to c lass ical v i ruses , I will a s s u m e h e r e — a s I have e a r l i e r — t h a t t he r e a r e i n d e e d po lydnav i rus - spec i f i c genes . L ike o t h e r v i ruses , p o l y d n a v i r u s e s p r e s u m a b l y code for b o t h s t r u c ­t u r a l a n d r e g u l a t o r y p r o t e i n s ; t he fo rmer r e p r e s e n t c o m p o n e n t s of a s s e m b l e d v i r ions , w h e r e a s t he l a t t e r a r e typica l ly r e q u i r e d for r ep l i ca t ive func t ions . However , un l ike o t h e r v i ruses , p o l y d n a v i r u s e s a r e likely to r e q u i r e two t ypes of r e g u l a t o r y p r o t e i n s : those o p e r a t i n g in t h e p a r a s i t o i d (e.g. , D N A rep l i ca ­t ion , etc.) a n d those expres sed in t he hos t ( funct ions r e q u i r e d for gene t i c co lon iza t ion) . T h e ident i f ica t ion of a t leas t s o m e m a j o r s t r u c t u r a l p r o t e i n s c a n be r ead i ly a c c o m p l i s h e d us ing t e c h n i q u e s t h a t a r e n o w s t a n d a r d in m a n y l abo ra to r i e s ; m a p p i n g these to p a r t i c u l a r g e n o m e s e g m e n t s s h o u l d p rove re la t ively s t r a i gh t fo rwa rd . T h e ident i f ica t ion of r e g u l a t o r y gene p r o d u c t s r e q u i r e d for r ep l i ca t ion m a y p rove to b e a m o r e d e m a n d i n g task , especia l ly s ince t h e u s u a l r e q u i r e m e n t s for s t u d y i n g r e p l i c a t i o n — f o r e x a m p l e , a n abi l i ­ty to g row t h e v i rus in vitro—are no t m e t . T h u s , p r o g r e s s h e r e m a y o c c u r m o r e slowly. O n the o t h e r h a n d , r a p i d p rog re s s in ident i fy ing p r o t e i n s ex­p re s sed in hos t a n i m a l s shou ld be expec t ed . I n d e e d , p r e l i m i n a r y w o r k h a s a l r e a d y b e e n r e p o r t e d (Bl issard et al., 1989); in a d d i t i o n , in vitro sy s t ems (e.g. , Stol tz et al., 1988) cou ld be exp lo i ted for this p u r p o s e .

W h a t r e m a i n s to b e a n s w e r e d is t he very i m p o r t a n t q u e s t i o n of d e t e r m i n ­ing w h a t funct ions v i ra l gene p r o d u c t s a r e p e r f o r m i n g in t h e p a r a s i t i z e d hos t . I n s o m e cases , obv ious a p p r o a c h e s will b e sugges t ed b y the a p p e a r a n c e of o n e o r m o r e m a j o r n e w p o l y p e p t i d e s (e.g. , C o o k et al., 1984; B e c k a g e et al., 1987); these p r e s u m a b l y , b u t no t necessar i ly , will b e e n c o d e d b y p o l y d ­n a v i r u s genes . I t m a y b e poss ib le to purify t he r e l evan t p r o t e i n a n d t h e n use it d i rec t ly in b iological e x p e r i m e n t s : Wi l l in ject ion of s u c h a p r o t e i n , for e x a m p l e , m i m i c s o m e k n o w n p o l y d n a v i r u s - i n d u c e d c h a n g e in hos t phys io l ­ogy? I n m o s t cases , however , novel m e t h o d o l o g i e s m a y b e r e q u i r e d in o r d e r to co r r e l a t e b iological act ivi ty w i t h a p a r t i c u l a r p o l y d n a v i r u s g e n o m e seg­m e n t . Possible a p p r o a c h e s h e r e m i g h t i n c l u d e t he use of non ly t i c bacu lov i ru s express ion vec tors c a r r y i n g i n d i v i d u a l p o l y d n a v i r u s genes o r g e n o m e seg-

Page 189: Parasites and Pathogens of Insects. Parasites

8. The Polydnavirus Life Cycle 183

meri t s . I t m i g h t a l so b e poss ib le to t ransfec t newly p a r a s i t i z e d h o s t l a rvae u s i n g an t i - s ense c o n s t r u c t s d e s i g n e d to a b r o g a t e t h e expres s ion of genes r e q u i r e d for successful p a r a s i t i s m ; a l te rna t ive ly , s imi l a r c o n s t r u c t s cou ld b e de l ive red i n t o h o s t eggs b y mic ropro jec t i l e b o m b a r d m e n t . A n t i s e r a co u l d b e r a i sed a g a i n s t vi rus-specif ic g e n e p r o d u c t s ident if ied u s i n g c D N A expres s ion l ib ra r i e s , a n d t h e n assessed in t e r m s of the i r ab i l i ty to in ter fere w i t h p o l y d n a v i r u s - i n d u c e d ac t iv i ty in t he hos t a n i m a l ( W e b b a n d S u m m e r s , 1990). N o n e of th i s will be p a r t i c u l a r l y easy, b u t t h e r e w a r d s m a y b e cons id ­e r a b l e : p o l y d n a v i r u s e s m a y e n c o d e a n u m b e r of p r o d u c t s h a v i n g p o t e n t i a l for p r ac t i c a l a p p l i c a t i o n in t h e b iopes t i c ide indus t ry .

T h e r e a r e of cou r se a n u m b e r of a d d i t i o n a l q u e s t i o n s t h a t r e l a t e to v i r u s -specific exp res s ion in t he p a r a s i t i z e d hos t . W e as yet k n o w n o t h i n g a b o u t t h e t i ssue specificity, if any, of v i ra l g e n e p r o d u c t s affecting h o s t phys io logy. N o r d o we k n o w w h i c h g e n e p r o d u c t s p r o m o t e t he d e v e l o p m e n t of t h e p a r a s i t o i d egg a n d w h i c h t h e l a rva . H o s t specificity, in t e r m s of a r e q u i r e m e n t for p o l y d n a v i r u s e s in successful p a r a s i t i s m , is a lso a la rge ly u n e x p l o r e d a r e a ; of p o t e n t i a l i n t e re s t h e r e is t h e o b s e r v a t i o n t h a t H f V D N A pers i s t s in Lymantria dispar l a rvae , b u t p a r a s i t i s m of t h a t h o s t is never the less unsuccessfu l (Stol tz et aL, 1986).

3 . W h y I s t h e P o l y d n a v i r u s G e n o m e S e g m e n t e d ?

T h i s is o n e of t he m o r e i n t e r e s t i ng q u e s t i o n s c o n c e r n i n g t h e p o l y d ­nav i ru se s a n d h a s ye t to b e a d d r e s s e d . S e g m e n t a t i o n will p e r h a p s u l t i m a t e l y b e found to h a v e s o m e t h i n g to d o w i t h t h e or ig in of t hese v i ruses ; p u r e l y m e c h a n i s t i c e x p l a n a t i o n s (e .g. , s e g m e n t a t i o n cou ld faci l i tate excis ion , o r r e ­d u c e m u t a t i o n a l loads ) s e e m overly s impl i s t i c . I t cou ld b e a r g u e d t h a t if p o l y d n a v i r u s e s a r o s e f rom t h e p a r a s i t o i d g e n o m e , t h e n the i r genes w o u l d m o s t l ikely a l r e a d y have b e e n s e p a r a t e d from each o the r , in w h i c h case e x c i s i o n / e n c a p s i d a t i o n s imp ly serves as a m e a n s to b r i n g t h e m t o g e t h e r a s a func t ion ing w h o l e . Al te rna t ive ly , if o n e a s s u m e s t h a t p o l y d n a v i r u s e s a r e r e ­l a t ed to c lass ical v i ruses , t h e n it b e c o m e s r e a s o n a b l e to s u p p o s e t h a t s e g m e n ­t a t i o n m u s t have confer red s o m e as ye t u n r e c o g n i z e d benefi t to t h e e s t ab l i sh ­m e n t a n d c o n t i n u e d evo lu t ion of p o l y d n a v i r u s / p a r a s i t o i d / h o s t c o m p l e x e s . P e r h a p s t h e p o l y d n a v i r u s e s cou ld h a v e a r i s en f rom a n c e s t r a l defect ive in te r ­fer ing pa r t i c l e s ; D I pa r t i c l e s e n c a p s i d a t e s u b g e n o m i c mo lecu le s a n d in a d d i ­t ion m a y r e d u c e t h e p a t h o g e n i c i t y of t h e p a r e n t a l v i r ion , w h i c h cou ld well have b e e n a p r e r e q u i s i t e for t h e acqu i s i t i on of p o l y d n a v i r u s p r o g e n i t o r s b y p a r a s i t o i d s . A t p r e s e n t , it is difficult to envis ion h o w this i ssue m i g h t b e a d d r e s s e d expe r imen ta l ly .

I n t h e foregoing d i scuss ions , I have c o n s i d e r e d on ly a few of t h e m a n y i n t e r e s t i n g q u e s t i o n s facing s t u d e n t s of p o l y d n a v i r u s biology. M y e x p l o r a t i o n h a s b e e n la rge ly a n d necessar i ly specu la t ive in n a t u r e s ince , in t h e a b s e n c e of

Page 190: Parasites and Pathogens of Insects. Parasites

184 Donald Β. Stoltz

defini t ive i n fo rma t ion b e a r i n g o n these q u e s t i o n s , p e r h a p s t he bes t t h a t c a n be h o p e d for is a set of w o r k i n g h y p o t h e s e s . I t is t h e a u t h o r ' s h o p e t h a t s o m e of these will p rove sufficiently a t t r ac t ive to s t i m u l a t e fu r the r d i a l o g u e , a n d p e r h a p s even s o m e d i r ec t ed r e sea r ch .

Acknowledgments

I wish to acknowledge the contributions of a number of individuals who have made significant contributions over the years in the capacity of either graduate student (Peter Krell, David Guzo, Deming Xu) or research assistant (Doug Cook, Elizabeth Belland). Original research from my laboratory was funded in part by the Medical Research Council and in part by the Canadian Forestry Service.

References

Beckage, Ν. E. (1985). Endocrine interactions between endoparasitic insects and their hosts. Annu. Rev. Entomol. 30:371-413.

Beckage, Ν. E., Templeton, T. J., Nielsen, B. D., Cook, D. I., and Stoltz, D. B. (1987). Parasitism-induced hemolymph polypeptides in Manduca sexta (L.) larvae parasitized by the braconid wasp Cotesia congregata (Say). Insect Biochem. 17:439—455.

Beckage, Ν. E., Metcalf, J. S., Nesbit, D. J., Schleifer, K. W., Zetlan, S. R., and De Buron, I. (1990). Host hemolymph monophenoloxidase activity in parasitized Manduca sexta larvae and evidence for inhibition by wasp polydnavirus. Insect Biochem. 20:285-294.

Berg, R., Schuchmann-Feddersen, I., and Schmidt, O. (1988). Bacterial infection induces a moth protein which has antigenic similarity to virus-like particle proteins of a parasitoid wasp. J. Insect Physiol. 34:473-480.

Blissard, G. W., Vinson, S. B., and Summers, M. D. (1986). Identification, mapping, and in vitro translation of Campoletis sonorensis virus mRNAs from parasitized Heliothis virescens larvae. J. Virol. 57:318-327.

Blissard, G. W., Smith, O. P., and Summers, M. D. (1987). Two related viral genes are located on a single superhelical DNA segment of the multipartite Campoletis sonorensis virus genome. Virology 160:120-134.

Blissard, G. W., Theilmann, D. Α., and Summers, M. D. (1989). Segment W of Campoletis sonorensis virus: Expression, gene products, and organization. Virology 169:78-89.

Cook, D. I., Stoltz, D. B., and Vinson, S. B. (1984). Induction of a new haemolymph glycopro­tein in larvae of permissive hosts parasitized by Campoletis sonorensis. Insect Biochem. 14:45—50.

Dahlman, D. L., and Vinson, S. B. (1977). Effect of calyx fluid from an insect parasitoid on host hemolymph dry weight and trehalose content. J. Invertebr. Pathol. 29:227-229.

Davies, D. H., Strand, M. R., and Vinson, S. B. (1987). Changes in differential haemocyte count and in vitro behaviour of plasmatocytes from host Heliothis virescens caused by Campoletis sonorensis polydnavirus. J. Insect Physiol. 33:143-153.

Dover, Β. Α., Davies, D. H., Strand, M. R., Gray, R. S., Keeley, L. L., and Vinson, S. B. (1987). Ecdysteroid-titre reduction and developmental arrest of last-instar Heliothis virescens larvae by calyx fluid from the parasitoid Campoletis sonorensis. J. Insect Physiol. 33:333—338.

Dover, Β. Α., Davies, D. H., and Vinson, S. B. (1988a). Degeneration of last instar Heliothis virescens prothoracic glands by Campoletis sonorensis polydnavirus. J. Invertebr. Pathol. 51 :80 -91 .

Dover, Β. Α., Davies, D. H., and Vinson, S. B. (1988b). Dose-dependent influence of Campoletis sonorensis polydnavirus on the development and ecdysteroid titers of last-instar Heliothis virescens larvae. Arch. Insect Biochem. Physiol. 8:113-126.

Page 191: Parasites and Pathogens of Insects. Parasites

8. The Polydnavirus Life Cycle 185

Dover, Β. Α., Strand, M. R., Davies, D. H., and Vinson, S. B. (1989). Ultrastructure of host tissues exposed to the calyx fluid of the parasitoid, Campoletis sonorensis (Cameron) (Hy­menoptera: Ichneumonidae). Int. J. Insect Morphol. Embryol. 18:47-57.

Edson, Κ. M., and Vinson, S. B. (1977). Nutrient absorption by the anal vesicle of the braconid wasp, Microplitis croceipes. J. Insect Physiol. 2 3 : 5 - 8 .

Edson, Κ. M., Vinson, S. B., Stoltz, D. B., and Summers, M. D. (1981). Virus in a parasitoid wasp: Suppression of the cellular immune response in the parasitoid's host. Science 2 1 1 : 5 8 2 -583.

Fleming, J.G.W., and Summers, M. D. (1986). Campoletis sonorensis endoparasitic wasps contain forms of C. sonorensis virus D N A suggestive of integrated and extrachromosomal polydnavirus DNAs. J. Virol. 57:552-562.

Fleming, J.G.W., and Summers, M. D. (1990). The integration of the genome of a segmented D N A virus in the host insect's genome. In "Molecular Insect Science" (Η. H. Hagedorn, J. G. Hildebrand, M. G. Kidwell, and J. H. Law, eds.). pp. 99-105. Plenum, New York.

Fleming. J.G.W., Blissard, G. W., Summers, M. D., and Vinson, S. B. (1983). Expression of Campoletis sonorensis virus in the parasitized host, Heliothis virescens. J. Virol. 48 :74-78 .

Guzo, D. (1988). Biological functions, genome organization, and transmission of a polydnavirus associated with the braconid endoparasitoid, Cotesia melanoscela. Ph.D. Thesis, Dalhousie University, Halifax.

Guzo, D. , and Stoltz, D. B. (1985). Obligatory multiparasitism in the tussock moth, Orgyia leucostigma. Parasitology 90 :1 -10 .

Guzo, D., and Stoltz, D. B. (1987). Observations on cellular immunity and parasitism in the tussock moth. J. Insect Physiol. 33 :19-31 .

Hayakawa, Y. (1990). Juvenile hormone esterase activity repressive factor in the plasma of parasitized insect larvae. J. Biol. Chem. 265:10813-10816.

Junnikkala, E. (1985). Testis development in Pieris brassicae parasitized by Apanteles glomeratus. Entomol. Exp. Appl. 37:283-288.

Kitano, H. (1982). Effect of the venom of the gregarious parasitoid Apanteles glomeratus on its hemocytic encapsulation by the host, Pieris. J. Invertebr. Pathol. 40:61-67 .

Kitano, H. (1986). The role of Apanteles glomeratus venom in the defensive response of its host, Pieris rapae crucivora. J. Insect Physiol. 32:369-375.

Krell, P. J., and Stoltz, D. B. (1980). Virus-like particles in the ovary of an ichneumonid wasp: Purification and preliminary characterization. Virology 101:408-418.

Krell, P. J., Summers, M. D., and Vinson, S. B. (1982). Virus with a multipartite superhelical genome from the ichneumonid parasitoid, Campoletis sonorensis. J. Virol. 43:859—870.

Kurata, S., Komano, H., and Natori, S. (1989). Dissociation ofSarcophagaperegrina (flesh fly) fat body by pupal haemocytes in vitro. J. Insect Physiol. 35:559-565.

Lawrence, P. O. (1986). Host-parasite hormonal interactions: An overview. J. Insect Physiol. 32:295-298.

Norton, W. N., and Vinson, S. B. (1977). Encapsulation of a parasitoid egg within its natural host: An ultrastructural investigation. J. Invertebr. Pathol. 30:55-67 .

Norton, W. N., and Vinson, S. B. (1983). Correlating the initiation of virus replication with a spe­cific pupal developmental phase of an ichneumonid parasitoid. Cell Tissue Res. 231:387-398.

Norton, W. N., Vinson, S. B., and Stoltz, D. B. (1975). Nuclear secretory particles associated with the calyx cells of the ichneumonid parasitoid Campoletis sonorensis (Cameron). Cell Tissue Res. 162:195-208.

O'Reilly, D. R., and Miller, L. K. (1989). A baculovirus blocks insect molting by producing ecdysteroid UDP-glucosyl transferase. Science 245:1110-1112.

Osheim, Υ N., and Miller, O. L., Jr. (1983). Novel amplification and transcriptional activity of chorion genes in Drosophila melanogaster follicle cells. Cell (Cambridge, Mass.) 33:543-553.

Page 192: Parasites and Pathogens of Insects. Parasites

186 Donald Β. Stoltz

Reed-Larsen, D. Α., and Brown, J. J. (1990). Embryonic castration of the codling moth, Cydia pomonella, by an endoparasitoid, Ascogaster quadridentata. J. Insect Physiol. 36:111-118.

Rizki, R. M., and Rizki, Τ. M. (1990). Encapsulation of parasitoid eggs in phenoloxidase-deficient mutants of Drosophila melanogaster. J. Insect Physiol. 36:523-529.

Ross, D. R., and Dunn, R E. (1989). Effect of parasitism by Cotesia congregata on the suscep­tibility of Manduca sexta larvae to bacterial infection. Dev. Comp. Immunol. 13:205-216.

Schmidt, O., and Theopold, U. (1991). Immune defense and suppression in insects. BioEssays 13:343-346.

Stark, G. R., Debatisse, M., Giulotto, E., and Wahl, G. M. (1989). Recent process in under­standing mechanisms of mammalian DNA amplification. Cell (Cambridge, Mass.) 57:901 — 908.

Stoltz, D. B. (1981). A putative baculovirus in the ichneumonid parasitoid, Mesoleius tenthredinis. Can. J. Microbiol. 27:116-122.

Stoltz, D. B. (1990). Evidence for chromosomal transmission of polydnavirus DNA. J. Gen. Virol. 71:1051-1056.

Stoltz, D. B., and Cook, D. I. (1983). Inhibition of host phenoloxidase activity by parasitoid hymenoptera. Experientia 39:1022-1024.

Stoltz, D. B., and Guzo, D. (1986). Apparent haemocytic transformations associated with parasitoid-induced inhibition of immunity in Malacosoma disstria larvae. J. Insect Physiol. 32:377-388.

Stoltz, D. B., and Vinson, S. B. (1977). Baculovirus-like particles in the reproductive tracts of female parasitoid wasps. II. The genus Apanteles. Can. J. Microbiol. 23:28-37 .

Stoltz, D. B., and Vinson, S. B. (1979a). Viruses and parasitism in insects. Adv. Virus Res. 24:125-171.

Stoltz, D. B., and Vinson, S. B. (1979b). Penetration into caterpillar cells of virus-like particles injected during oviposition by parasitoid ichneumonid wasps. Can. J. Microbiol. 25 :207 -216.

Stoltz, D. B., Krell, P., Summers, M. D., and Vinson, S. B. (1984). Polydnaviridae—A proposed family of insect viruses with segmented, double-stranded, circular D N A genomes. Intervirol-ogy 21 :1 -4 .

Stoltz, D. B., Guzo, D., and Cook, D. (1986). Studies on polydnavirus transmission. Virology 155:120-131.

Stoltz, D. B., Guzo, D., Belland, E. R., Lucarotti, C. J., and MacKinnon, E. A. (1988). Venom promotes uncoating in vitro and persistence in vivo of DNA from a braconid polydnavirus. J. Gen. Virol. 69:903-907.

Strand, M. R., and Noda, Τ (1991). Alterations in the haemocytes of Pseudoplusia includens after parasitism by Microplitis demolitor. J. Insect Physiol. 37:839-850.

Tanaka, T. (1986). Effects of the calyx and venom fluids of Apanteles kariyai Watanabe (Hy­menoptera: Braconidae) on the fat body and hemolymph protein contents of its host Pseu­daletia separata (Walker) (Lepidoptera:Noctuidae). Appl. Ent. Zool. 21:220-227.

Tanaka, T. (1987a). Effect of the venom of the endoparasitoid, Apanteles kariyai Watanabe, on the cellular defence reaction of the host, Pseudaletia separata Walker. J. Insect Physiol. 33:No. 6, 413-420.

Tanaka, T. (1987b). Morphological changes in haemocytes of the host, Pseudaletia separata, para­sitized by Microplitis mediator or Apanteles kariyai. Dev. Comp. Immunol. 11:57-67.

Tanaka, T , and Vinson, S. B. (1991a). Depression of prothoracic gland activity of Heliothis virescens by venom and calyx fluids from the parasitoid, Cardiochiles nicriceps. J. Insect Physiol. 37:139-144.

Tanaka, T , and Vinson, S. B. (1991b). Interactions of venoms with the calyx fluids of three parasitoids, Cardiochiles nigriceps, Microplitis croceipes (Hymenoptera:Braconidae), and Cam-

Page 193: Parasites and Pathogens of Insects. Parasites

8. The Polydnavirus Life Cycle 187

poletis sonorensis (Hymenoptera:Ichneumonidae) in effecting a delay in the pupation οϊ Helio­this virescens (Lepidoptera.Noctuidae). Ann. Entomol. Soc. Am. 84 :87-92 .

Tanaka, T , Agui, N., and Hiruma, K. (1987). The parasitoid Apanteles kariyai inhibits pupation of its host, Pseudaletia separata, via disruption of prothoracicotropic hormone release. Gen. Comp. Endocrinol. 67:364-374.

Theilmann, D. Α., and Summers, M. D. (1986). Molecular analysis of Campoletis sonorensis virus D N A in the lepidopteran host Heliothis virescens. J. Gen. Virol. 67:1961-1969.

Theilmann, D. Α., and Summers, M. D. (1988). Identification and comparison οϊ Campoletis sonorensis virus transcripts expressed from four genomic segments in the insect hosts Cam­poletis sonorensis and Heliothis virescens. Virology 167:329-341.

Vinson, S. B. (1972). Factors involved in successful attack on Heliothis virescens by the parasitoid Cardiochiles nigriceps. J. Invertebr. Pathol. 20:118-123.

Vinson, S. B. (1974). The role of the foreign surface and female parasitoid secretions on the immune response of an insect. Parasitology 68:27-33 .

Vinson, S. B. (1977). Microplitis croceipes: Inhibition of the Heliothis zea defense reaction to Cardiochiles nigriceps. Exp. Parasitol. 41:112-117.

Vinson, S. B., and Iwantsch, G. F. (1980). Host regulation by insect parasitoids. β . Rev. Biol. 55:143-165.

Vinson S. B., and Stoltz, D. B. (1986). Gross-protection experiments with two parasitoid (Hy­menoptera: Ichneumonidae) viruses. Ann. Entomol. Soc. Am. 79:216-218.

Vinson, S. B., Edson, Κ. M., and Stoltz, D. B. (1979). Effect of a virus associated with the reproductive system of the parasitoid wasp, Campoletis sonorensis, on host weight gain. J. Invertebr. Pathol. 34:133-137.

Wago, H., and Tanaka, T. (1989). Synergistic effects of calyx fluid and venom οϊ Apanteles kariyai Watanabe (Hymenoptera: Braconidae) on the granular cells of Pseudaletia separata Walker (Lepidoptera: Noctuidae). Zool. Sci. 6:691-696.

Webb, Β. Α., and Summers, M. D. (1990). Venom and viral expression products of the endo­parasitic wasp Campoletis sonorensis share epitopes and related sequences. Proc. Natl. Acad. Sci. U.S.A. 87:4961-4965.

Webb, Β. Α., and Summers, M. D. (1992). Stimulation of polydnavirus replication by 20-hydroxyecdysone. Experientia 48:1018-1022.

Xu, D. , and Stoltz, D. B. (1991). Evidence for a chromosomal location of polydnavirus D N A in the ichneumonid parasitoid, Hyposoter Jiigitivus. J. Virol. 65:6693-6704.

Zhang, D., and Dahlman, D. L. (1989). Microplitis croceipes teratocytes cause developmental arrest of Heliothis virescens larvae. Arch. Insect Biochem. Physiol. 12:51-61 .

Page 194: Parasites and Pathogens of Insects. Parasites

Chapter 9

Polydnavirus Genome Organization Jo-Ann G. W. Fleming Peter J. Krell Department of Animal Science Department of Microbiology Texas A&M University University of Guelph College Station, Texas Guelph, Ontario, Canada

I. Introduction

II. Polydnaviruses as Part of Biological Systems

III. Multipartite Genome Structure

IV. Genome Packaging

V. Intraspecific Genomic Complexity

VI. Transcription and Gene Families A. Functional Organization of the

Genome B. Known CsV Gene Families

C. Temporal Patterns of CsV Gene Expression

D. Significance of the Gene Families

VII. Polydnavirus Transmission, Integration, and Replication

VIII. Polydnavirus Evolution A. Gene Divergence B. Species Specificity C. Virus Origin

IX. Conclusions Acknowledgments References

I. Introduction

Po lydnav i ru se s p l a y a n u n u s u a l role in p a r a s i t o i d life cycles b e c a u s e t h e v i ruses a p p e a r to be symbio t i ca l ly a s soc i a t ed w i t h t h e w a s p b u t i n d u c e sig­ni f icant phys io log ica l c h a n g e s in l e p i d o p t e r a n hos t l a rvae p a r a s i t i z e d b y t h e w a s p s . T h e s e c h a n g e s have b e e n c o n s i d e r e d ev idence of " h o s t r e g u l a t i o n " by t h e p a r a s i t o i d o r factors de r ived f rom it ( V i n s o n a n d I w a n t s c h , 1980). Polyd­nav i ru se s a r e i m p l i c a t e d as o n e of t he factors t h a t m a y b e n e e d e d to s ecu re t h e successful d e v e l o p m e n t of t h e p a r a s i t o i d in its hos t a n d therefore a r e be l ieved to b e involved in d e t e r m i n i n g t he species specificity of host— p a r a s i t o i d i n t e r ac t i ons . T h i s a s p e c t of t he b io logy of p o l y d n a v i r u s e s is cov­e red in m o r e de t a i l in t he p r e c e d i n g c h a p t e r by D . Stol tz a n d in o t h e r rev iews (Stol tz a n d V i n s o n , 1979; K r e l l , 1991a ,b ; F l e m i n g , 1992).

T h e m o s t d i s t inc t ive c h a r a c t e r i s t i c of v i ruses in t h e family P o l y d n a v i r i d a e

Parasites and Pathogens of Insects Copyright © 1993 by Academic Press, Inc. Volume 1: Parasites 189 All rights of reproduction in any form reserved.

Page 195: Parasites and Pathogens of Insects. Parasites

190 Jo-Ann G. W. Fleming and Peter J. Krell

is t h e u n u s u a l o r g a n i z a t i o n of t he g e n o m e s as col lec t ions of severa l supe r -coiled D N A s (Stol tz et al., 1984; F r a n c k i et al., 1991). T h e s t r u c t u r a l a n d func t iona l o r g a n i z a t i o n of these c o m p l e x v i ra l g e n o m e s is t h e p r i m a r y focus of this review. T h e gene t i c r e l a t i o n s h i p of t h e v i ruses w i t h t h e w a s p h o s t a l so will be cons ide red b e c a u s e of t h e imp l i ca t i ons t h a t r e l a t i o n s h i p h a s for v i ru s r ep l i ca t ion a n d the evo lu t ion of t he v i rus a n d p a r a s i t o i d ( F l e m i n g , 1991 , 1992; Kre l l , 1991a) . T h e d i scuss ion a lso will i n c l u d e s o m e s p e c u l a t i o n s in t h e h o p e t h a t t hey will s t i m u l a t e d e b a t e a n d h e l p to identify p r o b l e m s for fu tu re inves t iga t ions of these i m p o r t a n t v i ruses .

II. Polydnaviruses as Part of Biological Systems

All p o l y d n a v i r u s e s have s e g m e n t e d g e n o m e s of m u l t i p l e c i r cu l a r D N A s (see Sec t ion I I I ) . T w o m a j o r s u b g r o u p s of p o l y d n a v i r u s e s , t he b racov i ruses a n d the i chnov i ruses , a r e r ecogn ized ( F r a n c k i et al., 1991). T h e b racov i ruses have b e e n i so la ted f rom w a s p s in t h e family B r a c o n i d a e , w h e r e a s i chnov i ruses have b e e n i so la ted f rom w a s p s in t he family I c h n e u m o n i d a e . I n a d d i t i o n to differences in the i r hos t r a n g e s , these two s u b g r o u p s c a n b e d i f ferent ia ted o n t h e bas i s of the i r s ignif icant ly different m o r p h o l o g i e s (Stol tz a n d V i n s o n , 1979; K r e l l a n d Bever idge , 1987; Kre l l , 1991a ,b) . T o d a t e t h e i chnov i rus Campoletis sonorensis v i rus ( C s V ) is t he p o l y d n a v i r u s t h a t h a s b e e n m o s t i n t e n ­sively s t u d i e d a t t h e m o l e c u l a r level. T h e r e m a r k s in th is rev iew a r e b a s e d heavily, b u t not exclusively, o n s tud ies of t h a t v i rus s y s t e m . F u t u r e inves t iga­t ions of o t h e r p o l y d n a v i r u s e s will b e neces sa ry before it will b e c l ea r w h e t h e r t he phys i ca l a n d gene t i c o r g a n i z a t i o n of C s V is typ ica l of i chnov i ruses a n d how s imi la r b racov i ruses a n d i chnov i ruses a r e a t t h e m o l e c u l a r level.

Po lydnav i ruses a p p e a r to r ep l i ca t e p r imar i ly , a n d poss ib ly exclusively, in t h e w a s p hos t (Stol tz a n d V i n s o n , 1979). Ava i l ab le S o u t h e r n a n d d o t b lo t d a t a sugges t t h a t t he a m o u n t of Campoletis sonorensis v i rus-specif ic D N A re ­m a i n s a t re la t ively c o n s t a n t levels in p a r a s i t i z e d o r v i rus - in jec ted Heliothis virescens l a rvae , o n e h a b i t u a l hos t of C. sonorensis w a s p s ( T h e i l m a n n a n d S u m ­m e r s , 1986). I n a d d i t i o n , e lec t ron mic roscop ic s tud ies have n o t r e p o r t e d v i rus pa r t i c l e s in p a r a s i t i z e d hos t t i ssues a t l a t e r t imes after ov ipos i t ion . A s ignif icant level of v i ra l r ep l i ca t ion t h u s does no t a p p e a r to o c c u r in t h e p a r a s i t i z e d hos t , a l t h o u g h in vivo l abe l ing s tud ies a r e n e e d e d to conf i rm t h a t low to m o d e r a t e levels of r ep l i ca t ion d o n o t occu r in o n e o r m o r e t i ssues of t h e l e p i d o p t e r a n hos t . T h e o b s e r v a t i o n s t h a t t he v i rus r ep l i ca tes p r i m a r i l y in t h e w a s p hos t b u t causes pa tho log i ca l c h a n g e s on ly in t h e p a r a s i t i z e d h o s t w e r e t h e first i n d i c a t i o n t h a t p o l y d n a v i r a l genes involved in t h e different func t ions m i g h t b e r e g u l a t e d in a species-specif ic m a n n e r . Ava i l ab le d a t a o n C s V g e n e t r a n s c r i p t i o n a r e cons i s t en t w i t h t h e idea t h a t a t leas t s o m e p o l y d n a v i r a l

Page 196: Parasites and Pathogens of Insects. Parasites

9. Polydnavirus Genome Organization 191

genes a r e exp re s sed in a species-specif ic m a n n e r (see Sec t ion V I ) . H o w e v e r , b e c a u s e t h e funct ions of t h e v i ra l g e n e p r o d u c t s a r e n o t ye t k n o w n , it is n o t c lea r to w h a t e x t e n t p a r t i c u l a r p rocesses like r ep l i ca t ion a r e r e s t r i c t ed to on ly o n e of t h e h o s t species of p o l y d n a v i r u s e s , t h a t is, w a s p o r ( pa r a s i t i z ed ) l ep ­i d o p t e r a n l a rva .

T h e g ross fea tures of v i ra l r ep l i ca t ion a n d m o r p h o g e n e s i s h a v e b e e n s h o w n in n u m e r o u s e lec t ron m i c r o s c o p i c s tud ie s , even t h o u g h t h e m o l e c u l a r m e c h a n i s m s involved a r e n o t k n o w n ( s u m m a r i z e d in Stol tz a n d V i n s o n , 1979; K r e l l , 1991a) . V i r a l D N A syn thes i s a n d v i rus m a t u r a t i o n b e g i n in t h e l a te p h a r a t e female w a s p a n d c o n t i n u e in t h e a d u l t for a t leas t severa l d a y s after ec los ion ( N o r t o n et al., 1975; N o r t o n a n d V i n s o n , 1983; F l e m i n g a n d S u m m e r s , 1986; T h e i l m a n n a n d S u m m e r s , 1986). V i r a l r ep l i ca t i on a p p e a r s to b e r e s t r i c t ed to t h e nuc le i of ep i the l i a l cells in t h e ca lyx r eg ion of t h e ov iduc t s (Stol tz a n d V i n s o n , 1979). T h e newly syn thes i zed v i ra l D N A s a r e p a c k a g e d in s t r u c t u r a l l y c o m p l e x n u c l e o c a p s i d s t h a t a c q u i r e a n enve lope f rom m e m b r a n e s t h a t a p p e a r to be free w i t h i n t he n u c l e u s i tself (Stol tz a n d V i n s o n , 1979). T h i s m e t h o d of e n v e l o p m e n t , w h i c h a lso is seen d u r i n g bacu lov i ru s m a t u r a t i o n , h a s b e e n i n t e r p r e t e d as ev idence for de novo i n t r a ­n u c l e a r m e m b r a n e syn thes i s (Stol tz et al., 1973; Feder ic i , 1986). N o b io ­c h e m i c a l ev idence to sugges t n e w p a t h w a y s for m e m b r a n e b iosyn thes i s in t h e n u c l e u s exis ts , b u t s o m e a d d i t i o n a l r e s e a r c h to d e t e r m i n e t h e or ig in of t h e i n t r a n u c l e a r m e m b r a n e s m a y b e w a r r a n t e d s ince th is m e t h o d of e n v e l o p ­m e n t is n o t gene ra l l y obse rved in o t h e r a n i m a l v i rus famil ies . T h e l e n t i c u l a r i chnov i ru s n u c l e o c a p s i d s a r e i nd iv idua l l y enve loped in th is m e m b r a n e a n d t h e n a c q u i r e a s econd m e m b r a n e as t hey b u d t h r o u g h t h e n u c l e a r enve lope a n d t h e p l a s m a l e m m a ( N o r t o n et al., 1975; Stol tz a n d V i n s o n , 1979; K r e l l a n d S to l tz , 1980; K r e l l , 1987; K r e l l a n d Beve r idge , 1987). I n c o n t r a s t , o n e o r m o r e cy l ind r i ca l b r acov i rus n u c l e o c a p s i d s m a y b e enve loped in each m e m ­b r a n e found in t h e n u c l e u s . T h e b r acov i ru s v i r ions a r e r e l eased w i t h o u t a c q u i r i n g a d d i t i o n a l m e m b r a n e s w h e n t h e cells lyse ( N o r t o n et al., 1975; K r e l l a n d Sto l tz , 1979; Sto l tz a n d V i n s o n , 1979; K r e l l a n d Beve r idge , 1987). I n b o t h cases , t h e v i r ions a c c u m u l a t e to ve ry h i g h dens i t i e s in t h e l u m e n of t h e l a t e r a l ov iduc t s . T h e v i ruses t h u s a r e idea l ly pos i t i oned b o t h t e m p o r a l l y a n d phys ica l ly for t ransfe r i n t o l e p i d o p t e r a n hos t l a rvae w h e n t h e female w a s p ovipos i t s eggs .

III. Multipartite Genome Structure

T h e u n i q u e fea tu re of all p o l y d n a v i r u s e s is t h e m u l t i p a r t i t e o r s e g m e n t e d n a t u r e of t h e supe rco i l ed g e n o m e . A l t h o u g h o t h e r D N A v i ruses c o n t a i n cova-len t ly c losed c i rcu la r , d o u b l e - s t r a n d e d (ds) D N A (e.g. , o n e D N A m o l e c u l e p e r bacu lov i rus ) o r a r e s e g m e n t e d (e.g. , t h e two s i n g l e - s t r a n d e d , c i r cu l a r

Page 197: Parasites and Pathogens of Insects. Parasites

192 Jo-Ann G. W. Fleming and Peter J. Krell

D N A s of the g e m i n i v i r u s s u b g r o u p w i t h b i p a r t i t e g e n o m e s ) , p o l y d n a v i r u s e s a r e u n u s u a l in h a v i n g m u l t i p l e covalent ly closed c i rcu la r , d s D N A s in t h e g e n o m e of a g iven v i rus . V i rus l ike par t i c les r e p o r t e d in s o m e b r a c o n i d a n d i c h n e u m o n i d w a s p s c a n n o t l eg i t imate ly be cons ide red p o l y d n a v i r u s e s un t i l a m u l t i p a r t i t e , superco i l ed D N A g e n o m e h a s b e e n d e m o n s t r a t e d ( rev iewed in F l e m i n g , 1992; Kre l l , 1991a) . Po lydnav i r a l D N A s , w h o s e covalen t ly c losed c i r cu la r n a t u r e h a s b e e n d e m o n s t r a t e d b y m o l e c u l a r a n d b iophys i ca l m e t h ­o d s , a r e resolved in to superco i l ed a n d re laxed c i r cu la r f ract ions by i sopycn ic cen t r i fuga t ion in ce s ium c h l o r i d e - e t h i d i u m b r o m i d e g r a d i e n t s (Kre l l et al., 1982; T h e i l m a n n a n d S u m m e r s , 1986; Bl i s sa rd et al., 1987). I t is p r o b a b l e t h a t v i r ions c o n t a i n t he supe rhe l i ca l form of t he D N A s b e c a u s e t he super ­coiled form w o u l d be expec t ed to be favored t h e r m o d y n a m i c a l l y a n d t h e superco i l ed form p r e d o m i n a t e s w h e n n ick ing d u e to h a n d l i n g is m i n i m i z e d .

Po lydnav i ruses from different w a s p species differ in t e r m s of s e g m e n t n u m b e r , D N A size r a n g e , s e g m e n t m o l a r r a t ios , a n d to ta l g e n o m e size. A l t h o u g h these cha rac te r i s t i c s a r e q u i t e r e p r o d u c i b l e for a g iven po lyd ­n a v i r u s " s p e c i e s " i so la ted from a p a r t i c u l a r w a s p hos t spec ies , t he h e t e r o ­gene i ty in these cha rac te r i s t i c s is g r e a t e r a m o n g v i ruses in t h e family Polyd-nav i r i dae t h a n a m o n g v i ruses in o t h e r v i rus famil ies w i t h s e g m e n t e d g e n o m e s ( M u r p h y a n d K i n g s b u r y , 1990).

T h e n u m b e r of D N A s e g m e n t s p e r g e n o m e c a n b e e s t i m a t e d f rom t h e n u m b e r of b a n d s de t ec t ed in a g a r o s e gels , b u t s u c h e s t i m a t e s s h o u l d b e r e g a r d e d on ly as a p p r o x i m a t i o n s for severa l r e a s o n s . B o t h supe rhe l i ca l a n d r e l axed c i r cu la r forms of t he D N A s a r e p r e s e n t in a g a r o s e gels a n d a r e resolved f rom o n e a n o t h e r to v a r y i n g ex ten t s , d e p e n d i n g o n t h e r a n g e of D N A sizes, a g a r o s e c o n c e n t r a t i o n , field s t r e n g t h , e tc . T h e two forms often c a n be di f ferent ia ted in reg ions w h e r e t he reso lu t ion is g o o d if t h e supe rco i l ed a n d r e l axed c i r cu la r fract ions a r e r u n in pa ra l l e l . Howeve r , in a r e a s of t h e gel w h e r e t he two forms of different D N A s c o m i g r a t e significantly, th is d i s t i nc ­t ion is n o t a l w a y s c lear -cu t . As expec t ed for l a rge c i r cu la r mo lecu le s , t h e ex t r ac t ion m e t h o d , s to rage cond i t i ons , a n d e lec t rophores i s m e t h o d s c a n p r o ­foundly affect t he n u m b e r of b a n d s resolved a n d / o r t h e re la t ive p r o p o r t i o n of supe rco i l ed molecu le s a n d the c o r r e s p o n d i n g re laxed c i r cu l a r forms de t ec t ­ab l e p e r s a m p l e (Stol tz et al., 1981; J o n e s et al., 1986). T h e to ta l n u m b e r of b a n d s (open c i r cu la r a n d superco i l ed ) d e t e c t a b l e in Hyposoter exiguae v i ru s , for e x a m p l e , i nc reased from a p p r o x i m a t e l y 9 to 30 w h e n t h e ex t r ac t ion p r o ­tocol w a s modif ied (Stol tz et al., 1981). Similar ly, t he n u m b e r of s e g m e n t s in t he C s V g e n o m e inc reased from a p p r o x i m a t e l y 4 to 25 w h e n l a rge r a m o u n t s of m a t e r i a l we re e x a m i n e d after i so la t ion by m o r e r igo rous m e t h o d s (Stol tz et al., 1981; K r e l l et al., 1982).

E s t i m a t e s a r e fu r ther c o m p l i c a t e d by the fact t h a t t he v a r i o u s D N A seg­m e n t s a p p e a r to be p r e s e n t in n o n e q u i m o l a r r a t ios . T h e D N A s in t h e C s V

Page 198: Parasites and Pathogens of Insects. Parasites

9. Polydnavirus Genome Organization 193

g e n o m e a p p e a r to be p r e s e n t in a t l eas t t h r e e " c l a s s e s " b a s e d o n re la t ive a b u n d a n c e (Fig . 1, a n d Bl i s sa rd et al., 1986a; K r e l l et al., 1982). T h e m o l e c u ­l a r bas i s a n d b io logica l s ignif icance of t h e n o n e q u i m o l a r i t y of t h e g e n o m i c s e g m e n t s a r e n o t k n o w n . D N A s p r e s e n t in m o r e l imi ted a m o u n t s m a y b e u n d e t e c t a b l e u n d e r c e r t a i n e x p e r i m e n t a l cond i t i ons . T h r e e a d d i t i o n a l D N A s e g m e n t s , A 2 , L 2 , a n d O 2 , w e r e v i sua l i zed in e t h i d i u m b r o m i d e - s t a i n e d gels of t h e C s V g e n o m e after e l ec t rophores i s of h i g h e r a m o u n t s of D N A (Bl i s sa rd et al., 1986a) . M o r e sensi t ive t e c h n i q u e s like a u t o r a d i o g r a p h y c a n resu l t in t h e d e t e c t i o n of o t h e r D N A s p r e s e n t in even lower a m o u n t s , for e x a m p l e , C 2

in C s V ( T h e i l m a n n a n d S u m m e r s , 1987). T h e a p p a r e n t differences in re la ­t ive a b u n d a n c e m a y be p a r t l y d u e to t h e c o m i g r a t i o n of two o r m o r e u n r e ­l a t ed D N A s of t h e s a m e size. C o m i g r a t i o n of u n r e l a t e d s u p e r h e l i c a l D N A s c a n resu l t in t he u n d e r e s t i m a t i o n of t h e to ta l n u m b e r of s e g m e n t s a n d m a y be u n d e t e c t e d excep t by c lon ing a n d / o r phys i ca l m a p p i n g . T h e C s V b a n d de s ­i g n a t e d D N A G (8.4 k b p ) c o n t a i n s two forms t h a t cou ld be d i s t i n g u i s h e d by S a i l a n d H i n d i 11 d iges t ion (Kre l l et al., 1982). T h e s e forms m a y r e p r e s e n t u n r e l a t e d D N A s , b u t b e c a u s e c lon ing , de t a i l ed phys i ca l m a p p i n g , a n d r ec ip ­roca l h y b r i d i z a t i o n of these two forms of supe rhe l i x G were n o t u n d e r t a k e n , t h e poss ib i l i ty t h a t t h e two forms r e p r e s e n t two res t r i c t ion f r a g m e n t l e n g t h p o l y m o r p h i s m s ( R F L P s ) on essent ia l ly t he s a m e D N A c a n n o t b e e x c l u d e d .

Al te rna t ive ly , t h e v i ra l D N A s p r e s e n t in a p p a r e n t l y " h y p e r m o l a r " a m o u n t s re la t ive to t he o t h e r s e g m e n t s m a y b e s ingle D N A species t h a t a r e syn thes i zed m o r e efficiently. W h e t h e r t he g r e a t e r a b u n d a n c e of t hese D N A s is func t iona l ly s ignif icant is n o t k n o w n , b u t it is t e m p t i n g to s p e c u l a t e t h a t t h e n o n e q u i m o l a r i t y of t he D N A s reflects a gene d o s a g e effect b y w h i c h t h e copy n u m b e r of s e g m e n t s c o n t a i n i n g essen t ia l v i ra l genes for p r o t e i n s re ­q u i r e d in h i g h a m o u n t s is i nc r ea sed . T h e a p p a r e n t l y " h y p e r m o l a r " C s V D N A W (15.8 k b p ) , for e x a m p l e , c o n t a i n s two genes t h a t a r e exp re s sed in Heliothis l a rvae w i t h i n 2 h r after p a r a s i t i z a t i o n b y C. sonorensis w a s p s a n d t h a t c o n t i n u e to b e a m o n g the m o s t h igh ly exp res sed v i ra l genes for a b o u t 9 d a y s wh i l e t h e w a s p deve lops as a n e n d o p a r a s i t e (Bl i ssard et al., 1986b, 1987). I f t h e n o n e q u i m o l a r i t y is n o t a n ar t i fact , t h e different re la t ive a b u n d a n c e s of t h e D N A s ra i se s ignif icant q u e s t i o n s a b o u t h o w the syn thes i s of t h e D N A s is differential ly r e g u l a t e d o r w h a t p a c k a g i n g s igna ls a r e involved in the i r differ­en t i a l e n c a p s i d a t i o n .

W h e t h e r t h e r e p o r t e d D N A profiles give a r e p r e s e n t a t i v e p i c t u r e of t h e g e n o m e of a g iven p o l y d n a v i r u s " s p e c i e s " is a lso o p e n to q u e s t i o n . T h e a m o u n t of v i ra l D N A p e r female is u sua l l y s ignif icant ly less t h a n 1 μ g p e r p a i r of l a t e r a l ov iduc t s , for e x a m p l e , 150 n g C s V D N A p e r C. sonorensis f emale ( F l e m i n g a n d S u m m e r s , 1986). M a n y of t h e r e p o r t e d D N A e l e c t r o p h o r e t i c profiles therefore w e r e d e t e r m i n e d w i t h v i ra l D N A i so la ted f rom severa l females in a s ingle l a b o r a t o r y p o p u l a t i o n . B e c a u s e of t h e difficulty of r e a r i n g

Page 199: Parasites and Pathogens of Insects. Parasites

RC

SH

- W

- Q - 0 1

- M

-H

-B

CsV Figure 1 CsV DNA. CsV DNA was isolated from sucrose gradient-purified virions from pooled C. sonorensis females and was electrophoresed in its undigested, native form in a 0.7% agarose gel in Tris acetate buffer containing 0.5μg ethidium bro­mide/ml . The regions of the gel in which the superhelical (SH) and relaxed circular (RC) forms of the DNAs migrate are indicated by arrows. The differences in intensity among the approximately 25 to 28 supercoiled DNAs that migrate in the lower portion of the gel are reproducible. Selected superhelical DNA bands are indicated by letter designations according to the scheme used in the original description of CsV (Krell etaL, 1982). Sizes of the selected DNAs (in kilobase pairs) are: Β (6.7), Η (8.5), Μ (10.4), Ο 1 (11.3), Q (12.2), and W (15.8).

Page 200: Parasites and Pathogens of Insects. Parasites

9. Polydnavirus Genome Organization 195

t h e p a r a s i t o i d s , o t h e r r e p o r t e d profiles r e p r e s e n t t h e D N A o b t a i n e d f rom a s ingle feral female (Stol tz et al., 1981). A p a r t f rom t h e p r o b l e m of d e t e c -tab i l i ty w h e r e l imi t ed a m o u n t s of m a t e r i a l w e r e u sed , t h e n u m b e r of insec ts s a m p l e d to p r o d u c e a D N A profile m a y be i m p o r t a n t b e c a u s e gene t i c v a r i a ­t ion in t h e n u m b e r of s e g m e n t s c a n o c c u r w i t h i n a g iven v i ru s . T h e n u m b e r of D N A s in t h e g e n o m e s of t h e v i ruses from s o m e g e o g r a p h i c a l l y i so la ted p o p u l a t i o n s of Cotesia melanoscela ( C m V ) o r f rom i n d i v i d u a l females f rom l a b o r a t o r y colonies of Hyposoter lymantriae o r C. sonorensis v a r i ed (Stol tz et al., 1986; S to l tz a n d X u , 1990; J . F l e m i n g , u n p u b l i s h e d ) . A l t h o u g h t h e s im­i lar i t ies b e t w e e n v i ra l profiles of i so la tes f rom i n d i v i d u a l females w i t h i n t h e s a m e w a s p species exceeded t h e differences, severa l s e g m e n t s w i t h i n a v i ru s " s p e c i e s " w e r e v a r i a b l e in s o m e cases (Stol tz a n d X u , 1990).

T h e o b s e r v e d in t raspeci f ic v a r i a t i o n s sugges t t h a t t h e use of v i ra l D N A from poo led w a s p s m a y resu l t in a n o v e r e s t i m a t i o n of t he g e n o m i c c o m p l e x ­i ty of t hese v i ruses w h e r e a s use of m a t e r i a l f rom single females m a y c a u s e o n e to u n d e r e s t i m a t e t he p o t e n t i a l complexi ty . T h e v a r i a t i o n s o b s e r v e d in v i ra l D N A s from i n d i v i d u a l females w i t h i n a w a s p species u n d e r s c o r e t h e a p p a r ­e n t p las t i c i ty of p o l y d n a v i r u s g e n o m e s . T h e a p p a r e n t a b s e n c e of w h o l e v i ra l g e n o m i c s e g m e n t s in s o m e i n d i v i d u a l s w i t h i n a species a l so sugges t s t h a t t h e v i ra l genes o n t h e m i s s i n g s e g m e n t m a y b e n o n e s s e n t i a l for v iab i l i ty in e i t he r t h e w a s p o r t h e p a r a s i t i z e d hos t . Al te rna t ive ly , if a n essen t ia l g e n e w e r e l oca t ed o n a s u p e r h e l i x t h a t is de l e t ed in s o m e s t r a i n s , a d u p l i c a t e o r closely r e l a t e d g e n e loca ted on a n o t h e r v i r a l g e n o m i c s e g m e n t m i g h t s u p p l y t h e neces sa ry gene t i c i n fo rma t ion . T h e p r e s e n c e of v i ra l g e n e famil ies in p o l y d ­nav i ru se s like C s V a n d t h e m u l t i p a r t i t e s t r u c t u r e of t h e g e n o m e s t h u s cou ld po t en t i a l l y i nc rea se t h e a p p a r e n t p las t i c i ty of p o l y d n a v i r u s g e n o m e s w i t h r e spec t to g e n o m i c s e g m e n t size a n d n u m b e r .

In te r spec i f ic differences in v i ra l D N A profiles gene ra l l y exceed i n t r a ­specific differences. J o n e s a n d his a ssoc ia tes (1986) p r e s e n t ev idence t h a t t h e p o l y d n a v i r u s e s of t h e c o n g e n e r i c species Chelonus n e a r curvimaculatus a n d C. insularis c a n b e d i s t i n g u i s h e d b y t he se c r i t e r ia . T h e D N A profiles of p o l y d ­n a v i r u s e s f rom m o r e d i s t a n t l y r e l a t ed w a s p s in different g e n e r a o r famil ies a r e less s imi l a r in t e r m s of t he n u m b e r s a n d sizes of t h e D N A s t h a n t h e v i ruses of t h e t w o Chelonus species a r e . U n l i k e t he l imi t ed r a n g e of 1 0 - 1 2 d s R N A s p e r g e n o m e of a typ ica l r eov i rus , for e x a m p l e , different p o l y d n a v i r u s e s c a n h a v e f rom fewer t h a n 10 (Hyposoter annulipes v i rus ) to m o r e t h a n 25 ( C s V ) c i r cu l a r D N A molecu le s (Stol tz et al., 1981; K r e l l et al., 1982; B l i s sa rd et al., 1986a) . P o l y d n a v i r a l g e n o m e s often h a v e 15 o r m o r e s e g m e n t s (Stol tz et al., 1981; S to l tz a n d X u , 1990; X u a n d Sto l tz , 1991). T h e D N A s t e n d to b e fairly l a rge b u t c a n v a r y w i t h i n a fairly b r o a d size r a n g e . T h e C s V g e n o m e , for e x a m p l e , is c o m p o s e d of D N A s of a p p r o x i m a t e l y 5 - 2 1 k b p , a n d l a r g e r D N A s

Page 201: Parasites and Pathogens of Insects. Parasites

196 Jo-Ann G. W. Fleming and Peter J. Krell

a p p e a r to be p r e s e n t in the g e n o m e of Cotesia melanoscela v i rus (Kre l l et al., 1982; Bl i s sa rd et al, 1986a; Stol tz a n d X u , 1990).

T h e va r iab i l i ty in v i ra l D N A n u m b e r , size, a n d m o l a r i t y m a k e s it difficult to e s t i m a t e a n a g g r e g a t e g e n o m e size accu ra t e ly for a n y p o l y d n a v i r u s . Avai l ­ab l e e s t i m a t e s a r e b a s e d on the s u m s of t he sizes of t h e c i r cu l a r D N A m o l e ­cules o r all r es t r i c t ion f r agmen t s in d iges t ed v i ra l D N A a n d s h o u l d b e r e ­g a r d e d on ly as p r e l i m i n a r y e s t ima t e s . Sizes c a n r a n g e f rom 75 k b p for Heliothis exiguae v i rus ( H e V ) to 250 k b p or m o r e for CsV , i n d i c a t i n g t h a t p o l y d n a v i r a l g e n o m e s t h u s t end to be l a rge a n d v a r y w i t h i n a w i d e r a n g e (Kre l l et al, 1982; Kre l l , 1991a) .

A l t h o u g h differences in t he n u m b e r a n d sizes of D N A s in p o l y d n a v i r u s g e n o m e s h is tor ica l ly have b e e n used as a p r e l i m i n a r y m e t h o d of d i s t i n g u i s h ­ing the v i ruses from different w a s p species , these c r i t e r ia c lear ly a r e i n a d e ­q u a t e for phy logene t i c c o m p a r i s o n s . B o t h e x p e r i m e n t a l m e t h o d s a n d the level of gene t i c p o l y m o r p h i s m s w i t h i n a p o l y d n a v i r u s " s p e c i e s " (or even a p o p u l a t i o n w i t h i n a " spec ies" ) c a n s ignif icant ly inf luence t h e D N A profile obse rved . M o r e significantly, these t ra i t s d o n o t a d d r e s s t h e gene t i c r e l a t ed -ness of t he v i ra l g e n o m e s in a mean ing fu l way. D N A h y b r i d i z a t i o n a n d nuc l eo t i de s e q u e n c e d a t a will p rov ide a s o u n d e r bas i s for fu tu re c o m p a r i ­sons .

IV. Genome Packaging

T h e D N A profiles of g iven p o l y d n a v i r u s " s p e c i e s " a r e q u i t e r e p r o d u c i b l e , excep t for t h e fairly l imi ted v a r i a t i o n s in D N A s e g m e n t n u m b e r n o t e d ear l ier . T h i s a p p e a r s to b e t r u e w h e t h e r t h e v i ra l D N A is o b t a i n e d f rom different i n d i v i d u a l females , w a s p g e n e r a t i o n s , or w a s p p o p u l a t i o n s (Kre l l et al., 1982; Stol tz et al., 1986; J . F l e m i n g , u n p u b l i s h e d d a t a ) . T h e r e p r o d u c i b i l i t y sug ­gests t h a t t he n u m b e r a n d r a t i o of s e g m e n t s in a v i r ion a r e r e g u l a t e d a t t h e level of e i the r D N A rep l i ca t ion a n d / o r p a c k a g i n g . H o w e v e r , b e c a u s e a n e l ec t ropho re t i c profile of a given p o l y d n a v i r a l g e n o m e reflects all t h e D N A s found in a p o p u l a t i o n of v i rus pa r t i c l e s t h a t a r e p r e s e n t in o n e (or m o r e ) ov iduc t s , it is no t c lear w h e t h e r each n u c l e o c a p s i d ( a n d / o r v i r ion) c o n t a i n s all v i ra l D N A s , specific subse t s of t he g e n o m e , r a n d o m col lec t ions of t h e v i ra l D N A s , o r i n d i v i d u a l D N A s . I f each nuc l eocaps id (or v i r ion) w e r e to c o n t a i n less t h a n t h e full c o m p l e m e n t of v i ra l D N A s , t he obse rved r e p r o d u c i b i l i t y w o u l d sugges t t h a t t he r a t i o of different v i ra l subc lasses c o n t a i n i n g v a r y i n g n u m b e r s of D N A s p e r pa r t i c l e a lso is r e g u l a t e d in each female . P r e c e d e n t s for t he va r ious poss ib le p a t t e r n s of p a c k a g i n g exist in o t h e r v i rus famil ies c h a r a c ­te r ized b y s e g m e n t e d g e n o m e s (Bel loncik, 1989; M u r p h y a n d K i n g s b u r y , 1990; M a t t h e w s , 1991).

Page 202: Parasites and Pathogens of Insects. Parasites

9. Polydnavirus Genome Organization 197

A p a r t f rom its p o t e n t i a l in t e res t f rom a m o l e c u l a r b io logica l s t a n d p o i n t , t he p a c k a g i n g s t r a t e g y a d o p t e d b y p o l y d n a v i r u s e s cou ld theore t i ca l ly affect t h e p r o b a b i l i t y t h a t a p a r t i c u l a r v i ra l gene is expres sed in a g iven cell of a p a r a s i t i z e d hos t . Ava i l ab le d a t a sugges t t h a t p o l y d n a v i r a l genes a r e segre­g a t e d a m o n g t h e g e n o m i c s e g m e n t s (see Sec t ion V I ) . A s s u m i n g t h a t each v i r ion is e q u a l l y c a p a b l e of infect ing a g iven hos t cell, t h e p r o b a b i l i t y t h a t a p a r t i c u l a r v i ra l g e n e is expres sed in t he cell is theore t i ca l ly g r e a t e r if each infect ing v i r ion c o n t a i n s t he en t i r e v i ra l g e n o m e t h a n if each v i r ion c o n t a i n s on ly a s u b s e t of t h e g e n o m e . I n t h e l a t t e r case , t he p r o b a b i l i t y t h a t a p a r t i c u ­l a r g e n e is exp res sed in t he cell w o u l d be p r o p o r t i o n a l to t he p e r c e n t a g e of t h e in jec ted i n o c u l u m v i rus pa r t i c l e s t h a t c o n t a i n e d t h e g e n o m i c s e g m e n t o n w h i c h t h e g e n e is l oca ted . T h e p a c k a g i n g s t r a t egy w o u l d b e less i m p o r t a n t f rom th is s t a n d p o i n t if t he gene of i n t e r e s t w e r e d u p l i c a t e d o n m o r e t h a n o n e g e n o m i c D N A s e g m e n t , m o r e t h a n a s ingle v i r ion w e r e to infect each cell , o r specific v i ra l subc la s ses w i t h different affinities for r e cep t o r s o n different hos t cell types w e r e s h o w n to exist .

L i t t l e d i r ec t e x p e r i m e n t a l work h a s a d d r e s s e d t h e p r o b l e m of p o l y d n a v i r a l g e n o m e p a c k a g i n g . T h e r a t i o of t he n u c l e o c a p s i d size (vo lume) to t h e v i ra l g e n o m e size c a n p r o v i d e a r o u g h e s t i m a t e of t h e p r o p o r t i o n of t h e g e n o m e t h a t a typ ica l v i rus pa r t i c l e cou ld c o n t a i n . N u c l e o c a p s i d s of i chnov i ruses a r e of un i fo rm size a n d t e n d to be l a rge , for e x a m p l e , 85 n m X 330 n m for C s V ( N o r t o n et al., 1975; Stol tz a n d V i n s o n , 1979). C o m p a r i s o n of t h e pa r t i c l e v o l u m e : g e n o m e size ra t ios of C s V o r H e V w i t h t he ra t ios for bacu lov i ruses sugges t s t h a t each i chnov i rus v i r ion is sufficiently l a rge to e n c a p s i d a t e t h e en t i r e g e n o m e a n d cou ld poss ib ly c o n t a i n m u l t i p l e copies of a t l eas t s o m e of t h e v i ra l D N A s (Stol tz a n d V i n s o n , 1979; K r e l l a n d Stol tz , 1980; K r e l l et al., 1982). A t t e m p t s to f rac t iona te C s V in to p u t a t i v e subc lasses c o n t a i n i n g differ­e n t s u b s e t s of D N A s by suc rose o r C s C l g r a d i e n t u l t r acen t r i fuga t ion w e r e unsuccess fu l (Kre l l et al., 1982). T h u s , e i the r subc lasses of v i r ions c o n t a i n i n g different c o m p l e m e n t s of v i ra l D N A d o no t exist for C s V o r these c lasses h a v e dens i t i e s t h a t a r e too s imi l a r to each o t h e r to b e s e p a r a t e d b y t h e t e c h n i q u e s u sed .

Bracov i ruses h a v e r o d - s h a p e d n u c l e o c a p s i d s w i t h fixed d i a m e t e r s b u t v a r i a b l e l e n g t h s , b u t w h e t h e r they a r e m u l t i c o m p o n e n t v i ruses in w h i c h different p o r t i o n s of t he g e n o m e a r e d i s t r i b u t e d a m o n g different n u c l e o c a p ­sids t h a t a r e phys ica l ly d i s t inc t f rom o n e a n o t h e r is no t c lear . W h e t h e r t he l a r g e r n u c l e o c a p s i d s cou ld c o n t a i n t he en t i r e g e n o m e h a s n o t b e e n de te r ­m i n e d . I f o n e c o m p a r e s a h i s t o g r a m of t he f r equency of different-s ized n u c l e ­o c a p s i d s in C m V w i t h t h e f r equency of t h e different sizes of c i r cu l a r C m V D N A s (as d e t e r m i n e d by e l ec t ron m i c r o s c o p y of K l e i n s c h m i d t s p r e a d s ) , t h e two h i s t o g r a m s a r e very s imi l a r (Kre l l a n d Sto l tz , 1979). I n o t h e r w o r d s , t h e p r o p o r t i o n s of long n u c l e o c a p s i d s a n d l a rge D N A s , for e x a m p l e , w e r e s imi -

Page 203: Parasites and Pathogens of Insects. Parasites

198 Jo-Ann G. W. Fleming and Peter J. Krell

lar . Sugges t ive a s these d a t a a r e , m o r e de ta i l ed b i o c h e m i c a l a n d e lec t ron mic roscop i c s tud ie s a r e r e q u i r e d to d e t e r m i n e w h e t h e r t h e v i ra l D N A s a r e s ingly e n c a p s i d a t e d .

I f each b racov i rus n u c l e o c a p s i d even tua l ly were s h o w n to c o n t a i n on ly o n e o r a few D N A s , t he p o r t i o n of t he v i ra l g e n o m e p r e s e n t in a n y infected l e p i d o p t e r a n hos t cell w o u l d t h e n d e p e n d on the n u m b e r of v i r ions t h a t infect t h e hos t cell. However , in severa l b racov i rus species , for e x a m p l e , C m V , m o r e t h a n o n e n u c l e o c a p s i d is enve loped in each v i r ion (Stol tz a n d V i n s o n , 1979). A s ingle infect ing v i r ion t h u s cou ld i n t r o d u c e m o r e t h a n o n e g e n o m i c seg­m e n t even if each n u c l e o c a p s i d c o n t a i n s a s ingle D N A . I t will b e of i n t e r e s t to d e t e r m i n e w h e t h e r b racov i rus n u c l e o c a p s i d s a r e co -enve loped a t r a n d o m or w h e t h e r specific subse t s of n u c l e o c a p s i d s a r e enve loped in p a r t i c u l a r v i ru s pa r t i c l e s , b e c a u s e a n o n r a n d o m e n v e l o p m e n t s t r a t e g y h y p o t h e t i c a l l y w o u l d be a n efficient m e c h a n i s m to e n s u r e t h a t specific subse t s of v i ra l D N A s w o u l d b e p r e s e n t in a g iven infected cell.

V. Intraspecific Genomic Complexity

P r e l i m i n a r y ana lys i s of t he g e n o m e of H e V by S o u t h e r n b lo t h y b r i d i z a t i o n d e m o n s t r a t e d t h a t t he H e V D N A s p r e s e n t in h i g h e r m o l a r a m o u n t s d i d n o t c ros s -hybr id i ze w i th o t h e r H e V D N A s u n d e r t he h i g h s t r i n g e n c y c o n d i t i o n s used (Kre l l a n d Stol tz , 1980). S imi l a r resu l t s w e r e r e p o r t e d for t h e " h y p e r ­m o l a r " C s V D N A s (Kre l l et al., 1982). T h e s e s tud ies sugges t ed t h a t t h e m o r e a b u n d a n t H e V o r C s V D N A s were u n r e l a t e d to o t h e r D N A s in t h e r e spec ­tive v i ra l g e n o m e s a n d therefore m i g h t b e u n i q u e . H o w e v e r , s u b s e q u e n t S o u t h e r n b lo t ana lyse s of C s V w i t h c loned v i ra l D N A p r o b e s u n d e r s imi l a r h i g h s t r i ngency cond i t i ons cons i s ten t ly d e t e c t e d s ignif icant c ro s s -hyb r id i ­za t ion of t he p r o b e D N A s w i t h o n e or m o r e v i ra l D N A s in a d d i t i o n to t h e expec t ed h y b r i d i z a t i o n to t he supe rhe l i ca l a n d r e l axed c i r cu l a r forms of t h e s e g m e n t f rom w h i c h t h e p r o b e D N A s w e r e c loned ( F l e m i n g a n d S u m m e r s , 1986; Bl i s sa rd et al., 1987; T h e i l m a n n a n d S u m m e r s , 1987). E a c h of t h e c loned D N A p r o b e s r e p r o d u c i b l y h y b r i d i z e d w i th on ly a s u b s e t of t h e ge­n o m i c s e g m e n t s . T h e subse t s of h y b r i d i z i n g v i ra l D N A s differed for t he va r ious p r o b e s tes ted . N o n e of t he p r o b e s tes ted h y b r i d i z e d w i t h all g e n o m i c s e g m e n t s o r d e t e c t e d a " n e s t e d s e t " of s e g m e n t s , t h a t is , a p r o b e t h a t hy­b r id i zed w i t h a g iven supe rhe l ix d id n o t h y b r i d i z e w i t h all successively l a rge r s e g m e n t s (Bl i ssard et al., 1986b, 1980; F l e m i n g a n d S u m m e r s , 1986; T h e i l m a n n a n d S u m m e r s , 1987, 1988). T h e h y b r i d i z a t i o n p a t t e r n s a r g u e against C s V b e i n g a defective v i rus . T h e d a t a s u p p o r t t h e i n t e r p r e t a t i o n t h a t t h e m u l t i p l e D N A s in a p o l y d n a v i r u s reflect a s e g m e n t e d g e n o m e .

P a r t of t h e a p p a r e n t c ros s -hybr id i za t ion m a y reflect m u l t i p l e r e l axed cir-

Page 204: Parasites and Pathogens of Insects. Parasites

9. Polydnavirus Genome Organization 199

c u l a r fo rms of a g iven c i r cu l a r mo lecu l e , a s h a s b e e n sugges t ed for C s V D N A Β ( T h e i l m a n n a n d S u m m e r s , 1987). M o r e i m p o r t a n t l y , severa l g e n e famil ies exist in t h e C s V g e n o m e (see Sec t ion V I ) , a n d a t leas t in t h e case of t h e 540-b p r e p e a t e l e m e n t g e n e family, t h e m e m b e r s have b e e n s h o w n u n a m ­b i g u o u s l y to exist on m o r e t h a n o n e supe rhe l i ca l D N A (Bl i ssa rd et aL, 1986b, 1987; T h e i l m a n n a n d S u m m e r s , 1987). Seg rega t ion of t he g e n e family m e m ­be r s a m o n g t h e g e n o m i c s e g m e n t s sugges t s t h a t fairly ex tens ive i n t r a g e n o m i c r e c o m b i n a t i o n h a s o c c u r r e d d u r i n g t h e evo lu t ion of t h e v i ru s . A t h i r d poss i ­b le e x p l a n a t i o n , w h i c h h a s n o t yet b e e n tes ted expe r imen ta l ly , m a y be m o r e a p p l i c a b l e to cases w h e r e v i ru s f rom t w o w a s p p o p u l a t i o n s c o n t a i n s l ight ly different n u m b e r s of c ro s s -hyb r id i z ing supe rhe l i ce s , for e x a m p l e , D N A s D a n d G of t h e ( T r u r o ) N o v a Sco t ia a n d C o n n e c t i c u t s t r a i n s of C m V (Stol tz et aL, 1986). D u p l i c a t i o n of a g e n e or i n se r t ion of r a n d o m vi ra l o r w a s p se­q u e n c e s i n t o a v i ra l supe rhe l i x cou ld theore t i ca l ly give r ise to two o r m o r e differently s ized g e n o m i c s e g m e n t s t h a t have t he s a m e s e q u e n c e a p a r t f rom t h e i n se r t ed o r d u p l i c a t e d f r a g m e n t s . De l e t i ons cou ld s imi la r ly r e su l t in two closely r e l a t e d molecu le s of different size.

T h e g e n o m i c c o m p l e x i t y of t he C s V g e n o m e w a s c o r r o b o r a t e d by S o u t h ­e r n c ross -b lo t h y b r i d i z a t i o n ana lyse s in w h i c h each E c o R I f r a g m e n t hy­b r id i zed w i t h o n e or m o r e E c o R I f r a g m e n t s in a d d i t i o n to i tself ( T h e i l m a n n a n d S u m m e r s , 1987). T h e d a t a a r e cons i s t en t w i t h t h e ex i s tence of g e n e famil ies a n d / o r repe t i t ive D N A w i t h i n t h e v i ra l g e n o m e . H o w e v e r , b e c a u s e t h e or ig in of each f r a g m e n t in t h e (d iges ted) g e n o m e is n o t k n o w n , a t leas t s o m e of t h e c ro s s -hyb r id i z ing s e q u e n c e s m a y r e p r e s e n t r e s t r i c t ion f r a g m e n t l e n g t h p o l y m o r p h i s m s , w h i c h have b e e n d e t e c t e d in t he C s V g e n o m e ( F l e m ­ing et aL, 1990; F l e m i n g , 1991; J . F l e m i n g , u n p u b l i s h e d d a t a ) . [ R F L P s a l so h a v e b e e n d e t e c t e d in t h e g e n o m e s of o t h e r i chnov i ruses a n d b racov i ru se s (Stol tz a n d X u , 1990).] B e c a u s e R F L P s reflect t h e g a i n o r loss of a r e s t r i c t ion e n d o n u c l e a s e si te on different copies of a D N A t h a t exist in a p o p u l a t i o n , a g iven p r o b e will h y b r i d i z e w i t h severa l differently sized f r a g m e n t s , p a r t of w h i c h a r e i den t i ca l . T h e ex is tence of R F L P s in a v i rus p o p u l a t i o n t h u s cou ld resu l t in a n e x a g g e r a t e d e s t i m a t e of i n t r a g e n o m i c c o m p l e x i t y in s o m e expe r i ­m e n t a l de s igns .

VI. Transcription and Gene Families

A. Functional Organization of the Genome

O n e of t h e ear l ies t sugges t ions t h a t p o l y d n a v i r u s g e n o m e s a r e t r a n s c r i p ­t iona l ly ac t ive w a s t h e o b s e r v a t i o n t h a t u l t rav io le t i r r a d i a t i o n of C. sonorensis "ca lyx fluid" ( the v i rus a n d o t h e r s u b s t a n c e s in t he l a t e r a l ov iduc t s ) r e d u c e d

Page 205: Parasites and Pathogens of Insects. Parasites

2 0 0 Jo-Ann G. W. Fleming and Peter J. Krell

its b io logical ac t iv i ty in injected l e p i d o p t e r a n l a rvae in a d o s a g e - d e p e n d e n t m a n n e r ( V i n s o n et al., 1979). To d a t e , t r a n s c r i p t i o n h a s b e e n s t u d i e d in de t a i l on ly in t he C s V sys t em. H y b r i d i z a t i o n of c D N A s of t he p o l y a d e n y l a t e d m R N A s from p a r a s i t i z e d H. virescens l a rvae or C. sonorensis p u p a e to t h e C s V g e n o m e p r o v i d e d t h e first p roo f t h a t p o l y d n a v i r u s genes a r e t r a n s c r i b e d ( F l e m i n g et al., 1983). T h e d a t a i n d i c a t e d t h a t C s V t r a n s c r i p t i o n in t h e p a r a s i t i z e d hos t occu r s w i t h i n 2 h r after t h e female w a s p ovipos i t s eggs a n d p o l y d n a v i r u s a n d c o n t i n u e s a t r ead i ly d e t e c t a b l e levels for a p p r o x i m a t e l y 9 d a y s , w h e n the final C. sonorensis i n s t a r e m e r g e s f rom the m o r i b u n d hos t . S o m e of t he v i ra l g e n e p r o d u c t s a r e bel ieved to a l t e r t h e phys io logy of t h e p a r a s i t i z e d hos t . T h e s e s tud ies a lso i n d i c a t e d t h a t severa l , b u t n o t al l , of t he C s V g e n o m i c s e g m e n t s c o n t a i n s e q u e n c e s t h a t a r e t r a n s c r i b e d in t h e p a r a ­si t ized hos t a n d sugges t ed t h a t different v i ra l s e q u e n c e s w e r e exp res sed in t h e w a s p a n d the l e p i d o p t e r a n hos t .

L a t e r inves t iga t ions s ignif icant ly e x t e n d e d a n d refined the ea r ly e x p r e s ­sion s tud ies (Bl i ssard et al., 1986a, 1987, 1989; T h e i l m a n n a n d S u m m e r s , 1987; T h e i l m a n n a n d S u m m e r s , 1988). A t least 12 m R N A s a r e d e t e c t a b l e in H. virescens l a rvae p a r a s i t i z e d by C. sonorensis w a s p s o r injected w i t h pur i f ied CsV, i n d i c a t i n g t h a t n e i t h e r w a s p t issue n o r o t h e r n o n v i r a l factors a r e re ­q u i r e d for C s V t r a n s c r i p t i o n (Bl issard et al., 1986b) . T h e s e e x p e r i m e n t s a lso p r o v i d e d the s u p p o r t i n g m o l e c u l a r d a t a for t h e p ivo ta l e x p e r i m e n t s of E d s o n a n d h e r coworkers (1981) , w h o d e m o n s t r a t e d t h a t g r ad i en t -pu r i f i ed C s V a lone w a s sufficient to p r e v e n t t he e n c a p s u l a t i o n of C. sonorensis eggs in hos t l a rvae a n d e n d o p a r a s i t i c s tages of t he w a s p s . A l t h o u g h a d d i t i o n a l factors , for e x a m p l e , v e n o m s , a lso a r e necessa ry in s o m e b racov i rus s y s t e m s , t h e d a t a from the C s V sys t em s t rong ly sugges t t h a t t he a l t e r a t i o n of t h e phys io logy of t he p a r a s i t i z e d hos t d e p e n d s p r i m a r i l y on vi ra l gene express ion .

T h e p r o b a b l e loca t ion of t he genes in t he v i ra l g e n o m e a n d t h e size of t h e t r a n s c r i p t s e n c o d e d by p a r t i c u l a r v i ra l D N A f r agmen t s w e r e d e t e r m i n e d by b lo t ana lyses (Bl i ssard et al., 1986a ,b) . C l o n e d v i ra l D N A s c o n t a i n i n g t h e expres sed s e q u e n c e s o r t he flanking, n o n t r a n s c r i b e d s e q u e n c e s w e r e u s e d s e p a r a t e l y as p r o b e s w i t h S o u t h e r n b lo ts of u n d i g e s t e d C s V g e n o m i c D N A a n d N o r t h e r n b lo ts of to ta l p o l y a d e n y l a t e d m R N A s from p a r a s i t i z e d h o s t l a rvae , respect ive ly (Bl issard et al., 1986b) . T h e resu l t s of these e x p e r i m e n t s p r o v i d e d the first i nd i ca t i on of severa l of t he u n u s u a l fea tures of t h e func t ion­al o r g a n i z a t i o n of p o l y d n a v i r u s g e n o m e s . F i rs t , typ ica l of w h a t o n e m i g h t expec t for a v i rus w i t h a s e g m e n t e d g e n o m e , t he different p r o b e s h y b r i d i z e d w i t h different g e n o m i c s e g m e n t s . However , each p r o b e expec ted ly h y b r i d i z e d w i t h m o r e t h a n o n e v i ra l D N A . U n r e l a t e d p r o b e D N A s h y b r i d i z e d w i t h different subse t s of t he v i ra l g e n o m i c s e g m e n t s , b u t a g iven g e n o m i c s e g m e n t s o m e t i m e s h y b r i d i z e d w i t h m o r e t h a n o n e of t he u n r e l a t e d p r o b e s . I n o t h e r w o r d s , different p r o b e s identif ied different, b u t s o m e t i m e s pa r t i a l l y ove r l ap -

Page 206: Parasites and Pathogens of Insects. Parasites

9. Polydnavirus Genome Organization 201

p i n g , s u b s e t s of t he v i ra l g e n o m i c D N A s e g m e n t s . T h e a p p a r e n t c ross -h y b r i d i z a t i o n w a s m u c h too ex tens ive a n d too c o m p l e x to be whol ly ex­p l a i n e d b y t h e p r e s e n c e of m u l t i p l e topo log ica l forms of t h e c i r cu l a r D N A s . S e c o n d , p r o b e s t h a t w e r e u n r e l a t e d (as d e t e r m i n e d by p h y s i c a l m a p p i n g a n d t h e S o u t h e r n b lo t d a t a ) h y b r i d i z e d w i t h different m R N A s . T h e ma jo r i t y of t h e p r o b e s each h y b r i d i z e d w i t h o n e m R N A ap iece . U n e x p e c t e d l y , two of t h e gene-specif ic p r o b e s each h y b r i d i z e d w i t h two a b u n d a n t v i ra l m e s s a g e s ap i ece , o n e to t r a n s c r i p t s of 1.0 a n d 1.6 k b a n d the o t h e r to m R N A s of 1.1 a n d 1.4 k b . T h e r e l a t ed m R N A s cou ld be i n t e r p r e t e d as t r a n s c r i p t s of m e m ­be r s of a m u l t i g e n e family, a l t e rna t ive ly spl iced m R N A s , e tc . T h i r d , h y b r i d -se lec ted m R N A s cou ld b e t r a n s l a t e d in vitro, i n d i c a t i n g t h a t t he c o d i n g se­q u e n c e s w e r e n o t p s e u d o g e n e s .

T h e m o d e l of t he C s V g e n o m e t h a t e m e r g e d f rom these s t ud i e s is o n e in w h i c h t h e p o l y d n a v i r a l g e n o m e is b o t h func t iona l ly a n d phys ica l ly m u l t i p a r ­t i te . I n d i v i d u a l genes , i n c l u d i n g m e m b e r s of gene famil ies , a r e s e g r e g a t e d a m o n g t h e g e n o m i c s e g m e n t s . T h e v i ra l supe rhe l i ca l D N A s a r e n o t i den t i ca l b u t m a y s h a r e o n e o r m o r e s e q u e n c e s . Ava i l ab le d a t a f rom s tud ie s of t h r e e C s V g e n e famil ies (d i scussed in t h e following) s u p p o r t th is m o d e l . H o w e v e r , n o n e of t h e C s V g e n o m i c s e g m e n t s h a s b e e n s e q u e n c e d in its ent i re ty . A d d i ­t iona l m o l e c u l a r c o m p a r i s o n s of different g e n o m i c s e g m e n t s a r e n e e d e d to d e t e r m i n e w h e t h e r each s u p e r h e l i x is a m o s a i c of u n i q u e a n d s h a r e d se­q u e n c e s . S u c h c o m p a r i s o n s will d e m o n s t r a t e (1) how ex tens ive t h e s h a r e d s e q u e n c e s a r e , t h a t is, a r e t hey re s t r i c t ed to t h e genes in m u l t i g e n e famil ies o r d o they a lso i n c l u d e o the r , n o n e x p r e s s e d s e q u e n c e s , a n d (2) h o w s imi l a r t h e r e l a t ed s e q u e n c e s on different D N A s a r e .

B. Known CsV Gene Families

T h e p r e l i m i n a r y ident i f ica t ion of t h e genes e n c o d i n g t h e 1.0- a n d 1.6-kb m R N A s as m e m b e r s of a g e n e family w a s conf i rmed by n u c l e o t i d e (n t ) s e q u e n c e ana lys i s of t h e r e l a t ed s e q u e n c e s (Bl i ssa rd et aL, 1987). c D N A s c o r r e s p o n d i n g to t he 1.6- a n d 1.0-kb t r a n s c r i p t s w e r e m a p p e d to genes o n different r eg ions of (c loned) supe rhe l i x W (15.8 k b p ) . I t is of in t e re s t t h a t t h e c D N A for t h e 1.6-kb m R N A h y b r i d i z e d C s V g e n o m i c D N A s W, R (13.3 k b p ) , a n d Μ (10.4 k b p ) , w h e r e a s t h e c D N A for t h e 1.0-kb t r a n s c r i p t hy­b r id i zed on ly w i t h D N A W, cons i s t en t w i t h t h e c o n c e p t of t h e s eg rega t i on a n d s e q u e n c e d i v e r g e n c e of r e l a t ed genes in t h e g e n o m e . C o m p a r i s o n of t h e n u c l e o t i d e s e q u e n c e s of t h e c D N A for t he 1.6-kb t r a n s c r i p t a n d t h e h o m o ­logous g e n o m i c s e q u e n c e on D N A W i n d i c a t e d t h a t t h e t w o s e q u e n c e s a r e iden t i ca l excep t for two i n t r o n s t h a t a r e p r e s e n t in t h e g e n o m i c s e q u e n c e . ( T h e g e n o m i c copy of t h e g e n e for t h e 1.0-kb m R N A h a s n o t ye t b e e n

Page 207: Parasites and Pathogens of Insects. Parasites

2 0 2 Jo-Ann G. W. Fleming and Peter J. Krell

s e q u e n c e d . ) T h e two c D N A s of t he 1.0- a n d 1.6-kb m R N A s showed t h a t t h e genes s h a r e five reg ions ( a p p r o x i m a t e l y 1 2 0 - 1 7 0 n t each) of s ignif icant se­q u e n c e s imi la r i ty ( 6 8 - 8 8 % iden t i ty ) t h a t were i n t e r s p e r s e d w i t h r eg ions of s ignif icant s e q u e n c e d ive rgence . B a s e d o n the p r e d i c t e d a m i n o acid se­q u e n c e s , t he a m i n o a n d c a r b o x y t e r m i n i of t he two p r o t e i n s a r e s imi la r . A n iden t i ca l 2 6 - a m i n o acid s e q u e n c e is cen t ra l ly loca ted in each g e n e a n d m a y r e p r e s e n t a funct ional ly i m p o r t a n t d o m a i n . U s i n g t he bacu lov i rus expres s ion vec to r sys t em, it w a s s h o w n t h a t t he 1.0-kb t r a n s c r i p t c o d e d for a 2 4 - k D a p o l y p e p t i d e t h a t was g lycosy la ted to a 2 6 - k D a form w h e r e a s t h e 1.6-kb t r a n s c r i p t coded for a nong lycosy la t ed 2 3 - k D a p o l y p e p t i d e (Bl i ssa rd et al., 1989). B o t h gene p r o d u c t s were sec re ted from Spodoptera frugiperda cells .

M u c h less is k n o w n a b o u t a s econd g e n e family t h a t c o n t a i n s t h e genes for t h e 1.1- a n d 1.4-kb t r a n s c r i p t s t h a t a lso a r e a b u n d a n t in t h e p a r a s i t i z e d hos t (Bl i ssard et al., 1986b) . T h e funct ion of these genes is n o t k n o w n , b u t t h e f r a g m e n t c o n t a i n i n g o n e of t h e two genes w a s recen t ly s h o w n to h y b r i d i z e w i t h C. sonorensis v e n o m g l a n d c D N A s ( W e b b a n d S u m m e r s , 1990b) . W h e t h ­er these genes code for p ro t e in s r e l a t ed to t he v e n o m p r o t e i n s p e r se o r o t h e r n o n v e n o m w a s p p r o t e i n s found in t he v e n o m g l a n d t issues h a s n o t b e e n d e t e r m i n e d .

A t h i r d C s V g e n e family, t e r m e d the 5 4 0 - b p r e p e a t e l e m e n t g e n e family, w a s identif ied in t he cour se of s tud ies to d e t e r m i n e w h e t h e r repe t i t ive se­q u e n c e s were c o m m o n in t he g e n o m e a n d r e spons ib l e for m u c h of t h e o b ­served c ro s s -hyb r id i za t i on ( T h e i l m a n n a n d S u m m e r s , 1987, 1988). D N A O 1

(11.3 k b p ) h y b r i d i z e d w i t h m o s t of t he v i ra l supe rhe l i ces u n d e r t h e lowest s t r i ngency cond i t i on tes ted w h e r e a s t he o t h e r C s V D N A p r o b e s h y b r i d i z e d w i th m u c h s m a l l e r subse t s of t he g e n o m e (Fig. 2, a n d T h e i l m a n n a n d S u m ­m e r s , 1987). F u r t h e r ana lyses revea led t h a t the s e q u e n c e s o n D N A O 1 r e ­spons ib l e for t he h i g h level of i n t r a g e n o m i c h y b r i d i z a t i o n m a p p e d to two d i sc re t e r eg ions of t he supe rhe l ix . Re l a t ed s e q u e n c e s a l so w e r e m a p p e d b y h y b r i d i z a t i o n to d i sc re te f r agmen t s on m o s t , b u t n o t al l , of t h e se lec ted c loned g e n o m i c supe rhe l i ces t h a t were e x a m i n e d in de t a i l ( T h e i l m a n n a n d S u m m e r s , 1987).

N u c l e o t i d e s e q u e n c e ana lys i s of t he c ros s -hybr id i z ing reg ions r evea led t h a t r e l a t ed f r a g m e n t s a r e c o m p o s e d of a n imper fec t ly conse rved , r e p e a t e d s e q u e n c e e l e m e n t of a p p r o x i m a t e l y 540 b p ( T h e i l m a n n a n d S u m m e r s , 1987). A s ingle copy of t he r e p e a t e l e m e n t exists o n D N A Β (6.7 k b p ) w h e r e a s 4 .5 a n d 2.5 copies of it o c c u r as d i r ec t t a n d e m a r r a y s on D N A s Η (8.5 k b p ) a n d O 1 , respect ively. T h e n i n e copies of t he e l e m e n t t h a t have b e e n s e q u e n c e d to d a t e a r e on ave rage a p p r o x i m a t e l y 6 0 - 7 0 % s imi la r a t t h e n u c l e o t i d e level, a l t h o u g h s h o r t p a t c h e s of h i g h e r s imi la r i ty occur .

S u b s e q u e n t c o m p a r i s o n of t he v i ra l g e n o m i c copy a n d a h o m o l o g o u s c D N A conf i rmed t h a t t he r e p e a t e l e m e n t on D N A Β is t r a n s c r i b e d in t h e

Page 208: Parasites and Pathogens of Insects. Parasites

9. Polydnavirus Genome Organization 2 0 3

p a r a s i t i z e d hos t , b u t N o r t h e r n b lo t ana lyse s sugges t ed t h a t th is e l e m e n t is n o t exp re s sed in t h e w a s p ' s ov iduc t s ( T h e i l m a n n a n d S u m m e r s , 1988). I n c o n t r a s t , a 5 4 0 - b p r e l a t ed s e q u e n c e ident if ied o n D N A W a p p e a r s to be t r a n s c r i b e d on ly in t h e w a s p (Bl i ssard et al., 1989). N o r t h e r n b lo t ana lyse s i n d i c a t e d t h a t t h e r e p e a t r e l a t ed s e q u e n c e s o n D N A s Η a n d O 1 a r e t r a n ­sc r ibed in b o t h p a r a s i t i z e d h o s t l a rvae a n d C. sonorensis ov iduc t s ( T h e i l m a n n a n d S u m m e r s , 1988). A l t h o u g h the r e p e a t e l e m e n t r e l a t ed s e q u e n c e s o n C s V D N A s Β a n d Η each h y b r i d i z e d w i t h o n e t r a n s c r i p t in t h e m R N A s of t h e h o s t in w h i c h t h e s e q u e n c e is exp re s sed , t h e r e p e a t e l e m e n t D N A s o n O 1 o r W each h y b r i d i z e d w i t h two o r m o r e t r a n s c r i p t s ( T h e i l m a n n a n d S u m m e r s , 1988; B l i s sa rd et al., 1989). T h e re la t ive a b u n d a n c e of t he four t r a n s c r i p t s d e t e c t e d w i t h t he D N A O 1 r e p e a t e l e m e n t r e l a t ed p r o b e s va r i ed d e p e n d i n g on t h e h o s t a n d t h e p a r t i c u l a r D N A O 1 f r a g m e n t u sed . W h e t h e r s o m e of t h e m u l t i p l e t r a n s c r i p t s d e t e c t e d by t h e D N A O 1 p r o b e s a r e a l t e rna t ive ly sp l iced m R N A s o r reflect c r o s s - h y b r i d i z a t i o n w i t h m R N A s e n c o d e d b y r e l a t ed se­q u e n c e s o n o t h e r supe rhe l i ces is n o t k n o w n . W h e t h e r t h e 5 4 0 - b p e l e m e n t r e l a t ed m R N A s c a n b e t r a n s l a t e d h a s n o t yet b e e n d e t e r m i n e d by in vitro o r in vivo s t ud i e s , b u t o p e n r e a d i n g f rames have b e e n ident i f ied ( T h e i l m a n n a n d S u m m e r s , 1987).

A l imi t ed n u m b e r of o t h e r C s V genes have b e e n ident i f ied a n d p a r t i a l l y c h a r a c t e r i z e d . A second g e n e t h a t codes for a spl iced m R N A expre s sed on ly in t h e w a s p was ident i f ied o n D N A Β ( T h e i l m a n n a n d S u m m e r s , 1988). T h i s g e n e does n o t a p p e a r to b e closely r e l a t e d to t h e 5 4 0 - b p r e p e a t e l e m e n t g e n e . F u r t h e r s t u d y of C s V D N A W also ident i f ied t h r e e to five wasp-speci f ic genes in a d d i t i o n to t he two p rev ious ly c h a r a c t e r i z e d genes for t h e 1.0- a n d 1.6-kb t r a n s c r i p t s p r e s e n t in t he p a r a s i t i z e d hos t (Bl i ssard et al., 1989). O n e of t hese wasp-spec i f ic genes m a p s to t h e r eg ion c o n t a i n i n g 5 4 0 - b p r e p e a t r e l a t e d s e q u e n c e s . W h e t h e r t h e o t h e r wasp-speci f ic genes o n D N A W b e l o n g to m u l t i g e n e famil ies is n o t c lea r f rom the l imi ted e x t a n t d a t a .

Very few p o l y d n a v i r a l genes have b e e n s e q u e n c e d , b u t t h e ava i l ab le d a t a sugges t t h a t t h e s t r u c t u r e of p o l y d n a v i r a l genes is typ ica l of e u k a r y o t i c genes in g e n e r a l . A t leas t two of t h e C s V genes a r e spl iced , a n d nuc l eo t i de s cons i s ­t e n t w i t h t h e 5 ' a n d 3 ' spl ice j u n c t i o n c o n s e n s u s s e q u e n c e s o c c u r a t t h e e x o n - i n t r o n j u n c t i o n s (Bl i ssa rd et al., 1987; T h e i l m a n n a n d S u m m e r s , 1988). S e q u e n c e s r e s e m b l i n g typ ica l t r a n s c r i p t i o n a l a n d t r a n s l a t i o n a l s igna ls a p ­p e a r to b e used , a n d the s e q u e n c e con t ex t a r o u n d t h e t r a n s l a t i o n a l s t a r t s i te is cons i s t en t w i t h t h e t r a n s l a t i o n in i t i a t ion c o n s e n s u s s e q u e n c e of K o z a k (Bl i ssa rd et al., 1987; T h e i l m a n n a n d S u m m e r s , 1988). T h e t e m p o r a l p a t t e r n of expres s ion of genes involved in v i rus r ep l i ca t ion in t h e female w a s p sug ­ges ts t h a t fu tu re inves t iga t ions m a y identify u n i q u e r e g u l a t o r y s e q u e n c e s , for e x a m p l e , h o r m o n e - r e s p o n s i v e e l e m e n t s , in t he 5 ' r eg ions of s o m e po lyd ­nav i r a l genes (see Sec t ion V I I ) .

Page 209: Parasites and Pathogens of Insects. Parasites

> CO

ϋ

3 ϋ ί in ω

W-

Q -

Μ -

Β -

- Ο 1

Α Figure 2 Distribution of 540-bp repeat e lement related sequences in the CsV ge­nome . (A) Duplicate lanes of undigested CsV DNA were hybridized with 3 2 P-labeled CsV DNA u n d e r h igh (50% formamide) stringency conditions o r with vector-free 540-bp repeat e lement sequences from DNA O 1 (p0 1 -HC1185) u n d e r lower (30% formamide) stringency conditions. Equivalent autoradiographic exposures are shown. Al though 540-bp repeat e lement related sequences are widespread in the genome, not all CsV DNAs hybridize detectably with the 540-bp repeat e lement probe u n d e r the stringency conditions used. T h e genomic distribution of the 540-bp repeat element related sequences detected in these Southern blots is equivalent to that reported in the original description of the gene family by Thei lmann and Summers (1987). (continues)

204

Page 210: Parasites and Pathogens of Insects. Parasites

R-Q -Ol M-G-

D -

C1-B -

CsV 1 2

540 3 4

-Α 1 Λ 3

Β Figure 2 (continued) (B) T h e reg ion con ta in ing p redomina te ly superhel ica l forms of t he viral DNAs is en la rged . To il lustrate bo th faint a n d in tense b a n d s m o r e clearly, lands 1 a n d 2 show shor t a n d long p h o t o g r a p h i c exposures , respectively, of t he a u t o r a d i o g r a p h of viral DNA hybridized with t h e CsV DNA p robe . Lanes 3 a n d 4 a r e comparab l e shor t a n d long p h o t o g r a p h i c exposures , respectively, of lanes hybridized with the 540-bp r epea t e l e m e n t p robe . Bo th t he identi ty a n d complexi ty of p robes can significantly affect t he hybridizat ion results in studies of polydnavirus g e n o m e s . Note tha t some CsV DNA bands , for example , A * - A 5

a n d C 2 , a re m o r e readily detectable with t he 540-bp r epea t e l e m e n t p robe t h a n with t he m o r e complex (total) viral genomic DNA p robe . T h e DNA b a n d s desig­na t ed A 2 - A 5 o r C 2 were identified after t h e initial character izat ion, i l lustrat ing t he difficulty in accurately es t imat ing t he total n u m b e r of DNAs in a polyd­navirus g e n o m e . D u r i n g the last decade t he or iginal scheme for des igna t ing b a n d s has b e e n modif ied to a c c o m m o d a t e t he addi t ional b a n d s as they were discovered. Addi tona l DNA b a n d with t he mos t similar size a n d d is t inguished from the DNA b a n d observed in t he initial s tudy by numer ica l superscr ip ts o r subscripts g rea te r t h a n one , for example , C 2 . DNA b a n d s des igna ted by the same let ter a re of similar size b u t a re not necessarily re la ted at t h e molecula r level. As t he complexi ty of polydnavi rus g e n o m e s has b e c o m e m o r e a p p a r e n t with t ime, o the r des ignat ion schemes a re be ing cons idered by investigators in the field.

205

Page 211: Parasites and Pathogens of Insects. Parasites

2 0 6 Jo-Ann G. W. Fleming and Peter J. Krell

C. Temporal Patterns of CSV Gene Expression

L i m i t e d d a t a a b o u t t he t e m p o r a l r egu l a t i on of C s V genes a r e ava i l ab le . T h e m o s t s t r ik ing fea tu re of t he p re sen t ly ava i l ab le , s e m i q u a n t i t a t i v e N o r t h e r n b lo t d a t a is t he s imi la r i ty of t he s t eady- s t a t e levels of m a n y of t h e t r a n s c r i p t s f rom a p p r o x i m a t e l y 12 h r to a t least 6 d a y s pos tov ipos i t ion (Bl i ssard et al., 1986b) . S o m e m i n o r differences in t he t e m p o r a l exp res s ion of t h e genes for t he 1.0-, 1.6-, a n d a r e l a t ed 1.3-kb m R N A have b e e n n o t e d . H o w e v e r , these differences were no t cons i s t en t in t he severa l s tud ies of th is g e n e family a n d c a n n o t b e c lear ly d i s t i ngu i shed from the differences in t h e a m o u n t s of t h e t h r ee r e l a t ed t r a n s c r i p t s re la t ive to o n e a n o t h e r a t g iven s a m p l i n g t imes (Bl i ssard et al., 1986b, 1987, 1989). T h e 5 4 0 - b p r e p e a t e l e m e n t genes , e spe ­cially t h e genes loca ted on C s V D N A s Β a n d O 1 , a p p e a r to differ f rom t h e p a t t e r n d e s c r i b e d h e r e . T h e s e genes a r e expres sed m a x i m a l l y a n d a t s imi l a r levels b e t w e e n 2 a n d 24 h r pos tov ipos i t ion a n d t h e n r e m a i n a t s l ight ly d e ­c reased b u t re la t ively c o n s t a n t levels un t i l levels i n c r e a s e d a t 8 d a y s pos t ­ovipos i t ion ( T h e i l m a n n a n d S u m m e r s , 1988). W h e t h e r t h e v a r i a t i o n s in t h e m R N A levels n o t e d in t h e p u b l i s h e d s tud ies a r e ev idence of t e m p o r a l r egu l a ­t ion is u n c l e a r b e c a u s e the obse rved differences were s l ight a n d i n t e r n a l con t ro l s (e.g. , a cons t i tu t ive ly expressed hos t gene) t h a t w o u l d al low u n a m ­b i g u o u s c o m p a r i s o n s of s a m p l e s t a k e n a t different t i m e p o i n t s w e r e n o t i n c l u d e d .

T h e re la t ively c o n s t a n t s t eady- s t a t e levels sugges t t h a t severa l C s V gene p r o d u c t s m a y be r e q u i r e d a t a p p r o x i m a t e l y s imi l a r levels i m m e d i a t e l y after ov ipos i t ion a n d a t l a t e r t imes to p r e v e n t t he e n c a p s u l a t i o n of t h e w a s p ' s egg a n d l a rva l i n s t a r s . T h i s i n t e r p r e t a t i o n shou ld be c o n s i d e r e d t en t a t i ve un t i l m o r e de t a i l ed q u a n t i t a t i v e s tud ies a r e d o n e b e c a u s e t h e r e p o r t e d work used c o m p l e x p r o b e s (e.g. , to ta l C s V g e n o m i c D N A ) o r e x a m i n e d t h e t r a n s c r i p ­t ion of m e m b e r s of gene families in a s ingle t i ssue a n d / o r d e v e l o p m e n t a l s t age of t he insec t s . G e n e s in m u l t i g e n e families often a r e c o o r d i n a t e l y a n d d e v e l o p m e n t a l l y r e g u l a t e d , a s a r e t he h e m a g l o b i n or c h o r i o n genes (Li , 1983; references in H i b n e r et al., 1991; X i o n g et al., 1988). G r e a t e r differences in t h e t e m p o r a l p a t t e r n of express ion of s ing le -copy vi ra l genes m i g h t b e e x p e c t e d . W h a t effect p o l y d n a v i r u s e s h a v e on hos t t r a n s c r i p t i o n is n o t k n o w n b u t a lso s h o u l d be cons ide r ed in fu ture s tud ies .

D. Significance of the Gene Families

T h e p r e s e n c e of m o r e t h a n o n e g e n e family in t he C s V g e n o m e is i m p o r t a n t for severa l r e a s o n s . F i r s t , t he C s V g e n e famil ies , especia l ly t h e 5 4 0 - b p r e p e a t e l e m e n t gene family, a r e ev idence for p a s t s e q u e n c e d u p l i c a t i o n a n d in t e r seg ­m e n t a l r e c o m b i n a t i o n (Bl issard etal, 1987; T h e i l m a n n a n d S u m m e r s , 1987).

Page 212: Parasites and Pathogens of Insects. Parasites

9. Polydnavirus Genome Organization 2 0 7

T h e m u l t i p l e g e n e copies c a n a l t e rna t ive ly b e i n t e r p r e t e d as poss ib le s i tes for fu tu re i n t e r m o l e c u l a r o r i n t r a m o l e c u l a r crossovers in t h e c o n t i n u e d evo lu t ion of t h e v i ru s . T h e c o n c o m i t a n t s eg rega t ion of r e l a t ed genes w i t h i n a p o l y d ­nav i r a l g e n o m e is cons i s t en t w i t h t h e m o d e l t h a t each p o l y d n a v i r a l g e n o m i c s e g m e n t m a y b e a c h i m e r a of u n i q u e a n d s h a r e d s e q u e n c e s . A s n o t e d p rev i ­ously, s u c h a m o d e l cou ld a c c o u n t for m u c h of t h e a p p a r e n t i n t r a g e n o m i c c o m p l e x i t y of C s V . T h e seg rega t ion of r e l a t ed genes o n different v i ra l supe r -he l ica l D N A s cou ld be i m p o r t a n t if less t h a n t h e en t i r e v i ra l g e n o m e w e r e e n c a p s i d a t e d in each v i r ion . T h i s w o u l d b e especia l ly t r u e if t h e v i ra l genes w e r e exp re s sed in a t issue-specif ic m a n n e r .

Second , it m a y b e s ignif icant t h a t t h e four C s V genes ini t ia l ly ident i f ied as b e i n g m e m b e r s of g e n e families a p p e a r to be a m o n g t h e v i ra l genes t h a t a r e t h e m o s t h igh ly exp res sed in hos t l a rvae . G e n e d u p l i c a t i o n is a m e c h a n i s m for i n c r e a s i n g g e n e d o s a g e , t h e r e b y in f luenc ing t h e m R N A levels of genes w i t h cr i t ica l func t ions . T h i s cou ld b e especia l ly i m p o r t a n t for genes t h a t a r e exp re s sed i m m e d i a t e l y after ov ipos i t ion . W h e t h e r t he C s V genes b e i n g d i s ­cussed p l a y cr i t ica l roles is con jec tu ra l a t th i s t i m e b e c a u s e it is n o t k n o w n w h a t t h e func t ion of any C s V or o t h e r p o l y d n a v i r a l g e n e is .

T h i r d , g e n e famil ies p rov ide a m e c h a n i s m for r e g u l a t i n g g e n e expres s ion in a t issue-specif ic m a n n e r , s u c h as t h e h u m a n co l lagen a n d ch icken t r o p o n i n g e n e famil ies ( B r e i t b a r t a n d N a d a l - G i n a r d , 1989; V u o r i o a n d d e C r o m -b r u g g h e , 1990; M a r c h a n t et aL, 1991). T h e t i s sue specificity of C s V genes is n o t k n o w n . R e l a t e d b u t v a r i a n t forms of a g e n e m a y e n c o d e p r o d u c t s t h a t differ func t iona l ly to v a r y i n g deg rees , for e x a m p l e , t h e co l lagens specific to t h e c o r n e a o r m u s c l e , respect ively. A l t e r e d t i ssue specificities a m o n g m e m ­b e r s of a g e n e family m a y b e o n e m e c h a n i s m of ref ining a s y s t e m p h y s i ­ologically. T h i s m a y b e p a r t i c u l a r l y i m p o r t a n t w h e r e m o r e t h a n o n e t i ssue a p p e a r s to b e infected, as in p a r a s i t i z e d hos t s .

F o u r t h , t h e s tud ie s on t h e 5 4 0 - b p r e p e a t e l e m e n t g e n e family conf i rmed t h a t p o l y d n a v i r a l genes in s o m e cases a r e r e g u l a t e d in a species-specif ic m a n n e r , t h a t is, t h e genes a r e exp res sed exclusively in e i the r t h e w a s p o r t h e p a r a s i t i z e d hos t . T h e finding t h a t s o m e v i ra l genes a r e exp res sed in b o t h insec ts , however , w a s s o m e w h a t s u r p r i s i n g in v iew of t h e s ignif icant b io log­ical differences in t h e two insec ts ( w a s p a n d l e p i d o p t e r a n la rvae) a n d t h e i n t e r ac t i on of t h e v i ru s w i t h t h e t w o spec ies . Po lydnav i r a l g e n e r e g u l a t i o n h a s n o t b e e n inves t iga t ed sys temat ica l ly , b u t fu ture inves t iga t ions of t h e differen­t ia l r e g u l a t i o n of t h e t h r e e subc lasses of v i ra l genes ( w a s p specific, l e p i d o p ­t e r a n specific, a n d genes exp re s sed in b o t h species) m a y p r o v i d e i n f o r m a t i o n useful to t h e s t u d y of insec t gene r e g u l a t i o n in g e n e r a l . I n t h e case of genes exp re s sed in b o t h hos t spec ies , w h a t b io logica l ac t iv i ty t h e p r o t e i n p r o d u c t ( s ) have (if a n y ) in each species a l so will b e of i n t e re s t .

Fif th, t h e s tud ie s d e m o n s t r a t e d t h a t a g iven g e n o m i c s e g m e n t c a n c o n t a i n

Page 213: Parasites and Pathogens of Insects. Parasites

2 0 8 Jo-Ann G. W. Fleming and Peter J. Krell

both genes expressed exclusively in t he p a r a s i t i z e d hos t a n d genes t h a t a r e w a s p specific. T h a t genes expressed solely in e i the r t h e w a s p or t h e l e p i d o p ­t e r a n hos t a r e i n t e r spe r sed on a D N A s e g m e n t a n d a r e no t c lus t e red t o g e t h e r o n different v i ra l g e n o m i c s e g m e n t s is of in te res t w i t h r e g a r d to t h e or ig in a n d evo lu t ion of p o l y d n a v i r u s e s (see Sec t ion V I I I ) . T h e i n t e r spe r s ion of t h e two species-specif ic c lasses of v i ra l genes on a g iven s u p e r h e l i x is of less in te res t f rom the s t a n d p o i n t of g e n e t r a n s c r i p t i o n b e c a u s e d a t a f rom o t h e r e u k a r y o t i c sys t ems sugges t t h a t t i ssue- o r species-specif ic express ion d e p e n d s on specific r e g u l a t o r y e l emen t s of t he genes themse lves , a n d t h e genes t h e r e ­fore w o u l d b e expec t ed to b e r e g u l a t e d i n d e p e n d e n t l y .

VII. Polydnavirus Transmission, Integration, and Replication

E v i d e n c e from s tud ies of the h o s t - p a r a s i t o i d i n t e r ac t i on s u p p o r t s t h e t h eo ry t h a t p o l y d n a v i r u s e s p l ay a n essent ia l role in d e t e r m i n i n g w h e t h e r t h e eggs a n d i m m a t u r e s tages of ce r t a in i c h n e u m o n i d or b r a c o n i d w a s p s c a n c o m p l e t e e n d o p a r a s i t i c d e v e l o p m e n t in t he l e p i d o p t e r a n hos t . G i v e n t h e cr i t ica l func­t ion of p o l y d n a v i r u s e s in the life cycles of these p a r a s i t o i d s a n d t h e gene ra l ly accep t ed no t i on t h a t these v i ruses o c c u r in t he ov iduc t s of all females w i t h i n species in w h i c h a p o l y d n a v i r u s h a s b e e n de t ec t ed , it is i m p o r t a n t to k n o w how the v i ruses a r e t r a n s m i t t e d b e t w e e n w a s p g e n e r a t i o n s w i t h sufficient efficiency to e n s u r e t h a t all p r o g e n y a c q u i r e t he v i rus . T h e i ssue of h o w a g iven p o l y d n a v i r u s is m a i n t a i n e d w i th in a w a s p species b e c o m e s d o u b l y i m p o r t a n t in l ight of t he a p p a r e n t species specificity of t h e v i ruses (see Sec­t ion V I I I ) . M a i n t a i n i n g the " c o r r e c t " p o l y d n a v i r u s , t h a t is , t h e v i ru s t h a t a p p e a r s to be specific for the g iven w a s p species , cou ld b e cr i t ica l to t h e r e p r o d u c t i v e success of t he p a r a s i t o i d b e c a u s e n o t all p o l y d n a v i r u s e s a r e equa l ly effective in a l t e r ing t he phys io logy of a g iven l e p i d o p t e r a n h o s t ( V i n ­son , 1977; V i n s o n a n d Stol tz , 1986). I n n a t u r e , l a rva l hos t s c a n b e p a r a ­si t ized by w a s p s of m o r e t h a n o n e species , a n d t h u s e n d o p a r a s i t o i d s p o t e n ­t ial ly cou ld c o m e i n t o con t ac t w i t h t h e v i rus f rom m o r e t h a n o n e w a s p species . Pos tu l a t ed m e c h a n i s m s therefore m u s t a c c o u n t for t he efficiency a n d specificity of t r a n s m i s s i o n .

I n sec t v i ruses typica l ly a r e t r a n s m i t t e d by per os acqu i s i t ion o r b y t r a n s -ovar ia l t r a n s m i s s i o n . Bacu lov i ruses a r e we l l -known e x a m p l e s of insec t v i ruses t r a n s m i t t e d by inges t ion of v i rus- infes ted m a t e r i a l . T r a n s o v a r i a l t r a n s m i s s i o n , a m e c h a n i s m in w h i c h ovar ia l t issues a r e infected, h a s b e e n d e m o n s t r a t e d for b u n y a v i r u s e s (e.g. , L a C r o s s e v i rus ) , flaviviruses (e.g. , d e n g u e v i rus ) , a n d r h a b d o v i r u s e s (e.g. , t h e s i g m a v i rus of Drosophila melanogaster) ( G o n z a l e z -S c a r a n o a n d N a t h a n s o n , 1990; M o n a t h , 1990; Rosen , 1984). E i t h e r of these

Page 214: Parasites and Pathogens of Insects. Parasites

9. Polydnavirus Genome Organization 2 0 9

m e c h a n i s m s a p p e a r e d poss ib le w h e n the s tud ies o n t r a n s m i s s i o n w e r e ini t i ­a t e d . L a r v a l e n d o p a r a s i t o i d s c o n s u m e hos t t i ssue or h e m o l y p h , e i t he r of w h i c h cou ld be infected or c o n t a m i n a t e d w i t h v i rus in jected by the female w a s p p a r e n t d u r i n g ovipos i t ion . A p a r a s i t i z e d hos t c o n t a i n s a fairly s ignif icant a m o u n t of v i ra l D N A ( T h e i l m a n n a n d S u m m e r s , 1986). I t is unc l ea r , however , w h e t h e r t h e v i ra l D N A p r e s e n t in a p a r a s i t i z e d hos t is in a form t h a t w o u l d b e infect ious for t h e d e v e l o p i n g p a r a s i t o i d . T h e species specificity of v i rus ac ­q u i r e d per os cou ld b e e x p l a i n e d b y a r g u i n g t h a t t he w a s p t issues w e r e p e r m i s ­sive for r ep l i ca t ion of on ly t he v i rus typ ica l ly a s soc ia t ed w i t h t h a t w a s p spec ies . ( A l t h o u g h th is a r g u m e n t is v a g u e a n d u l t i m a t e l y unsat is fac tory , it often is i nvoked for lack of a m o r e defini t ive e x p l a n a t i o n d u e to o u r c o m p a r a t i v e l y p o o r u n d e r s t a n d i n g of pe rmis s ivenes s a n d hos t r a n g e in m o s t v i ra l sys tems . ) I n t h e s e c o n d m o d e l ( t r ansova r i a l t r a n s m i s s i o n ) , infect ion of t he egg w o u l d p r o v i d e a r e a d y sou rce of i n o c u l u m t h a t is c o m p a t i b l e w i t h t h e w a s p hos t .

A t h i r d m e c h a n i s m , ver t i ca l t r a n s m i s s i o n t h r o u g h t h e g e r m l i n e a s p rov i ­n c e s , is i m p o r t a n t in t h e biology of m a n y a n i m a l v i ruses s u c h as r e t r o ­v i ruses . T h e cova len t l inkage of t h e v i ra l g e n o m e to hos t ce l lu la r D N A se­q u e n c e s d i s t i ngu i shes p rov i ra l t r a n s m i s s i o n from t r a n s o v a r i a l t r a n s m i s s i o n in w h i c h the v i ra l g e n o m e is e x t r a c h r o m o s o m a l a n d c a n sel f - repl icate u n d e r a p p r o p r i a t e cond i t i ons . N o p r e c e d e n t for p rov i ra l g e r m l i n e t r a n s m i s s i o n of insec t v i ruses ex is ted . A l t h o u g h re t rov i rus l ike pa r t i c l e s c o n t a i n i n g R N A re ­l a t ed to copia h a v e b e e n d e t e c t e d in Drosophila melanogaster, th is gene ra l ly is n o t c o n s i d e r e d a n e x a m p l e of g e r m l i n e t r a n s m i s s i o n of a n insec t v i rus ( H e i n e et al., 1980; S h i b a a n d Sa igo , 1983). T h e pa r t i c l e s a r e non in fec t ious , a n d t h e r e t r o t r a n s p o s o n copia, w h i c h lacks a n env ( enve lope) gene , is gene t ica l ly d i s ­t inc t f rom t r u e r e t rov i ruses (Echa l ie r , 1989).

T h e p h y s i c a l a n d gene t i c d a t a s u p p o r t i n g t h e p r o b a b l e t r a n s m i s s i o n of p o l y d n a v i r u s e s t h r o u g h the g e r m l i n e c o m e f rom t h e i chnov i ruses C s V a n d Hyposoter fiigitivus v i rus (HfV) a n d t h e b racov i rus C m V . V i r i o n s h a v e n o t b e e n d e t e c t e d in m a l e w a s p s o r in n o n o v i d u c t t i ssues of female w a s p s . I t therefore w a s s u r p r i s i n g t h a t each b o d y s e g m e n t , t h a t is, h e a d , t h o r a x , a n d a b d o m e n , of each m a l e o r female C. sonorensis w a s p s a m p l e d c o n t a i n e d low b u t r e p r o d u c i b l e a m o u n t s of CsV-speci f ic D N A ( F l e m i n g a n d S u m m e r s , 1986). S u b s e q u e n t phys i ca l ana lys i s of t h e virus-specif ic D N A in m a l e C. sonorensis w a s p s revea led two differently o r g a n i z e d forms . O n e fract ion w a s iden t i ca l to t he D N A iso la ted f rom v i r ions w h e n a n a l y z e d e i the r in its n a t i v e , u n d i g e s t e d s t a t e o r after d iges t ion w i t h res t r i c t ion e n d o n u c l e a s e s . T h i s ep iso-m a l f ract ion a p p e a r e d to c o n t a i n all t h e s e g m e n t s of t h e v i ra l g e n o m e b u t w a s p r e s e n t in m a l e s o m a t i c t i ssues in s u b s t a n t i a l l y lower a m o u n t s t h a n t h e s e c o n d form.

S o u t h e r n b lo t ana lyse s of d iges ted m a l e w a s p ce l lu la r D N A a n d c o m p a r a ­bly t r e a t e d C s V D N A d e m o n s t r a t e d t h a t t he second , p r e d o m i n a t e form of

Page 215: Parasites and Pathogens of Insects. Parasites

210 Jo-Ann G. W. Fleming and Peter J. Krell

virus-specif ic D N A in w a s p s o m a t i c t issues is cons i s ten t ly d e t e c t a b l e as off-size ( a n o m a l o u s l y s ized) res t r i c t ion f r agmen t s w h e n c o m p a r e d to t h e frag­m e n t s in c o m p a r a b l y d iges ted v i ra l D N A con t ro l s (Fig . 3 , a n d F l e m i n g a n d S u m m e r s , 1986). T h e offsize res t r i c t ion f r a g m e n t s d e t e c t e d in d iges t ed cel lu­l a r D N A a r e r e p r o d u c i b l e w h e n D N A from different i n d i v i d u a l s o r g e n e r a -

Η O1 W

v cf v cf ν c?

Xho I EcoRI Hind III Figure 3 Offsize restriction fragments. Southern blots of cellular DNA from pooled male C. sonorensis wasps or CsV DNA (V) digested with the indicated restriction endonucleases were hybridized with cloned sequences from viral DNAs H, O 1 , or W under stringent conditions. Each lane of male DNA contains one or more offsize restriction fragments not present in the viral DNA control.

Page 216: Parasites and Pathogens of Insects. Parasites

9. Polydnavirus Genome Organization 211

t ions is u sed ( J . F l e m i n g , u n p u b l i s h e d d a t a ) . I d e n t i c a l offsize res t r i c t ion f r a g m e n t s a r e d e t e c t a b l e in t he n o n o v i d u c t s o m a t i c t i ssue ( h e a d a n d t h o r a x ) D N A of C. sonorensis f emale w a s p s . W h e n w a s p D N A is d iges t ed w i t h en ­z y m e s t h a t d o n o t c u t t h e v i ra l supe rhe l i c a l D N A used as a p r o b e , s ingle h i g h - m o l e c u l a r f r agmen t s t h a t exceed t h e size of t h e v i ra l g e n o m i c s e g m e n t u sed a s a p r o b e a r e d e t e c t a b l e in t h e ce l lu la r D N A ( F l e m i n g a n d S u m m e r s , 1986). T h i s is cons i s t en t w i t h resu l t s i n d i c a t i n g t h a t t h e virus-specif ic D N A is a s soc i a t ed w i t h t h e h i g h - m o l e c u l a r - w e i g h t f ract ion of w a s p D N A pur i f ied o n c e s i u m c h l o r i d e - e t h i d i u m b r o m i d e g r a d i e n t s ( F l e m i n g a n d S u m m e r s , 1986). A s ingle , d i sc re te f r a g m e n t on each v i ra l g e n o m i c s e g m e n t t e s ted is cons i s ­t en t ly h o m o l o g o u s to t he offsize res t r i c t ion f r agmen t s d e t e c t e d b y t h a t p r o b e , a n d t h e r e m a i n d e r of each g e n o m i c s e g m e n t a p p e a r s to b e u n a l t e r e d in w a s p ce l lu la r D N A . T h e s e findings sugges t ed t h a t t he v i ra l D N A s a r e i n t e g r a t e d .

C o m p a r i s o n of c loned w a s p D N A re l a t ed to C s V D N A Β a n d c loned e x t r a c h r o m o s o m a l D N A Β (6.7 k b p ) b y de t a i l ed phys i ca l m a p p i n g , r e c i p r o ­cal S o u t h e r n b lo t h y b r i d i z a t i o n , a n d n u c l e o t i d e s e q u e n c e ana lys i s i nd i ca t e s t h a t t h e C s V D N A B-specific s e q u e n c e s in C. sonorensis ce l lu la r D N A a r e co l inea r w i t h t h e e x t r a c h r o m o s o m a l s e q u e n c e s . Re la t ive to t h e e x t r a -c h r o m o s o m a l c i r cu l a r mo lecu l e , t he h o m o l o g o u s ce l lu la r copy is l i nea r i zed a t a s i te w i t h i n t h e f r a g m e n t a s soc ia t ed w i t h t h e offsize res t r i c t ion f r a g m e n t s . R e a r r a n g e m e n t of t h e v i ra l mo lecu l e in s o m a t i c t i ssues c a n b e ru l ed o u t as a n e x p l a n a t i o n for t h e offsize res t r i c t ion f r agmen t s . T h e v i ra l D N A in w a s p ce l lu la r D N A is covalent ly l inked to n o n v i r a l s e q u e n c e s , t h a t is, D N A Β is i n t e g r a t e d in t h e w a s p g e n o m e ( F l e m i n g a n d S u m m e r s , 1990, 1991). All t h e C s V s e g m e n t s t h a t have b e e n e x a m i n e d ( to d a t e , six supe rhe l i ce s o r a p p r o x ­i m a t e l y 2 5 % of t h e C s V g e n o m e ) a lso a r e d e t e c t a b l e as offsize r e s t r i c t ion f r a g m e n t s (Fig . 3 , F l e m i n g a n d S u m m e r s , 1986; J . F l e m i n g , u n p u b l i s h e d d a t a ) . T h e en t i r e C s V g e n o m e t h u s a p p e a r s to b e i n t e g r a t e d , sugges t i ng t h a t C s V m a y b e t h e first d o c u m e n t e d e x a m p l e of a n i n t e g r a t e d D N A v i ru s in insec ts ( F l e m i n g a n d S u m m e r s , 1990, 1991). Phys ica l m a p p i n g a n d S o u t h e r n b lo t d a t a a lso h a v e d e m o n s t r a t e d t h a t HfV-specif ic D N A is i n t e g r a t e d in t h e ce l lu la r D N A of m a l e H.fiigitivus i c h n e u m o n i d w a s p s ( X u a n d Sto l tz , 1991).

T h e s e q u e n c e s a b u t t i n g t h e j u n c t i o n s of t h e v i ra l a n d w a s p s e q u e n c e s a r e s t r u c t u r a l l y c o m p l e x a n d sugges t t h a t t h e i n t e g r a t e d C s V D N A is n o t closely r e l a t e d to t h e c h a r a c t e r i z e d classes of t r a n s p o s a b l e e l e m e n t s . T h e i n t e g r a t e d copy of D N A Β t e r m i n a t e s in s h o r t (59 n t ) imper fec t d i r ec t r e p e a t s , b u t a s ingle copy of t h e t e r m i n a l r e p e a t s e q u e n c e is found in t h e c i rcu la r , e x t r a ­c h r o m o s o m a l D N A Β mo lecu l e i so la ted f rom v i r ions (Fig . 4 ) . S e q u e n c e s n e a r each t e r m i n u s of i n t e g r a t e d D N A Β form imper fec t i nve r t ed r e p e a t s w i t h s e q u e n c e s in t h e 5 4 0 - b p r e p e a t e l e m e n t t h a t is l oca ted cen t r a l ly o n D N A Β ( F l e m i n g a n d S u m m e r s , 1991). Base p a i r i n g b e t w e e n t h e t e r m i n a l a n d in te r ­n a l s e q u e n c e s t h a t form these i nve r t ed r e p e a t s a r e h y p o t h e s i z e d to r e su l t in a

Page 217: Parasites and Pathogens of Insects. Parasites

212 Jo-Ann G. W. Fleming and Peter J. Krell

Left Jen Right Jen

Extrachromosomal DNA Β

Figure 4 Integrated and extrachromosomal CsV DNA B. The integrated copy of CsV DNA Β (wide bars) flanked by wasp sequences (narrow speckled bars) is shown schematically at the top. The terminal imperfect direct repeats ( D R R or D R L , open or solid squares at the right or left junction, respectively) are immediately flanked by short sequences that are related to each other but contain more mismatches than the D R R or D R L sequences (rectangles with heavy or narrow diagonal lines that are located immediately to the left of D R R or D R L in the figure). Two sets of sequences close to the terminal repeats form imperfect inverted repeats (sequence pairs marked by short or long arrows with one or two asterisks, respectively) with sequences near the 5' and 3 ' termini of the single 540-bp repeat element (small open circle) that is located centrally in integrated CsV DNA B. The inverted repeats have been hypothe­sized to contribute to the stabilization of a conformation that facilitates recombina­tion between the terminal direct repeats during replication, shown schematically in the middle figure (Fleming and Summers, 1991). The episomal form of DNA Β isolated from purified CsV virions is shown schematically at the bottom and contains a single copy of the direct repeat sequence. Different (cloned) molecules of extra­chromosomal DNA Β contain either D R R or D R L . Other viral sequences immediately adjacent to the direct repeat sequences are identical in both episomal DNA Β sub­classes.

Page 218: Parasites and Pathogens of Insects. Parasites

9. Polydnavirus Genome Organization 213

c o n f o r m a t i o n in w h i c h t h e e n d s of t he virus-specif ic s e q u e n c e s a r e b r o u g h t i n to p rox imi ty . R e c o m b i n a t i o n b e t w e e n t h e d i r ec t r e p e a t s t h e n cou ld o c c u r d u r i n g r ep l i ca t ion ( F l e m i n g a n d S u m m e r s , 1990, 1991).

T h e gene t i c ana ly se s of t he b racov i rus C m V s u p p o r t t h e h y p o t h e s i s of t r a n s m i s s i o n of p o l y d n a v i r u s e s t h r o u g h t h e w a s p s ' g e r m l i n e , b u t t h e m e c h a ­n i s m ut i l ized by b racov i ruses p r e s e n t l y is unc lea r . T h e in i t ia l a n a l y s e s took a d v a n t a g e of t he p o l y m o r p h i c g e n o m i c s e g m e n t s p r e s e n t in g e o g r a p h i c a l l y i so la ted p o p u l a t i o n s of C. melanoscela. A g e n o m i c s e g m e n t d e s i g n a t e d D is p r e s e n t in t h e v i ru s pa r t i c l e s in t h e C o n n e c t i c u t s t r a i n b u t is a b s e n t f rom t h e v i r ions in t h e ( T r u r o ) N o v a Sco t ia s t r a in . W h e n C o n n e c t i c u t m a l e s w e r e m a t e d w i t h N o v a Scot ia females , D N A D w a s found in t h e D N A iso la ted f rom v i r ions in F l females (Stol tz et aL, 1986). T h e s e d a t a i n d i c a t e t h a t p o l y d n a v i r a l D N A c a n be t r a n s m i t t e d in w a s p s p e r m . W h a t form of C m V D N A is t r a n s m i t t e d in s p e r m , however , is u n c l e a r f rom t h e a c c o m p a n y i n g p h y s i c a l ana ly se s . C m V p r o b e s failed to h y b r i d i z e w i t h t h e C. melanoscela m a l e w a s p c h r o m o s o m a l D N A , a n d on ly e p i s o m a l forms of CmV-spec i f i c D N A w e r e d e t e c t a b l e in m a l e w a s p D N A (Stol tz et aL, 1986). T h e s e d a t a a r e i ncons i s t en t w i t h t h e i n t e g r a t i o n of t h e b racov i rus D N A a n d sugges t ed t h a t t h e v i ra l g e n o m e cou ld be t r a n s m i t t e d as e p i s o m a l D N A s . H o w e v e r , in l a t e r gene t i c s tud ie s of t he s a m e two C. melanoscela p o p u l a t i o n s , t h r e e H i n d i 11 f r a g m e n t s t h a t d i s t i ngu i sh t h e v i ruses in t h e w a s p p o p u l a t i o n s s e g r e g a t e d in r a t io s cons i s t en t w i t h M e n d e l i a n i n h e r i t a n c e , sugges t i ng t h a t t h e v i ra l D N A s a r e i n h e r i t e d a s p a r t of t h e w a s p c h r o m o s o m a l g e n o m e (Stol tz , 1990). F u r ­t h e r phys i ca l ana lyse s a r e neces sa ry to resolve t he d i s c r e p a n c y b e t w e e n t h e p h y s i c a l a n d gene t i c d a t a f rom t h e b r acov i ru s sys t em.

T h e M e n d e l i a n seg rega t ion ra t ios obse rved in t he b r acov i ru s s y s t e m a r e s t r o n g ev idence a g a i n s t e i the r per os o r t r ansova r i a l t r a n s m i s s i o n . B o t h ep i so ­m a l a n d i n t e g r a t e d p o l y d n a v i r a l D N A s a r e p r e s e n t in (C. sonorensis) w a s p s o m a t i c t i ssues ( F l e m i n g a n d S u m m e r s , 1986), b u t h o w i m p o r t a n t t h e ep i -s o m e s a r e for v i rus t r a n s m i s s i o n is q u e s t i o n a b l e in v iew of t h e M e n d e l i a n i n h e r i t a n c e p a t t e r n s t h a t h a v e b e e n obse rved for C m V . ( T h e a l t e r n a t i v e i n t e r p r e t a t i o n t h a t t h e c i r cu l a r D N A s in m a l e s r e su l t f rom low levels of v i ru s r ep l i ca t i on f rom t h e i n t e g r a t e d v i ra l D N A t e m p l a t e s is of c o n s i d e r a b l e in te r ­est f rom t h e s t a n d p o i n t of g e n e r e g u l a t i o n b e c a u s e s ignif icant levels of v i ru s r ep l i ca t i on a r e r e s t r i c t ed to t h e female r e p r o d u c t i v e t rac t . ) I n h e r i t a n c e as ( i n t e g r a t e d ) e n d o g e n o u s p rov i ruses a p p e a r s to b e t he m o s t p r o b a b l e m e c h a ­n i s m for t h e t r a n s m i s s i o n of p o l y d n a v i r u s e s of i c h n e u m o n i d s , for e x a m p l e , C s V a n d HfV. A d d i t i o n a l work , howeve r m u s t b e d o n e to d e t e r m i n e m o r e c lear ly w h a t m o l e c u l a r m e c h a n i s m is u sed by b racov i ruses like C m V .

T h e gene t i c r e l a t i o n s h i p of t h e p a r a s i t o i d a n d a n e n d o g e n o u s p o l y d ­n a v i r u s is a close o n e . I t therefore is r e a s o n a b l e to u se p o l y d n a v i r u s D N A s as gene t i c m a r k e r s for in t raspeci f ic gene t i c ana lyses ( rev iewed in F l e m i n g ,

Page 219: Parasites and Pathogens of Insects. Parasites

214 Jo-Ann G. W. Fleming and Peter J. Krell

1991). E i t h e r p o l y m o r p h i c g e n o m i c s e g m e n t s o r R F L P s in t h e ex t r a ­c h r o m o s o m a l D N A in v i rus from females c a n b e u sed . T h e p r e d i c t e d h i g h e r f requency of R F L P s a n d the d e c r e a s e d n u m b e r of ar t i facts d u e to D N A topo logy in d iges ted D N A sugges t t h a t R F L P s will be m o r e useful. T h i s s imp le a p p r o a c h is l imi ted by the fact t h a t v i rus is p r e s e n t in s ignif icant a m o u n t s only in t he female wasp . T h e i n t e g r a t e d v i ra l D N A s , however , a p p e a r to be s t ab ly i n t e g r a t e d in t h e c h r o m o s o m a l D N A of b o t h m a l e a n d female w a s p s a n d d o no t a p p e a r to be repe t i t ive , t h a t is, each v i ra l D N A a p p e a r s to exist a t a s ingle locus o r a t on ly a few loci. T h u s , t he i n t e g r a t e d v i ra l D N A s p r o b a b l y will u l t ima t e ly p rove to be m o r e i m p o r t a n t in t h e gene t i c ana lys i s of p a r a s i t o i d s , b u t m o r e sensi t ive a n d soph i s t i c a t ed m e t h o d s , for e x a m p l e , p o l y m e r a s e c h a i n reac t ion t echno logy a n d p u l s e d field e lec t ro­phores i s , ( P C R ) , will be r e q u i r e d .

T h e r ep l i ca t ion s t r a t egy of p o l y d n a v i r u s e s is n o t k n o w n , a n d a n u m b e r of m o d e l s c a n be h y p o t h e s i z e d . T w o m o d e l s t h a t exp la in m u l t i p a r t i t e g e n o m e s in s o m e o t h e r sys t ems p r o b a b l y c a n be d i smis sed for p o l y d n a v i r u s e s b e c a u s e n o ev idence for a l a rge " m a s t e r m o l e c u l e " o r a t a n d e m a r r a y of severa l different g e n o m i c s e g m e n t s h a s b e e n found in t he s tud ies of e i the r t he ex t r a ­c h r o m o s o m a l o r i n t e g r a t e d v i ra l D N A s (Bl issard et al., 1986b; F l e m i n g a n d S u m m e r s , 1991). T h e i n t e g r a t e d C s V D N A B , for e x a m p l e , is flanked b y w a s p s e q u e n c e s , a n d the m a p p i n g d a t a for t he o t h e r v i ra l D N A s sugges t t h a t t h e v i ra l g e n o m i c s e g m e n t s exist a t different, n o n c o n t i g u o u s loci. U n l i k e p l a n t m i t o c h o n d r i a l g e n o m e s , t h e i n d i v i d u a l s e g m e n t s therefore a r e unl ike ly to resu l t f rom the r e c o m b i n a t i o n b e t w e e n r e p e a t e d s e q u e n c e s o n a l a rge c i r cu l a r mo lecu l e c o m p o s e d of severa l s e g m e n t s ( P a l m e r a n d Sh ie lds , 1984). T h e d a t a from the C s V sys t em also sugges t t h a t t h e supe rhe l i ces a r e un l ike ly to be syn thes i zed as p a r t of a long , l inea r c o n c a t a m e r t h a t s u b s e q u e n t l y is c leaved to yield different i n d i v i d u a l g e n o m i c s e g m e n t s .

If, as s eems likely, t he i n t e g r a t e d v i ra l D N A s a r e u sed as t e m p l a t e s , p o s t u ­l a t ed m e c h a n i s m s m u s t a c c o u n t for b o t h t he h igh level of ampl i f i ca t ion of t h e D N A s a n d the c h a n g e from a l i nea r mo lecu l e to a c i r cu l a r o n e . I t r e m a i n s to b e d e t e r m i n e d w h e t h e r t he v i ra l D N A s a r e excised f rom t h e c h r o m o s o m e a n d w h e t h e r t h e v i ra l D N A s a r e ampl i f ied as e x t r a c h r o m o s o m a l e l e m e n t s . T h e s ingle copy of t he t e r m i n a l d i r ec t r e p e a t s e q u e n c e in C s V e x t r a c h r o m o s o m a l D N A Β sugges t s t h a t t he two d i rec t r e p e a t s a t t h e e n d s of t h e l inea r ( in te ­g r a t e d ) copy r e c o m b i n e d u r i n g rep l i ca t ion , r e su l t ing in a c i r cu l a r m o l e c u l e (Fig . 4 a n d F l e m i n g a n d S u m m e r s , 1991). R e c o m b i n a t i o n b e t w e e n d i rec t ly r e p e a t e d s e q u e n c e s can resu l t in excis ion of t he i n t e r v e n i n g D N A t h a t w o u l d b e p r e s e n t in t he r e s u l t a n t c i r cu la r molecu le , as h a s b e e n d e m o n s t r a t e d u n a m b i g u o u s l y in in vitro s tud ies of a m o u s e r e t r o t r a n s p o s o n ( E d e l m a n n et al., 1989). Al terna t ive ly , it is a lso poss ib le t h a t t he v i ra l s e q u e n c e s a r e s y n t h e ­sized b y a copy choice o r o t h e r m e c h a n i s m , a n d t e r m i n i of t he e x t r a -

Page 220: Parasites and Pathogens of Insects. Parasites

9. Polydnavirus Genome Organization 215

c h r o m o s o m a l , l i nea r p r o d u c t r e c o m b i n e to fo rm a c i r cu l a r D N A w i t h o u t t h e excis ion of t he g e n o m i c s e q u e n c e s . A l t h o u g h re t rov i rus D N A s g e n e r a t e d b y rever se t r a n s c r i p t i o n p r i o r to i n t e g r a t i o n in re t rov i rus - infec ted cells a r e n o t s t r ic t ly a n a l o g o u s to p o l y d n a v i r a l D N A s , t h e circles w i t h a s ingle long t e r m i ­n a l r e p e a t ( L T R ) sugges t t h a t h o m o l o g o u s r e c o m b i n a t i o n b e t w e e n t h e t e r m i ­ni of l i nea r D N A c a n resu l t in a c i r cu l a r mo lecu l e w i t h a s ingle copy of t h e d i r ec t r e p e a t ( V a r m u s a n d B r o w n , 1989).

A b i p h a s i c r ep l i ca t ion s t r a t egy a lso is poss ib le a n d m i g h t b e t t e r e x p l a i n t h e l o g a r i t h m i c i nc r ea se of v i ra l D N A in n e w l y eclosed a d u l t s . V i r a l r ep l i ca ­t ion beg ins in l a te p h a r a t e females b u t c o n t i n u e s in t h e a d u l t female w a s p for severa l d a y s after eclosion ( N o r t o n a n d V i n s o n , 1983; F l e m i n g a n d S u m ­m e r s , 1986; T h e i l m a n n a n d S u m m e r s , 1986). T h e in i t ia l even t m a y g e n e r a t e c i r cu l a r mo lecu le s f rom t h e i n t e g r a t e d v i ra l D N A s by o n e of t h e m e c h a n i s m s o u t l i n e d ear l ier . T h e c i r cu la r D N A s g e n e r a t e d in t he first p h a s e m i g h t t h e n act as t e m p l a t e s for D N A syn thes i s in t h e second p h a s e . C o n t i n u e d a m p l i ­fication of t h e e p i s o m a l D N A s b y a ro l l ing circle o r o t h e r m e c h a n i s m cou ld a c c o u n t for t h e r a p i d inc rease in t h e v i ra l supe rhe l i ca l D N A s in newly eclosed a d u l t females . Different e p i s o m e s p r e s u m a b l y w o u l d b e t e m p l a t e s for t h e syn thes i s of t h e different D N A g e n o m i c s e g m e n t s .

W h a t e v e r r ep l i ca t ion m e c h a n i s m is used , t h e res t r i c t ion of h i g h levels of r ep l i ca t i on to la te p h a r a t e a n d a d u l t female w a s p s sugges t s t h a t r ep l i ca t i on is d e v e l o p m e n t a l l y r e g u l a t e d ( N o r t o n a n d V i n s o n , 1983). A l t e r e d h o r m o n a l s t a t u s in t h e p u p a t i n g female is a n o b v i o u s poss ib le m e c h a n i s m of r e g u l a t i n g t h e w a s p a n d / o r v i ra l genes involved in v i rus r ep l i ca t ion . E c d y s t e r o i d s h a v e b e e n r e p o r t e d to inf luence t h e level of C s V rep l i ca t ion ( W e b b a n d S u m m e r s , 1990a, 1993). W h a t o t h e r (wasp) hos t factors a r e involved a n d w h e t h e r r ep l i ca t i on in t h e p u p a l a n d a d u l t female is s imi la r ly r e g u l a t e d a r e n o t k n o w n .

VIII. Polydnavirus Evolution

A. Gene Divergence

T h e m o s t o b v i o u s fea tures of p o l y d n a v i r u s g e n o m e s , t h e s e g m e n t a t i o n a n d l a rge size, a r e of i n t e r e s t f rom a n e v o l u t i o n a r y p o i n t of view. V i r u s e s h a v e evolved severa l s t r a t eg ies ( a l t e rna t i ve sp l ic ing , f rameshi f t ing , etc.) to in­c rease t h e c o d i n g capac i ty of the i r g e n o m e s w i t h o u t s ignif icant c o n c o m i t a n t i nc reases in size. T h e a g g r e g a t e g e n o m e sizes of p o l y d n a v i r u s e s sugges t t h a t t hey a r e a m o n g t h e v i ruses (e .g. , bacu lov i ruses , poxv i ru se s , h e r p e s v i r u s e s , e tc . ) w i t h t he l a rges t g e n o m e s ( M u r p h y a n d K i n g s b u r y , 1990). T h e l a rge g e n o m e s p a r t l y m a y reflect t h e s t r u c t u r a l c o m p l e x i t y of t h e v i r ions [e.g. , 25

Page 221: Parasites and Pathogens of Insects. Parasites

216 Jo-Ann G. W. Fleming and Peter J. Krell

p o l y p e p t i d e s in C s V (Kre l l et al., 1982)] a n d t h e m u l t i p l e func t ions t h a t p o l y d n a v i r u s e s m a y p l a y in t he w a s p a n d in t h e o n e or m o r e l e p i d o p t e r a n hos t s of t he w a s p . T h i s e x p l a n a t i o n , however , m a y b e insufficient b e c a u s e b r o a d hos t r a n g e s d o no t necessar i ly r e q u i r e g e n o m e s as l a rge as t hose of p o l y d n a v i r u s e s . F lav iv i ruses , for e x a m p l e , have b o t h i n v e r t e b r a t e a n d m a m ­m a l i a n hos t s b u t have R N A g e n o m e s of a p p r o x i m a t e l y 10 k b ( M u r p h y a n d K i n g s b u r y , 1990).

T h e m u l t i p a r t i t e n a t u r e of t he g e n o m e m a y have r e d u c e d the se lec t ion p r e s s u r e for sma l l g e n o m e size. A l t h o u g h the a g g r e g a t e g e n o m e s a r e l a rge , each s e g m e n t typica l ly is less t h a n 1 5 - 2 0 k b p a n d cou ld p r e s u m a b l y a c c o m ­m o d a t e m u l t i p l e inse r t ions w i t h o u t adverse ly affecting t h e efficiency of rep l i ­ca t ion . T h e i n t e g r a t i o n of t he p o l y d n a v i r a l D N A s a lso m a y have r e d u c e d the select ion for sma l l g e n o m e size b e c a u s e t he v i ra l D N A w o u l d be p r o p a g a t e d as p a r t of t he c h r o m o s o m e s d u r i n g p a r t of t he v i ra l life cycle.

T h e n u m b e r of m u l t i g e n e families a n d the d ive rgence w i t h i n t h e v i ra l gene families a r e no tewor thy . V i r a l gene families a r e n o t u n i q u e to po lyd ­nav i ruses a n d have b e e n r e p o r t e d for Afr ican swine fever a n d m y x o m a v i ru s ( A l m e n d r a l et al., 1990; G o n z a l e z et al., 1990; U p t o n et al., 1990). M u l t i g e n e famil ies , however , a r e n o t a typ ica l fea ture of v i ra l g e n o m e s , a n d t h e p r e s e n c e of m o r e t h a n two families in a g iven v i rus , t h a t is, CsV , is u n u s u a l . T h e i n t e g r a t i o n of p o l y d n a v i r u s e s m a y have inf luenced b o t h t h e n u m b e r of gene families a n d the a p p a r e n t n u m b e r of m e m b e r s w i t h i n p a r t i c u l a r ( C s V ) m u l ­t igene famil ies . O h t a (1988b) sugges t s t h a t evo lu t ion t h r o u g h gene d u p l i c a ­t ion occu r s m o r e r a p i d l y d u r i n g i n t e r c h r o m o s o m a l u n e q u a l c ross ing-over d u r i n g sexua l r e p r o d u c t i o n .

V i r a l g e n e families c a n reflect t he acqu i s i t ion of hos t s e q u e n c e s (e.g. , t he s e rp ins of m y x o m a v i rus) o r t he d u p l i c a t i o n of a v i ra l g e n e w i t h n o d e t e c t a b l e h o m o l o g y wi th a hos t gene ( U p t o n et al., 1990). W e s t e r n b lo t d a t a sugges t t h a t s o m e C s V enve lope p r o t e i n s a n d C. sonorensis v e n o m g l a n d p r o t e i n s s h a r e c o m m o n ep i topes ( W e b b a n d S u m m e r s , 1990b) . T o w h a t ex t en t t h e c ross- reac t ive p ro t e in s a r e evo lu t ionar i ly r e l a t ed is u n c l e a r b e c a u s e n e i t h e r t he w a s p genes for t he v e n o m s n o r t he v i ra l genes for t h e c ross - reac t ive enve lope p r o t e i n s have b e e n ident i f ied. A m i n o acid o r n u c l e o t i d e s e q u e n c e d a t a shou ld h e l p to clarify the evo lu t i ona ry r e l a t i o n s h i p of t he genes , b u t t h e serological c ross- reac t iv i ty of t h e p ro t e in s is a t least cons i s t en t w i t h t h e poss i ­bi l i ty t h a t C s V a c q u i r e d a n a n c e s t r a l v e n o m gene(s ) d u r i n g t h e coevo lu t ion of t h e w a s p a n d v i rus . T h e poss ib le select ive a d v a n t a g e of a c q u i r i n g w a s p genes w i th biological act ivi ty in t he l e p i d o p t e r a n hos t ( s ) is o b v i o u s .

D u p l i c a t i o n of (viral) genes no t de r ived from t h e w a s p g e n o m e a lso cou ld p rov ide a select ive a d v a n t a g e to t he v i rus by i nc rea s ing t h e copy n u m b e r of a g e n e o r a func t iona l d o m a i n w i th in a gene . T h e t a n d e m l y r e p e a t e d 5 4 0 - b p e l e m e n t s p r o b a b l y r e su l t ed from u n e q u a l c ross ing-over a n d s ignif icant se-

Page 222: Parasites and Pathogens of Insects. Parasites

9. Polydnavirus Genome Organization 217

q u e n c e d i v e r g e n c e a m o n g the e l e m e n t s . P u b l i s h e d d o t p lo t a n a l y s e s sugges t t h a t c e r t a i n s e q u e n c e s w i t h i n t h e t a n d e m l y r e p e a t e d 5 4 0 - b p e l e m e n t s o n C s V D N A Η a r e m o r e h igh ly conse rved t h a n t h e o t h e r s e q u e n c e s in t hose e l e m e n t s ( T h e i l m a n n a n d S u m m e r s , 1987). W h e t h e r t h e m o r e h igh ly r e l a t e d s e q u e n c e s w i t h i n t h e D N A Η 5 4 0 - b p r e p e a t s r e p r e s e n t func t iona l d o m a i n s p r e s e n t l y is unc lea r .

G e n e d u p l i c a t i o n c a n b e ind i rec t ly i m p o r t a n t to a n o r g a n i s m b e c a u s e t h e ex i s tence of m u l t i p l e copies of a g e n e p e r m i t s m u t a t i o n s to a c c u m u l a t e in o n e o r m o r e copies of t h e gene w i t h o u t d e t r i m e n t to t he o r g a n i s m (Li , 1983; O h t a , 1988a) . Al te rna t ive ly , t h e d i v e r g e n c e of r e l a t ed genes c a n h e l p to refine t h e phys io logy of a s y s t e m b y e n c o d i n g v a r i a n t p r o t e i n s w i t h s l ight ly m o d ­ified func t ions o r by c o d i n g for r e l a t ed p e p t i d e s t h a t form m u l t i m e r i c p r o ­te ins t h a t a r e func t iona l ly s u p e r i o r to t h e m o n o m e r s (Li , 1983). T h e t h r e e s imi l a r r eg ions in t h e p r e d i c t e d a m i n o acid s e q u e n c e s for t h e 1.0- a n d 1.6-kb m R N A s sugges t t h a t t h e p r o t e i n s h a v e s imi la r , b u t n o t necessa r i ly i den t i ca l , b io logica l ac t iv i t ies . W h e t h e r a n y r e l a t ed C s V genes e n c o d e s u b u n i t s of m u l t i m e r i c p r o t e i n s c a n n o t be a d d r e s s e d a t t h e p r e s e n t t i m e b e c a u s e l i t t le is k n o w n a b o u t t h e phys i ca l a n d func t iona l cha rac te r i s t i c s of t he p r o t e i n p r o d ­uc t s of t h e r e l a t e d genes o r t he i n t e r ac t i on of t h e p r o t e i n s w h e n they a r e co-exp re s sed in cells of t he w a s p o r p a r a s i t i z e d hos t .

T h e level of d i v e r g e n c e a m o n g m e m b e r s of s o m e C s V g e n e famil ies s t u d ­ied to d a t e a p p e a r s to b e fairly h i g h c o m p a r e d to t h e re la t ive h o m o g e n e i t y w i t h i n g e n e famil ies s u c h as t he Bombyx cho r ion genes ( X i o n g et al., 1988; H i b n e r et al., 1991). B e c a u s e t h e 5 4 0 - b p r e p e a t e l e m e n t s e q u e n c e s w e r e in i ­t ial ly ident i f ied b y S o u t h e r n b lo t h y b r i d i z a t i o n , a m i n i m u m level of 6 0 - 7 0 % s imi la r i ty cou ld b e p r e d i c t e d f rom t h e h y b r i d i z a t i o n s t r i ngency c o n d i t i o n s t h a t w e r e u s e d . I t is u n c l e a r w h y t h e level of v a r i a t i o n a m o n g t h e m e m b e r s is so un i fo rm . T h e e l e m e n t s o n different g e n o m i c s e g m e n t s a r e a p p r o x i m a t e l y 6 0 - 7 0 % s imi l a r to o n e a n o t h e r ( T h e i l m a n n a n d S u m m e r s , 1987). A d j a c e n t e l e m e n t s in a t a n d e m a r r a y m i g h t b e e x p e c t e d to b e m o r e h igh ly r e l a t ed to o n e a n o t h e r t h a n t h e m o r e d i s t a l e l e m e n t s , b u t t he e l e m e n t s t h a t a r e t a n ­d e m l y a r r a y e d o n a g iven g e n o m i c s e g m e n t a lso a r e on ly a p p r o x i m a t e l y 60— 7 0 % s imi l a r (or less in a few cases) . T h e obse rved d ive rgence c a n b e in te r ­p r e t e d a s a n i n d i c a t i o n t h a t s t r o n g se lec t ion p r e s s u r e for v a r i a n t genes ex­is ted p r i o r to u n e q u a l cross ing-over . As n o t e d ear l ier , sho r t s e q u e n c e s w i t h i n m o s t of t h e e l e m e n t s on C s V D N A Η a p p e a r to b e s imi la r . T h e p a t t e r n s c a n b e a l t e rna t ive ly i n t e r p r e t e d as sugges t i ng t h a t t h e c h a n g e s o u t s i d e of t hese s h o r t r eg ions of s imi la r i ty w e r e select ively n e u t r a l whi le these conse rved reg ions w e r e u n d e r pos i t ive se lec t ion a n d d ive rged less. K r e l l (1991a) h a s p r o p o s e d t h a t t h e 5 4 0 - b p r e p e a t e l e m e n t s r e p r e s e n t r e m n a n t s of d u p l i c a t e d b u t n o n e s s e n t i a l p s e u d o g e n e s t h a t a r e select ively n e u t r a l a n d h e n c e w e r e n o t e l i m i n a t e d d u r i n g v i ra l r ep l i ca t ion . A less e x t r e m e i n t e r p r e t a t i o n is t h a t o n e

Page 223: Parasites and Pathogens of Insects. Parasites

218 Jo-Ann G. W. Fleming and Peter J. Krell

or m o r e p s e u d o g e n e s m a y exist in this o r o t h e r p o l y d n a v i r u s m u l t i g e n e families in a d d i t i o n to func t iona l genes , as typica l ly occu r s in o t h e r e u k a r y o -tic g e n e families (Li , 1983). W h i c h of t h e four e x p l a n a t i o n s ap p l i e s to t h e 5 4 0 - b p r e p e a t e l e m e n t g e n e family c a n n o t b e e v a l u a t e d n o w b e c a u s e it is n o t k n o w n w h e t h e r these s e q u e n c e s c a n b e t r a n s l a t e d o r w h a t b io logica l ac t iv i ty t h e p r o d u c t s have . However , inves t iga to rs of p o l y d n a v i r u s g e n o m i c c o m p l e x ­ity a n d g e n e families in t h e fu ture shou ld cons ide r t he poss ib i l i ty t h a t func­t iona l a n d non func t i ona l r e l a t ed s e q u e n c e s c a n coexis t in a g e n o m e .

B. Species Specificity

Po lydnav i ruses genera l ly a r e cons ide red to be species specific w i t h r e spec t to t h e w a s p hos t in w h i c h they rep l i ca te . A given p o l y d n a v i r u s " s p e c i e s , " as j u d g e d by its D N A e l ec t rophore t i c profile, c a n b e r e p r o d u c i b l y i so la ted f rom a g iven w a s p species . T h e s imi lar i t ies in t he e l ec t ropho re t i c profiles of u n ­d iges ted D N A s from i n d i v i d u a l Hyposoter lymantriae females in a s ingle p o p u ­la t ion o u t w e i g h e d the obse rved differences (Stol tz a n d X u , 1990). T h e over­all s imi la r i ty of t h e e l ec t rophore t i c profiles of t he u n d i g e s t e d g e n o m i c D N A s of i n d i v i d u a l females from geog raph i ca l l y i so la ted p o p u l a t i o n s of C. melanoscela a l so is cons i s t en t w i t h th is conc lus ion , even t h o u g h s o m e poly­m o r p h i c s e g m e n t s were identif ied (Stol tz et al., 1986). Converse ly , t h e v i ruses from different w a s p species c a n b e d i s t i ngu i shed f rom o n e a n o t h e r b y the i r D N A profiles a n d by the i r b iological act ivi t ies in different l e p i d o p t e r a n spe ­cies. I n sp i t e of t he p r o b l e m s as soc ia t ed w i t h these c r i t e r ia , t h e i n t e r p r e t a t i o n t h a t t he v i ruses of different w a s p species a r e themse lves d i s t i nc t species a p p e a r s to b e val id for t he p o l y d n a v i r u s e s t h a t have b e e n s t u d i e d so far.

T h e a p p a r e n t species specificity of t he v i ruses a n d t h e m u t u a l i s t i c i n t e r d e ­p e n d e n c e of w a s p a n d p o l y d n a v i r u s for successful r e p r o d u c t i o n a n d su rv iva l sugges t t h a t t h e w a s p a n d v i rus m a y have coevolved a l o n g pa ra l l e l p a t h s . I n t e g r a t i o n a n d g e r m l i n e t r a n s m i s s i o n of t he v i ruses a r e n o t neces sa ry for t h e p o s t u l a t e d pa ra l l e l coevolu t ion to have o c c u r r e d . Howeve r , t he a p p a r e n t l y d u a l life cycle of t he v i ruses as a l t e rna t e ly e x t r a c h r o m o s o m a l ( a n d ex t race l lu ­lar) v i r ions a n d e n d o g e n e o u s p rov i ruses p rov ides a n efficient m e c h a n i s m for se lec t ing a n d m a i n t a i n i n g v i ra l v a r i a n t s t h a t resu l t in i m p r o v e d su rv iva l of w a s p progeny . Coevo lu t i on of w a s p a n d v i rus sugges t s t h a t p o l y d n a v i r u s e s from p a r a s i t o i d species t h a t a r e phy logene t i ca l ly r e l a t ed m a y b e m o r e r e l a t e d to each o t h e r t h a n v i ruses from less closely r e l a t ed w a s p s . Hyposoterfiigitivus v i rus g e n o m i c D N A h y b r i d i z e d w i t h v i ra l D N A s of six Hyposoter o r Diadegma species b u t n o t w i t h t h e v i ra l D N A s of Campoletis, Campoplex, o r Glypta species (Kre l l , 1991a) . Stol tz a n d X u (1990) a lso p r e s e n t S o u t h e r n b lo t d a t a sugges t ­ing t h a t v i ra l D N A s from severa l Hyposoter species a r e r e l a t ed . T h e s e d a t a a n d the l imi ted ava i l ab le serological c o m p a r i s o n s of p o l y d n a v i r u s e s sugges t

Page 224: Parasites and Pathogens of Insects. Parasites

9. Polydnavirus Genome Organization 219

t h a t v i ruses of c o n g e n e r i c w a s p species o r species in m o r e closely r e l a t e d g e n e r a a r e m o r e h igh ly r e l a t e d t h a n v i ruses f rom m o r e d i s t a n t l y r e l a t e d w a s p s (Cook a n d Stol tz , 1983).

W h i c h p o l y d n a v i r u s e s r e p r e s e n t d i s t i nc t v i ra l species as o p p o s e d to p a -t h o v a r s o r b i o t y p e s of a s ingle v i ru s a n d h o w species specific p o l y d n a v i r u s e s a r e w i t h r e spec t to t h e w a s p will b e c o m e c lea re r as m o r e d e t a i l e d m o l e c u l a r d a t a b e c o m e ava i l ab le . W h e t h e r t h e va r ious p o l y d n a v i r u s e s h a v e d ive rged a t t h e s a m e r a t e s as t h e w a s p species w i t h i n a g e n u s (or o t h e r t a x o n ) is n o t c lear . F i r s t , e i the r t h e v i ru s o r t h e w a s p m a y b e u n d e r s t r o n g e r se lec t ion t h a n t h e o t h e r s y m b i o n t . Selec t ion for v i ra l v a r i a n t s w o u l d n o t necessa r i ly r e su l t in t h e se lec t ion of w a s p v a r i a n t s , a n d vice ve r sa . S e c o n d , t h e inf luence of t h e l e p i d o p t e r a n h o s t a s a select ive force a lso m u s t b e c o n s i d e r e d w h e n m a k i n g p h y l o g e n e t i c c o m p a r i s o n s of t h e w a s p s a n d t h e v i ruses . W a s p s t h a t p a r a s i t i z e t h e s a m e h o s t o r closely r e l a t ed hos t s p r e s u m a b l y m u s t o v e r c o m e t h e s a m e o r s i m i l a r h o s t defense m e c h a n i s m s . M o r e d i s t a n t l y r e l a t e d hos t s m i g h t b e e x p e c t e d to exer t different se lect ion p r e s s u r e s o n t h e w a s p . B e c a u s e v i ra l genes a p p e a r to b e involved in t h e a b r o g a t i o n of hos t i m m u n i t y , v i ruses of r e l a t ed w a s p s t h a t p a r a s i t i z e t h e s a m e o r r e l a t e d l e p i d o p t e r a n hos t s m a y b e m o r e s imi l a r t h a n v i ruses f rom r e l a t e d w a s p s t h a t have b e c o m e a d a p t e d to m o r e d i s t a n t l y r e l a t ed hos t s .

H o w r e l a t e d two v i ruses (or wasps ) a p p e a r to b e c a n d e p e n d o n w h a t genes a r e s t u d i e d . N o t all genes w i t h i n t h e g e n o m e of e i t he r t h e v i ru s o r t h e w a s p w o u l d b e e x p e c t e d to evolve a t t h e s a m e r a t e . V i r a l genes involved in a n essen t ia l func t ion s u c h as v i ra l D N A syn thes i s m i g h t c h a n g e m o r e slowly t h a n genes for s t r u c t u r a l p r o t e i n s . T h e enve lope genes of h u m a n a n d s i m i a n i m m u n o d e f i c i e n c y v i ruses , for e x a m p l e , a r e no to r ious ly v a r i a b l e re la t ive to s o m e o t h e r genes in t h e respec t ive v i ra l g e n o m e s . ( T h e q u e s t i o n s of w h e t h e r t h e p o l y d n a v i r a l s t r u c t u r a l genes a r e u n d e r s imi l a r se lec t ion p r e s s u r e a n d , if so , w h i c h of t h e m a n y s t r u c t u r a l genes a r e v a r i a b l e a n d w h i c h a r e less sub jec t to c h a n g e a r e c u r r e n t l y u n a n s w e r e d . ) N u c l e o t i d e s e q u e n c e c o m p a r i s o n s of p a r t i c u l a r v i ra l genes of s imi l a r func t ion t h u s a p p e a r m o r e likely to yield useful i n f o r m a t i o n t h a n h y b r i d i z a t i o n ana ly se s u s i n g en t i r e g e n o m i c seg­m e n t s o r u n c h a r a c t e r i z e d v i ra l D N A f r a g m e n t s . N o t all p o r t i o n s of a g e n e a r e likely to evolve a t s imi l a r r a t e s , a n d th is m u s t b e t a k e n i n t o a c c o u n t w h e n a n a l y z i n g t h e d a t a . F u n c t i o n a l d o m a i n s m a y be m o r e h igh ly c o n s e r v e d if t hey a r e cr i t ica l to t h e func t ion of t h e gene p r o d u c t , as in t h e case of e n z y m e s , o r t h e y m a y b e s o m e w h a t m o r e v a r i a b l e if t hey a r e se lec ted a g a i n s t , a s in t h e case of ep i t opes r ecogn ized b y t h e i m m u n e s y s t e m ( G o o d et al., 1988; H u g h e s , 1991; T h o m a s a n d W i l s o n , 1991).

C o m p a r i s o n s of p o l y d n a v i r u s e s f rom c o n g e n e r i c species o r f rom closely r e l a t ed g e n e r a a r e likely to b e m o r e easi ly i n t e r p r e t a b l e f rom t h e s t a n d p o i n t of s y s t e m a t i c s , b u t c o m p a r i s o n s of v i ruses f rom m o r e d i s t a n t l y r e l a t e d spe -

Page 225: Parasites and Pathogens of Insects. Parasites

2 2 0 Jo-Ann G. W. Fleming and Peter J. Krell

cies, for e x a m p l e , those in different w a s p subfami l ies o r famil ies , a lso m a y b e useful in t r ac ing the evo lu t ion of p o l y d n a v i r u s e s . A l t h o u g h it is r e a s o n a b l e to expec t t h a t i chnov i ruses a n d b racov i ruses will be s u b s t a n t i a l l y less r e l a t e d to o n e a n o t h e r t h a n v i ruses of congene r i c w a s p species , it c a n n o t b e p r e d i c t e d from e x t a n t d a t a to w h a t ex t en t t he two v i ra l s u b g r o u p s a r e gene t ica l ly r e l a t ed . M o l e c u l a r ana lyses will h e l p to d e t e r m i n e w h e t h e r t h e s imi l a r m u l t i ­p a r t i t e g e n o m i c o r g a n i z a t i o n of p o l y d n a v i r u s e s in t h e two s u b g r o u p s reflects c o n v e r g e n t evo lu t ion o r evo lu t ion from a c o m m o n a n c e s t r a l v i rus o r w a s p s e q u e n c e .

C. Virus Origin

M o l e c u l a r ana lyse s m a y h e l p to t r ace t he p a t h s of p o l y d n a v i r u s evo lu t ion , b u t t he or ig in of p o l y d n a v i r u s e s is likely to r e m a i n o b s c u r e . T h e o r i e s a b o u t t he or ig in of t h e v i ruses m u s t a c c o u n t for t h e fact t h a t , un l ike m o s t v i ruses , p o l y d n a v i r u s e s have d i s t inc t ly different ecological r e l a t i o n s h i p s w i t h t h e two insec t hos t s . T h e w a s p - v i r u s r e l a t i o n s h i p a p p e a r s to b e m u t u a l i s t i c , w h e r e a s the in t e rac t ion of t he v i rus w i th t he p a r a s i t i z e d hos t c a n b e i n t e r p r e t e d as p a t h o g e n i c . Po lydnav i ruses m i g h t be v iewed as t h e p r o g e n y of a n a n c e s t r a l v i rus o r as w a s p (hos t ) , D N A s e q u e n c e s t h a t have g a i n e d a l imi ted d e g r e e of a u t o n o m y (S t r aus s et al., 1990; Whi t f ie ld , 1990).

Pa thogen i c i t y c a n be cons ide red as selectively d i s a d v a n t a g e o u s to a v i rus if it r esu l t s in t h e p r e m a t u r e d e a t h of t he hos t p r i o r to v i ra l r ep l i ca t ion a n d d i s s e m i n a t i o n ( T e m i n , 1989). F r o m this s t a n d p o i n t , p a r t i a l o r select ive a t t e n ­u a t i o n of a n a n c i e n t p a t h o g e n i c v i rus m i g h t have b e e n select ively favorab le to it if t he loss of v i ru l ence to one of its hos t s ( the w a s p ) i nc r ea sed the p r o b a ­bil i ty of v i rus r ep l i ca t ion a n d t r a n s m i s s i o n to p r o g e n y (wasp) hos t s . T h e virus 's v i ru l ence for t he l e p i d o p t e r a n hos t a lso m a y have d e c r e a s e d if s u c h c h a n g e s d e c r e a s e d p r e m a t u r e hos t m o r t a l i t y re la t ive to w a s p e m e r g e n c e . T h i s is cons i s t en t w i t h o b s e r v a t i o n s t h a t in ject ion of p o l y d n a v i r u s e s c a n resu l t in s u p e r n u m e r a r y i n s t a r s o r p s u e d o p a r a s i t i z e d l a rvae a n d r a re ly causes a fatal infect ion in t he habitual hos t in the a b s e n c e of t h e p a r a s i t o i d o r o t h e r m i c r o b i a l infect ions . Al te rna t ive ly , se lect ion for i n c r e a s e d v i ru l ence for t he l e p i d o p t e r a n hos t m a y have o c c u r r e d if deb i l i t a t i on of t h e hos t i n c r e a s e d the surv iva l of t he a l t e r n a t e (wasp) hos t .

I n a second h y p o t h e s i s , w a s p s e q u e n c e s m a y have b e e n t r ans fe r r ed to t he p a r a s i t i z e d hos t . I f t he w a s p D N A s were expres sed a n d the p r o d u c t s w e r e biological ly act ive in t he hos t a n d ind i rec t ly i nc reased t h e fitness of t h e w a s p , t he s e q u e n c e s cou ld have b e c o m e fixed in t he w a s p p o p u l a t i o n . T h e or ig in of t he m u l t i p l e v i ra l g e n o m i c s e g m e n t s c a n b e exp l a ined s imp ly if t hey a r e de r ived from a n c i e n t d i spe r sed repe t i t ive e l e m e n t s . Acqu i s i t i on of t h e ab i l i ty to r ep l i ca t e a u t o n o m o u s l y in selected t issues o r cells of t he w a s p , for e x a m p l e ,

Page 226: Parasites and Pathogens of Insects. Parasites

9. Polydnavirus Genome Organization 221

t h e ca lyx ep i the l i a l cells, w o u l d b e a s soc ia t ed w i t h i n c r e a s e d copy n u m b e r , w h i c h w o u l d i nc rea se t h e p r o b a b i l i t y of t r a n s m i s s i o n . A vi ra l o r ig in exp l a in s t h e cons i s t en t t r a n s m i s s i o n of b iological ly ac t ive D N A b e t w e e n t h e two insec t species m o r e s imp ly t h a n a w a s p or ig in , b u t several poss ib le m e c h a n i s m s c a n b e s p e c u l a t e d . A n a l o g o u s to t r a n s f o r m a t i o n , t h e s imples t h y p o t h e t i c a l m e c h ­a n i s m m a y be lysis of w a s p cells followed by D N A u p t a k e b y cells of t h e p a r a s i t i z e d hos t . I n a s econd scena r io , e x t r a c h r o m o s o m a l w a s p s e q u e n c e s m a y h a v e b e c o m e e n t r a p p e d in vacuoles o r o t h e r u n i t m e m b r a n e s t h a t s u b s e ­q u e n t l y w e r e s l o u g h e d off f rom the w a s p cell a n d fused w i t h t h e hos t ' s cell m e m b r a n e s .

IX. Conclusions

T o d a y p o l y d n a v i r u s e s a r e inc reas ing ly r ecogn ized as b e i n g r e m a r k a b l y ge ­ne t ica l ly c o m p l e x biological ent i t ies t h a t o c c u p y a n u n u s u a l ecological n i c h e in t h e insec t wor ld . M a n y q u e s t i o n s a b o u t t h e m a r e p r e s en t l y u n a n s w e r e d , b u t it is b e c o m i n g m o r e a p p a r e n t t h a t t h e funct ion of these v i ruses in t h e h o s t - p a r a s i t o i d i n t e r ac t ion c a n n o t be fully u n d e r s t o o d un t i l t he i r m o l e c u l a r gene t i c s is b e t t e r inves t iga ted . I n a d d i t i o n to the i r i m p o r t a n c e to insec t sc ience , t he i r g e n o m e o r g a n i z a t i o n a n d gene t i c c o m p l e x i t y m a k e po lyd ­nav i ru se s u n i q u e a m o n g v i ruses , a l so w a r r a n t i n g fu r the r m o l e c u l a r s t u d y of t h e m for w h a t it c a n tell us a b o u t t he d ivers i ty of gene t i c s t r a teg ies t h a t have evolved in t he b io logica l wor ld .

Acknowledgments

We thank Brent Graham and Robert Harrison for valuable discussions and comments on the manuscript and Bruce Webb for providing a preprint of a manuscript on ecdysteroid effects. We thank David Theilmann for providing clone p O ^ H C l 185 and Loyd Sneed for advice on photo­graphy. This work was supported by grants from the USDA Competitive Grants Program to J.G.W.F. and from the Natural Sciences and Engineering Research Council of Canada to P.J.K.

References

Almendral, J. M., Almazan, F., Blasco, R., and Vinuela, E. (1990). Multigene families in African swine fever virus: Family 110. J. Virol. 64:2064-2072.

Belloncik, S. (1989). Cytoplasmic polyhedrosis virus-reoviridae. Adv. Virus Res. 37:173-209. Blissard, G. W., Fleming, J.G.W., Vinson, S. B., and Summers, M. D. (1986a). Campoletis

sonorensis virus: Expression in Heliothis virescens and identification of expressed sequences. J. Insect Physiol. 32:351-359.

Blissard, G. W , Vinson, S. B., and Summers, M. D. (1986b). Identification, mapping, and in vitro translation of Campoletis sonorensis virus mRNAs from parasitized Heliothis virescens larvae. J. Virol. 57:318-327.

Page 227: Parasites and Pathogens of Insects. Parasites

2 2 2 Jo-Ann G. W. Fleming and Peter J. Krell

Blissard, G. W. } Smith, O. P., and Summers, M. D. (1987). Two related viral genes are located on a single superhelical D N A segment of the multipartite Campoletis sonorensis virus genome. Virology 160:120-134.

Blissard, G. W., Theilmann, D. Α., and Summers, M. D. (1989). Segment W of Campoletis sonorensis virus: Expression, gene products, and organization. Virology 169:78-89.

Breitbart, R. E., and Nadal-Ginard, B. (1989). Tissue specific alternative splicing in the tropinin Τ multigene family. In "Tissue Specific Gene Expression" (R. Renkawitz, ed.), pp. 199-215. VCH Publishers, New York.

Cook, D. I., and Stoltz, D. B. (1983). Comparative serology of viruses isolated from ich­neumonid parasitoids. Virology 130:215-220.

Echalier, G. (1989). Drosophila retrotransposons: Interactions with the genome. Adv. Virus Res. 36:33-15 .

Edelmann, W., Kroger, B., Goller, M., and Horak, I. (1989). A recombination hotspot in the LTR of a mouse retrotransposon. Cell (Cambridge, Mass.) 57:937-946.

Edson, Κ. M., Vinson, S. B., Stoltz, D. B., and Summers, M. D. (1981). Virus in a parasitoid wasp: Suppression of the cellular immune response in the parasitoid's host. Science 2 1 1 : 5 8 2 -583.

Federici, B. A. (1986). Ultrastructure of baculoviruses. In "The Biology of Baculoviruses" (R. R. Granados and B. A. Federici, eds.), Vol. 1, pp. 61-88 . CRC Press, Boca Raton, FL.

Fleming, J.G.W. (1991). The integration of polydnavirus genomes in parasitoid genomes: Implications for biocontrol and genetic analyses of parasitoid wasps. Biol. Control 1: 127-135.

Fleming, J.G.W. (1992). Polydnaviruses: Mutualists and pathogens. Annu. Rev. Entomol. 3 7 : 4 0 1 -425.

Fleming, J.G.W., and Summers, M. D. (1986). Campoletis sonorensis endoparasitic wasps contain forms of C. sonorensis virus DNA suggestive of integrated and extrachromosomal polydnaviral DNAs. J. Virol. 57:552-562.

Fleming, J.G.W., and Summers, M. D. (1990). The integration of the genome of a segmented DNA virus in the host insect's genome. In "Molecular Insect Science" (Η. H. Hagedorn, J. G. Hildebrand, M. G. Kidwell, and J. H. Law, eds.), pp. 99-105. Plenum Press, New York.

Fleming, J.G.W., and Summers, M. D. (1991). Polydnavirus D N A is integrated in the D N A of its parasitoid wasp host. Proc. Natl. Acad. Sci. U.S.A. 88:9770-9774.

Fleming, J .G.W, Blissard, G. W , Summers, M. D., and Vinson, S. B. (1983). Expression of Campoletis sonorensis virus in the parasitized host, Heliothis virescens. J. Virol. 48 :74-78 .

Fleming, J.G.W., Gibbs, M. C , and Summers, M. D. (1990). Heterogeneous forms of selected Campoletis sonorensis virus superhelical DNAs: Implications for polydnavirus replication and genome complexity. Annu. Meet. Am. Soc. Virol. (Abstr.), Salt Lake City, Utah.

Francki, R.I.B., Fauquet, C. M., Knudson, D. L., and Brown, F. (1991). Classification and nomenclature of viruses: Fifth report of the International Committee on Taxonomy of Vi­ruses. Arch. Virol., Suppl. 2:129-131.

Gonzalez, Α., Calvo, V , Almazan, F., Almendral, J. M., Ramirez, J. C , de la Vega, I., Blasco, R., and Vinuela, E. (1990). Multigene families in African swine fever virus: Family 360. J. Virol. 64:2073-2081.

Gonzalez-Scarano, F., and Nathanson, N. (1990). Bunyaviruses. In "Fields Virology" (Β. N. Fields, D. M. Knipe, R. M. Chanock, M. S. Hirsch, J. L. Melnick, T. P. Monath, and B. Roizman, eds.), Vol. 1, pp. 1195-1228. Raven Press, New York.

Good, M. F., Pombo, D. , Quakyi, I. Α., Riley, Ε. M., Houghten, R. Α., Menon, Α., Ailing, D. W., Berzofsky, J. Α., and Miller, L. H. (1988). Human T-cell recognition of the circum-sporozoite protein of Plasmodium falciparum: Immunodominant T-cell domains map to the polymorphic regions of the molecule. Proc. Natl. Acad. Sci. U.S.A. 85:1199-1203.

Page 228: Parasites and Pathogens of Insects. Parasites

9. Polydnavirus Genome Organization 223

Heine, C. W., Kelly, D. C , and Avery, R.J. (1980). The detection of intracellular retrovirus-like entities in Drosophila melanogaster cell cultures. J. Gen. Virol. 49:385-395.

Hibner, B. L., Burke, W. D. , and Eickbush, Τ. H. (1991). Sequence identity in an early chorion multigene family is the result of localized gene conversion. Genetics 128:595-606.

Hughes, A. L. (1991). Circumsporozoite protein genes of malaria parasites (Plasmodium spp.): Evidence for positive selection on the immunogenic regions. Genetics 127:345-353.

Jones, D. , Sreekrishna, S., Iwaya, M., Yang, J.-N., and Eberely, M. (1986). Comparison of viral ultrastructure and D N A banding patterns from the reproductive tracts of eastern and west­ern hemisphere Chelonus spp. (Braconidae: Hymenoptera). J. Invertebr. Pathol. 47:105-115 .

Krell, P. J. (1987). Polydnavirus replication and tissue organization of infected cells in the parasitic wasp Diadegma tenebrans. Can. J. Microbiol. 33:176-183.

Krell, P.J. (1991a). The polydnaviruses: Multipartite D N A viruses from parasitic hymenoptera. In "Viruses of Invertebrates" (E. Kurstak, ed.), pp. 141-177. Dekker, New York.

Krell, P.J. (1991b). Polydnaviridae. In "Atlas of Invertebrate Viruses" (J. R. Adams and J. R. Bonami, eds.). CRC Press, Boca Raton, FL.

Krell, P. J., and Beveridge, T. J. (1987). The structure of bacteria and molecular biology of viruses. Int. Rev. Cytol. Suppl. 17:15-88.

Krell, P. J., and Stoltz, D. B. (1979). Unusual baculovirus of the parasitoid wasp Apanteles melanoscelus: Isolation and preliminary characterization. J. Virol. 29:1118-1130.

Krell, P. J., and Stoltz, D. B. (1980). Virus-like particles in the ovary of an ichneumonid wasp: Purification and preliminary characterization. Virology 101:408-418.

Krell, P. J., Summers, M. D., and Vinson, S. B. (1982). Virus with a multipartite superheli-cal D N A genome from the ichneumonid parasitoid Campoletis sonorensu. J. Virol. 4 3 : 8 5 9 -870.

Li, W.-H. (1983). Evolution of duplicate genes and pseudogenes. In "Evolution of Genes and Proteins" (M. Nei and R. K. Koehn, eds.), pp. 14-37. Sinauer Associates, Sunderland, MA.

Marchant, J. K. Linsenmayer, T. F., and Gordon, Μ. K. (1991). cDNA analysis predicts a cornea-specific collagen. Proc. Natl. Acad. Sci. U.S.A. 88:1560-1564.

Matthews, R.E.F. (1991). "Plant Virology." Academic Press, San Diego, CA. Monath, T. P. (1990). Flaviviruses. In "Fields Virology" (Β. N. Fields, D. M. Knipe, R. M.

Chanock, M. S. Hirsch, J. L. Melnick, T. P. Monath, and B. Roizman, eds.), Vol. 1, pp. 7 6 3 -814. Raven Press, New York.

Murphy, F. Α., and Kingsbury, D. W. (1990). Virus taxonomy. In "Fields Virology" (Β. N. Fields, D. M. Knipe, R. M. Chanock, M. S. Hirsch, J. L. Melnick, T. P. Monath, and B. Roizman, eds.), Vol. 1, pp. 9 -35 . Raven Press, New York.

Norton, W. N., and Vinson, S. B. (1983). Correlating the initiation of virus replication with a specific pupal developmental phase of an ichneumonid parasitoid. Cell Tissue Res. 2 3 1 : 3 8 7 -398.

Norton, W. N., Vinson, S. B., and Stoltz, D. B. (1975). Nuclear secretory particles associated with the calyx cells of the ichneumonid parasitoid Campoletis sonorensis (Cameron). Cell Tissue Res. 162:195-208.

Ohta, T. (1988a). Evolution by gene duplication and compensatory advantageous mutations. Genetics 120:841-847.

Ohta, T. (1988b). Time for acquiring a new gene by duplication. Proc. Natl. Acad. Sci. U.S.A. 85:3509-3512.

Palmer, J. D. , and Shields, C. R. (1984). Tripartite structure of the Brassica campestns genome. Nature (London) 307:437-440.

Rosen, L. (1984). Ovarian infection and transovarial transmission of viruses in insects. In "Concepts in Viral Pathogenesis" (A. L. Notkins and M.B.A. Oldstone, eds.), Vol. 1, pp. 194-198. Springer-Verlag, New York.

Page 229: Parasites and Pathogens of Insects. Parasites

2 2 4 Jo-Ann G. W. Fleming and Peter J. Krell

Shiba, T., and Saigo, K. (1983). Retrovirus-like particles containing RNA homologous to the transposable element copia in Drosophila melanogaster. Nature (London) 302:119-124.

Stoltz, D. B. (1990). Evidence for chromosomal transmission of polydnavirus DNA. J. Gen. Virol. 71:1051-1056.

Stoltz, D. B., and Vinson, S. B. (1979). Viruses and parasitism in insects. Adv. Virus Res. 2 4 : 1 2 5 -171.

Stoltz, D. B., and Xu, D. (1990). Polymorphism in polydnavirus genomes. Can. J. Microbiol. 36:538-543.

Stoltz, D. B., Pavan, C , and DaCunha, A. B. (1973). Nuclear polyhedrosis virus, a possible example of de novo intranuclear membrane morphogenesis. J. Gen. Virol. 19:145-150.

Stoltz, D. B., Krell, P. J., and Vinson, S. B. (1981). Polydisperse viral DNA's in ichneumonid ovaries: A survey. Can. J. Microbiol. 27:123-130.

Stoltz, D. B., Krell, P. J., Summers, M. D., and Vinson, S. B. (1984). Polydnaviridae—A proposed family of insect viruses with segmented, double-stranded, circular DNA genomes. Intervirology 2 1 : 1 - 4 .

Stoltz, D. B., Guzo, D., and Cook, D. (1986). Studies on polydnavirus transmission. Virology 155:120-131.

Strauss, E. G., Strauss, J. H., and Levine, A . J . (1990). Virus evolution. In "Fields Virology" (Β. N. Fields, D. M. Knipe, R. M. Chanock, M. S. Hirsch, J. L. Melnick, T. P. Monath, and B. Roizman, eds.), Vol. 1, pp. 167-190. Raven Press, New York.

Temin, Η. M. (1989). Evolution of retroviruses. In "Concepts in Viral Pathogenesis" (A. L. Notkins and M.B.A. Oldstone, eds.), Vol. 3, pp. 189-195. Springer-Verlag, New York.

Theilmann, D. Α., and Summers, M. D. (1986). Molecular analysis of Campoletis sonorensis virus DNA in the lepidopteran host Heliothis virescens. J. Gen. Virol. 67:1961-1969.

Theilmann, D. Α., and Summers, M. D. (1987). Physical analysis of the Campoletis sonorensis virus multipartite genome and identification of a family of tandemly repeated elements. J. Virol. 61:2589-2598.

Theilmann, D. Α., and Summers, M. D. (1988). Identification and comparison of Campoletis sonorensis virus transcripts expressed from four genomic segments in the insect hosts Cam­poletis sonorensis and Heliothis virescens. Virology 167:329—341.

Thomas, W. K., and Wilson, A. C. (1991). Mode and tempo of molecular evolution in the nematode Caenorhabditis: Cytochrome oxidase II and calmodulin sequences. Genetics 128:269-279.

Upton, C , Macen, J. L., Wishart, D. S., and McFadden, G. (1990). Myxoma virus and malig­nant rabbit fibroma virus encode a serpin-like protein important for virus virulence. Virology 179:618-631.

Varmus, H., and Brown, P. (1989). Retroviruses. In "Mobile DNA" (D. E. Berg and Μ. M. Howe, eds.), pp. 53-108. Am. Soc. Microbiol., Washington, DC.

Vinson, S. B. (1977). Microplitis croceipes: Inhibitions of the Heliothis zea defense reaction to Cardiochiles nigriceps. Exp. Parasitol. 41:112-117.

Vinson, S. B., and Iwantsch, G. F. (1980). Host regulation by insect parasitoids. Q. Rev. Biol. 55:143-165.

Vinson, S. B., and Stoltz, S. B. (1986). Cross-protection experiments with two parasitoid (Hy­menoptera: Ichneumonidae) viruses. Ann. Entomol. Soc. Am. 79:216-218.

Vinson, S. B., Edson, Κ. M., and Stoltz, D. B. (1979). Effect of a virus associated with the reproductive system of the parasitoid wasp, Campoletis sonorensis, on host weight gain. J. Invertebr. Pathol. 34:133-137.

Vuorio, E., and de Crombrugghe, B. (1990). The family of collagen genes. Annu. Rev. Biochem. 59:837-872.

Page 230: Parasites and Pathogens of Insects. Parasites

9. Polydnavirus Genome Organization 225

Webb, Β. Α., and Summers, M. D. (1990a). Developmental regulation of the replication of Campoletis sonorensis. Annu. Meet. Entomol. Soc. Am. (Abstr.), New Orleans, Louisiana.

Webb, Β. Α., and Summers, M. D. (1990b). Venom and viral expression products of the endoparasitic wasp Campoletis sonorensis share epitopes and related sequences. Proc. Natl. Acad. Sci. U.S.A. 87:4961-4965.

Webb, Β. Α., and Summers, M. D. (1993). Experientia (in press). Whitfield, J. B. (1990). Parasitoids, polydnaviruses and endosymbiosis. Parasitol. Today 6:381 -

384. Xiong, Y., Sakaguchi, B., and Eickbush, Τ. H. (1988). Gene conversion can generate sequence

variants in the late chorion multigene families of Bombyx mori. Genetics 120:221-231. Xu, D., and Stoltz, D. B. (1991). Evidence for a chromosomal location of polydnavirus D N A in

the ichneumonid parasitoid Hyposoter Jugitiuus. J. Virol. 65:6693-6704.

Page 231: Parasites and Pathogens of Insects. Parasites

Chapter 10

ΗVenoms of Parasitic Hymenoptera as Investigatory Tools Davy Jones Thomas Coudron Graduate Center for Toxicology Biological Control of Insects Lab University of Kentucky USDA-ARS Lexington, Kentucky Columbia, Missouri

I. Introduction

II. Uses of Venoms in Addressing Questions in Various Scientific Fields A. Inferences on the Bionomics

of the Host and Parasite B. Use of Venoms in Physiological

Studies C. Use of Venoms in Behavioral Studies D. Use of Venoms in Evolutionary

Studies E. Use of Venoms in Taxonomic Studies

F. Use of Venoms to Study Molecular Biology of Proteins

G. Use of Venoms as Pharmacological Probes of Heterologous Systems

H. Use of Venoms in Practical Biological Control

I. Use of Venoms as Classroom Tools

III. Conclusions Acknowledgments References

H y m e n o p t e r a n v e n o m s ho ld g r e a t p r o m i s e as useful a n d effective tools for a d d r e s s i n g f u n d a m e n t a l q u e s t i o n s in m a n y a r e a s of b io logica l sc ience . T h e y a l so h a v e use in p rac t i ca l b io logica l con t ro l a n d c l a s s r o o m i n s t r u c t i o n . I n th is c h a p t e r we rev iew w a y s in w h i c h h y m e n o p t e r a n v e n o m s have o r m a y faci l i tate i nves t iga t ions o n a spec t s of insec t b i o n o m i c s , physiology, evo lu t ion , t a x o n ­omy, behav io r , p h a r m a c o l o g y , m o l e c u l a r biology, b io logica l con t ro l , a n d cur -r i c u l a r i n s t r u c t i o n . A goa l of th is r ev iew is to foster a t t e n t i o n to t h e n u m e r o u s o p p o r t u n i t i e s a w a i t i n g in t h e u s e of these v e n o m s . E x a m p l e s a r e g iven of new, t e s t ab l e h y p o t h e s e s fol lowing t h e a p p l i c a t i o n of v e n o m s as r e s e a r c h tools .

I. Introduction T h e tox ino logy of v e n o m s is a r a p i d l y g r o w i n g field, especia l ly w i t h t h e a p p l i c a t i o n of m o l e c u l a r t e c h n i q u e s t h a t faci l i tate a n u n d e r s t a n d i n g of t h e

Parasites and Pathogens of Insects Volume 1: Parasites 2 2 7

Copyright © 1993 by Academic Press, Inc. All rights of reproduction in any form reserved.

Page 232: Parasites and Pathogens of Insects. Parasites

2 2 8 Davy Jones and Thomas Coudron

t h o u s a n d s of different n a t u r a l l y o c c u r r i n g v e n o m o u s c o m p o u n d s . T h e forces of su rv iva l a n d food p r o c u r e m e n t have p l aced s t r o n g select ive p r e s s u r e o n the c o m p o s i t i o n of t he v e n o m s . As a resul t , t he c o m p o n e n t s of h y m e n o p t e r a n v e n o m s r e p r e s e n t a w ide s p e c t r u m of c h e m i c a l act ivi t ies . A n i n c r e a s e d u n ­d e r s t a n d i n g of t h e diversi ty, m e c h a n i s m s of ac t ion , a n d s t r u c t u r e s of v e n o m c o m p o n e n t s will p e r m i t the i r use as inves t iga t ive tools in a w i d e va r i e ty of d i sc ip l ines . I n s o m e s i t ua t i ons , u se of v e n o m s m a y offer t h e m e a n s to a d d r e s s f u n d a m e n t a l q u e s t i o n s t h a t have b e e n refractory to o t h e r m e t h o d s .

T h e s t u d y of v e n o m s h a s m u c h to offer in p rac t i ca l b io logica l con t ro l . R e c e n t efforts u t i l iz ing effects of v e n o m s on a w i d e r a n g e of insec ts have d e l i n e a t e d less e m p i r i c a l m e t h o d s for p r e d i c t i n g t he success of g iven biolog­ical con t ro l efforts ( J o n e s , 1986; C o u d r o n a n d Pu t t i e r , 1988). I n t h e a r e n a of t he c l a s s room, t he w ide d ivers i ty of h y m e n o p t e r a n v e n o m s offers n u m e r o u s i n s t r u c t i o n a l possibi l i t ies for d e m o n s t r a t i n g va r ious b io logica l , evo lu t ionary , o r m o l e c u l a r p r inc ip l e s .

T h e p o t e n t i a l for m a j o r a d v a n c e s a n d uses of p a r a s i t i c w a s p v e n o m s h a s no t b e e n wide ly rea l ized b e c a u s e m u c h less effort h a s b e e n d e v o t e d to t h e b i o c h e m i s t r y a n d m o l e c u l a r b iology of these a g e n t s , as c o m p a r e d w i t h o t h e r a spec t s of h o s t - p a r a s i t e i n t e r ac t ions . T h e p a u c i t y of case e x a m p l e s forces us to e x a m i n e h y m e n o p t e r a n v e n o m s from a different pe r spec t ive t h a n is u s u ­ally d o n e in r ev iewing va r ious p a r a s i t e i n t e r ac t ions o r r e g u l a t o r y m e d i a t o r s . Reviews of w a s p v e n o m s b a s e d on g r o u p of w a s p o r k ind of effect c a u s e d in t h e hos t a r e ava i l ab le (Piek a n d Spanje r , 1986; C o u d r o n , 1991). I n this r e ­view, we assess t h e s t a t u s of r e s e a r c h o n w a s p v e n o m s from t h e pe r spec t i ve of h o w s u c h v e n o m s c a n be used to a d d r e s s q u e s t i o n s in different scientific fields. By following s u c h a fo rma t , we feel t h a t we c a n p r o v i d e t h e r e a d e r w i t h i n fo rma t ion a n d n e w perspec t ives o n how r e sea r che r s c a n a p p l y t he g r o w i n g b o d y of i n fo rma t ion on h y m e n o p t e r a n v e n o m s to the i r o w n r e s e a r c h n e e d s .

II. Uses of Venoms in Addressing Questions in Various Scientific Fields

A. Inferences on the Bionomics of the Host and Parasite

F a u n a l su rveys f requent ly yield n e w species of insec ts a b o u t w h i c h l i t t le is k n o w n , o t h e r t h a n the d a t e a n d p lace of col lect ion. M a n y species of p a r a s i t i c w a s p s a r e k n o w n only from m u s e u m s p e c i m e n s , w i t h l i t t le i n fo rma t ion o n the n a t u r a l b iology of t he w a s p o r t he i den t i t y of its hos t s . I n s u c h cases , t h e inves t iga to r w h o des i res to identify t he u n k n o w n hos t m a y n o t have a bas i s from w h i c h to focus a d d i t i o n a l field s tud ies (see Whi t f ie ld a n d W a g n e r , 1988, for d i scuss ion) . For tuna te ly , it is b e c o m i n g a p p a r e n t t h a t t h e v e n o m s of

Page 233: Parasites and Pathogens of Insects. Parasites

10. Venoms of Hymenoptera as Investigatory Tools 2 2 9

different w a s p species a r e t a i lo red to a c c o m m o d a t e t he phys io logy of the i r hos t species . C o m p o n e n t s of v e n o m s a r e b e c o m i n g ident i f ied t h a t a r e d i a g ­nos t i c of i n t e r ac t i on w i t h specific phys io log ica l p a t h w a y s found in ce r t a in hos t t a x a . T h u s , ana lys i s of t h e v e n o m of a new, o r l i t t le k n o w n , w a s p species c a n ass is t t h e inves t iga to r in focusing ini t ia l r e s e a r c h efforts t o w a r d identify­i n g t h e m o s t likely c a n d i d a t e hos t s .

1. B i o l o g y o f H o s t

I n v e s t i g a t o r s of t he b i o n o m i c s of h o s t - p a r a s i t e i n t e r ac t i ons have l ong r ecogn ized ce r t a in co r re l a t e s b e t w e e n the accessibi l i ty or mob i l i t y of hos t s a n d t h e o c c u r r e n c e of p e r m a n e n t pa r a ly s i s of t h e hos t c a u s e d b y the w a s p . Specific cases of p e r m a n e n t pa r a ly s i s of t he concea l ed hos t i n c l u d e Coeloides spp . (Bracon idae ) t h a t p e r m a n e n t l y p a r a l y z e the i r c ryp t i c c u r c u l i o n i d hos t s ( D e L e o n , 1935), a n d the p e r m a n e n t pa ra ly s i s i n d u c e d in t he cod l ing m o t h by Mastrus carpocapsae ( M c C l u r e , 1933). H o s t s t h a t a r e p e r m a n e n t l y p a r a l y z e d a r e s o m e t i m e s " p r e s e r v e d " in situ b y t h e a g e n t s in jected in to t h e hos t . T h e hos t of M. carpocapsae is p r e se rved u p to 73 d a y s , a n d t h e h o s t of Mellitoba acasta c a n b e p r e s e r v e d u p to 9 m o n t h s (Ste iner , 1986). P r e s e r v a t i o n of ex­p o s e d hos t s in situ o ccu r s , b u t is m u c h less c o m m o n s ince t h e r e is a g r e a t e r l ike l ihood of p r e d a t i o n on these hos t s c o m p a r e d w i t h a concea l ed hos t . T h e s e c o n s i d e r a t i o n s c a n b e in fo rmat ive in in i t ia l su rveys on h y m e n o p t e r a n f a u n a , as well as in ecological s tud ie s def in ing n i che p a r t i t i o n i n g a n d food w e b s . I f ana lys i s shows t h a t a w a s p s p e c i m e n ' s v e n o m c o n t a i n s c o m p o n e n t s for b o t h pa ra ly s i s a n d p r e s e r v a t i o n , it is m o r e p r o b a b l e t h a t t he w a s p e i t he r (1) i n t e rac t s w i t h a concea l ed hos t o r (2) m a k e s t h e hos t concea l ed after in jec t ing it w i t h these factors . T h u s , c o n s i d e r a t i o n of t h e w a s p ' s v e n o m c o m p o n e n t s will g e n e r a t e t e s t ab l e h y p o t h e s e s a b o u t t h e t a x o n o m i c g r o u p a n d b io logy of t h e w a s p ' s hos t . D i a g n o s t i c c o m p o n e n t s of t h e v e n o m m a y p r o v i d e in i t ia l c lues as to t he n i ches t h a t s h o u l d b e e x a m i n e d first to identify a n u n k n o w n hos t . A s w a s p v e n o m c o m p o n e n t s b e c o m e b e t t e r u n d e r s t o o d , it s h o u l d b e poss ib le to identify specific m o l e c u l a r c o m p o n e n t s t h a t a r e d i r e c t e d t o w a r d p a r t i c u l a r hos t t e m p l a t e s (e.g. , m o t h ve r sus butterf ly, o r L e p i d o p t e r a ve r sus C o l e o p t e r a ) .

S i m i l a r c o n s i d e r a t i o n s c a n b e u sed w i t h r e spec t to sessile hos t s , w h i c h a r e u sua l l y n o t p a r a l y z e d . For e x a m p l e , v e n o m from Chelonus w a s p s (egg- la rva l p a r a s i t e ) does n o t p a r a l y z e t h e hos t (Tay lo r a n d J o n e s , 1989). Nasonia vitripen-nis, a p u p a l p a r a s i t e , does n o t p a r a l y z e its hos t (Ratcliffe a n d K i n g , 1967). I t w o u l d be p r e d i c t e d t h a t in species t h a t s t ing sessile hos t s t h e p a r a l y z i n g c o m p o n e n t s a r e a b s e n t , o r h a v e lost o r c h a n g e d funct ion . F u t u r e r e s e a r c h o n v e n o m s will show w h e t h e r th is h y p o t h e s i s is cor rec t . I f co r rec t , t h e n in t he a b s e n c e of o t h e r i n fo rma t ion t h e p r e s e n c e of a p a r a l y z i n g v e n o m w o u l d i n d i c a t e t h a t t h e (poor ly k n o w n ) w a s p species does n o t a t t a c k a sessile h o s t

Page 234: Parasites and Pathogens of Insects. Parasites

2 3 0 Davy Jones and Thomas Coudron

(or sessile hos t s t age ) . Po lydnav i ruses o c c u r p r i m a r i l y in w a s p s t h a t a t t a c k l e p i d o p t e r a n s o r s y m p h y t a n s (Stol tz a n d V i n s o n , 1979). T h e p r e s e n c e of b o t h p o l y d n a v i r u s e s a n d a p a r a l y z i n g v e n o m t h e n n a r r o w s t he hos t r a n g e to t h e l a rva l s t age of a l e p i d o p t e r a n o r s y m p h y t a n .

We bel ieve t h a t uses of v e n o m c o m p o n e n t s to d r a w inferences o n p a r a s i t e -h o s t b iology will b e i m p o r t a n t in l imi t ing cr i t ica l s i t ua t i ons s u c h a s d i s a p ­p e a r i n g t rop ica l r a in forests. I n d e e d , it is likely t h a t t h e r e will b e ex t inc t p a r a s i t e species f rom such a r e a s t h a t will be k n o w n on ly from m u s e u m s p e c i m e n s t a k e n in c u r r e n t f auna l su rveys . O u r p r i m a r y a n d m o s t d i r ec t sou rce of i n fo rma t ion a b o u t the i r hos t s in t he fu ture m a y c o m e from ana lys i s of t he v e n o m t h a t in ter faced t he w a s p w i t h its hos t .

2. B i o l o g y o f Paras i te

V e n o m c o m p o n e n t s m a y p rov ide l eads to the b io logy of t he p a r a s i t e . For e x a m p l e , e n d o p a r a s i t e s s e l d o m p a r a l y z e the i r hos t , or , if t h e y d o , it is u sua l ly t e m p o r a r y . Cotesia congregata, Cotesia glomerata, a n d Microplitis croceipes a r e all e x a m p l e s of e n d o p a r a s i t e s t h a t inject in to t h e m o b i l e hos t a v e n o m t h a t does no t h a v e p a r a l y z i n g act ivi ty ( K i t a n o , 1986; Beckage et al., 1987; T a n a k a a n d V i n s o n , 1991). Converse ly , those p a r a s i t e s t h a t d o p a r a l y z e the i r hos t , per ­m a n e n t l y o r t empora r i ly , a r e usua l ly e c topa ra s i t e s , especia l ly t hose t h a t c a u s e p e r m a n e n t pa ra ly s i s (e.g. , Bracon hebetor, B e a r d , 1952; Clinocentrus gra-cilipes, Shaw, 1981). T h u s , ana lys i s of t h e v e n o m from field-collected a d u l t w a s p s c an p rov ide c lues on the i r b iology t h a t c a n n o t b e infer red f rom m o r ­pho log ica l i n fo rma t ion . As t h e b i o c h e m i s t r y of p a r a s i t e v e n o m s b e c o m e s b e t t e r u n d e r s t o o d , it will b e poss ib le to use m o l e c u l a r m a r k e r s t h a t d i s t in ­gu i sh b e t w e e n v e n o m s t h a t c a u s e t e m p o r a r y ve r sus p e r m a n e n t p a r a l y s i s . I n s i t ua t i ons w h e r e n o w we c a n only say "b io logy u n k n o w n , " i n f o r m a t i o n in t h e fu ture , b a s e d o n v e n o m ana lys i s , m a y p e r m i t inferences s u c h a s : " T h e w a s p m o s t likely p e r m a n e n t l y p a r a l y z e s l e p i d o p t e r a n l a rva l hos t s t h a t o c c u r in, o r w h i c h t he w a s p p u t s in , concea led p laces , in a p re se rved s t a t e (i .e. , t h e hos t l a rva l s t age c a n b e found weeks o r m o n t h s o u t of s eason) , a n d u p o n w h i c h t h e p a r a s i t e l a rvae feed as e c t o p a r a s i t e s . " C o n c e i v a b l y o t h e r a spec t s of t h e p a r a s i t e biology, s u c h as so l i ta ry ve rsus g r ega r ious p a r a s i t i s m , will b e d i a g -n o s a b l e on t he bas i s of key v e n o m c o m p o n e n t s .

B. Use of Venoms in Physiological Studies

1. U s e a s P r o b e s o f N o r m a l H o s t P h y s i o l o g y

a. Timing of developmental events. T h e abi l i ty of v e n o m c o m p o n e n t s to exer t a n effect on ly o n ce r t a in d e v e l o p m e n t a l s t ages of t h e hos t sugges t s c h a n g e s in a spec t s of t he hos t t e m p l a t e t h a t m i g h t o t h e r w i s e r e m a i n u n i n v e s ­t iga ted . For e x a m p l e , v e n o m p r o t e i n s f rom Chelonus sp . a r e re la t ively s t ab l e

Page 235: Parasites and Pathogens of Insects. Parasites

10. Venoms of Hymenoptera as Investigatory Tools 231

d u r i n g t he first 48 h r of hos t e m b r y o n i c d e v e l o p m e n t , b u t a r e r a p i d l y d e ­g r a d e d by a se r ine p r o t e a s e act iv i ty a p p e a r i n g la te in e m b r y o n i c deve lop ­m e n t (Le luk a n d J o n e s , 1989). L a r v a e of Paramyelois transitella t h a t a r e p a r a ­lyzed by t h e v e n o m from t h e be th i l id w a s p Goniozus emigratus i m m e d i a t e l y p r i o r to p u p a t i o n will p r o c e e d to c o m p l e t e t he p u p a t i o n p roces s . H o w e v e r , p a r a s i t i s m ear l ie r in t he l a rva l s t a d i u m causes a hos t pa ra ly s i s t h a t r esu l t s in d e a t h ( G o r d h a n d H a w k i n s , 1981).

A n e x a m p l e of use of v e n o m to uncove r h o r m o n a l l y d r i v e n even t s w a s p r o v i d e d b y C o u d r o n (1991) , w h o showed t h a t in ject ion of v e n o m from Euplectrus plathypenae sufficiently p r i o r to t h e nex t m o l t b locks apolys i s in t h e hos t . M a t e r i a l in jected by female C. gracilipes (B racon idae ) will p r e v e n t t h e hos t f rom m o l t i n g if in jected sufficiently in a d v a n c e of t he nex t m o l t (Shaw, 1981). T e m p o r a r y pa ra lys i s of sp ide r s by w a s p s (e.g. , Polysphincta eximia, C l a u s e n , 1940) c a n a lso be a s soc ia t ed w i t h i nh ib i t i on of m o l t i n g .

T h e s e e x a m p l e s i l lus t ra te h o w t h e ac t ion of v e n o m s c a n revea l d e v e l o p ­m e n t a l w i n d o w s t h a t o c c u r d u r i n g a r t h r o p o d d e v e l o p m e n t t h a t m a y n o t b e access ible o r d e t e c t a b l e w i t h p r e s e n t tools . I n fact, s o m e v e n o m s p r o d u c e a set of s y m p t o m s in t he hos t t h a t have n o t b e e n p r o d u c e d b y c o n v e n t i o n a l phys io log ica l p r o b e s (e.g. , C o u d r o n , 1991, d e s c r i b e d in t he foregoing) . We p r e d i c t t h a t t hese v e n o m s will be found to in t e r ac t w i t h p a r t s of t h e c o g n a t e phys io log ica l m a c h i n e r y n o t p r e sen t l y k n o w n to exist .

b. Host immune response. M e l a n i z a t i o n of t he h e m o l y m p h is cons id ­e r ed to b e a p a r t of t h e hos t i m m u n e r e s p o n s e t h a t is s u p p r e s s e d b y t h e p o l y d n a v i r u s of b r a c o n i d a n d i c h n e u m o n i d w a s p s (Beckage et al., 1990). I n a n i n t e r e s t i n g s t u d y by Stol tz et aL (1988) it w a s s h o w n t h a t w i t h o u t coinjec-t ion of t h e v e n o m , t he w a s p ' s {Cotesia melanoscela) p o l y d n a v i r u s d i d n o t u n c o a t a t t h e n u c l e a r p o r e s of hos t t i ssue . L e l u k et al. (1988) showed t h a t in jec t ion of t h e v e n o m from Chelonus, w h i c h a lso h a s a p o l y d n a v i r u s (Che l l i ah a n d J o n e s , 1990), a t t h e p r o p e r t i m e w a s neces sa ry for t h e m e l a n i z a t i o n r e s p o n s e of hos t h e m o l y m p h to b e s u p p r e s s e d . N o k n o w n a g e n t s c a n a r r e s t t h e infect ion p rocess of insec t v i ruses . T h e r e f o r e , e x p e r i m e n t a l use of v e n o m s in sy s t ems s u c h as those c i ted ear l ie r cou ld revea l p a t h w a y s involved in insec t i m m u n e r e s p o n s e a n d v i rus infect ion.

c. Physiology of nervous system. V e n o m c o m p o n e n t s c a n b e very power­ful tools in ana lys i s of t h e n e r v o u s s y s t e m of insec ts , a n d as m o r e insec t v e n o m p r o t e i n s b e c o m e well s t u d i e d , the i r u se in s u c h inves t iga t ions will p r o b a b l y e x p a n d . P a r a l y z i n g c o m p o n e n t s f rom p a r a s i t i c w a s p s have a l r e a d y b e e n used to assess p r e - a n d p o s t s y n a p t i c a spec t s of t h e n e r v o u s s y s t e m of the i r hos t s ( W a l t h e r et a l . , 1976). Sco rp ion v e n o m p r o t e i n s h a v e b e e n u s e d to i so la te insec t s o d i u m c h a n n e l c o m p o n e n t s to w h i c h they b i n d (de L i m a et al., 1988) a n d we c a n p r e d i c t t h a t s imi l a r uses will b e found for s o m e p a r a l y z i n g v e n o m s of p a r a s i t i c w a s p s .

Page 236: Parasites and Pathogens of Insects. Parasites

2 3 2 Davy Jones and Thomas Coudron

2. U s e i n S t u d i e s o n B i o c h e m i c a l P a t h w a y s i n t h e W a s p

T h e v e n o m g l a n d is a specia l ized t i ssue t h a t p r o d u c e s a l imi ted n u m b e r of p r o t e i n s in h i g h re la t ive a b u n d a n c e . T h e s e cha rac te r i s t i c s m a k e t h e v e n o m g l a n d a s imp le a n d a m e n a b l e sy s t em w i t h w h i c h to s t u d y t h e phys io log ica l r e g u l a t i o n of t i ssue activity. For e x a m p l e , J o n e s a n d W o z n i a k (1991) have assessed the o n t o g e n y of b iosyn thes i s of v e n o m c o m p o n e n t s in d e v e l o p m e n t of w a s p p u p a e a n d a d u l t s , a n d have ident if ied specific phys io log ica l even t s co r r e l a t ed w i t h i n d u c e d express ion of t he v e n o m p r o t e i n s . W e b b a n d S u m ­m e r s (1990) a n a l y z e d p o l y d n a v i r u s s t r u c t u r a l p r o t e i n s a n d v e n o m p r o t e i n s w i t h c o m m o n i m m u n o d e t e r m i n a n t s , a n d fu r the r d e t e r m i n e d t h a t t he exp re s ­s ion of these a n d o t h e r p o l y d n a v i r u s p r o t e i n s w a s r e g u l a t e d b y p u p a l ec­d y s t e r o i d s . D a t a from Piek a n d Span je r (1986) sugges t d e v e l o p m e n t a l l y reg­u l a t e d p r o d u c t i o n of p a r a l y z i n g act ivi ty in t he v e n o m g l a n d of Venturia canescens. T h u s , w a s p v e n o m p r o t e i n s , in themse lves , m a k e useful m o d e l s in s tud i e s o n phys io log ica l p a t h w a y s a n d r egu l a t i on of t h e d e v e l o p m e n t a l ex­p ress ion of p r o t e i n s .

C. Use of Venoms in Behavioral Studies

W a s p v e n o m s p rov ide useful pe r spec t ives w i t h w h i c h to s t u d y t h e b e h a v i o r of insec ts . For e x a m p l e , r e s ea r che r s have i n q u i r e d as to t he b e h a v i o r of p a r a s i t i c w a s p s as a d a p t e d for effective use of v e n o m . A s k e w (1971) r e p o r t e d t h a t s o m e b r a c o n i d s p lace the i r eggs in ne rve gang l i a , a n d p r e d a t o r y w a s p s inject v e n o m in to specific gang l i a w h e r e it c a n act . W i l b e r t (1964) d e t e r m i n e d t h a t Aphelinus semiflavus first s t ings t he hos t leg to p a r a l y z e t he hos t , a n d on ly t h e n inser t s its s t ing fu r the r in to t he hos t to oviposi t . Euplectrus s pp . use the i r ov ipos i tor to first s t ing , in ject ing the i r v e n o m in to t he h e m o c o e l of t h e hos t , followed by a series of sha l low p u n c t u r e s of t he hos t cut ic le a n d d e p o s i t i o n of eggs o n each p u n c t u r e site ( C o u d r o n a n d Kelly, 1985).

W a s p behav io r s c a n a lso assis t in b i o c h e m i c a l s tud ies o n v e n o m p r o t e i n s . T h e ov ipos i t iona l b e h a v i o r of a w a s p was ut i l ized in s tud ies o n t h e v e n o m of a Chelonus species . J o n e s (1987) found t h a t Chelonus n e a r curvimaculatus w a s p s prefer to oviposi t i n to y o u n g hos t e m b r y o s m u c h m o r e t h a n in to old e m b r y o s , a n d t h a t ovipos i t ion in to o lde r hos t e m b r y o s resu l t s in t h e d e a t h of t h e e n d o p a r a s i t e . I t w a s h y p o t h e s i z e d t h a t s o m e t h i n g a b o u t t h e t e m p l a t e of o lde r e m b r y o s p r e v e n t e d t he v e n o m from ac t ing . L e l u k a n d J o n e s (1989) tes ted this h y p o t h e s i s a n d in t he p rocess d i scovered a n d c h a r a c t e r i z e d a l a rge i nc rea se in se r ine p r o t e a s e act ivi ty in o lde r e m b r y o s t h a t r a p i d l y d e g r a d e d the v e n o m . T h e d e g r a d a t i o n of t he v e n o m by t h e se r ine p r o t e a s e act iv i ty l eads to t he d e a t h of t he e n d o p a r a s i t e .

O n e c a n a lso modify b e h a v i o r a l even ts of t he p a r a s i t e to p r o b e t h e ac t ion of its v e n o m . For e x a m p l e , Le luk a n d J o n e s (1989) s o u g h t to d e t e r m i n e t h e

Page 237: Parasites and Pathogens of Insects. Parasites

10. Venoms of Hymenoptera as Investigatory Tools 2 3 3

o r d e r of e n t r y of severa l p a r a s i t e - d e r i v e d factors d u r i n g ov ipos i t ion . U s i n g female w a s p s c a l i b r a t e d to s p e n d a n ave rage of 20 s econds for ov ipos i t ion , t h e y i n t e r r u p t e d ovipos i t ion a t success ive in t e rva l s . A n t i b o d i e s a g a i n s t t h e v e n o m p r o t e i n s were t h e n used to d e t e r m i n e t h a t t h e female injects t h e v e n o m first d u r i n g ovipos i t ion , followed by the egg a n d p o l y d n a v i r u s . C a r e ­fully t i m e d d i s r u p t i o n of w a s p ovipos i t ion b e h a v i o r a l lowed t h e a u t h o r s to o b t a i n hos t s in jec ted on ly w i t h n a t u r a l a m o u n t s of v e n o m , a n d n o o t h e r r e g u l a t o r y m a t e r i a l s . T h u s , it w a s poss ib le for these a u t h o r s to p r o b e h o s t b i o c h e m i c a l p rocesses as in f luenced solely by n a t u r a l a m o u n t s of in jec ted v e n o m . S t r a n d et al. (1983) s imi la r ly u sed female ov ipos i t ion b e h a v i o r as a tool in e x a m i n i n g t h e effects of specific in jec ted m a t e r i a l s o n hos t d e v e l o p ­m e n t . S h a w (1981) u t i l ized t h e b e h a v i o r of a n e c t o p a r a s i t e to assess t h e ac t ion of its r e g u l a t o r y m a t e r i a l s on t h e hos t . T h e p a r a s i t e p l aced its eggs o n t h e surface of t h e hos t after in ject ion of v e n o m , e n a b l i n g the i r s u b s e q u e n t r e m o v a l to o b t a i n a hos t on ly inf luenced b y the in jected m a t e r i a l . T h u s , c o m b i n e d use of b o t h b i o c h e m i s t r y a n d b e h a v i o r c a n p e r m i t e x p e r i m e n t a l m a n i p u l a t i o n s a n d tes ts t h a t cou ld n o t b e a c c o m p l i s h e d w i t h e i t he r a p p r o a c h a lone . A t p r e s e n t , we have l imi ted e x a m p l e s tud ies c o m b i n i n g b e h a v i o r a l a spec t s a n d v e n o m s tud i e s . H o w e v e r , m a n y n e w a n d different w a y s exist in w h i c h t h e d i sc ip l ines of e tho logy a n d b i o c h e m i s t r y c a n b e c o m e c o u p l e d t h r o u g h s t ud i e s o n a n d uses of p a r a s i t e v e n o m s .

D. Use of Venoms in Evolutionary Studies

Paras i t i c w a s p v e n o m s c a n be u sed to a d d r e s s q u e s t i o n s o n t h e e v o l u t i o n a r y forces b e a r i n g u p o n p a r a s i t e s t h a t a r e in a coevo lu t i ona ry s t a t e w i t h t he i r hos t s , a n d in spec i a t i on of p a r a s i t e s to explo i t n e w hos t s . I n m a n y w a s p - h o s t s y s t e m s , t h e v e n o m is t he first c h e m i c a l con t ac t f rom the w a s p t h a t is r e ­ceived b y t h e hos t . T h e success of t h a t v e n o m in a l t e r i ng t h e h o s t is t h e p ivo ta l p o i n t t h a t d e t e r m i n e s w h e t h e r t h e u t i l i za t ion of t h e h o s t b y t h e p a r a s i t e will p r o c e e d . T h e r e f o r e , o n e w o u l d p r e d i c t t h a t v e n o m s w o u l d b e u n d e r very s t r o n g p r e s s u r e s of m o l e c u l a r evo lu t ion for successful i n t e rces s ion in t h e hos t ' s phys io log ica l p a t h w a y s . T h e r e is essent ia l ly n o b i o c h e m i c a l f r a m e w o r k of p a r a s i t i c w a s p v e n o m s from w h i c h h y p o t h e s e s c a n b e gener ­a t e d c o n c e r n i n g th is a s p e c t of w a s p - h o s t coevo lu t ion . P r e sen t l y inves t iga ­t ions c a n n o t p r e - o r p o s t d i c t c o n v e r g e n t evo lu t ion in p a r a s i t e s for a n a l o g o u s effects ve r sus h o m o l o g o u s effects on s imi l a r ve rsus d i s s imi l a r h o s t t e m p l a t e s . Fo r e x a m p l e , t h e r e a r e a n y n u m b e r of p a t h w a y s by w h i c h , say, b l o c k a g e of a m o l t c a n b e c a u s e d b y a v e n o m . T h e v e n o m m a y b lock apolys i s i n d e p e n d e n t of t h e h o s t ecdys t e ro id t i t e r (Kel ly a n d C o u d r o n , 1990; C o u d r o n , 1991), o r t h e p a r a s i t e ' s r e g u l a t o r y m e d i a t o r m a y ac tua l ly s u p p r e s s t h e ecdys t e ro id t i te r ( J o n e s et al., 1986). I t is of f u n d a m e n t a l in t e res t to u n d e r s t a n d h o w select ive

Page 238: Parasites and Pathogens of Insects. Parasites

2 3 4 Davy Jones and Thomas Coudron

p r e s s u r e s on u n r e l a t e d p a r a s i t e s w o u l d resu l t in c o n v e r g e n t evo lu t ion of two different m e c h a n i s m s of b lock ing hos t m o l t i n g , a n d w h e n t h e h o m o l o g o u s v e n o m molecu les w o u l d be i n d e p e n d e n t l y se lec ted t o w a r d the s a m e func t ion . As spec ia t ion even t s p a r t i t i o n va r ious r e sources (hos t t e m p l a t e s ) , i n fo rma­t ion m a y b e e x t r a p o l a t e d c o n c e r n i n g a d v a n t a g e o u s evo lu t i ona ry s t r a t eg ies . For e x a m p l e , does a very l a te l ineage t h a t " e n c o u n t e r s " a t e m p l a t e n i c h e s imi la r to t h a t of a n ear ly l ineage r e a d a p t t he s a m e p r e v i o u s m o l e c u l a r m e c h a n i s m ? Al te rna t ive ly , does t h a t l a te l ineage a l t e r t h e func t ion of a differ­e n t mo lecu l e used for a different p u r p o s e by a n i m m e d i a t e l y a n c e s t r a l l in­eage? Ana lys i s of t he a c t u a l v e n o m c o m p o n e n t s c a u s i n g a p p a r e n t l y h o m o ­logous effects will reveal w h i c h v e n o m c o m p o n e n t s of u n r e l a t e d o r d i s t a n t l y r e l a t ed p a r a s i t e s have conve rged to have t he s a m e funct ion . E v o l u t i o n a r y r a t e s m a y b e a s c e r t a i n e d by c o m p a r i n g s e q u e n c e d a t a for specific v e n o m c o m p o n e n t s a n d the f requency of conse rved s e q u e n c e s .

A n e x a m p l e from s tud ies on s n a k e v e n o m s i l lus t ra tes h o w s u c h cons ider ­a t i ons as d e s c r i b e d he r e c a n p rov ide ins igh ts on m o l e c u l a r evo lu t ion . J e n g et al. (1979) found ev idence t h a t o n e type of v e n o m p r o t e i n func t ion ing in h igh -affinity m e m b r a n e b i n d i n g h a d evolved from p h o s p h o l i p a s e A 2 e n z y m e s (also p r e s e n t in s n a k e v e n o m ) , w i t h o u t r e t en t i on a n d expres s ion of p h o s p h o ­l ipase activity. S imi l a r m e c h a n i s m s m a y o p e r a t e in h y m e n o p t e r a n v e n o m s . Le luk et al. (1989) showed i m m u n o l o g i c a l conse rva t i on of ep i topes in v e n o m s from p a r a s i t i c H y m e n o p t e r a w i th ep i topes in v e n o m p r o t e i n s f rom h i g h e r social o r p r e d a t o r y H y m e n o p t e r a in w h i c h t h e v e n o m serves a different funct ion . W e b b a n d S u m m e r s (1990) showed t h a t ep i topes from w a s p v e n o m p ro t e in s p r o d u c e d in t he v e n o m g l a n d were a lso found o n p r o t e i n s s y n t h e ­sized in t he ovary t h a t serve as p o l y d n a v i r u s s t r u c t u r a l p r o t e i n s .

W i t h r e spec t to c o m p a r i s o n s across w i d e r p h y l o g e n e t i c d i s t a n c e s , Le luk et al. (1989) found severa l t r e n d s in h y m e n o p t e r a n v e n o m s (Fig . 1). B r a c o n i d

Figure Ί Sodium dodecyl sulfate polyacrylamide gel electrophoresis of venom pro­teins from different species of Hymenoptera. Lane assignments: (1) Chelonus insularis, (2) Chelonus near curvimaculatus, (3) Dinoponera grandis, (4) Diacamma sp., (5) Paraponera clavata, (6) Ponerine sp., (7) Pogonomyrmex rugosus, (8) Pogonomyrmex maricopa, (9) Dasymutilla foxi, (10) Dasymutilla nogalensis, (11) Pepsis chrysothemis, (12) Sphecius grandis, (13) Apis mellifera, (14) Bombus sonorus, (15) Xylocopa varipuncta, (16) molecular size markers, in kilodaltons, (17) Microplitis sp., (18) Cotesia congregata, (19) Ichneu­monidae sp., (20) Ichneumonidae sp., (21) Dasymutilla nogalensis (same as 10), (22) Pepsis chrysothemis (same as 11), (23) Sphecious grandis (same as 12), (24) Polistes arizonen-sis, (25) Paravespula pensylvanica, (26) Vespa luctuosa, (27) Brachygastra mellifica, (28) Syn-oeca septentrionalis, (29) Parachartegus fraternus, (30) Apis mellifera (same as 13), (31) Bombus sonorus (same as 14). Figure is adapted from Leluk et al. (1989), with permis­sion of the publisher.

Page 239: Parasites and Pathogens of Insects. Parasites

10. Venoms of Hymenoptera as Investigatory Tools 2 3 5

17 18 19 20 21 22 23 24 25 26 2 7 28 29 30 31

- 116

- 97

- 68

- 45

- 24

- 18 - 14

1 2 3 4 5 6 7 8 9 10 1112 13 14 15 16

-116 - 9 7

- 6 6

- 4 5

-24

-18

Page 240: Parasites and Pathogens of Insects. Parasites

2 3 6 Davy Jones and Thomas Coudron

a n d i c h n e u m o n i d v e n o m s have a n a b u n d a n c e of h i g h - m o l e c u l a r - w e i g h t p r o ­te ins over 100 k D a , w h e r e a s m o s t of such p r o t e i n s a r e mi s s ing from t h e v e n o m s of h i g h e r H y m e n o p t e r a s u c h as bees a n d p r e d a t o r y w a s p s . F u r t h e r , t he v e n o m s of b r a c o n i d s a n d i c h n e u m o n i d s a r e mi s s ing t h e very sma l l , b u t a b u n d a n t p r o t e i n s found in v e n o m s of bees a n d p r e d a t o r y w a s p s s u c h as me l i t t i n (Fig. 1). We have now e x a m i n e d a p a r a s i t i c w a s p f rom t h e family E u l o p h i d a e a n d find t h a t it is a l so mi s s ing m o s t of t h e a b u n d a n t , h igh -m o l e c u l a r - w e i g h t p r o t e i n s t h a t typify b r a c o n i d a n d i c h n e u m o n i d w a s p s (F ig . 2) . A n o t h e r p a r a m e t e r involved in this c o m p a r i s o n is t h a t t h e v e n o m p r o t e i n s t h a t were e x a m i n e d p rev ious ly from identif ied w a s p s w e r e all f rom e n d o ­p a r a s i t i c species , w h e r e a s Euplectrus plathypenae is a n e c t o p a r a s i t e .

V e n o m p ro t e in s a r e c lear ly r e spons ive to , a n d c a n serve as sub jec t s of s t u d y of, forces of m o l e c u l a r evo lu t ion . T h e field of m o l e c u l a r evo lu t ion of v e n o m s is in its infancy. G iven the t ens of t h o u s a n d s of p a r a s i t i c H y m e n o p ­t e ra t h a t a r e t h o u g h t to exist , a n d the even g r e a t e r n u m b e r of hos t s a g a i n s t w h i c h the i r v e n o m s act , t h e r e c lear ly exists a h u g e a r e a of m o l e c u l a r r e s e a r c h t h a t is essent ia l ly a n o p e n field for inves t iga to r s i n t e re s t ed in m o l e c u l a r evo lu t ion .

E. Use of Venoms in Taxonomic Studies

M a n y h y m e n o p t e r a n phy logen ie s a r e unc lea r , w i t h t h e t a x o n o m i c p l a c e m e n t of m a n y g r o u p s u n c e r t a i n . A l t h o u g h n o s ingle fea tu re of a n insec t c a n serve a s t h e defini t ive t a x o n o m i c c r i t e r ion , t h e i n t ense se lec t ion p r e s s u r e t h a t t h e v e n o m is u n d e r (d i scussed in t he foregoing) sh o u l d m a k e it a n ex t r eme ly sensi t ive i n d i c a t o r of t he phy logen i c d i s t a n c e b e t w e e n spec ies . S ince c h a n g e in a s ingle p r o t e i n in t he c o m p l e x m i x t u r e of v e n o m p r o t e i n s (Fig . 1) c a n conce ivab ly confer access to a n a l t e r ed hos t r a n g e , t h e v e n o m cou ld b e a sensi t ive d e t e c t o r of s ib l ing species . A g a i n , r igo rous use of m o l e c u l a r ana lys i s of v e n o m p r o t e i n s for such t a x o n o m i c p u r p o s e s a t th is ear ly s t age h a s very few e x a m p l e s . However , on those occas ions in w h i c h p r o p e r t i e s of v e n o m s h a v e b e e n tes ted in d r a w i n g p h y l o g e n e t i c inferences , it h a s y ie lded useful r esu l t s . For e x a m p l e , Whi t f ie ld (1992) found a useful a p p l i c a t i o n in t he use of t h e p r e s e n c e or a b s e n c e of a p e r m a n e n t l y p a r a l y z i n g v e n o m as a t a x o n o m i c c h a r a c t e r w i t h i n t h e R o g a d i n i . V a n A c h t e r b e r g (1988) a n d Q u i c k e a n d v a n A c h t e r b e r g (1990) found t h a t t he m o r p h o l o g y of t he v e n o m a p p a r a t u s itself w a s a useful c h a r a c t e r t o w a r d so lu t ions to such t a x o n o m i c q u e s t i o n s .

Le luk a n d J o n e s (1989) found t h a t t he v e n o m of species in t h e g e n u s Chelonus h a s a cha rac t e r i s t i c g r o u p of h i g h - m o l e c u l a r - w e i g h t , ye l low-s ta in ing p r o t e i n s (Fig . 1). O t h e r g e n e r a in t he subfami ly C h e l o n i n a e (e .g. , Ascogaster) s h a r e m a n y i m m u n o l o g i c a l l y conse rved v e n o m ep i topes w i t h Chelonus (F ig . 2; J o n e s et al., 1990). O n e g r o u p w h o s e r e l a t i o n s h i p to t he C h e l o n i n a e o n t h e

Page 241: Parasites and Pathogens of Insects. Parasites

10. Venoms of Hymenoptera as Investigatory Tools 2 3 7

5 2 -4 7 -

3 3 -

SILVER IMMUNOBLOTS STAIN anti-total anti-33kD

venom proteins η-terminal peptide Figure 2 Sodium dodecyl sulfate polyacrylamide gel electrophoresis of venom pro­teins from Chelonus near curvimaculatus (Cc), Ascogaster quadridentata (Aq), and Euplectrus plathypenae (Ep). Left, the proteins visualized by silver staining; right, two panels show the result of immunoblott ing similar gels (see Leluk et al., 1989, for methods) using antiserum against total venom proteins from C. near curvimaculatus and antiserum against an N-terminal octapeptide for the 33-kDa protein from C. near curvimaculatus conjugated to keyhole limpet hemocyanin. These results show strong cross-reactivity in general between the venom proteins of C. near curvimaculatus and A. quadridentata. T h e venom from E. plathypenae, which blocks host apolysis independently of ec­dysteroid suppression (Coudron, 1991), did not show detectable cross-reactivity with either antiserum.

bas i s of c lass ical m o r p h o l o g i c a l c h a r a c t e r s w a s for m a n y yea r s u n c e r t a i n is Sigalphus ( M u e s e b e c k et al., 1951; K r o m b e i n et al., 1979). Species in th is g r o u p a r e very r a r e , a n d very l i t t le b i o n o m i c i n fo rma t ion a b o u t t h e m is ava i l ab le t h a t m i g h t o t h e r w i s e ass is t in the i r t a x o n o m i c p l a c e m e n t . H o w e v e r , t he resu l t s o b t a i n e d on ye l low-s ta in ing p r o t e i n s in b o t h O l d a n d N e w Wor ld Chelonus, a n d the very s t r o n g i m m u n o l o g i c a l c o n s e r v a t i o n of ep i topes be ­tween Chelonus a n d Ascogaster, sugges t t h a t s u c h tes ts o n Sigalphus c a n resolve q u e s t i o n s o n its p h y l o g e n e t i c a s soc ia t ion w i t h Chelonus. S h o u l d t h e v e n o m of Sigalphus possess t h e h i g h - m o l e c u l a r - w e i g h t , i m m u n o r e a c t i v e ye l low-s ta in ing

kD Cc Aq Ep Cc Aq Ep Cc Aq Ep 131 —

Page 242: Parasites and Pathogens of Insects. Parasites

2 3 8 Davy Jones and Thomas Coudron

p r o t e i n s , t he resu l t s w o u l d favor t h e i n t e r p r e t a t i o n t h a t Sigalphus is closely r e l a t ed to t he C h e l o n i n a e in gene ra l , a n d Chelonus in p a r t i c u l a r . T h e p o t e n t i a l for ex tens ion of this k ind of a p p r o a c h to t a x o n o m i c q u e s t i o n s on o t h e r g r o u p s of p a r a s i t i c w a s p s is i m m e d i a t e l y ev iden t .

F. Use of Venoms to Study Molecular Biology of Proteins

A classic e x a m p l e of the c o n t r i b u t i o n s t h a t s tud ies o n h y m e n o p t e r a n v e n o m s c a n m a k e to m o l e c u l a r b iology is t he w o r k on t h e express ion of h o n e y b e e me l i t t i n . S tud ie s on me l i t t i n p rocess ing from p r e p r o m e l i t t i n to p r o m e l i t t i n to final sec re ted me l i t t i n w e r e p i o n e e r i n g efforts t h a t led to gene ra l ly a p p l i c a b l e c o n c e p t s on p r o t e i n secre t ion (Kre i l et al., 1980). W i t h r e spec t to m o l e c u l a r a r c h i t e c t u r e itself, t he ear ly s tud ies on me l i t t i n led to its d e s c r i p t i o n in t h e M e r c k i n d e x ( W i n d h o l z , 1983) as t he "first p o l y p e p t i d e w h o s e b io logica l effects c a n b e u n d e r s t o o d on the bas i s of i ts p r i m a r y s t r u c t u r e . "

T h e r e have b e e n few p u b l i s h e d r e p o r t s of t he s e q u e n c e of a n y v e n o m p r o t e i n from p a r a s i t i c w a s p s . T h u s , insec t v e n o m o l o g y h a s n o t yet h a d a n o p p o r t u n i t y to c o n t r i b u t e to gene ra l p r inc ip les in m o l e c u l a r b io logy a n d g e n e express ion . R e c e n t s tud ies on c lon ing a n d s e q u e n c i n g of v e n o m p r o t e i n s in Chelonus p a r a s i t i c w a s p s ( J o n e s et al., 1992) a n d o t h e r n o n p a r a s i t i c H y ­m e n o p t e r a ( V l a s a k et al., 1983; V l a s a k a n d Kre i l , 1984; F a n g et al., 1988) have led to t he rea l i za t ion t h a t s ignal p e p t i d e s in h y m e n o p t e r a n v e n o m p r o t e i n s often have t he s t a n d a r d bas i c a m i n o ac ids a t each e n d r ep l aced w i t h o r followed by g l u t a m i c acid r e s idues ( J o n e s et al., 1992). T h e s e resu l t s sugges t t he t e s t ab le hypo thes i s t h a t spec ia l ized t issues of t h e h y m e n o p t e r a n v e n o m g l a n d use a form of s igna l p e p t i d e m a c h i n e r y t h a t is different t h a n t h e c lass ical m e c h a n i s m . I n a d d i t i o n , those a u t h o r s found t h a t a 3 3 - k D a v e n o m p r o t e i n w a s p r i m a r i l y c o m p o s e d of a u n i q u e series of 12 t a n d e m r e p e a t s . T h e s e a n d o t h e r d a t a p r o m p t e d the i r h y p o t h e s i s t h a t s o m e cr i t ica l v e n o m p ro t e in s evolved by d u p l i c a t i o n / d e l e t i o n of such r e p e a t s , d u r i n g spec ia t ion or m o l e c u l a r coevo lu t ion . T h a t t he first s e q u e n c i n g of c loned c D N A s for p a r a s i t e v e n o m p ro t e in s wou ld yield such i n t r i g u i n g o u t c o m e s , a n d g e n e r a t e s u c h h y p o t h e s e s , p rov ides g r e a t o p t i m i s m t h a t fu ture r e s e a r c h in to th is a r e a will b e p a r t i c u l a r l y fruitful. T h u s , v e n o m p ro t e in s offer m o d e l sy s t ems for e luc ida t i on of b o t h genera l ly a p p l i c a b l e m o l e c u l a r p r inc ip l e s a n d u n i q u e excep t ions .

G. Use of Venoms as Pharmacological Probes of Heterologous Systems

H y m e n o p t e r a n v e n o m s from bees a n d p r e d a t o r y w a s p s h a v e b e e n very useful as e x p e r i m e n t a l p r o b e s of he t e ro logous sys t ems . U s e of he t e ro logous n e u r o -

Page 243: Parasites and Pathogens of Insects. Parasites

ΊΟ. Venoms of Hymenoptera as Investigatory Tools 2 3 9

tox ins from bees a n d p r e d a t o r y w a s p s were u sed to assess b i o c h e m i c a l p a t h ­w a y s in n o n t a r g e t insec ts ( Q u i s t a d et al., 1988). H o n e y b e e me l i t t i n h a s b e e n u s e d as a p r o b e of m e m b r a n e s t r u c t u r e ( B a n k s a n d Sh ipo l in i , 1986). A r ecen t r e p o r t de sc r ibes t h e use of me l i t t i n to des t ab i l i ze cell m e m b r a n e s in t h e i so la t ion of cell nuc le i ( S m i t h et al., 1988). S c h m i d t (1986a ,b ) found it useful to u se v e n o m c o m p o n e n t s to s t u d y m e c h a n i s m s b y w h i c h a l l e rgen ic r eac t ions a r e e l ic i ted. W i t h r e spec t to p a r a s i t i c w a s p s , Piek a n d S p a n j e r (1986) u s e d a v e n o m n e u r o t o x i n f rom o n e w a s p to select ively b lock exc i t a to ry n e u r o m u s c u ­la r t r a n s m i s s i o n , p r i o r to p r o b i n g t h e ne rve p r e p a r a t i o n w i t h t h e v e n o m of a different w a s p . We c a n a n t i c i p a t e t h a t p a r a s i t i c w a s p v e n o m s will a l so be ­c o m e useful for m e d i c i n a l s t ud i e s . T h e v e n o m of Microbracon h a s effects t h a t pa ra l l e l t h e b o t u l i s m tox in (Thesleff, 1960), t he l a t t e r of w h i c h h a s b e e n a p o p u l a r p h a r m a c o l o g i c a l p r o b e in s tud ie s of v e r t e b r a t e s y s t e m s .

T h e n u m e r o u s a d v a n c e s t h a t have b e e n m a d e u s i n g tox ins a n d v e n o m s a t t e s t to t h e p o w e r of s u c h he t e ro logous p r o b e s in d i s sec t ing m o l e c u l a r p h e ­n o m e n a (e.g. , a c t i n o m y s i n , c o r d y c e p i n , t e t r a d o t o x i n , e tc . ) . We c a n a n t i c i p a t e t h a t as t h e p o t e n t i a l of p a r a s i t i c w a s p v e n o m s b e c o m e s b e t t e r u n d e r s t o o d a n d inves t iga t ed , these a g e n t s will a lso b e c o m e p o p u l a r a n d effective p h a r ­maco log ica l p r o b e s . M a n y of these efforts will b e ass i s ted w i t h s tud ies of t h e effect of v e n o m c o m p o n e n t s o n cells in c u l t u r e .

H. Use of Venoms in Practical Biological Control

V e n o m s h a v e uses in b iological con t ro l f rom a n u m b e r of different p e r s p e c ­t ives . For e x a m p l e , genes for s co rp ion tox ins t h a t a r e select ively ac t ive a g a i n s t a r t h r o p o d s a r e b e i n g tes ted as a m e a n s to i nc rea se t h e effectiveness of bacu lov i ruses ( C a r b o n e l l et al., 1988; D e e et al., 1990; C o u d r o n , 1991). T h e t r e m e n d o u s d ivers i ty of b o t h p a r a s i t i c w a s p v e n o m s a n d t h e h o s t t e m p l a t e s o n w h i c h they ac t offers a n u n p a r a l l e l e d r e sou rce of s ing le -gene p r o d u c t s for e n g i n e e r i n g of insec t p a t h o g e n s (see a l so B e a r d , 1971). T h e s e a r e genes w h o s e p r o d u c t s a r e a l r e a d y evo lu t ionar i ly d e s i g n e d to i n t e r c e d e in t h e b io ­c h e m i c a l p a t h w a y s of o u r m o s t i m p o r t a n t pes t insec ts ( J o n e s , 1986). Bacu lov i ruses c a n ac t as t h e vec to r to de l iver toxins to t a r g e t e d insec ts t h a t a r e n o t n a t u r a l hos t s of a v e n o m - p r o d u c i n g p r e d a t o r o r p a r a s i t e . For e x a m ­ple , t h e v e n o m from Euplectrus plathypenae is effective o n over 50 fact i t ious hos t s ( C o u d r o n a n d Pu t t i e r , 1988). T h u s , t h e l imi ts o n p a t h o g e n i c i t y of a s low-act ing bacu lov i rus d u e to n a t u r a l l imi ts o n hos t r a n g e c a n b e o v e r c o m e b y in se r t i on of t he gene for th is v e n o m p r o t e i n in to t h e v i ru s . S imu l t aneous ly , t h e v i ru s p rov ides a m e a n s of e n t r y of t he v e n o m i n t o hos t s t h a t t h e p a r a s i t e w o u l d n o r m a l l y n o t s t ing .

I n d e v e l o p i n g a less e m p i r i c a l bas i s for p r e d i c t i n g t h e success of s o m e bio logica l con t ro l efforts, it is neces sa ry to be a b l e to p r e d i c t w h e t h e r t h e

Page 244: Parasites and Pathogens of Insects. Parasites

2 4 0 Davy Jones and Thomas Coudron

p a r a s i t e will be ab l e to r egu la t e , a n d t h u s surv ive in , t he phys io logy of a n e w t a r g e t hos t ( J o n e s , 1986). T h e v e n o m p lays a m a j o r role in successful u t i l iza­t ion of t he hos t by s o m e g r o u p s of p a r a s i t e s . T h e r e f o r e , as a d d i t i o n a l s tud ie s define the specific v e n o m c o m p o n e n t s t h a t r e g u l a t e specific phys io log ica l p a t h w a y s , it will b e c o m e poss ib le to p r e d i c t w h e t h e r a p r o p o s e d b io logica l con t ro l effort will fail d u e to inab i l i ty of t he pa r a s i t e ' s v e n o m to r e g u l a t e t h e p o t e n t i a l hos t .

F r o m a different a p p r o a c h , it h a s b e e n p r o p o s e d t h a t a n u m b e r of u n u s u a l hos t r eco rds o c c u r r i n g in over 70 yea rs of b iological con t ro l l i t e r a t u r e a r i se from "ob l i ga t e m u t u a l p a r a s i t i s m , " in w h i c h the s t i ng ing of a hos t by o n e w a s p species enab l e s t he surv iva l of a second w a s p species in t h a t o t h e r w i s e n o n p e r m i s s i v e hos t ( G u z o a n d Stol tz , 1985). T h e bas i s of th is p h e n o m e n o n h a d no t b e e n p rev ious ly u n d e r s t o o d , a n d t h u s b iological con t ro l r e s e a r c h e r s have no t h a d a m e c h a n i s m to a n t i c i p a t e w h i c h hos t r e co rds a r e of th is t ype . I t is now a p p a r e n t t h a t t he v e n o m from o n e w a s p species c a n e n a b l e t he surv iva l of a s econd w a s p species in a n o the rwi se i n h o s p i t a b l e phys io log ica l e n v i r o n m e n t ( G u z o a n d Stol tz , 1985; V i n s o n a n d Sto l tz , 1986). N o w t h a t it is k n o w n t h a t t he v e n o m p a r t i c i p a t e s in i m m u n o s u p p r e s s i o n of t h e hos t a n d p a r a s i t e su rv iva l in a n u m b e r of sys t ems ( K i t a n o , 1986; Tay lo r a n d J o n e s , 1989; T a n a k a a n d V i n s o n , 1991; o t h e r c h a p t e r s in th is v o l u m e ) , a n d t h a t u n d e r ce r t a in cond i t i ons the ac t ion of t he v e n o m in a n o r m a l l y pe rmis s ive hos t c an b e a b r o g a t e d , the theore t i ca l f r amework is p r e s e n t to deve lop p r e ­d ic t ive ru les on r eco rds of ob l iga t e m u t u a l p a r a s i t i s m .

I n t he fu ture , g e r m l i n e t r a n s f o r m a t i o n p r o c e d u r e s for H y m e n o p t e r a will i nev i t ab ly be deve loped . A theore t i ca l f r amework e s t ab l i shed o n t h e ac t ion of p a r a s i t i c w a s p v e n o m s will p e r m i t se lect ion of t h e a p p r o p r i a t e v e n o m gene( s ) t h a t will e n a b l e t h e t r a n s f o r m e d w a s p to r ed i rec t t he phys io logy of n o n p e r ­miss ive hos t s t h a t a r e no t affected by the w a s p ' s n a t u r a l v e n o m .

I. Use of Venoms as Classroom Tools

V e n o m s from H y m e n o p t e r a have a n u m b e r of a p p l i c a t i o n s in t he c l a s s r o o m or l a b o r a t o r y exercises for i l lus t ra t ion or exercise in s t u d y i n g b io logica l , evo lu t ionary , o r m o l e c u l a r p r inc ip le s . For e x a m p l e , me l i t t i n is a r e a g e n t u s e d to lyse r ed b l o o d cell m e m b r a n e s , a n d c a n b e easi ly u s e d to i l l u s t r a t e p r o p e r ­ties of cell m e m b r a n e s . C o m m e r c i a l l y ava i lab le sp ide r v e n o m c a n b e u sed to i l l u s t r a t e neu rophys io log i ca l p r inc ip les in phys io logy l a b o r a t o r y exerc ises . I n m e d i c a l school i n s t ruc t ion , v e n o m s of social h y m e n o p t e r a n species a r e u s e d to i l lus t ra te p r inc ip les in a l le rgenic r eac t ions . I t is c o m m o n for l a b o r a t o r y exercises on insect phys io logy to use l iga t ion of va r ious b o d y reg ions to i l lus t ra te phys io log ica l p r inc ip les . Piek (1966) a n d C o u d r o n (1991) showed h o w this f o rma t c a n be easi ly e x t e n d e d to use of p a r a s i t i c w a s p v e n o m s w i t h

Page 245: Parasites and Pathogens of Insects. Parasites

ΊΟ. Venoms of Hymenoptera as Investigatory Tools 241

different ac t ions v ia different b o d y p a r t s . We have a lso u t i l ized w a s p v e n o m s in o u r o w n c l a s s r o o m i n s t r u c t i o n in biological con t ro l top ics . Fo r e x a m p l e , t h e ab i l i ty to obse rve a n d m a n i p u l a t e Chelonus s t i ng ing b e h a v i o r for v e n o m entry , a n d to o b s e r v e w h e t h e r t he hos t s b e c o m e t ru ly p a r a s i t i z e d ( su rv iv ing p a r a s i t e ) o r p s e u d o p a r a s i t i z e d ( d e a d p a r a s i t e ) , h a s e n a b l e d s t u d e n t s in l a b exercises to coup l e t h e d isc ip l ines of insec t b e h a v i o r a n d insec t physiology. T h e s e rea l e x a m p l e s p rov ide conf idence t h a t t he m a n y a d d i t i o n a l poss i ­bil i t ies t h a t c a n be env i s ioned cou ld easi ly be a d a p t e d for va r ious i n s t r u c t i o n ­al p u r p o s e s .

III. Conclusions

I n this c h a p t e r we have a r t i c u l a t e d a n u m b e r of w a y s in w h i c h v e n o m s of p a r a s i t i c H y m e n o p t e r a c a n serve as effective tools in inves t iga t ions in d ive r se scientific d i sc ip l ines . As i l lu s t r a t ions of s u c h use , we e x a m i n e d a va r i e ty of r e s e a r c h a r e a s f rom the different pe r spec t ives offered by u t i l i za t ion of w a s p v e n o m s . A n u m b e r of new, t e s t ab le h y p o t h e s e s w e r e g e n e r a t e d as a conse ­q u e n c e of s u c h pe r spec t ives . For e x a m p l e , we have p r o p o s e d t h a t w a s p ven­o m s will b e found to c o n t a i n c o m p o n e n t s t h a t a r e d i a g n o s t i c of t a x a of hos t s w i t h d i s t inc t ive b i o n o m i c s a n d / o r inferable physiology. We a lso p r o p o s e t h a t c e r t a in v e n o m p r o t e i n s have evolved d u r i n g h y m e n o p t e r a n evo lu t ion b y d u ­p l i ca t ion o r de l e t ion of a core t a n d e m r e p e a t . We also h y p o t h e s i z e t h a t t h e ce l lu la r m a c h i n e r y involved in p r o t e i n secre t ion by t h e v e n o m g l a n d is differ­e n t f rom, o r is a d i s t inc t modi f i ca t ion of, t h e o r t h o d o x m a c h i n e r y u sed in p r o t e i n sec re t ion from o t h e r t i ssues . We also p r e d i c t t h a t , as a g e n e r a l ru l e , t he v e n o m s of h i g h e r H y m e n o p t e r a c o n t a i n few p r o t e i n s w i t h a m o l e c u l a r we igh t above 100 k D a , w h e r e a s t he v e n o m s of lower, p a r a s i t i c H y m e n o p t e r a c o n t a i n m a n y re la t ive ly a b u n d a n t p r o t e i n s above t h a t size.

As t h e b i o c h e m i s t r y a n d m o l e c u l a r b io logy of v e n o m s b e c o m e b e t t e r u n ­d e r s t o o d , w e a n t i c i p a t e t h a t t h e list of e x a m p l e s of s u c h uses of p a r a s i t e v e n o m s will i nc rease d r ama t i ca l l y . T h e re la t ively sma l l size of t h e list a t p r e s e n t a t t e s t s b o t h to h o w m u c h this a r e a h a s b e e n here tofore over looked a n d to t h e luc ra t ive r e s e a r c h p o t e n t i a l t h a t awai t s inves t iga to r s a t t r a c t e d to t h e s t u d y of p a r a s i t i c w a s p v e n o m s . T h e r e is every r e a s o n t h a t m a j o r a d ­v a n c e s a r e in t he offing for this field in itself, a n d for o t h e r d i sc ip l ines t o w a r d w h i c h p a r a s i t e v e n o m s c a n be e x p e r i m e n t a l l y a p p l i e d .

Acknowledgments

The authors gratefully recognize Drs. M. Chippendale, W. Steiner, and D. Stoltz for the review of an early draft. This work was supported, in part, by NIH GM 33995 and a Biomedical

Page 246: Parasites and Pathogens of Insects. Parasites

2 4 2 Davy Jones and Thomas Coudron

Research Support Grant (D. Jones), the USDA ARS (T. Coudon), and the Kentucky Agri­cultural Experiment Station (D. Jones).

References

Askew, R. R. (1971). "Parasitic Insects." American Elsevier, New York. Banks, Β. E. C , and Shipolini, R. A. (1986). Chemistry and pharmacology of honey-bee venom.

In "Venoms of the Hymenoptera" (T. Piek, ed.), pp. 330-416. Academic Press, Orlando, FL. Beard, R. L. (1952). The toxicology of Habrobracon venom: A study of a natural insecticide.

Bull.—Conn. Agric. Exp. Stn. New Haven 562:346-351. Beard, R. L. (1971). Arthropod venoms as insecticides. In "Naturally Occurring Insecticides"

(M. Jacobson and D. G. Crosby, eds.), pp. 213-270. Dekker, New York. Beckage, Ν. E., Templeton, Τ J., Nielsen, B. D., Cook, D. I., and Stoltz, D. B. (1987).

Parasitism-induced hemolymph polypeptides in Manduca sexta (L.) larvae parasitized by the braconid wasp Cotesia congregata (Say). Insect Biochem. 17:439-455.

Beckage, Ν. E., Metcalf, J. S., Nesbit, D. J., Schleifer, K. W., Zetlan, S. R., and de Buron, I. (1990). Host hemolymph monophenoloxidase activity in parasitized Manduca sexta larvae and evidence for inhibition by wasp polydnavirus. Insect Biochem. 20:285-294.

Carbonell, L. F., Hodge, M. R., Tomalski, M. D., and Miller, L. K. (1988). Synthesis of a gene coding for an insect-specific scorpion neurotoxin and attempts to express it using baculovirus vectors. Gene 73:409-418.

Chelliah, J., and Jones, D. (1990). Biochemical and immunological studies of proteins from polydnavirus Chelonus sp. near curvimaculatus. J. Gen. Virol. 771:2353-2359.

Clausen, C. P. (1940). "Entomophagous Insects," McGraw-Hill, New York. Coudron, T. A. (1991). Host-regulating factors associated with parasitic Hymenoptera. ACS

Symp. Ser. 449:41-65 . Coudron, Τ. Α., and Kelly, T. J. (1985). Euplectrus plathypenae parasitization of Trichoplusia ni.

Effect of weight gain, ecdysteroid titer and molting. ACS Symp. Ser. 276:319. Coudron, Τ. Α., and Puttier, B. (1988). Response of natural and factitious hosts to the ecto­

parasite Euplectrus plathypanae (Hymenoptera: Eulophidae). Ann. Entomol. Soc. Am. 81:931— 937.

Coudron, Τ. Α., Kelly, T. J., and Puttier, B. (1990). Developmental responses of Trichoplusia ni (Lepidoptera: Noctuidae) to parasitism by the ectoparasite Euplectrus plathypenae (Hymenop­tera: Eulophidae). Arch. Insect Biochem. Physiol. 13:83-94.

Dee, Α., Belagaje, R. M., Ward, K., Chio, E., and Lai, M.-H. T. (1990). Expression and secretion of a functional scorpion insecticidal toxin in cultured mouse cells. Bio/Technology 8: 339-342.

DeLeon, D. (1935). The biology of Coeloides dendroctoni Cushman (Hymenoptera-Braconidae) an important parasite of the mountain pine beetle (Dendroctonus monticolae Hopk.). Ann. Entomol. Soc. Am. 28:411-424.

de Lima, Μ. E., Couraud, F., Lapied, B., Pelhate, M., Diniz, C. D., and Rochat, H. (1988). Photoaffinity labelling of scorpion toxin receptors associated with insect synaptosomal N a +

channels. Biochem. Biophys. Res. Commun. 151:187-192. Fang, K. S.-I., Vitale, M., Fehlner, P., and King, T. P. (1988). cDNA cloning and primary

structure of a white-face hornet venom allergen, antigen 5. Proc. Natl. Acad. Sci. U.S.A. 85:895-899.

Gordh, G., and Hawkins, B. (1981). Goniozus emigrates, a primary external parasite of Paramyleois transitella, and comments on bethylids attacking Lepidoptera. J. Kans. Entomol. Soc. 54 : 787 -803.

Page 247: Parasites and Pathogens of Insects. Parasites

10. Venoms of Hymenoptera as Investigatory Tools 2 4 3

Guzo, D., and Stoltz, D. B. (1985). Obligatory multiparasitism in the tussock moth, Orgyia leucostigma. Parasitology 90:1 - 1 0 .

Jeng, T.-W., Hendon, R. Α., and Fraenkel-Conrat, H. (1979). Search for relationships among hemolytic phospholipolytic and neurotoxic activities of snake venoms. Proc. Natl. Acad. Sci. U.S.A. 75:600-604.

Jones, D. (1986). Use of parasite regulation of host endocrinology to enhance the potential of biological control. Entomophaga 31:153-161.

Jones, D. (1987). Material from adult female Chelonus sp. directs expression of altered develop­mental programme of host Lepidoptera. J. Insect Physiol. 33:129-134.

Jones, D. , Jones, G., Rudnicka, M., Click, Α., Reck-Mallaczewen, V., and Iwaya, M. (1986). Pseudoparasitism of host Trichoplusia ni by Chelonus spp.: A new model system for parasite regulation of host physiology. J. Insect Physiol. 32:315-328.

Jones, D., and Wozniak, M. (1991). Regulatory mediators in the venom of Chelonus sp.: Their biosynthesis and subsequent processing in homologous and heterologous systems. Biochem. Biophy. Res. Commun. 178:213-220.

Jones, D., Taylor, T , Farkas, R., Chelliah, J., Haene, B., Brown, J., and Reed-Larsen, D. (1990). Intercession of parasitic wasps (Cheloniae) in host developmental and biochemical path­ways. Adv. Invertebr. Reprod. 5:157-162.

Jones, D., Sawicki, G., and Wozniak, M. (1992). Sequence, structure, and expression of a wasp venom protein with a negatively charged signal peptide and a novel repeating internal structure. J. Biol. Chem. 267:14871-14878.

Kelly, T. J., and Coudron, T. A. (1990). Total and specific ecdysteroids in the hemolymph of Trichoplusia ni (Lepidoptera: Noctuidae) and its parasite, Euplectrusplathypenae (Hymenoptera: Eulophidae). J. Insect. Physiol. 36:463-470.

Kitano, M. (1986). The role of Apanteles glomeratus venom in the defensive response of its host, PieHs rapae crucivora. J. Insect. Physiol. 32:369-378.

Kreil, G., Haiml, L., and Suchanek, G. (1980). Stepwise cleavage of the pro part of promelittin by dipeptidlylpeptidase. IV. Eur. J. Biochem. 111:49-58.

Krombein, Κ. V., Hurd, D. D., Jr., Smith, D. R., and Burks, B. D. (1979). "Catalog of Hymenoptera in America North of Mexico." Smithsonian Institution Press, Washington, DC.

Leluk, J., and Jones, D. (1989). Chelonus sp. near curvimaculatus venom proteins: Analysis of their potential role and processing during development of host Trichoplusia ni. Arch. Insect. Biochem. Physiol. 10:1-12 .

Leluk, J., Schmidt, J., and Jones, D. (1988). Characterization and functions of the proteins of hymenopteran venoms. In "Endocrinological Frontiers in Physiological Insect Ecology" (F. Sehnal, A. Zabza, and D. L. Denlinger, eds.), Vol. 1, pp. 457-460. Wroclaw Tech. Univ. Press, Wroclaw, Poland.

Leluk, J. Schmidt, J., and Jones, D. (1989). Comparative studies on the protein composition of hymenopteran venom reservoirs. Toxicon 27:105-114.

McClure, (1933). The effectiveness of the sting of Aenoplex carpocapsae Cushman (Hymen.: Ich-neumonidae). Entomol. News 44 :48-49 .

Muesebeck, C.F.W., Krombein, Κ. V., and Townes, Η. K. (1951). "Hymenoptera of America North of Mexico," U.S.D.A. Monogr. 2, U.S. Govt. Printing Off., p. 142.

Piek, T. (1966). Site of action of the venom of the digger wasp Philanthus triangulum F. on the fast neuromuscular system of the locust. Toxicon 4:191-198.

Piek, T., and Spanjer, W. (1986). Chemistry and pharmacology of solitary wasp venoms. In "Venoms of the Hymenoptera" (T. Piek, ed.), pp. 161-308. Academic Press, Orlando, FL.

Quicke, D.L.J., and van Achterberg, C. (1990). Phylogeny of the subfamilies of the family Braconidae (Hymenoptera: Ichneumonoidea). Zool. Verh. 258:1 -95 .

Page 248: Parasites and Pathogens of Insects. Parasites

2 4 4 Davy Jones and Thomas Coudron

Quistad, G. B., Skinner, W. S., and Schooley, D. A. (1988). Venoms of the social Hymenoptera—Toxicity to the lepidopteran, Manduca sexta. Insect. Biochem. 18:511-514.

Ratcliffe, Ν. Α., and King, P. E. (1967). The venom system of Nasonia vitripennis (Walker) (Hymenoptera: Pteromalidae). proc. R. Entomol. Soc. London, Ser. A 42 :49 -61 .

Schmidt, J. O. (1986a). Chemistry, pharmacology, and ecology of ant venoms. In "Venoms of the Hymenoptera" (T. Piek, ed.), pp. 425-508. Academic Press, Orlando, FL.

Schmidt, J. O. (1986b). Allergy to Hymenoptera venoms. In "Venoms of the Hymenoptera" (T. Piek, ed.), pp. 509-546. Academic Press, Orlando, FL.

Shaw, M. R. (1981). Delayed inhibition of host development by the nonparalyzing venoms of parasitic wasps. J. Invertebr. Pathol. 37:215-221, 285.

Smith, R. J., Friede, Μ. H., Scott, B. J., and von Holt, C. (1988). Isolation of nuclei from melittin destabilized cells. Anal. Biochem. 169:390-394.

Steiner, A. L. (1986). Stinging behavior of solitary wasps. In "Venoms of the Hymenoptera" (T. Piek, ed.), pp. 63-160. Academic Press, Orlando, FL.

Stoltz, D. B., and Vinson, S. B. (1979). Viruses and parasitism in insects. Adv. Virus Res. 2 4 : 1 2 5 -171.

Stoltz, D. B., Belland, E. R., Lucarotti, C. J., and Mackinnon, E. A. (1988). Venom promotes uncoating in vitro and persistence in vivo of DNA from a braconid polydnavirus. J. Gen. Virol. 69:903-907.

Strand, M. R., Rather, S., and Vinson, S. B. (1983). Maternally induced host regulation by the egg parasitoid Telenomus heliothidis. Phys. Entomol. 8:469-475.

Tanaka, T , and Vinson, S. B. (1991). Interaction of venoms with the calyx fluids of three parasitoids, Cardiochiles nigriceps, Microplitis croceipes (Hymenoptera: Braconidae), Campoletis sonorensis (Hymenoptera: Ichneumonidae) in effecting a delay in the pupation of Heliothis virescens (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 84:87-92 .

Taylor, T , and Jones, D. (1989). Isolation and characterization of the 32.5 kDa protein from venom of an endoparasitic wasp. Biochim. Biophys. Acta 1035:37-43 .

Thesleff, S. (1960). Supersensitivity of skeletal muscle produced by Botulinum toxin. J. Physiol. (London) 151:598-607.

Van Achterberg, C. (1988). Parallelisms in the Braconidae (Hymenoptera) with special refer­ence to the biology. In "Advances in Parasitic Hymenoptera Research" (V. K. Gupta, ed.), pp. 85-115. E.J. Brill, New York.

Vinson, S. B., and Stoltz, D. B. (1986). Cross-protection experiments with two parasitoid (Hymenoptera: Ichneumonidae) viruses. Ann. Entomol. Soc. Am. 79:216-218.

Vlasak, R., and Kreil, G. (1984). Nucleotide sequence of cloned cDNAs coding for pre-prosecapin, a major product of queen bee venom glands. Eur. J. Biochem. 145:279.

Vlasak, R., Unger-Ullmann, Kreil, G., and Frishauf, A.-M. (1983). Nucleotide sequence of cloned cDNA coding for honeybee prepromelittin. Eur. J. Biochem. 135:123.

Walther, C , Zlotkin, E., and Rathmayer, W. (1976). Action of different toxins from the scorpion Androctonus australis on a locust nerve-muscle preparation. J. Insect Physiol. 22:1187-1194.

Webb, Β. Α., and Summers, M. D. (1990). Venom and viral expression products of the endo­parasitic wasp Campoletis sonorensis share epitopes and related sequences. Proc. Natl. Acad. Sci. U.S.A. 87:4961-4965.

Whitfield, J. B. (1992). The polyphyletic origin of endoparasitism in the cyclosteme lineages of Braconidae (Hymenoptera). Syst. Entomol. 17:273-286.

Whitfield, J. B., and Wagner, D. L. (1988). Patterns of host ranges within the nearctic species of the parasitoid genus Pholetesor Mason (Hymenoptera: Braconidae) Environ. Entomol. 17:608-615.

Wilbert, H. (1964). Das Auslesverhalten von Aphelinus semiflavus Howard und die Abwerrreak-tionen seiner Wirte (Hymenoptera: Aphelinidae). Beitr. Entomol. 14:159-221.

Windholz, M., ed. (1983). "Merck Index." Merck & Co., Rathway, NJ.

Page 249: Parasites and Pathogens of Insects. Parasites

I. Introduction

II. Immune Mechanisms in Mosquitoes A. Non-Self Recognition B. Cellular Aspects C. Humoral Aspects D. Biochemical Aspects

III. Genetic Control of Susceptibility/Refractoriness A. Historical Perspective B. Genes and Gene Products C. Molecular Approaches in Vector

Control: Future Directions Acknowledgments References

I. Introduction

M o s q u i t o - b o r n e d i seases a r e a m a j o r c a u s e of m o r b i d i t y a n d m o r t a l i t y in h u m a n p o p u l a t i o n s t h r o u g h o u t t he wor ld , b u t a r e especia l ly i m p o r t a n t in t h e t rop ics a n d s u b t r o p i c s of b o t h h e m i s p h e r e s . M a l a r i a , l y m p h a t i c f i lariasis , yel low fever, a n d o t h e r a rbov i r a l d i seases infect a s ignif icant p e r c e n t a g e of t h e wor ld ' s p o p u l a t i o n a n d p lace a n even l a rge r p e r c e n t a g e a t r isk. Plas­modium, t h e c a u s a t i v e a g e n t of m a l a r i a , is t r a n s m i t t e d b y Anopheles species a n d infects over 200 mi l l ion i n d i v i d u a l s each year , w i t h y o u n g c h i l d r e n suffer­ing t h e g r e a t e s t mor ta l i ty . T h e filarioid n e m a t o d e s , Wuchereria bancrofli, Brugia malayi, a n d B. timori, a r e t r a n s m i t t e d to h u m a n s by severa l species of m o s q u i ­toes , p r i m a r i l y in t h e g e n e r a Culex, Aedes, Mansonia, a n d Anopheles, a n d c a u s e d e b i l i t a t i n g l y m p h a t i c filariasis in n e a r l y 100 mi l l ion peop l e . I n a d d i t i o n , yel low fever, d e n g u e fever, J a p a n e s e encepha l i t i s , a n d o t h e r m o s q u i t o - b o r n e a r b o v i r u s e s infect t h o u s a n d s of p e o p l e t h r o u g h o u t t he wor ld . D e s p i t e t he e c o n o m i c a n d h e a l t h - r e l a t e d i m p a c t t hese d i seases h a v e o n t h e wor ld ' s p o p u -

Parasites and Pathogens of Insects Copyright © 1993 by Academic Press, Inc. Volume 1: Parasites 2 4 5 All rights of reproduction in any form reserved.

Bruce Μ. Christensen David W. Severson Department of Animal Health and Biomedical Sciences University of Wisconsin Madison, Wisconsin

Biochemical and Molecular Basis of Mosquito Susceptibility to Plasmodium and Filarioid Nematodes

Chapter 11

Page 250: Parasites and Pathogens of Insects. Parasites

2 4 6 Bruce Μ. Christensen and David W. Severson

l a t ion , re la t ively li t t le a t t e n t i o n h a s b e e n given to r e s e a r c h a i m e d a t clarify­ing t he c o m p l e x r e l a t i onsh ips t h a t exist b e t w e e n these p a t h o g e n s a n d the m o s q u i t o e s r e q u i r e d for the i r d e v e l o p m e n t , m a i n t e n a n c e , a n d s u b s e q u e n t t r a n s m i s s i o n to h u m a n s . A l t h o u g h p r i m a r y con t ro l of these d i seases h a s b e e n a c c o m p l i s h e d t h r o u g h m o s q u i t o con t ro l p r o g r a m s , r a p i d l y i n c r e a s i n g res is­t a n c e to c h e m i c a l insec t ic ides , t oge the r w i t h a n a w a r e n e s s of t h e e n v i r o n ­m e n t a l insu l t s c a u s e d b y these chemica l s , h a s s ignif icant ly r e d u c e d t h e effec­t iveness of these t r a d i t i o n a l con t ro l efforts.

I t is well k n o w n t h a t only select species , o r even select s t r a in s of a g iven species , of m o s q u i t o e s funct ion as n a t u r a l vec tors of t he a b o v e - m e n t i o n e d p a t h o g e n s . T h e ma jo r i ty of species d o n o t s u p p o r t p a r a s i t e d e v e l o p m e n t to t h e infective s t age . We define a suscep t ib l e m o s q u i t o as o n e t h a t s u p p o r t s t h e c o m p l e t e d e v e l o p m e n t of t he p a r a s i t e . A r e s i s t an t m o s q u i t o species is o n e t h a t kills t he i n v a d i n g p a r a s i t e by act ive i m m u n e m e c h a n i s m s , w h e r e a s a refractory m o s q u i t o is def ined as o n e in w h i c h the re s eems to b e a phys io log i ­cal i n c o m p a t i b i l i t y b e t w e e n the p a r a s i t e a n d the p o t e n t i a l vector . I n refrac­to ry s i t ua t ions , t he p a r a s i t e m a y successfully i n v a d e t h e h e m o c o e l e n v i r o n ­m e n t of t he hos t a n d r each the a p p r o p r i a t e t i ssue si te for d e v e l o p m e n t , b u t t h e n s imp ly fails to deve lop . A t h o r o u g h u n d e r s t a n d i n g of t h e m e c h a n i s m s con t ro l l ing suscept ib i l i ty , r e s i s t ance , a n d ref rac tor iness of m o s q u i t o e s for t h e p a r a s i t e s they t r a n s m i t is cr i t ica l for t he d e v e l o p m e n t of n e w a n d innova t ive vec to r con t ro l s t ra teg ies , as well as to ga in a c o m p l e t e u n d e r s t a n d i n g of t he ep idemio logy of these m o s q u i t o - b o r n e d iseases ; however , l i t t le r e s e a r c h effort h a s b e e n d i r ec t ed t o w a r d p rov id ing this f u n d a m e n t a l i n fo rma t ion .

A s ignif icant b o d y of l i t e r a tu re , however , is b e g i n n i n g to a c c u m u l a t e re ­g a r d i n g the i m m u n e r e s p o n s e of insects a n d o t h e r a r t h r o p o d s a g a i n s t b o t h m i c r o b i a l a n d m e t a z o a n p a t h o g e n s . T h e n u m b e r of books , s y m p o s i a p u b l i c a ­t ions , a n d rev iew ar t ic les on i n v e r t e b r a t e i m m u n i t y over t he las t five yea r s s u p p o r t th is s t a t e m e n t (Brehe l in , 1986; D u n n , 1986, 1990; G u p t a , 1986; Lackie , 1986; B o m a n a n d H u l t m a r k , 1987; N a p p i a n d C h r i s t e n s e n , 1987; C h r i s t e n s e n a n d N a p p i , 1988; Lackie , 1988; C h r i s t e n s e n a n d Tracy , 1989; L a w a n d Wells , 1989; K a r p , 1990; S u g u m a r a n , 1990). T h e s e r e s e a r c h find­ings , t o g e t h e r w i th t he u p d a t e d m a t e r i a l rev iewed e l sewhere in th is v o l u m e , have a d d e d s ignif icant ins igh t to o u r u n d e r s t a n d i n g of r e s i s t ance p h e n o m e n a in select a r t h r o p o d s . B u t m u c h of these d a t a m a y b e l imi ted b e c a u s e t h e ma jo r i ty of s tud ies have c o n c e r n e d on ly a l imi ted n u m b e r of insec t spec ies , w i t h a m a j o r e m p h a s i s on select species of l e p i d o p t e r a n s . I t c a n b e ser ious ly q u e s t i o n e d h o w a p p l i c a b l e d a t a from l e p i d o p t e r a n l a rvae real ly a r e to clarify­ing o u r u n d e r s t a n d i n g of m e c h a n i s m s o p e r a t i n g in a d u l t , h e m a t o p h a g o u s d i p t e r a n s ; therefore , t he a m o u n t of d a t a p r e sen t ly ava i l ab le r e g a r d i n g t h e biological i n t e rp l ay b e t w e e n m o s q u i t o e s a n d the p a r a s i t e s they t r a n s m i t is q u i t e l imi ted in re la t ion to o t h e r m o d e l sy s t ems b e i n g used in insec t i m m u -

Page 251: Parasites and Pathogens of Insects. Parasites

11. Mosquito Susceptibility to Plasmodium and Filarioids 2 4 7

ni ty r e s e a r c h . T h i s lack of d a t a is even m o r e a p p a r e n t for t h e m e d i c a l l y i m p o r t a n t p s y c h o d i d s , s imu l i id s , a n d c e r a t o p o g o n i d s .

R e c e n t even t s , however , have s t i m u l a t e d a n i n c r e a s e d r e s e a r c h effort a i m e d a t u n d e r s t a n d i n g t h e c o m p l e x r e l a t i onsh ip s t h a t d e t e r m i n e c o m p a t i ­bi l i ty a n d i n c o m p a t i b i l i t y in v e c t o r - p a r a s i t e m o d e l s . O n e r e a s o n for th is effort u n d o u b t e d l y involves t he pub l i c i zed in te res t of p r i v a t e , n a t i o n a l , a n d i n t e r n a t i o n a l fund ing agenc ies in t h e vec to r b iology a r e n a . I n a d d i t i o n , t h e fai lure of h igh-vis ib i l i ty p r o g r a m s des igned to p r o d u c e effective vacc ines , t o g e t h e r w i t h t he c o n t i n u i n g evo lu t ion of d r u g r e s i s t ance by v e c t o r - b o r n e p a r a s i t e s , h a s r e n e w e d in te res t in t h e vec to r as a logical focus for n e w con t ro l s t r a t eg ies . B u t p e r h a p s m o r e i m p o r t a n t l y , t h e d e v e l o p m e n t of c o n t e m p o r a r y t echno log ies h a s p r o v i d e d the m e a n s w h e r e b y soph i s t i c a t ed m o l e c u l a r , cel lu­lar , a n d b i o c h e m i c a l s t ud i e s c a n be p e r f o r m e d successfully u s i n g e x p e r i m e n ­ta l a n i m a l s of ex t r eme ly sma l l size. O n e h o p e s these incen t ives will encou r ­a g e s o m e of t h e o u t s t a n d i n g r e s e a r c h e r s p re sen t ly u s i n g m o d e l s y s t e m s of l i t t le e c o n o m i c a n d n o p u b l i c h e a l t h s ignif icance to tes t t he findings f rom these m o d e l s y s t e m s in vec tors t h a t c a u s e m o r b i d i t y a n d m o r t a l i t y for mi l ­l ions of h u m a n s t h r o u g h o u t t h e wor ld .

T h e r e h a v e b e e n s o m e a d v a n c e s in o u r u n d e r s t a n d i n g of t he b i o c h e m i c a l a n d m o l e c u l a r bas i s of m o s q u i t o suscep t ib i l i ty to p a r a s i t e s d u r i n g t h e las t severa l yea r s , a n d th is rev iew will a t t e m p t to u p d a t e s o m e specific f indings d u r i n g t h e las t 3 - 4 yea r s . A d d i t i o n a l i n f o r m a t i o n is ava i l ab le in severa l o t h e r r ev iew ar t ic les d e a l i n g specifically w i t h t h e r e s p o n s e of m o s q u i t o e s to filarial w o r m infect ion ( C h r i s t e n s e n , 1986; T o w n s o n a n d C h a i t h o n g , 1991), m o s q u i ­to inf luences o n suscep t ib i l i ty to a rbov i ru se s (B i shop a n d Beaty , 1986), a n d i m m u n e m e c h a n i s m s in a r t h r o p o d vec to rs ( C h r i s t e n s e n a n d Tracy , 1989). T h e first sec t ion of th is rev iew will c o n c e r n s o m e of t h e ce l lu la r a n d b io ­c h e m i c a l a spec t s of t he i m m u n e r e s p o n s e of m o s q u i t o e s a g a i n s t p a r a s i t e s a n d t h e fol lowing sec t ion will a d d r e s s o u r c u r r e n t s t a t e of k n o w l e d g e r e g a r d i n g the m o l e c u l a r bas i s for suscep t ib i l i ty a n d / o r ref rac tor iness in m o s q u i t o vec­to r s . B e c a u s e of t he p a u c i t y of d a t a ava i l ab le c o n c e r n i n g e i the r t h e gene t i c con t ro l of suscep t ib i l i ty o r t h e defensive r e sponses a g a i n s t a r b o v i r u s e s in m o s q u i t o e s , th is r ev iew will c o n c e r n on ly t h e r e l a t i onsh ips t h a t m o s q u i t o e s h a v e w i t h Plasmodium a n d filarioid p a r a s i t e s .

II. Immune Mechanisms in Mosquitoes

A. Non-Self Recognition

M o s q u i t o e s possess a n a r s e n a l of ce l lu la r a n d h u m o r a l c o m p o n e n t s os tens i ­b ly d e s i g n e d to r e t a i n t he in tegr i ty of self, a n d these c o m p o n e n t s c a n b e ve ry

Page 252: Parasites and Pathogens of Insects. Parasites

2 4 8 Bruce Μ. Christensen and David W. Severson

effective in ident i fy ing a n d des t roy ing a m u l t i t u d e of foreign insu l t s . Ac t ive i m m u n e r e sponses of m o s q u i t o e s a g a i n s t m a l a r i a p a r a s i t e s (Col l ins et al., 1986) a n d filarioid n e m a t o d e s (Bee rn t sen et al., 1989) gene ra l ly a r e c h a r a c ­ter ized by the e n c a s e m e n t of t he p a r a s i t e in a m e l a n o t i c c a p s u l e . A l t h o u g h " m e l a n i z a t i o n " o r " m e l a n o t i c e n c a p s u l a t i o n " h a s b e e n t h e sub jec t of i n t en ­sive s t u d y in severa l species of insec ts r e p r e s e n t i n g severa l o r d e r s (see rev iews in G u p t a , 1986; C h r i s t e n s e n a n d N a p p i , 1988; N a p p i a n d C h r i s t e n s e n , 1987; Lack ie , 1988; C h r i s t e n s e n a n d Tracy, 1989; S u g u m a r a n , 1990; K a r p , 1990), very l i t t le specific i n fo rma t ion is ava i lab le c o n c e r n i n g t h e m e c h a n i s m s con­t ro l l ing these r eac t ions , o r t he cell b iology a n d b i o c h e m i s t r y involved . Vi r ­tua l ly n o t h i n g is k n o w n c o n c e r n i n g s igna l r ecogn i t ion a n d t r a n s d u c t i o n re ­q u i r e d for i m m u n e recogn i t ion of non-se l f c o m p o n e n t s a n d the in i t i a t ion of effector m e c h a n i s m s r e spons ib l e for p a r a s i t e d e s t r u c t i o n (see C h r i s t e n s e n a n d Tracy, 1989). T h e sugges t ion t h a t t he p r o p h e n o l ox idase ac t iva t ing sys­t e m p lays a m a j o r role in i m m u n e recogn i t ion (Ratcliffe et al., 1984; S o d e r h a l l a n d S m i t h , 1986) is n o t s u p p o r t e d by a p p r o p r i a t e e x p e r i m e n t a l d a t a . Al­t h o u g h this c a s c a d e of reac t ions s eems cr i t ical for t h e p r o d u c t i o n of m e l a n o ­tic c o m p o u n d s ( A s h i d a a n d Y a m a z a k i , 1990; S u g u m a r a n , 1990), t h e r e is n o d i r ec t ev idence t h a t a n i m m u n e r e s p o n s e is i n i t i a t ed by or d e p e n d e n t o n c o m p o n e n t s of t he p r o p h e n o l ox idase ac t iva t ing c a s c a d e (Lack ie , 1988; B a y n e , 1990). R e c e n t s tud ies u s ing tyros ine-def ic ient m u t a n t s of Drosophila melanogaster c lear ly showed th is d i p t e r a n to b e c a p a b l e of r ecogn i t i on a n d e n c a p s u l a t i o n of p a r a s i t o i d s even t h o u g h they were i n c a p a b l e of fo rming m e l a n o t i c capsu le s (Rizki a n d Rizki , 1990). B a y n e (1990) p rov ides a n excel­len t rev iew of phagocy tos i s a n d non-se l f r ecogn i t ion in i n v e r t e b r a t e s t h a t a d d r e s s e s m a n y of t he p r o b l e m s i n h e r e n t in s tud ies d e s i g n e d to d e t e r m i n e m e c h a n i s m s of s igna l r ecogni t ion . I t is a p p a r e n t , however , t h a t ce l lu la r c o m ­p o n e n t s p l ay key roles in b o t h recogn i t ion a n d d e s t r u c t i o n of p a r a s i t e s in i m m u n o r e s p o n s i v e m o s q u i t o hos t s .

B. Cellular Aspects

A l t h o u g h n u m e r o u s r epo r t s exist r e g a r d i n g h u m o r a l m e l a n i z a t i o n of foreign i n v a d e r s w i t h i n t he h e m o c o e l of ce r t a in d i p t e r a n s , w i t h o u t t h e p a r t i c i p a t i o n of h e m o c y t e s (Go tz , 1986), u l t r a s t r u c t u r a l a n d in vitro s t ud ie s w i t h m o s q u i ­toes p rov ide conv inc ing ev idence t h a t h e m o c y t e s a r e cr i t ica l for effective r ecogn i t ion a n d s u b s e q u e n t m e l a n o t i c e n c a p s u l a t i o n ( C h e n a n d L a u r e n c e , 1985, 1987; F o r t o n et al., 1985; C h r i s t e n s e n a n d F o r t o n , 1986). I n a d d i t i o n , h e m o c y t e p o p u l a t i o n s have b e e n s h o w n to inc rease s ignif icant ly d u r i n g i m ­m u n e r e sponses , w i th th is i nc rease likely d u e to m i to t i c act ivi ty in c i r cu l a t i ng cells ( C h r i s t e n s e n et al., 1989). C o n c o m i t a n t w i t h t he inc rease in h e m o c y t e n u m b e r s , surface c h a n g e s on i m m u n e - a c t i v a t e d cells have b e e n ident i f ied

Page 253: Parasites and Pathogens of Insects. Parasites

11. Mosquito Susceptibility to Plasmodium and Filarioids 2 4 9

u s i n g fluorescein-labeled w h e a t g e r m a g g l u t i n i n ( W G A ) ( N a p p i a n d C h r i s t e n s e n , 1986; Li a n d C h r i s t e n s e n , 1990). Resu l t s f rom these s tud ie s , a n d s tud ie s of D. melanogaster (Rizki a n d Rizki , 1983; N a p p i a n d Si lvers , 1984), sugges t t h a t surface b i n d i n g of W G A prov ides a va l id i n d i c a t o r of i m m u n o c o m p e t e n c e a n d / o r i m m u n e ac t iva t ion in h e m o c y t e p o p u l a t i o n s . Be ­c a u s e t h e i den t i t y of h e m o c y t e surface g lycopro te ins b i n d i n g W G A , o r t h e p o t e n t i a l ro le these molecu le s m i g h t p l a y in r ecogn i t ion m e c h a n i s m s , is n o t k n o w n , o u r l a b o r a t o r y h a s in i t i a t ed s tud ie s d e s i g n e d to identify a n d c h a r a c ­ter ize h e m o c y t e surface m e m b r a n e molecu le s t h a t m i g h t b e a s soc i a t ed w i t h i m m u n e ac t iva t ion or effector m e c h a n i s m s .

H e m o c y t e s f rom mic ro f i l a r i ae - inocu la ted ( i m m u n e - a c t i v a t e d ) , sa l ine -i n o c u l a t e d ( w o u n d i n g con t ro l ) , a n d u n i n o c u l a t e d A. aegypti w e r e c o m p a r e d u s i n g s o d i u m d o d e c y l s u l f a t e - p o l y a c r y l a m i d e gel e l ec t rophores i s ( S D S -P A G E ) , 1 2 5 I - l a b e l i n g , a n d W G A b i n d i n g t e c h n i q u e s ( S p r a y a n d C h r i s t e n s e n , 1991). B o t h i m m u n e ac t iva t ion a n d w o u n d i n g i n d u c e d a s ignif icant i nc r ea se in h e m o c y t e p o l y p e p t i d e syn thes i s a n d r e su l t ed in t he express ion of a 200-k D a p o l y p e p t i d e t h a t w a s n o t seen in cells from u n i n o c u l a t e d m o s q u i t o e s . B e t w e e n 15 a n d 20 h e m o c y t e surface p r o t e i n s w e r e l abe led w i t h 1 2 5 I , w i t h a s ignif icant i nc r ea se in in tens i t i es seen w i t h h e m o c y t e s f rom i n o c u l a t e d m o s ­q u i t o e s . O n e of t h e l abe led surface p r o t e i n s c o r r e s p o n d e d to t h e u n i q u e 200-k D a p o l y p e p t i d e v i sua l ized w i t h S D S - P A G E . T w o - d i m e n s i o n a l e lec t ro­phores i s a l so revea led severa l p o l y p e p t i d e s u n i q u e to h e m o c y t e s f rom i m m u n e - a c t i v a t e d o r w o u n d e d m o s q u i t o e s , b u t ce r t a in p o l y p e p t i d e s w e r e cha rac t e r i s t i c on ly of cells f rom m o s q u i t o e s u n d e r g o i n g a m e l a n o t i c e n c a p ­su l a t i on r eac t ion . R a d i o l a b e l e d W G A ident i f ied t h r e e surface p r o t e i n - W G A c o m p l e x e s of 59 , 73 , a n d 107 k D a o n t h e surface of h e m o c y t e s f rom all t h r e e g r o u p s of A. aegypti. T h i s s t u d y is t h e first to e v a l u a t e p o l y p e p t i d e syn thes i s a n d surface p r o t e i n c h a n g e s in ac t iva t ed h e m o c y t e s from a n y insec t species , a n d resu l t s o b t a i n e d p rov ide a firm s t a r t i n g p o i n t for t he iden t i f ica t ion of specific h e m o c y t e surface molecu le s t h a t m i g h t b e involved in w o u n d h e a l i n g a n d i m m u n e r e sponse s . C h a r a c t e r i z a t i o n of these surface mo lecu le s s eems v i ta l to o u r u n d e r s t a n d i n g of t h e in i t ia l even t s of t he i m m u n e r e s p o n s e in m o s q u i t o e s , a n d p r o d u c t i o n of a b a n k of m o n o c l o n a l a n t i b o d i e s a g a i n s t i m m u n e - a c t i v a t e d h e m o c y t e s w o u l d likely p rov ide t h e tools neces sa ry to ach ieve th is e n d . L ikewise , t h e d e v e l o p m e n t of c u l t u r e t e c h n i q u e s for h e m o ­cytes w o u l d g rea t ly facil i tate these types of s t ud i e s ( C h r i s t e n s e n a n d Tracy , 1989).

C. Humoral Aspects

A l t h o u g h u n d e r s t a n d i n g ce l lu la r a spec t s of i m m u n e r e sponses in m o s q u i t o e s is s t rong ly jus t i f ied if we a r e to clarify r ecogn i t i on a n d effector even t s , t h e r e

Page 254: Parasites and Pathogens of Insects. Parasites

2 5 0 Bruce Μ. Christensen and David W. Severson

a r e u n d o u b t e d l y h u m o r a l c o m p o n e n t s t h a t p l ay equa l l y cr i t ica l ro les . As it b e c o m e s m o r e a p p a r e n t t h a t t he i m m u n e r e sponses of m o s q u i t o e s a n d o t h e r insec ts r e p r e s e n t h igh ly soph i s t i ca t ed a n d c o m p l e x ce l lu la r a n d b i o c h e m i c a l even t s , t he d y n a m i c i n t e rp l ay of h u m o r a l a n d ce l lu la r c o m p o n e n t s m u s t b e cons ide r ed w h e n e v a l u a t i n g e i the r of these h e m o l y m p h c o m p a r t m e n t s in s tud ies of insec t i m m u n i t y . D e s p i t e t he ident i f ica t ion of severa l " i m m u n e p r o t e i n s " t h a t funct ion to p ro t ec t hos t s f rom m i c r o b i a l insu l t (e .g. , l y sozyme , d ip t e r i c in s , cec rop ins , a t t a c in s , defens ins , h e m o l i n , s a r co tox ins , p h o r m i c i n s , a n d e i cosano ids , see D u n n , 1990; S u n et al., 1990; S t a n l e y - S a m u e l s o n et al., 1991), few s tud ies have identif ied p r o t e i n c h a n g e s a s soc ia t ed w i t h m e l a n o t i c e n c a p s u l a t i o n or t he effect of specific " i m m u n e p r o t e i n s " o n m o s q u i t o -t r a n s m i t t e d p a r a s i t e s .

U s i n g in vivo l abe l ing t e c h n i q u e s w i th [ 3 5 S ] m e t h i o n i n e , we recen t ly r e p o r t ­ed t h a t a n 8 4 - k D a h e m o l y m p h p l a s m a p o l y p e p t i d e is p re fe ren t ia l ly ex­p res sed in A. aegypti d u r i n g w o u n d h e a l i n g o r m e l a n o t i c e n c a p s u l a t i o n r eac ­t ions , a n d t h a t t h e express ion is g r e a t e r a n d pers i s t s for a l onge r t i m e following i m m u n e ac t iva t ion (Bee rn t s en a n d C h r i s t e n s e n , 1990). D a t a f rom these s tud ies a lso sugges t t h a t th is p o l y p e p t i d e is closely a s soc i a t ed w i t h h e m o c y t e s , is n o t i n d u c e d in r e sponse to bac te r i a l c o n t a m i n a t i o n , a n d is n o t a s t r ess - re la ted (hea t shock) p ro t e in . I n e x p e r i m e n t s ye t to be p u b l i s h e d , th is p o l y p e p t i d e was e l ec t rob lo t t ed o n t o a po lyv iny l idene d i f luor ide m e m b r a n e for d i r ec t s e q u e n c i n g . T w o i n t e r n a l s e q u e n c e s of 15 a n d 8 a m i n o ac ids w e r e o b t a i n e d , b u t n o conc lus ions cou ld be d r a w n r e g a r d i n g t h e n a t u r e of this p r o t e i n following ana lys i s w i th t he N B R F p r o t e i n d a t a b a s e s e q u e n c e sys t em. T o o b t a i n e n o u g h m a t e r i a l for c lon ing , we c o n s t r u c t e d d e g e n e r a t e oli­g o n u c l e o t i d e p r i m e r s to each e n d of t h e 15 -amino acid s e q u e n c e a n d con­d u c t e d P C R ampl i f i ca t ion as p e r Lee et al. (1988) , u s i n g A. aegypti g e n o m i c D N A as a t e m p l a t e . A c lone w a s o b t a i n e d a n d the d e d u c e d s e q u e n c e m a t c h e s t he d a t a o b t a i n e d from o u r d i r ec t m i c r o s e q u e n c i n g . A ful l - length c lone shou ld p rov ide v a l u a b l e i n fo rma t ion as to t h e iden t i ty a n d func t ion of th is 8 4 - k D a p o l y p e p t i d e . T h e s e n e w technologies n o w m a k e it poss ib le to o b t a i n d a t a for ident i f ica t ion a n d c h a r a c t e r i z a t i o n of p o l y p e p t i d e s ava i l ab le on ly in ex t r eme ly l imi ted quan t i t y , a n d therefore e n a b l e worke r s to a n s w e r q u e s t i o n s in h e m a t o p h a g o u s d i p t e r a n s t h a t cou ld n o t b e a d e q u a t e l y a d ­d re s sed on ly a few yea r s ago . I n s e c t hos t size is n o longer a se r ious d e t r i m e n t to s tud ies t h a t a d d r e s s m e c h a n i s m s of v e c t o r - p a r a s i t e compa t ib i l i ty .

I n a d d i t i o n to o u r s tud ies (Bee rn t sen a n d C h r i s t e n s e n , 1990), a r e p o r t b y G w a d z et al. (1989) conf i rms t h a t ident i f ica t ion a n d / o r e v a l u a t i o n of t hese insec t i m m u n e molecu les in m o s q u i t o e s cou ld p rov ide s ignif icant i n s igh t i n t o m e c h a n i s m s of r e s i s t ance . G w a d z a n d coworkers in jec ted cec rop ins i n to An­opheles m o s q u i t o e s p rev ious ly infected w i t h Plasmodium a n d d e t e r m i n e d t h a t cec rop ins p r e v e n t e d s p o r o g o n y by a b o r t i n g t he n o r m a l d e v e l o p m e n t of oo-

Page 255: Parasites and Pathogens of Insects. Parasites

Ί1. Mosquito Susceptibility to Plasmodium and Filarioids 251

cysts . A l t h o u g h these resu l t s w e r e de r ived f rom a n art if icial s i t u a t i o n , t hey p r o v i d e s o u n d jus t i f i ca t ion for s t ud i e s d e s i g n e d to assess p r o t e i n a l t e r a t i o n s in m o s q u i t o s t r a i n s a n d species b o t h r e s i s t an t a n d suscep t ib l e to t h e p a r a s i t e s t hey t r a n s m i t .

A l o n g - s t a n d i n g q u e s t i o n in insec t i m m u n i t y r e g a r d s t h e p o t e n t i a l for o p s o n i c factors in h e m o l y m p h p l a s m a ( B a y n e , 1990), a n d t h e ro le lec t ins m i g h t p l a y in th is p rocess ( R e n w r a n t z , 1986). A l t h o u g h d a t a r e g a r d i n g h e ­m a g g l u t i n i n ac t iv i ty in insec t b lood a r e equ ivoca l , t h e series of s t ud i e s b y O g u r a a n d coworker s (1985; O g u r a , 1986, 1987) w i t h Armigeres subalbatus a n d Brugia microf i la r iae sugges t t h a t a h e m a g g l u t i n i n in t h e p l a s m a of th is m o s ­q u i t o m i g h t func t ion as a m e d i a t o r for m e l a n o t i c e n c a p s u l a t i o n r eac t ions . T h i s is especia l ly r e l evan t b e c a u s e A. subalbatus funct ions as a n a t u r a l vec to r for B. pahangi, b u t kills B. malayi microf i la r iae in b o t h t h e h e m o c o e l a n d t h o r a c i c m u s c u l a t u r e b y m e l a n o t i c e n c a p s u l a t i o n ( Y a m a m o t o et al., 1985; B e e r n t s e n et al., 1989). T h e d i sc re t e specificity of this r e s p o n s e c o u l d b e d i s r u p t e d b y t h e a d d i t i o n of specific s u g a r s a g a i n s t t he h e m a g g l u t i n i n o r b y t h e e x p o s u r e of microf i la r iae to h e m o l y m p h s a m p l e s from p u p a e , w h e r e t h e h e m a g g l u t i n a t i n g act iv i ty is h i g h e r t h a n in a d u l t m o s q u i t o e s ( O g u r a , 1986). T h e A. subalbatus-Brugia s pp . m o d e l s y s t e m is d e s e r v i n g of fu r the r s t u d y a n d cou ld p rove v a l u a b l e for a d d r e s s i n g f u n d a m e n t a l q u e s t i o n s r e g a r d i n g recog­n i t ion p h e n o m e n a in m o s q u i t o e s .

D. Biochemical Aspects

B e c a u s e " m e l a n i z a t i o n " is t h e p r i m a r y m e c h a n i s m r e spons ib l e for t h e d e ­s t r u c t i o n of filarial w o r m la rvae a n d m a l a r i a l o r g a n i s m s in r e s i s t an t m o s q u i ­toes , t h e b i o c h e m i s t r y r e spons ib l e for t he p r o d u c t i o n of m e l a n o t i c m a t e r i a l s h a s rece ived c o n s i d e r a b l e a t t e n t i o n in r e c e n t yea r s . C r i t i c a l to t h e success of these s tud i e s h a s b e e n the d e v e l o p m e n t of h igh ly sensi t ive a n d a c c u r a t e a s says for m e a s u r i n g t h e act iv i ty of e n z y m e s involved in m e l a n o t i c e n c a p ­s u l a t i o n r eac t ions a n d t h e a s s e s s m e n t of q u a n t i t a t i v e c h a n g e s in levels of s u b ­s t r a t e s a n d i n t e r m e d i a t e s r e q u i r e d for t h e p r o d u c t i o n of p r o t e i n - p o l y p h e n o l c o m p l e x e s . I t h a s b e c o m e a p p a r e n t in t h e las t severa l yea r s t h a t t h e p r o ­d u c t i o n of m e l a n o t i c capsu l e s is a c o m p l e x b i o c h e m i c a l p rocess invo lv ing c a t e c h o l a m i n e s , c a t e c h o l a m i n e de r iva t ives , c a t e c h o l a m i n e - m e t a b o l i z i n g en­z y m e s , a n d likely o t h e r i n d u c i b l e h e m o l y m p h c o m p o n e n t s ( C h r i s t e n s e n a n d Tracy , 1989).

P h e n o l ox ida se ( ty ros inase ) is a c o p p e r - c o n t a i n i n g o x y g e n a s e t h a t c a t a ­lyzes t h e h y d r o x y la t ion of ty ros ine to 0 - d i p h e n o l s ( m o n o p h e n o l ox ida se act iv­i ty) , a n d t h e o x i d a t i o n of o-d iphenols to the i r c o r r e s p o n d i n g o -qu inones ( d i p h e n o l ox ida se ac t iv i ty) . T h e o -qu inones a r e chemica l ly reac t ive a n d c a n b o t h p o l y m e r i z e , if s t r u c t u r a l l y a p p r o p r i a t e , a n d b i n d cova len t ly to n u c l e o -

Page 256: Parasites and Pathogens of Insects. Parasites

2 5 2 Bruce Μ. Christensen and David W. Severson

phi l ic p r o t e i n r e s idues to form p r o t e i n - p o l y p h e n o l c o m p l e x e s , c o m m o n l y referred to as " m e l a n i n " o r " s c l e ro t i n " ( C h r i s t e n s e n a n d Tracy , 1989; Li a n d N a p p i , 1991). C o n s e q u e n t l y , p h e n o l ox idases have b e e n the m o s t in tens ive ly s t u d i e d c o m p o n e n t of ce l lu lar i m m u n e r e sponses in a r t h r o p o d s . B e c a u s e it is cr i t ica l to assess t he a u g m e n t a t i o n of e n z y m e act iv i ty in vivo to c lear ly de l in ­ea t e t he funct ion of these molecu les in t he p r o d u c t i o n of m e l a n o t i c c o m ­p o u n d s , n e w a p p r o a c h e s were necessa ry in o r d e r to accu ra t e ly m e a s u r e p h e ­nol ox idase act ivi ty in t he m i n u t e h e m o l y m p h s a m p l e s ava i l ab le f rom m o s q u i t o e s . Previously, p h e n o l ox idase act ivi ty was m e a s u r e d b y m o n i t o r i n g fo rma t ion of d o p a c h r o m e from L - 3 , 4 - d i h y d r o x y p h e n y l a l a n i n e ( L - D o p a ) a t 475 n m . A l t h o u g h useful for in vitro a s says w i t h l a rge a m o u n t s of s a m p l e , th i s a s say is fairly insens i t ive b e c a u s e of t he low m o l a r a b s o r p t i o n coefficient of d o p a c h r o m e . I n a d d i t i o n , d o p a c h r o m e is n o t a n e n d p r o d u c t a n d is fu r the r ox id ized to o t h e r i n t e r m e d i a t e s a n d even tua l ly to m e l a n i n , t h e r e b y r e su l t i ng in e r roneous ly low e s t i m a t i o n s of e n z y m a t i c ac t iv i ty ( V a c h t e n h e i m et al., 1985).

N a p p i et al. (1987) u sed a r a d i o m e t r i c assay, o r ig ina l ly d e s c r i b e d by T o w n s e n d et al. (1984) , to assess m o n o p h e n o l ox idase act iv i ty in h e m o l y m p h p l a s m a from i m m u n e - r e a c t i v e A. aegypti. T h i s a s say is b a s e d on t h e q u a n t i t a ­t ion of t r i t i a t ed w a t e r fo rmed d u r i n g the h y d r o x y l a t i o n of L - [ 3 , 5 - 3 H ] t y r o s i n e to L - d o p a . Subsequen t ly , Li et al. (1989) u sed this a s say to e v a l u a t e m o n o -p h e n o l ox idase act ivi ty in h e m o c y t e s col lected from i m m u n e - r e a c t i v e a n d con t ro l A. aegypti a n d Aedes trivittatus. T h e y were ab l e to a s say e n z y m e act ivi ty from h e m o c y t e s perfused from only t h r ee m o s q u i t o e s , a n d r e p o r t e d t h a t e n z y m e act ivi ty in h e m o c y t e s likely p lays a s ignif icant role in t h e p r o d u c t i o n of m e l a n o t i c c apsu l e s a r o u n d microf i lar iae .

A l t h o u g h m a m m a l i a n ty ros inase c a n c lear ly ca t a lyze t h r e e r eac t ions in t he p a t h w a y of m e l a n i n b i o s y n t h e s i s — t h e h y d r o x y l a t i o n of ty ros ine , t h e d e h y d r o g e n a t i o n of L - d o p a , a n d the d e h y d r o g e n a t i o n of 5 , 6 -d ihyd roxy indo l e ( K o r n e r a n d Pawelek, 1 9 8 2 ) — d i s t i n c t m o n o p h e n o l a n d d i p h e n o l ox idases have b e e n r e p o r t e d in D. melanogaster (Rizki a n d Rizki , 1983; Pen tz et al., 1986). To accu ra t e ly assess d i p h e n o l ox idase activity, we deve loped a n i m ­p roved a s say b a s e d on the r e p o r t by S u g u m a r a n (1986) t h a t m u s h r o o m ty ros inase ca ta lyzes t he ox ida t ive d e c a r b o x y l a t i o n of 3 , 4 - d i h y d r o x y m a n d e l i c acid to form 3 , 4 - d i h y d r o x y b e n z a l d e h y d e (Li et al., 1990). B e c a u s e t he se a r e ca techo l s a n d the p r o d u c t of t he r eac t ion is s t ab le , a q u a n t i t a t i v e a s say w a s deve loped us ing h i g h - p r e s s u r e l iqu id c h r o m a t o g r a p h y w i t h e l e c t r o c h e m i c a l de t ec t i on ( H P L C - E C D ) , a n d the app l i cab i l i t y of this a s say for m e a s u r i n g d i p h e n o l ox idase act ivi ty in m i c r o g r a m q u a n t i t i e s of c r u d e , cell-free h e m o ­l y m p h from m o s q u i t o e s was d e m o n s t r a t e d (Li et al., 1990).

T h e ava i lab i l i ty of h igh ly sensi t ive a n d specific a s says for b o t h m o n o ­p h e n o l a n d d i p h e n o l ox idase act ivi ty e n a b l e d Li et al. (1992) to cr i t ical ly

Page 257: Parasites and Pathogens of Insects. Parasites

11. Mosquito Susceptibility to Plasmodium and Filarioids 2 5 3

assess these ca t a ly t i c act ivi t ies in h e m o l y m p h c o m p a r t m e n t s of A. aegypti d u r i n g m e l a n o t i c e n c a p s u l a t i o n r eac t ions . N o s ignif icant differences in e i the r m o n o p h e n o l o r d i p h e n o l ox ida se ac t iv i ty in h e m o c y t e s , cell-free p l a s m a , o r c o m p l e t e h e m o l y m p h ( p l a s m a + h e m o c y t e s ) were n o t e d b e t w e e n s a m p l e s from u n i n o c u l a t e d (naive) o r s a l i ne - inocu la t ed ( w o u n d e d ) m o s q u i t o e s , a l ­t h o u g h base l i ne levels of b o t h act ivi t ies were d e t e c t e d . B o t h e n z y m e act ivi t ies w e r e s ignif icant ly e leva ted in h e m o c y t e a n d c o m p l e t e h e m o l y m p h s a m p l e s fol lowing i m m u n e ac t iva t ion b y the i nocu l a t i on of microf i la r iae , b u t n o sig­ni f icant i nc r ea se in e n z y m e act iv i ty w a s d e t e c t e d in cell-free p l a s m a . I n ­c reases in t he act ivi ty of b o t h e n z y m e s w e r e p r o p o r t i o n a l in all s a m p l e s , t h e r e b y sugges t i ng t h a t a s ingle e n z y m e m i g h t be r eac t i ng w i t h b o t h m o n o -p h e n o l s a n d o-d iphenols w i t h i n t h e h e m o l y m p h of this m o s q u i t o . T h e s e s tud ie s a lso sugges t ed t h a t t he i n c r e a s e d p h e n o l ox idase act iv i ty n o t e d d u r ­ing m e l a n o t i c e n c a p s u l a t i o n reac t ions is a s soc ia t ed p r i m a r i l y w i t h t he h e m o ­cytes . T h i s a u g m e n t e d e n z y m e act iv i ty w a s a resu l t of in vivo a c t iva t ion b y p a r a s i t e s , a n d this ac t iv i ty cou ld n o t be i nc r ea sed by the a p p l i c a t i o n of t h e c o m m o n l y used p h e n o l ox ida se ac t iva to r s z y m o s a n a n d l a m i n a r i n (Li et al., 1992).

A m o n p h e n o l ox ida se a s say recen t ly w a s deve loped t h a t is m u c h m o r e sensi t ive t h a n the specific r a d i o e n z y m a t i c a s say (Li a n d N a p p i , 1991). T h i s a s say a lso uses H P L C - E C D , a n d it m e a s u r e s t he h y d r o x y l a t i o n of t y ros ine u s i n g JV-ace ty ldopamine as cofactor a n d a s c o r b a t e a s a r e d u c i n g a g e n t . T h e a s c o r b a t e m a i n t a i n s t he level of L - d o p a p r o d u c e d d u r i n g ty ros ine h y d r o x y l a ­t ion b y r e d u c i n g d o p a q u i n o n e back to t he o -d iphenol n o n e n z y m a t i c a l l y . T h e ut i l i ty of th is a s say w a s d e m o n s t r a t e d b y Li a n d N a p p i (1991) u s i n g mic ro l i ­te r q u a n t i t i e s of h e m o l y m p h from the l a rvae of D. melanogaster.

W i t h t h e ava i lab i l i ty of these h igh ly sensi t ive r a d i o m e t r i c a n d H P L C -E C D assays for b o t h m o n o p h e n o l a n d d i p h e n o l ox idase activity, r e s e a r c h e r s w o r k i n g w i t h a n y insec t s y s t e m s h o u l d be a b l e to m o r e a c c u r a t e l y assess t h e role t he se e n z y m e s m i g h t p l a y in h o s t - p a t h o g e n as soc ia t ions . C o n t r a r y to m a n y o t h e r insec t m o d e l sy s t ems w h e r e va r ious m e a n s of p h e n o l o x i d a s e ac t iva t ion m u s t be e m p l o y e d in vitro to m e a s u r e act ivi ty by t h e spec ­t r o p h o t o m e t r y m e t h o d , e n z y m e act iv i ty a n d its a u g m e n t a t i o n d u e to foreign insu l t c a n b e assessed w i t h o u t ac t iva t ion u s i n g these n e w p ro toco l s . U s i n g the r a d i o e n z y m a t i c a s say for m o n o p h e n o l ox idase , Beckage et al. (1990) w e r e a b l e to m e a s u r e act ivi ty d i rec t ly in Manduca sexta h e m o l y m p h s a m p l e s w i t h ­o u t u s i n g a n ac t iva tor . B e c a u s e of t h e l imi t a t i ons of t he s p e c t r o p h o t o m e t r i c p h e n o l ox ida se a s say c o m m o n l y used ( G a r c i a - C a n o v a s et al., 1982; G a r c i a -C a r m o n a et al., 1982; T o w n s e n d et al., 1984; V a c h t e n h e i m et al., 1985), t h e u s e of m o r e specific a n d sensi t ive H P L C - E C D assays s h o u l d b e e n c o u r a g e d for r e s e a r c h in t h e field of a r t h r o p o d i m m u n i t y .

A l t h o u g h h e m o c y t e s s e e m to c o n t r i b u t e s ignif icant p h e n o l ox ida se ac t iv i ty

Page 258: Parasites and Pathogens of Insects. Parasites

2 5 4 Bruce Μ. Christensen and David W. Severson

for t he m e l a n o t i c e n c a p s u l a t i o n of microf i lar iae w i t h i n t h e h e m o c o e l e n v i r o n ­m e n t of m o s q u i t o e s (Li et al., 1992), t he e n c a s e m e n t of ook ine tes of Plas­modium o n t he surface of the m i d g u t in A. gambiae likely does no t involve t h e d i r ec t p a r t i c i p a t i o n of c i r cu l a t i ng cells. Fol lowing the se lect ion of a r e s i s t an t s t r a i n of A. gambiae t h a t me lan izes t he ook ine te b e t w e e n t h e b a s a l m e m b r a n e l a b y r i n t h a n d ba sa l l a m i n a of t he m i d g u t (Col l ins et al., 1986), Paskewi tz et al. (1988 , 1989) r e p o r t e d t h a t r e s i s t ance m i g h t be d u e to i n c r e a s e d p h e n o l ox idase act ivi ty w i t h i n m i d g u t cells. I n c u b a t i o n of suscep t ib l e a n d r e s i s t an t m i d g u t s w i t h L - D o p a o r d o p a m i n e re su l t ed in s ignif icant differences in t h e p a t t e r n of m e l a n i n depos i t i on , w i th t he refractory s t r a in s h o w i n g i n t ense depos i t i on of m e l a n o t i c m a t e r i a l s a r o u n d e n c a p s u l a t e d p a r a s i t e s a n d w i t h i n m i d g u t cells in t h e i m m e d i a t e p r o x i m i t y of t h e ook ine te . T h e r e is n o ev idence to sugges t , however , t h a t differences in p h e n o l o x i d a s e act iv i ty b e t w e e n these s t r a in s reflect differences in t he genes r e spons ib l e for t h e express ion of th is e n z y m e .

E v e n t h o u g h a key role for p h e n o l ox idase in i m m u n e effector m e c h a n i s m s of m o s q u i t o e s a n d o t h e r insects is a p p a r e n t , t he specific s u b s t r a t e s involved , a n d the b i o c h e m i c a l p a t h w a y s by w h i c h they a r e conve r t ed to m e l a n o t i c s u b s t a n c e s , have n o t b e e n c h a r a c t e r i z e d for a n y insec t species ( C h r i s t e n s e n a n d Tracy , 1989). U n d o u b t e d l y , o t h e r c a t e c h o l a m i n e - m e t a b o l i z i n g e n z y m e s in a d d i t i o n to p h e n o l ox idases a lso a r e involved in m e l a n o t i c e n c a p s u l a t i o n reac t ions . S tud ie s of d o p a d e c a r b o x y l a s e c o n d u c t e d in t he l a b o r a t o r y of Dr . A . J . N a p p i (Loyola U n i v e r s i t y of C h i c a g o ) w e r e r e p o r t e d a t t h e A m e r i c a n Socie ty of Paras i to log is t s a n n u a l m e e t i n g in M a d i s o n , W i s c o n s i n , in A u g u s t , 1991. U s i n g a t e m p e r a t u r e - s e n s i t i v e d o p a d e c a r b o x y l a s e m u t a n t s t r a i n of D. melanogaster a n d the p a r a s i t o i d Leptopilina, this l a b o r a t o r y showed t h a t t h e ce l lu la r a n d m e l a n o t i c i m m u n e r e sponse m e c h a n i s m s w e r e severely c o m p r o ­mi sed in hos t s w i t h r e d u c e d levels of th is e n z y m e . L ikewise , we h a v e u n ­p u b l i s h e d d a t a from o u r s tud ie s w i t h A. aegypti t h a t sugges t d o p a d e c a r b o x y l ­ase m i g h t a lso be a factor p a r t i c i p a t i n g in t he m e l a n o t i c e n c a p s u l a t i o n p rocess .

S tud ie s by M u n k i r s et al. (1990) identif ied ty ros ine , d o p a m i n e , a n d JV-β-a l a n y l d o p a m i n e in h e m o l y m p h p l a s m a from A. aegypti u s i n g H P L C - E C D . Fol lowing i m m u n e ac t iva t ion by the i n t r a t h o r a c i c i nocu l a t i on of hea t -k i l l ed microf i la r iae , a s ingle m a j o r p e a k (cal led p e a k I ) was seen o n the c h r o m a t o -g r a m t h a t w a s no t p r e s e n t in na ive h e m o l y m p h s a m p l e s . W o u n d i n g b y the i n o c u l a t i o n of sa l ine w i t h o u t microf i lar iae resu l t ed in h e m o l y m p h s a m p l e s t h a t c o n t a i n e d on ly 5 % of t he p e a k I seen in i m m u n e - r e a c t i v e p l a s m a . T h i s u n k n o w n c a t e c h o l a m i n e a lso w a s de t ec t ed after t r e a t m e n t of h e m o l y m p h p l a s m a w i t h mi ld a lka l ine cond i t i ons , i n d i c a t i n g t h a t it is n o r m a l l y p r e s e n t as a n e l ec t rochemica l ly ine r t form. Peak I , however , d id n o t c o c h r o m a t o -

Page 259: Parasites and Pathogens of Insects. Parasites

11. Mosquito Susceptibility to Plasmodium and Filarioids 2 5 5

g r a p h w i t h a n y of t h e c a t e c h o l a m i n e s i m p l i c a t e d in m e l a n o t i c e n c a p s u l a t i o n r eac t ions .

N o o t h e r p u b l i s h e d a c c o u n t s a d d r e s s c h a n g e s in c a t e c h o l a m i n e s u b s t r a t e s a s soc i a t ed w i t h m e l a n o t i c e n c a p s u l a t i o n reac t ions in insec t s . F u r t h e r m o r e , t h e r e a r e n o r e p o r t s e v i d e n t t h a t e v a l u a t e c a t e c h o l a m i n e - m e t a b o l i z i n g en ­z y m e s , s u c h as d e c a r b o x y l a s e s , t r ans fe rases , i somera se s , o r s y n t h e t a s e s , r e ­g a r d i n g the i r p o t e n t i a l ro le in t h e p r o d u c t i o n of p r o t e i n - p o l y p h e n o l c o m ­plexes r e q u i r e d for p a r a s i t e d e s t r u c t i o n . Severa l ear l ie r rev iews s t rong ly sugges t t h a t m o r e de t a i l ed s tud ie s of o t h e r e n z y m e s a n d the i r s u b s t r a t e s in i m m u n e - r e a c t i v e insec ts a r e v i ta l for o u r u n d e r s t a n d i n g of t h e b i o c h e m i c a l p a t h w a y s involved in t h e effector m e c h a n i s m s of m o s q u i t o e s u s e d to kill p a r a s i t e s in r e s i s t an t hos t s ( N a p p i a n d C h r i s t e n s e n , 1987; C h r i s t e n s e n a n d N a p p i , 1988; C h r i s t e n s e n a n d Tracy , 1989). Clear ly , t h e r e r e m a i n s a n e e d to a d e q u a t e l y a d d r e s s this cr i t ica l a r e a of r e s e a r c h .

III. Genetic Control of Susceptibility/Refractoriness

A. Historical Perspective

I t h a s b e e n rea l ized for s o m e t i m e t h a t suscep t ib i l i ty to p a r a s i t i c infect ion va r ies b e t w e e n different m o s q u i t o species a n d even a m o n g different geo­g r a p h i c a l s t r a i n s of t he s a m e species , a n d ear ly s tud ie s w i t h m o s q u i t o -Plasmodium m o d e l s were t h e first to d e m o n s t r a t e t h a t suscep t ib i l i ty of m o s ­q u i t o e s cou ld b e i nc r ea sed b y se lec t ion (Huff, 1929; T r a g e r , 1942; M i c k s , 1949). L ikewise , R o u b a u d (1937) r e p o r t e d a g r e a t e r suscep t ib i l i ty of c e r t a i n s t r a i n s of A. aegypti to infect ion w i t h t he filarial w o r m Dirofilaria immitis a n d sugges t ed t h a t suscep t ib i l i ty w a s a n i n h e r i t e d cha rac t e r . K a r t m a n (1953) c o m p a r e d suscept ib i l i t i es of va r ious s t r a in s of A. aegypti, A. albopictus, Culex pipiens, a n d C. p. quinquefasciatus to D. immitis a n d was a b l e to o b t a i n , b y m a s s se lec t ion , s t r a i n s of A. aegypti m o r e refractory a n d m o r e suscep t ib l e to th i s p a r a s i t e .

I n a c lass ic series of s tud ie s , M a c d o n a l d (1962a ,b , 1963) clarified t h e m o d e of i n h e r i t a n c e of suscep t ib i l i ty of A. aegypti to s e m i p e r i o d i c B. malayi. F r o m a n in i t ia l p o p u l a t i o n of m o s q u i t o e s s h o w i n g a 17—31% suscep t ib i l i ty to th is p a r a s i t e , M a c d o n a l d o b t a i n e d by famil ia l se lect ion t h r o u g h 15 g e n e r a ­t ions a s t r a i n w i t h a m e a n suscep t ib i l i ty of 8 4 % . T h r o u g h a ser ies of c rosses a n d backcrosses b e t w e e n th is h igh ly suscep t ib l e s t r a in a n d un i fo rmly refrac­to ry s t r a i n s , h e d e m o n s t r a t e d t h a t suscep t ib i l i ty w a s con t ro l l ed b y a sex-l inked recess ive g e n e t h a t h e d e s i g n a t e d fm for filarial w o r m suscept ib i l i ty , B.

Page 260: Parasites and Pathogens of Insects. Parasites

2 5 6 Bruce Μ. Christensen and David W. Severson

malayi. A l t h o u g h fm is t he ma jo r con t ro l l ing factor, M a c d o n a l d (1963) a lso d e m o n s t r a t e d t h a t th is gene d id no t con t ro l suscep t ib i l i ty en t i re ly a n d t h e r e ­fore c o n c l u d e d t h a t modi fy ing genes a lso m u s t p l ay a ro le . M a c d o n a l d a n d R a m a c h a n d r a n (1965) s u b s e q u e n t l y showed t h a t fm a l so con t ro l l ed s u s c e p ­t ibi l i ty of A. aegypti to pe r iod ic B. malayi, B. pahangi, Wuchereria bancrofti, a n d s u b p e r i o d i c W. bancrofti, b u t h a d n o inf luence on suscep t ib i l i ty to D. immitis o r D. repens. B e c a u s e fm h o m o z y g o t e s a r e suscep t ib le to all m u s c l e - i n h a b i t i n g filarial w o r m s tes ted , B a r r (1975) sugges ted t h a t se lec t ion for t he fm h o m o -zygote d i s r u p t e d a bas i c defense m e c h a n i s m of t he m o s q u i t o .

S u b s e q u e n t s tud ies by R a g h a v e n et al. (1967) , Zie lke (1973) , a n d M c G r e e v y et al. (1974) c lear ly showed t h a t suscep t ib i l i ty of A. aegypti to D. immitis a lso w a s con t ro l l ed by a sex- l inked recessive gene , b u t no t fm. M c G r e e v y et al. (1974) d e s i g n a t e d this gene f1, a n d sugges t ed t h a t genes con t ro l l i ng t he suscep t ib i l i ty of A. aegypti to filarial w o r m species d i rec t ly affect t he hos t t i ssue s u p p o r t i n g p a r a s i t e d e v e l o p m e n t r a t h e r t h a n the p a r a ­si te itself. S tud i e s by N a y a r et al. (1988) a lso sugges t t h a t genes in f luenc ing suscep t ib i l i ty of m o s q u i t o e s to D. immitis a r e expres sed in t he t i ssue si te of p a r a s i t e d e v e l o p m e n t . By t r a n s p l a n t i n g D. immitis-'mfected M a l p i g h i a n tu ­bu les from a refractory m o s q u i t o l ine to t he h e m o c o e l of un in fec ted suscep t i ­ble l ines , a n d by c o n d u c t i n g t he rec ip roca l t r a n s p l a n t s , t hey r e p o r t e d t h a t t he success o r fai lure of p a r a s i t e d e v e l o p m e n t was d e t e r m i n e d b y t h e ge­n o t y p e of the M a l p i g h i a n t u b u l e s . T h e g e n o t y p e of t h e h e m o l y m p h b a t h i n g the M a l p i g h i a n t u b u l e s h a d n o inf luence on p a r a s i t e d e v e l o p m e n t . Howeve r , K o b a y a s h i et al. (1986) used p a r a b i o t i c t w i n n i n g w i t h B. malayi su scep t ib l e a n d refractory s t r a ins of A. aegypti to d e m o n s t r a t e t h a t d e v e l o p m e n t of l a rvae i n h a b i t i n g t he tho rac ic m u s c u l a t u r e was i nh ib i t ed in suscep t ib l e m o s q u i t o e s w h e n they were t w i n n e d w i t h a refractory m o s q u i t o . T h e y sugges t ed t h a t h e m o l y m p h factors m i g h t be r e spons ib l e for t he refractory c o n d i t i o n of A. aegypti for th is filarial w o r m species .

A l t h o u g h Huf f (1929) , T r a g e r (1942) , a n d W a r d (1963) r e p o r t e d a gene t i c bas i s for v a r i a t i o n in suscept ib i l i ty of severa l different m o s q u i t o species for Plasmodium infect ions, t he first c lear gene t i c ev idence was p r o v i d e d b y K i l a m a a n d C r a i g (1969) . T h e y d e m o n s t r a t e d t h a t P. gallinaceum s u s c e p ­t ibi l i ty in A. aegypti is d e t e r m i n e d p r i m a r i l y by a s ingle a u t o s o m a l d o m i n a n t gene , pis. T h e i r d a t a , however , a lso sugges t t h a t o t h e r gene t i c factors a r e involved in Plasmodium suscept ib i l i ty in this vector , b e c a u s e u p to six deve lop ­ing oocytes w e r e f requent ly i so la ted from the m i d g u t s of i n d i v i d u a l m o s q u i ­toes t h a t they classified as comple t e ly refractory. T h e y a r b i t r a r i l y se lec ted a c o u n t of t en deve lop ing oocytes as t he p o i n t of d e m a r c a t i o n b e t w e e n refrac­to ry a n d suscep t ib l e i nd iv idua l s . L ikewise , W a r d (1963) w a s u n a b l e to deve l ­o p a 1 0 0 % refractory s t r a in of A. aegypti even after 26 g e n e r a t i o n s of se lec t ion , sugges t i ng a m u l t i g e n i c m o d e of i n h e r i t a n c e . M o r e recent ly, a s t r a i n of A.

Page 261: Parasites and Pathogens of Insects. Parasites

11. Mosquito Susceptibility to Plasmodium and Filarioids 2 5 7

gambiae, a p r i n c i p a l vec to r of h u m a n m a l a r i a , h a s b e e n se lec ted for r e s i s t ance to severa l species of Plasmodium b y Col l ins et al. (1986) . G e n e t i c ana lys i s of Plasmodium r e s i s t ance in A. gambiae h a s sugges t ed t h a t two u n l i n k e d genes con t ro l t h e express ion of suscep t ib l e a n d r e s i s t an t p h e n o t y p e s (Vern ick et al., 1989).

E v e n t h o u g h th is gene t i c bas i s for suscep t ib i l i ty a n d ref rac tor iness of cer­t a i n m o s q u i t o e s to b o t h filarial w o r m a n d Plasmodium infect ions h a s b e e n k n o w n for severa l d e c a d e s , very l i t t le i n fo rma t ion h a s b e e n g e n e r a t e d con­c e r n i n g the genes o r g e n e p r o d u c t s con t ro l l i ng these c o n d i t i o n s in a n y m o s ­q u i t o spec ies .

B. Genes and Gene Products

R e c e n t b io t echno log ica l a d v a n c e s h a v e s p u r r e d a r a p i d l y d e v e l o p i n g re ­s e a r c h effort a i m e d a t a d v a n c i n g o u r knowledge in t h e a r e a of v e c t o r -p a r a s i t e r e l a t i o n s h i p s a n d vec to r gene t i cs , as ev idenced b y a m e e t i n g in

J a n u a r y , 1991 , in T u c s o n , A r i z o n a , o n t he " P r o s p e c t s for M a l a r i a C o n t r o l b y G e n e t i c M a n i p u l a t i o n of i ts V e c t o r s " o r g a n i z e d b y t h e W H O Spec ia l P r o ­g r a m for R e s e a r c h a n d T r a i n i n g in T r o p i c a l Diseases a n d t h e M a c A r t h u r F o u n d a t i o n [Wor ld H e a l t h O r g a n i z a t i o n ( W H O ) , 1991] . H o w e v e r , t h e ge ­ne t i c i n f o r m a t i o n p re sen t ly ava i l ab le as a bas i s for this r e s e a r c h effort is l imi t ed for t h e ma jo r i t y of m o s q u i t o vec to r s .

Aropheles gambiae h a s rece ived c o n s i d e r a b l e a t t e n t i o n b e c a u s e of i ts i m p o r ­t a n c e in t h e t r a n s m i s s i o n of h u m a n m a l a r i a a n d t h e se lec t ion of a r e s i s t an t s t r a i n t h a t successfully des t roys ook ine tes on t he m i d g u t surface (Col l ins et al., 1986). I n a d d i t i o n to t h e d a t a sugges t ing t h a t t w o u n l i n k e d genes con t ro l suscep t ib i l i ty in this species (Vernick et al., 1989), Vern ick a n d Co l l in s (1989) p r o v i d e ev idence t h a t o n e of these loci exh ib i t s a t igh t l inkage a s soc ia t ion w i t h a p o l y m o r p h i c a u t o s o m a l e s t e ra se locus . T h e effector m e c h a n i s m s re ­s p o n s i b l e for t h e ki l l ing of ook ine tes involve t he m e l a n o t i c e n c a s e m e n t of t h e p a r a s i t e ; consequen t ly , s tud ie s b y Paskewi tz et al. (1989) h a v e sugges t ed t h a t differences in p h e n o l ox idase ac t iv i ty m i g h t a c c o u n t for differences in s u s c e p ­t ibi l i ty b e t w e e n s t r a in s of A. gambiae. Howeve r , R o m a n s et al. (1991) con­d u c t e d backcrosses b e t w e e n two i n b r e d l ines of A. gambiae to d e t e r m i n e l ink­a g e a s soc ia t ions b e t w e e n a p r e s u m e d d i p h e n o l ox ida se g e n e ( D o x - A 2 de r ived f rom Drosophila) a n d the e s t e rase locus l inked w i t h re f rac tor iness . Resu l t s i n d i c t e d t h a t t h e t w o genes s e g r e g a t e d i n d e p e n d e n t l y . F r o m d a t a p r e s en t l y ava i l ab le , it is difficult to assess t h e roles t h a t these e n z y m e s ac tua l ly p l a y in in f luenc ing Plasmodium suscep t ib i l i ty in th is vector . B e c a u s e of t h e lack of ident i f ied gene t i c m a r k e r s for A. gambiae, efforts to def ine t h e p rec i se gene t i c bas i s for r e s i s t ance a r e l imi ted .

T h e m o s t de t a i l ed i n f o r m a t i o n c o n c e r n i n g the phys i ca l l oca t ion of genes

Page 262: Parasites and Pathogens of Insects. Parasites

2 5 8 Bruce Μ. Christensen and David W. Severson

con t ro l l ing suscept ib i l i ty is k n o w n for A. aegypti, b e c a u s e th is is t h e on ly species for w h i c h ex tens ive gene t i c l inkage d a t a a r e ava i l ab le . A gene t i c l inkage m a p , b a s e d on a b o u t 70 m o r p h o l o g i c a l m u t a n t a n d i sozyme m a r k e r s (cons i s t ing of t h r e e l inkage g r o u p s ) , h a s b e e n deve loped for th is species ( M u n s t e r m a n n a n d C r a i g , 1979; M u n s t e r m a n n , 1990). C o n s e q u e n t l y , de te r ­m i n i n g t h e g e n o m e pos i t ion of genes of in te res t c a n b e a c c o m p l i s h e d t h r o u g h l inkage ana lys i s w i th these ident if ied m a r k e r loci. K i l a m a a n d C r a i g (1969) a n d M a c d o n a l d (1962b) used this t e c h n i q u e to d e t e r m i n e t h a t pis is l oca t ed on l inkage g r o u p I I a n d fm is l oca ted on l inkage g r o u p I . T h e s e v e c t o r -p a r a s i t e m o d e l sys t ems (A. aegypti-P. gallinaceum a n d A. aegypti-Brugia spp . ) therefore a r e p a r t i c u l a r l y i m p o r t a n t b e c a u s e i m m e d i a t e reference p o i n t s for genes of in te res t a r e ava i l ab le for r e sea r ch efforts d e s i g n e d to i so la te a n d cha rac t e r i z e genes con t ro l l ing suscept ibi l i ty . T rad i t i ona l ly , however , a l a rge n u m b e r of s eg rega t ing p o p u l a t i o n s a r e r e q u i r e d to d e v e l o p l inkage assoc ia ­t ions for genes of in te res t , b e c a u s e on ly a l imi ted n u m b e r of loci s eg rega t e in each cross . B e c a u s e res t r i c t ion f r a g m e n t l eng th p o l y m o r p h i s m ( R F L P ) m a r k e r s r e p r e s e n t a n e w class of m o l e c u l a r m a r k e r s t h a t p e r m i t t h e d e v e l o p ­m e n t of de t a i l ed gene t i c m a p s from a l imi ted n u m b e r of crosses ( L a n d r y a n d M i c h e l m o r e , 1987), we have t a k e n th is a p p r o a c h in o u r in i t ia l efforts to i sola te t he genes inf luenc ing suscep t ib i l i ty of A. aegypti to P. gallinaceum a n d B. malayi.

We have c o n s t r u c t e d a R F L P gene t i c l inkage m a p cons i s t ing of 50 c lones t h a t identify 53 loci cover ing 134 m a p un i t s across t h e A. aegypti g e n o m e (Severson et al., 1993). T h e R F L P m a r k e r s i n c l u d e 42 r a n d o m c D N A c lones , 3 r a n d o m g e n o m i c D N A clones , a n d 5 c D N A clones of k n o w n genes . O u r s eg rega t i ng p o p u l a t i o n s cons is ted of F 2 p r o g e n y o b t a i n e d from crosses be ­tween the L ive rpoo l a n d R E D or B Z s t r a ins of A. aegypti. T h e R E D s t r a i n ca r r i es t h e red-eye (re) locus on l inkage g r o u p I , t h e s p o t - a b d o m e n (s) locus on l inkage g r o u p I I , a n d the b l ack - t a r sus (bit) locus o n l inkage g r o u p I I I . T h e B Z s t r a in ca r r ies t he re locus a n d the b ronze -cu t i c l e (bz) locus o n l inkage g r o u p I . D e t e r m i n a t i o n of l inkage assoc ia t ions b e t w e e n o u r R F L P m a r k e r s a n d severa l m u t a n t m a r k e r loci a l lowed us to i n t e g r a t e t h e m in to t he t h r e e p rev ious ly ident if ied l inkage g r o u p s ( M u n s t e r m a n n , 1990).

A l t h o u g h the R F L P m a r k e r s a r e r a n d o m l y d i s t r i b u t e d t h r o u g h o u t t he A. aegypti g e n o m e , a c o n s i d e r a b l e p r o p o r t i o n ( 3 0 % ) of t h e m fitted a 1:1 seg rega ­t ion r a t i o in a t leas t o n e of o u r m a p p i n g p o p u l a t i o n s . T h i s reflects p r o g e n y of a m a t i n g b e t w e e n a h e t e r o z y g o u s i n d i v i d u a l a n d a h o m o z y g o u s i n d i v i d u a l for each of these loci. The re fo r e , de sp i t e m a n y g e n e r a t i o n s of m a i n t e n a n c e as i n d e p e n d e n t colonies , o u r s eg rega t ion d a t a i nd i ca t e t h a t l a b o r a t o r y s t r a i n s of A. aegypti r e m a i n h igh ly h e t e r o z y g o u s . T h i s h a s i m p o r t a n t i m p l i c a t i o n s for fu ture m a p p i n g efforts, s ince crosses involv ing h e t e r o z y g o u s i n d i v i d u a l s c a n l imi t t h e n u m b e r of d i a g n o s t i c loci ident i f iable w i th a g iven c ross .

Page 263: Parasites and Pathogens of Insects. Parasites

11. Mosquito Susceptibility to Plasmodium and Filarioids 2 5 9

T h e ava i lab i l i ty of a s a t u r a t e d R F L P m a p p rov ides a v a l u a b l e m e c h a n i s m to a d d r e s s a spec t s of vec to r b io logy a t t he i r m o s t f u n d a m e n t a l level. T h i s l i nkage m a p cou ld facil i tate t he i so la t ion of genes of in t e res t w h o s e g e n e p r o d u c t is u n k n o w n (i.e. , filarial w o r m o r m a l a r i a suscep t ib i l i ty ) by p rov id ­ing p o i n t s for c h r o m o s o m e w a l k i n g . I n a d d i t i o n , m a n y i m p o r t a n t p h e n o t y p i c c h a r a c t e r s , s u c h as filarial w o r m a n d Plasmodium suscept ib i l i ty , a r e a conse ­q u e n c e of t h e j o i n t ac t ion of two or m o r e i n d i v i d u a l genes . T h e s e c h a r a c t e r s a r e gene ra l ly refer red to as m u l t i g e n i c o r q u a n t i t a t i v e t r a i t s , a n d exp res s ion of a p a r t i c u l a r p h e n o t y p e d e p e n d s u p o n a b a l a n c e b e t w e e n i n d i v i d u a l g e n e effects a n d the i r in te rac t ive effects w i t h each o ther . A s a t u r a t e d R F L P gene t i c l i nkage m a p p rov ides a useful m e c h a n i s m for t h e r e so lu t ion of c o m p l e x p h e n o t y p i c t r a i t s i n to the i r i n d i v i d u a l gene t i c c o m p o n e n t s ( N i e n h u i s et al., 1987; O s b o r n et al., 1987; P a t e r s o n et al., 1988; Tanks l ey a n d H e w i t t , 1988; L a n d e r a n d Bo t s t e in , 1989), by ident i fy ing all i n t e rva l s b e t w e e n R F L P m a r k ­ers ( referred to as q u a n t i t a t i v e t r a i t loci, Q T L s ) t h a t c o n t a i n a gene ( s ) affecting a c h a r a c t e r t h r o u g h o u t t h e g e n o m e . E a c h Q T L c a n t h e n b e e x a m ­ined as a d i sc re t e gene t i c en t i ty a n d its i n d i v i d u a l a n d in te rac t ive p r o p e r t i e s m e a s u r e d . T h e s e R F L P m a r k e r s a lso c a n b e u s e d to e x a m i n e c h r o m o s o m a l c o n t e n t a n d l inea r g e n e o r d e r a m o n g r e l a t ed species ( B o n i e r b a l e et al., 1988; T a n k s l e y et al., 1988). T h i s will l ikely p rove v a l u a b l e for o t h e r m o s q u i t o species b e c a u s e a n ear l i e r e x a m i n a t i o n of l inkage r e l a t i o n s h i p s of p h e n o t y p i c c h a r a c t e r s a m o n g h i g h e r d i p t e r a n species sugges t s t h a t t h e m a j o r l i nkage g r o u p s a r e la rge ly conse rved (Fos te r et al., 1981).

S ince t h e ba s i c c h r o m o s o m e n u m b e r is conse rved a m o n g m o s q u i t o species (n = 3), o n e c a n p r e d i c t t h a t c h r o m o s o m a l c o n t e n t a n d l i nea r g e n e o r d e r a r e h igh ly conse rved a m o n g m o s q u i t o spec ies . T h i s s h o u l d a l low the u t i l i za t ion of t h e w e a l t h of i n f o r m a t i o n c o n c e r n i n g t h e gene t ics of A. aegypti to r a p i d l y d e v e l o p a de t a i l ed R F L P gene t i c l i nkage m a p for a gene t i ca l ly u n c h a r a c -te r ized b u t r e l a t ed m o s q u i t o species . T h i s s cena r io a p p e a r s q u i t e p r o b a b l e as we a r e successfully u s ing o u r R F L P m a r k e r s to e x a m i n e l inkage w i t h i n seg­r e g a t i n g p o p u l a t i o n s of Aedes albopictus. P r e l i m i n a r y resu l t s i n d i c a t e t h a t t h e l i nea r o r d e r for t h r e e of o u r R F L P m a r k e r s o n l inkage g r o u p I is conse rved b e t w e e n A. aegypti a n d A. albopictus (Y. M o r i , D . W. Severson , a n d Β . M . C h r i s t e n s e n , u n p u b l i s h e d d a t a ) . We have a lso successfully h y b r i d i z e d m a n y of o u r R F L P m a r k e r s to g e n o m e b lo ts of o t h e r m o s q u i t o species i n c l u d i n g : Aedes togoi, Anopheles gambiae, Armigeres subalbatus, a n d severa l subspec i e s of t h e Culex pipiens c o m p l e x (C.p. molestus, C.p. pallans, C.p. pipiens, C.p. quin-quefasciatus).

N o d i r e c t ev idence is p r e s e n t l y ava i l ab le , however , t h a t identif ies a g e n e p r o d u c t r e s p o n s i b l e for suscep t ib i l i ty o r ref rac tor iness of a n y m o s q u i t o spe ­cies for a p a r t i c u l a r p a r a s i t e , b u t r ecen t ly we have ident i f ied severa l i n d u c e d p o l y p e p t i d e s t h a t a r e s t rong ly a s soc i a t ed w i t h A. aegypti s t r a i n s t h a t a r e

Page 264: Parasites and Pathogens of Insects. Parasites

2 6 0 Bruce Μ. Christensen and David W. Severson

ref rac tory for t h e d e v e l o p m e n t of B. malayi ( W a t t a m a n d C h r i s t e n s e n , 1992). P o l y p e p t i d e syn thes i s in tho rac ic t i ssue was assessed , u s i n g in vivo r a d i o l a b e l -ing t e c h n i q u e s (Bee rn t s en a n d C h r i s t e n s e n , 1990), in suscep t ib l e a n d refrac­to ry s t r a in s of A. aegypti a n d a refractory s t r a in newly i so la ted f rom a s u s c e p ­t ible s t r a i n . Six p o l y p e p t i d e differences w e r e r ecogn ized b y S D S - P A G E a n d t w o - d i m e n s i o n a l e l ec t rophores i s . T h e s e p o l y p e p t i d e s were seen on ly in t h e refractory s t r a ins for 48 h r following a b lood m e a l . A seven th p o l y p e p t i d e w a s p r e s e n t in those refractory m o s q u i t o e s t h a t h a d inges ted suc rose , b u t in­c r eased in in tens i ty following b loodfeed ing . T h e p r e s e n c e of microf i la r iae in t he b l o o d m e a l w a s n o t necessa ry to s t i m u l a t e t he syn thes i s of these m o l e ­cules . A l t h o u g h these differences in b l o o d m e a l - i n d u c e d p o l y p e p t i d e p r o d u c ­t ion w e r e s t rong ly co r r e l a t ed w i t h v a r i a t i o n in suscept ib i l i ty , d i r ec t ev idence is n o t yet ava i l ab le r e g a r d i n g the role these p o l y p e p t i d e s m i g h t p l a y in m e d i ­a t i n g t he gene t ica l ly d e t e r m i n e d v a r i a t i o n in suscep t ib i l i ty ( W a t t a m a n d C h r i s t e n s e n , 1992).

T h e r e a r e n u m e r o u s phys io log ica l even ts t h a t t ake p lace w i t h i n vec to r m o s q u i t o e s t h a t cou ld inf luence t he su i tab i l i ty of m o s q u i t o e s as hos t s for p a r a s i t e s . I t is n o t k n o w n , for i n s t a n c e , w h a t ro le sa l ivary g l a n d c o m p o n e n t s m i g h t p l a y in in f luenc ing suscep t ib i l i ty a n d / o r re f rac tor iness . Ea r l i e r s tud ie s by R o s e n b e r g (1985) c lear ly showed t h a t sporozo i tes m a y n o t b e c a p a b l e of r ecogn iz ing the a p p r o p r i a t e m e m b r a n e r ecep to r s o n sa l iva ry g l a n d s of refrac­tory Anopheles in ce r t a in mosquito-Plasmodium m o d e l s y s t e m s . B e c a u s e of t h e i m p o r t a n c e of sa l ivary g l a n d s in t he t r a n s m i s s i o n of severa l p a t h o g e n s by m o s q u i t o e s , r e s e a r c h e r s in J a m e s ' l a b o r a t o r y a t t h e U n i v e r s i t y of Ca l i fo rn ia , I r v ine , have u n d e r t a k e n a m o l e c u l a r ana lys i s of t h e sa l ivary g l a n d s of A. aegypti ( J a m e s et al., 1989, 1991). I t is poss ib le t h a t t he i so la t ion a n d c h a r a c ­t e r i za t ion of genes expressed specifically in t h e sa l ivary g l a n d s cou ld p r o v i d e n e w ins igh t r e g a r d i n g phys io log ica l m e c h a n i s m s inf luenc ing suscep t ib i l i ty a n d / o r ref rac tor iness . I n a s imi la r m a n n e r , inves t iga to r s in Ra ikhe l ' s l a b o r a ­tory a t M i c h i g a n S t a t e Univers i ty , E a s t L a n s i n g , have b e e n assess ing the m o l e c u l a r b io logy of vi te l logenesis w i t h t he u l t i m a t e goa l of finding n e w a n d innova t ive m e a n s of d i s r u p t i n g r e p r o d u c t i o n in vec to r m o s q u i t o e s (Ra ikhe l , 1992; R a i k h e l a n d D h a d i a l l a , 1992). I t w o u l d be ex t r eme ly v a l u a b l e if o t h e r r e s e a r c h g r o u p s w o u l d m a k e s imi l a r c o m m i t m e n t s to a m o l e c u l a r ana lys i s of specific t i ssue sites of p a r a s i t e d e v e l o p m e n t w i t h i n select m o s q u i t o spec ies , s u c h as m i d g u t , t ho rac i c m u s c u l a t u r e , a n d M a l p i g h i a n t u b u l e s .

C. Molecular Approaches in Vector Control: Future Directions

T h e gene t i c p las t ic i ty of m o s q u i t o vec tors h a s r e su l t ed in t h e e m e r g e n c e of mu l t i p l e -pes t i c ide - r e s i s t an t vec to r p o p u l a t i o n s , t h e r e b y l imi t ing t h e success of n u m e r o u s vec to r con t ro l p r o g r a m s in a r e a s e n d e m i c for m a l a r i a a n d fil-

Page 265: Parasites and Pathogens of Insects. Parasites

11. Mosquito Susceptibility to Plasmodium and Filarioids 261

ar ias i s . A n a l t e r n a t e s t r a t egy for vec to r con t ro l w o u l d be to ut i l ize e l e m e n t s of t h e o b s e r v e d gene t i c p las t ic i ty w i t h i n vec to r p o p u l a t i o n s to d i s r u p t p a r a ­si te t r a n s m i s s i o n , b y m a n i p u l a t i n g those a spec t s of vec to r c o m p e t e n c e u n d e r gene t i c con t ro l . T h e s teps o u t l i n e d ( W H O , 1991) for t he e n g i n e e r i n g a n d re lease of ref ractory m o s q u i t o e s involve (1) o b t a i n i n g a t h o r o u g h u n d e r ­s t a n d i n g of t h e m o l e c u l a r bas i s of vec to r c o m p e t e n c e , (2) t he d e v e l o p m e n t of n e c e s s a r y m o l e c u l a r a n d gene t i c a p p r o a c h e s r e q u i r e d to e n g i n e e r ref rac tory m o s q u i t o e s , a n d (3) a m o r e c o m p l e t e u n d e r s t a n d i n g of t h e p o p u l a t i o n dy­n a m i c s neces sa ry to effectively a p p l y these t echnolog ies in field s i t u a t i o n s . I t is a p p a r e n t f rom t h e p r e v i o u s d i scuss ion in th is rev iew t h a t s tud ie s d e s i g n e d to e l u c i d a t e t h e m o l e c u l a r bas i s of vec to r c o m p e t e n c e a r e in the i r infancy. L ikewise , p rog re s s in t he d e v e l o p m e n t of t r a n s g e n i c t echno logy in m o s q u i ­toes h a s b e e n l imi ted .

S t a b l e t r a n s f o r m a t i o n of m o s q u i t o e s h a s b e e n d e m o n s t r a t e d in A. gambiae (Mi l l e r et al., 1987), Aedes triseriatus ( M c G r a n e et al., 1988), a n d A. aegypti ( M o r r i s et al., 1989), a l t h o u g h i n t e g r a t i o n in each of these species o c c u r r e d b y r e c o m b i n a t i o n t h a t w a s i n d e p e n d e n t of Ρ e l e m e n t s . For a t h o r o u g h assess ­m e n t of s o m e of t he p r o b l e m s a s soc ia t ed w i t h t he p r o d u c t i o n of t r a n s g e n i c m o s q u i t o e s , a n d t h e p o t e n t i a l for u s i n g eng i n ee r ed m o s q u i t o e s in vec to r con t ro l s t r a t eg ie s , severa l r ecen t rev iews a r e r e c o m m e n d e d ( C r a m p t o n et al., 1990; Egg le s ton , 1991; W H O , 1991). I t is a p p a r e n t , however , t h a t t e c h n i q u e s for efficient t r a n s f o r m a t i o n sy s t ems for m o s q u i t o e s p r e s en t l y a r e n o t avai l ­a b l e .

A l t h o u g h t h e c o n c e p t of r e l eas ing e n g i n e e r e d m o s q u i t o e s w i t h r e d u c e d vec tor ia l c a p a c i t y a n d / o r i nc r ea sed r e s i s t ance to pes t ic ides m i g h t b e a n u l t i ­m a t e goa l t h a t is n e v e r rea l ized , t h e d e v e l o p m e n t of this t e chno logy w o u l d h a v e a n e n o r m o u s i m p a c t o n o u r m o s t f u n d a m e n t a l u n d e r s t a n d i n g of g e n e r e g u l a t i o n a n d express ion in vec to r s . T h e defini t ive d e t e r m i n a t i o n of g e n e func t ion b e c o m e s poss ib le if t r a n s f o r m a t i o n sys t ems for m o s q u i t o e s b e c o m e as efficient as t hose deve loped for Drosophila.

Acknowledgments

This work was supported in part by National Institutes of Health Grants A l 19769, A l 28781, and Al 33127. We thank Dr. Jianyong Li for his critical review of this manuscript.

References

Ashida, M., and Yamazaki, Η. I. (1990). Biochemistry of the phenoloxidase system in insects: With special reference to its activation. In "Molting and Metamorphosis" (E. Ohnishi and H. Ishizaki, eds.), pp. 239-265. Springer-Verlag, Berlin.

Page 266: Parasites and Pathogens of Insects. Parasites

2 6 2 Bruce Μ. Christensen and David W. Severson

Barr, A. R. (1975). Evidence for genetic control of invertebrate immunity and its field signifi­cance. In "Invertebrate Immunity" (K. Maramorosch and R. E. Shope, eds.), pp. 129-135. Academic Press, New York.

Bayne, C.J . (1990). Phagocytosis and non-self recognition in invertebrates. BioScience 4 0 : 7 2 3 -731.

Beckage, Ν. E., Metcalf, J. S., Nesbit, D. J., Schleifer, K. W., Zetlan, S. R., and Buron, I. D. (1990). Host hemolymph monophenoloxidase activity in parasitized Manduca sexta larvae and evidence for inhibition by wasp polydnavirus. Insect Biochem. 20:285-294.

Beckmann, J. S., and Soller, M. (1983). Restriction fragment length polymorphisms in genetic improvement: Methodologies, mapping and costs. Theor. Appl. Genet. 67 :35-43 .

Beerntsen, Β. T., and Christensen, Β. M. (1990). Dirofilaria immitis: Effect on hemolymph protein synthesis in Aedes aegypti during melanotic encapsulation reactions against inoculated micro­filariae. Exp. Parasitol. 71:406-414.

Beerntsen, Β. T., Luckhart, S., and Christensen, Β. M. (1989). Brugia malayi and B. pahangi: Inherent differences in immune activation in the mosquitoes Armigeres subalbatus and Aedes aegypti. J. Parasitol. 75:76-81 .

Bishop, D.H.L., and Beaty, B .J . (1986). Interference-immunity of mosquitoes to bunyavirus superinfection. In "Immune Mechanisms in Invertebrate Vectors" (A. M. Lackie, ed.), pp. 95-115. Clarendon Press, Oxford.

Boman, H. G., and Hultmark, D. (1987). Cell-free immunity in insects. Annu. Rev. Microbiol. 41:103-126.

Bonierbale, M. W., Plaisted, R. L., and Tanksley, S. D. (1988). RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics 120:1095-1103.

Brehelin, M. (1986). "Immunity in Invertebrates." Springer-Verlag, Berlin. Chen, C. C , and Laurence, Β. H. (1985). An ultrastructural study on the encapsulation of

microfilariae of Brugia pahangi in the haemocoel of Anopheles quadrimaculatus. Int. J. Parasitol. 15:421-428.

Chen, C. C , and Laurence, Β. H. (1987). In vitro study on humoral encapsulation of micro­filariae: Establishment of technique and description of reaction. Int. J. Parasitol. 17 :781-787.

Christensen, Β. M. (1986). Immune mechanisms and mosquito-filarial worm relationships. In "Immune Mechanisms in Invertebrate Vectors" (A. M. Lackie, ed.), pp. 145-160. Claren­don Press, Oxford.

Christensen, Β. M., and Forton, K. F. (1986). Hemocyte-mediated melanization of microfilariae in Aedes aegypti. J. Parasitol. 72:220-225.

Christensen, Β. M., and Nappi, A . J . (1988). Immune responses of arthropods. ISI Atlas Sci.: Plant Anim. Sci. 1:15-19.

Christensen, Β. M., and Tracy, J. W. (1989). Arthropod-transmitted parasites: Mechanisms of immune interaction. Am. Zool. 29:387-398.

Christensen, Β. M., Huff, Β. M., Miranpuri, G. S., Harris, K. L., and Christensen, L. A. (1989). Hemocyte population changes during the immune response οϊ Aedes aegypti to inoculated microfilariae οϊ Dirofilaria immitis. J. Parasitol. 75:119-123.

Collins, F. H., Sakai, R. K., Vernick, K. D., Paskewitz, S., Seeley, D. C , Miller, L. H., Collins, W. E., Campbell, C. C , and Gwadz, R. W. (1986). Genetic selection of a Plasmodium refrac­tory strain of the malaria vector Anopheles gambiae. Science 234:607-610.

Crampton, J., Morris, Α., Lycett, G., Warren, Α., and Eggleston, P. (1990). Transgenic mosqui­toes: A future vector control strategy? Parasitol. Today 6:31-36.

Dunn, P. E. (1986). Biochemical aspects of insect immunology. Annu. Rev. Entomol. 31:321-339. Dunn, P. E. (1990). Humoral immunity in insects. BioScience 40:738-744.

Page 267: Parasites and Pathogens of Insects. Parasites

11. Mosquito Susceptibility to Plasmodium and Filarioids 2 6 3

Eggleston, P. (1991). The control of insect-borne disease through recombinant D N A technology. Heredity 66:161-172.

Forton, K. F., Christensen, Β. M., and Sutherland, D. R. (1985). Ultrastructure of the melaniza­tion response of Aedes trivittatus against inoculated Dirofilana immitis microfilariae. J. Parasitol. 71:331-341.

Foster, G. G., Whitten, M. J., Konovalov, C., Arnold, J.T.Α., and Maffi, G. (1981). Autosomal genetic maps of the Australian sheep blowfly, Lucilia cuprina dorsalis R.-D. (Diptera: Cal-liphoridae), and possible correlations with the linkage maps of Musca domestica L. and Dro-sophila melanogaster (Mg.). Genet. Res. 37:55-69 .

Garcia-Canovas, F., Garcia-Carmona, F., Sanchez, J. V., Pastor, J.L.I., and Teruel, J.A.L. (1982). The role of pH in the melanin biosynthesis pathway. J. Biol. Chem. 257 :8738-8744.

Garcia-Carmona, F., Garcia-Canovas, F., Iborra, J. L., and Lozano, J. A. (1982). Kinetic study of the pathway of melanization between L-dopa and dopachrome. Biochim. Biophys. Acta 717:124-131.

Gotz, P. (1986). Mechanisms of encapsulation in dipteran hosts. In "Immune Mechanisms in Invertebrate Vectors" (A. M. Lackie, ed.), pp. 1-19. Clarendon Press, Oxford.

Gupta, A. P. (1986). "Hemocytic and Humoral Immunity in Arthropods." Wiley, New York. Gwadz, R. W , Kaslow, D., Lee, J . -Y, Malowy, W. L., ZaslofT, M., and Miller, L. H. (1989).

Effects of magainins and cecropins on the sporogonic development of malaria parasites in mosquitoes. Infect. Immun. 57:2628-2633.

James, Α. Α., Blackmer, K., and Racioppi, J. V. (1989). A salivary gland-specific, maltase-like gene of the vector mosquito, Aedes aegypti. Gene 75:73-83 .

James, Α. Α., Blackmer, K., Marinotti, O., Ghosn, C. R., and Racioppi, J. V. (1991). Isolation and characterization of the gene expressing the major salivary gland protein of the female mosquito, Aedes aegypti. Mol. Biochem. Parasitol. 44:245-254.

Huff, C. J. (1929). The effects of selection upon susceptibility to bird malaria in Culex pipiens Linn. Ann. Trop. Med. Parasitol. 23:247.

Karp, R. D. (1990). Cell-mediated immunity in invertebrates. BioScience 40:732-737. Kartman, L. (1953). Factors influencing infection of the mosquito with Dirofilana immitis (Leidy,

1856). Exp. Parasitol. 2:27-78. Kilama, W. L., and Craig, G. B., Jr. (1969). Monofactorial inheritance of susceptibility to

Plasmodium gallinaceum in Aedes aegypti. Ann. Trop. Med. Parasitol. 63:419-432. Kobayashi, M., Ogura, N., and Yamamoto, H. (1986). Studies of filariasis X: A trial to analyse

refractory mechanisms of the mosquito Aedes aegypti to the filarial larvae Brugia malayi by means of parabiotic twinning. Dokkyo J. Med. Sci. 13:61-67.

Korner, Α., and Pawelek, J. (1982). Mammalian tyrosinase catalyzes three reactions in the biosynthesis of melanin. Science 217:1163-1165.

Lackie, A. M., ed. (1986). "Immune Mechanisms in Invertebrate Vectors," Zool. Soc. London Symp. 56. Clarendon Press, Oxford.

Lackie, A. M. (1988). Immune mechanisms in insects. Parasitol. Today 4:98-105. Lander, E. S., and Botstein, D. (1989). Mapping Mendelian factors underlying quantitative

traits using RFLP linkage maps. Genetics 121:185-199. Landry, B. S., and Michelmore, R. W. (1987). Methods and applications of restriction fragment

length polymorphism analysis to plants. In "Tailoring Genes for Crop Improvement: An Agricultural Perspective" (G. Bruening, J. Harada, and A. Hollaender, eds.), pp. 25 -44 . Plenum Press, New York.

Law, J. H., and Wells, M. A. (1989). Insects as biochemical models. J. Biol. Chem. 264:16335-16338.

Lee, C. C , Wu, Z., Gibbs, R. Α., Cook, R. G., Muzny, D. M., and Caskey, C. T. (1988).

Page 268: Parasites and Pathogens of Insects. Parasites

2 6 4 Bruce Μ. Christensen and David W. Severson

Generation of cDNA probes directed by amino acid sequence: Cloning of urate oxidase. Science 239:1288-1291.

Li, J., and Christensen, Β. M. (1990). Immune competence of Aedes trivittatus hemocytes as assessed by lectin binding. J. Parasitol. 76:276-278.

Li, J., and Nappi, A. J. (1991). Analysis of monophenol oxidase activity using high pressure liquid chromatography with electrochemical detection. J. Liq. Chromatogr. 14:2089-2108.

Li, J., Tracy, J. W., and Christensen, Β. M. (1989). Hemocyte monophenol oxidase activity in mosquitoes exposed to microfilariae. J. Parasitol. 75 :1 -5 .

Li, J., Christensen, Β. M., and Tracy, J. W. (1990). Electrochemical determination of diphenol oxidase activity using high pressure liquid chromatography. Anal. Biochem. 190:354-359.

Li, J. Y., Tracy, J. W., and Christensen, Β. M. (1992). Phenol oxidase activity in hemolymph compartments οϊ Aedes aegypti during melanotic encapsulation reactions against microfilariae. Dev. Comp. Immunol. 16:41-48.

Macdonald, W. W. (1962a). The selection of a strain οϊ Aedes aegypti susceptible to infection with semi-periodic Brugia malayi. Ann. Trop. Med. Parasitol. 56:368-372.

Macdonald, W. W. (1962b). The genetic basis of susceptibility of infection with semi-periodic Brugia malayi in Aedes aegypti. Ann. Trop. Med. Parasitol. 56:373—382.

Macdonald, W. W. (1963). Further studies on a strain of Aedes aegypti susceptible to infection with semi-periodic Brugia malayi. Ann. Trop. Med. Parasitol. 57:452-460.

Macdonald, W. W., and Ramachandran, C. P. (1965). The influence of the gene f*" (filarial susceptibility, Brugia malayi) on the susceptibility of Aedes aegypti to seven strains of Brugia, Wuchereria and Dirofilaria. Ann. Trop. Med. Parasitol. 59:64-73 .

McGrane, V., Carlson, J. O., Miller, B. R., and Beaty, B.J. (1988). Microinjection of D N A into Aedes triseriatus ova and detection of integration. Am. J. Trop. Med. Hyg. 39:502-510.

McGreevy, P. B., McClelland, G.A.H., and Lavoipierre, M.M.J. (1974). Inheritance of suscep­tibility to Dirofilaria immitis infection in Aedes aegypti. Ann. Trop. Med. Parasitol. 68:97-109.

Micks, D. W. (1949). Investigations on the mosquito transmission οϊ Plasmodium elongatum Huff, 1930. J. Natl. Malaria Soc. 8:206.

Miller, L. H., Sakai, R. K., Rownans, P., Gwadz, R. W., Kantoff, P., and Coon, H. G. (1987). Stable integration and expression of a bacterial gene in the mosquito Anopheles gambiae. Science 237:779-781.

Morris, A. C , Eggleston, P., and Crampton, J. M. (1989). Genetic transformation of the mosquito Aedes aegypti by microinjection of DNA. Med. Vet. Entomol. 3 :1 -7 .

Munkirs, D. D., Christensen, Β. M., and Tracy, J. W. (1990). Analysis of hemolymph plasma substrates in immune reactive Aedes aegypti. J. Invertebr. Pathol. 56:267-279.

Munstermann, L. E. (1990). Linkage map of the yellow fever mosquito, Aedes aegypti. In "Genetic Maps: Locus Maps of Complex Genomes" (S.J. O'Brian, ed.), Vol. 5, pp. 3.179-3.183. Cold Spring Harbor Lab., Cold Spring Harbor, New York.

Munstermann, L. E., and Craig, G. B., Jr. (1979). Genetics οϊ Aedes aegypti. J. Hered. 70:291-296. Nappi, A. J., and Christensen, Β. M. (1986). Hemocyte cell surface changes in Aedes aegypti in

response to microfilariae οϊ Dirofilaria immitis. J. Parasitol. 72:875-879. Nappi, A. J., and Christensen, Β. M. (1987). Insect immunity and mechanisms of resistance by

nematodes. In "Vistas on Nematology" (J. A. Veech and D. W. Dickson, eds.), pp. 285-291 . Society of Nematologists, Hyattsville, M D .

Nappi, A. J., and Silvers, M. (1984). Cell surface changes associated with cellular immune reactions in Drosophila. Science 225:1166-1168.

Nappi, A. J., Christensen, Β. M., and Tracy, J. W. (1987). Quantitative analysis of hemolymph monophenol oxidase activity in immune reactive Aedes aegypti. Insect Biochem. 17:685—688.

Nayar, J. K., Knight, J. W., and Bradley, T.J. (1988). Further characterization of refractoriness in Aedes aegypti (L.) to infection by Dirofilaria immitis (Leidy). Exp. Parasitol. 66:124-131 .

Page 269: Parasites and Pathogens of Insects. Parasites

11. Mosquito Susceptibility to Plasmodium and Filarioids 2 6 5

Nienhuis, J., Helentjaris, T., Slocum, M., Ruggero, B., and Schaefer, A. (1987). Restriction fragment length polymorphism analysis of loci associated with insect resistance in tomato. Crop Sci. 27:797-803.

Ogura, N. (1986). Haemagglutinating activity and melanin deposition on microfiliariae ofBrugia pahangi and B. malayi in the mosquito, Armigeres subalbatus. Jpn. J. Parasitol. 35:542-549.

Ogura, N. (1987). The effect of exogenous haemagglutinin on in vitro melanin deposition on microfilariae of Brugia pahangi in haemolymph of the mosquito, Armigeres subalbatus. Jpn. J. Parasitol. 36:291-297.

Ogura, N., Kobayashi, M., and Yamamoto, H. (1985). Haemagglutinating activity in fluid collected from the mosquito, Armigeres subalbatus, by centrifugation method. Dokkyo J. Med. Sci. 12:217-221.

Osborn, T. C , Alexander, D. C , and Fobes, J. F. (1987). Identification of restriction fragment length polymorphisms linked to genes controlling soluble solids content in tomato fruit. Theor. Appl. Genet. 73:350-356.

Paskewitz, S. M., Brown, M. R., Lea, A. O., and Collins, F. H. (1988). Ultrastructure of the encapsulation of Plasmodium cynomolgi (B strain) on the midgut of a refractory strain of Anopheles gambiae. J. Parasitol. 74:432-439.

Paskewitz, S. M., Brown, M. R., Collins, F. H., and Lea, A. O. (1989). Ultrastructural localiza­tion of phenoloxidase in the midgut of refractory Anopheles gambiae and association of the enzyme with encapsulated Plasmodium cynomolgi. J. Parasitol. 75:594-600.

Paterson, A. H., Lander, E. S., Hewitt, J. D., Peterson, S., Lincoln, S. E., and Tanksley, S. D. (1988). Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature (London) 335:721-726.

Pentz, E. S., Black, B. C , and Wright, T.R.F. (1986). A diphenol oxidase gene is part of a cluster of genes involved in catecholamine metabolism and sclerotization in Drosophila. I. Identifica­tion of the biochemical defect in Dox-A2 [ l(2)37Bf] mutants. Genetics 112:823-841.

Raghaven, N.G.S., Das, M., Mammen, M. L., Singh, Ν. N., and Wattal, B. L. (1967). Genetic basis of differential susceptibility of Aedes aegypti to dirofilarial infection. Part I: Preliminary observations on selection of Aedes aegypti strains susceptible and refractory to Dirofilana immitis infections. Bull. Indian Soc. Mai. Communicable Dis. 4:318-323.

Raikhel, A. S. (1992). Vitellogenesis in mosquitoes. Adv. Dis. Vector Res. 9 :1 -58 . Raikhel, A. S., and Dhadialla, T. S. (1992). Accumulation of yolk proteins in insect oocytes.

Annu. Rev. Entomol. 37:217-251. Ratcliffe, Ν. Α., Leonard, C. M., and Rowley, A. F. (1984). Prophenoloxidase activation: Non-

self recognition and cell co-operation in insect immunity. Science 226:557-559. Renwrantz, L. (1986). Lectins in molluscs and arthropods: Their occurrence, origin and roles in

immunity. In "Immune Mechanisms in Invertebrate Vectors" (A. M. Lackie, ed.), pp. 8 1 -93. Clarendon Press, Oxford.

Rizki, R. M., and Rizki, Τ. M. (1990). Encapsulation of parasitoid eggs in phenoloxidase-deficient mutants of Drosophila melanogaster. J. Insect Physiol. 36:523-529.

Rizki, Τ. M., and Rizki, R. M. (1983). Blood cell surface changes in Drosophila mutants with melanotic tumors. Science 220:73-75 .

Romans, P., Seeley, D. C , Kew, Y , and Gwadz, R. W. (1991). Use of a restriction fragment length polymorphism (RFLP) as a genetic marker in crosses of Anopheles gambiae (Diptera: Culicidae): Independent assortment of a diphenol oxidase RFLP and an esterase locus. J. Med. Entomol. 28:147-151.

Rosenberg, R. (1985). Inability of Plasmodium knowlesi sporozoites to invade Anopheles fieeborni salivary glands. Am. J. Trop. Med. Hyg. 34:687-691.

Roubaud, E. (1937). Nouvelles recherches sur l'infection du moustique de la fievre jaune par Dirofilana immitis chez quelques culcides indegenes. Bull. Soc. Pathol. Exot. 30:480-484.

Page 270: Parasites and Pathogens of Insects. Parasites

2 6 6 Bruce Μ. Christensen and David W. Severson

Severson, D. W., Mori, Α., Zhang, Y., and Christensen, Β. M. (1993). Linkage map for Aedes aegypti using restriction fragment length polymorphisms. J. Heredity (in press).

Soderhall, K., and Smith, V.J. (1986). The prophenoloxidase system: The biochemistry of its activation and role in arthropod cellular immunity with special references to crustaceans. In "Immunity in Invertebrates" (M. Brehelin, ed.), pp. 208-223. Springer-Verlag, Berlin.

Spray, F. J., and Christensen, Β. M. (1991). Aedes aegypti: Characterization of hemocyte polypep­tide synthesis during wound healing and immune response to inoculated microfilariae. Exp. Parasitol. 73:481-488.

Stanley-Samuelson, D. W., Jensen, E., Nickerson, K. W., Tiebel, K., Ogg, C. L., and Howard, R. W. (1991). Insect immune response to bacterial infection is mediated by eicosanoids. Proc. Natl. Acad. Sci. U.S.A. 88:1064-1068.

Sugumaran, M. (1986). Tyrosinase catalyzes an unusual oxidative decarboxylation of 3,4-dihydroxymandelate. Biochemistry 25:4489-4492.

Sugumaran, M. (1990). Prophenoloxidase activation and insect immunity. UCLA Symp. Mol. Biol. 121:47-62.

Sun, S., Lindstrom, I., Boman, H. G., Faye, I., and Schmidt, O. (1990). Hemolin: An insect immune protein belonging to the immunoglobulin superfamily. Science 250:1729-1732.

Tanksley, S. D., and Hewitt, J. (1988). Use of molecular markers in breeding for soluble solids content in tomato; A re-examination. Theor. Appl. Genet. 75:811-823.

Tanksley, S. D., Bernatzky, R., Lapitan, N. L., and Prince, J. P. (1988). Conservation of gene repertoire but not gene order in pepper and tomato. Proc. Natl. Acad. Sci. U.S.A. 85 :6419-6423.

Townsend, D., Guillery, P., and King, R. A. (1984). Optimized assay for mammalian tyrosinase (polyhydroxyl phenyloxidase). Anal. Biochem. 139:345-352.

Townson, H., and Chaithong, U. (1991). Mosquito host influences on development of filariae. Ann. Trop. Med. Parasitol. 85:149-163.

Trager, W. (1942). A strain of mosquito Aedes aegypti selected for susceptibility to the avian malaria parasite Plasmodium lophurae. J. Parasitol. 28:457.

Vachtenheim, J., Duchon, J., and Matous, B. (1985). A spectrophotometric assay for mam­malian tyrosinase utilizing the formation of melanochrome from L-dopa. Anal. Biochem. 146:405-410.

Vernick, K. D., and Collins, F. H. (1989). Association of a Plasmodium-refractory phenotype with an esterase locus in Anopheles gambiae. Am. J. Trop. Med. Hyg. 40:593-597.

Vernick, K. D., Collins, F. H., and Gwadz, R. W. (1989). A general system of resistance to malaria infection in Anopheles gambiae controlled by two main genetic loci. Am. J. Trop. Med. Hyg. 40:585-592.

Ward, R. A. (1963). Genetic aspects of the susceptibility of mosquitoes to malarial infection. Exp. Parasitol. 13:328-341.

Wattam, A. R., and Christensen, Β. M. (1992). Induced polypeptides associated with filarial worm refractoriness in Aedes aegypti. Proc. Natl. Acad. Sci. U.S.A. 89:6502-6503.

World Health Organization (WHO) (1991). "Prospects for Malaria Control by Genetic Manip­ulation of its Vectors," T D R / B C V / M A L - E N T / 9 1 . 3 . UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases.

Yamamoto, H., Kobayashi, M., Ogura, N., Tsuruoka, H., and Chigusa, Y. (1985). Studies on filariasis. VI. The encapsulation of Brugia malayi and B. pahangi larva in the mosquito, Armigeres subalbatus. Jpn. J. Sanit. Zool. 36 :1 -6 .

Zielke, E. (1973). Untersuchungen zur Vererbung der Empfanglichkeit gegenuber der Hun-defilarie Dirofilaria immitis bei Culex pipiens fatigans und Aedes aegypti. Z. Trop. Parasitol. 2 4 : 3 6 -44.

Page 271: Parasites and Pathogens of Insects. Parasites

Chapter 12

ΒCellular Defense Responses of Insects: Unresolved Problems Norman A. Ratcliffe Biomedical and Physiological Research Group School of Biological Sciences University College of Swansea Swansea, Wales, United Kingdom

I. Introduction

II. Main Events in Insect Immune Reactivity A. Immediate and Inductive Stage B. Mainly Cellular and Synthetic Stage C. Final Humoral/Cellular Stage

III. Specific Problems in Insect Immunity A. Classification, Origins, and

Manipulation of Insect Blood Cells

B. Recognition of Non-Self Invaders C. Cell-Cell Communication

in Immunity D. Interrelationship of Cellular

and Humoral Immunity E. Future Areas for Study

Acknowledgments References

I. Introduction

I n r e c e n t y e a r s , t h e r e have b e e n a n u m b e r of i m p o r t a n t d e v e l o p m e n t s in o u r u n d e r s t a n d i n g of insec t i m m u n e defense r eac t ions . For e x a m p l e , as far as h u m o r a l factors a r e c o n c e r n e d , i n d u c i b l e i m m u n e p r o t e i n s h a v e b e e n se­q u e n c e d a n d c h a r a c t e r i z e d a n d s o m e of t h e genes for the i r p r o d u c t i o n c loned (e.g. , B o m a n a n d H u l t m a r k , 1987; H o f f m a n n a n d H o f f m a n n , 1990; Fay e a n d H u l t m a r k , V o l u m e 2, C h a p t e r 2), t h e role of t h e p r o p h e n o l o x i d a s e s y s t e m (e.g. , Ratcliffe et al., 1984; S u g u m a r a n a n d K a n o s t , V o l u m e 1, C h a p t e r 14) a n d t h e h e m o l y m p h lect ins ( P e n d l a n d et al., 1988) in t h e r ecogn i t i on of foreign a n t i g e n s h a v e b e e n conf i rmed , a n d t h e h e m o l y m p h lec t ins too have b e e n i so la ted , s e q u e n c e d , a n d c D N A clones p r o d u c e d for o n t o g e n e t i c s tud ie s (e .g. , T a k a h a s h i et al., 1985, 1986). A s r e g a r d s ce l lu la r i m m u n i t y , i m p o r t a n t a d v a n c e s h a v e a lso b e e n m a d e , s u c h as t h e de t a i l ed c h a r a c t e r i z a t i o n of cel lu­l a r reac t iv i ty ( rev iewed in Ratcliffe a n d Rowley, 1979; G o t z a n d B o m a n ,

Parasites and Pathogens of Insects Copyright © 1993 by Academic Press, Inc. Volume I: Parasites 2 6 7 All rights of reproduction in any form reserved.

Page 272: Parasites and Pathogens of Insects. Parasites

2 6 8 Norman A. Ratcliffe

1985), i n c l u d i n g a l logenic r ecogn i t ion of grafts ( G e o r g e et aL, 1987) a n d the d e m o n s t r a t i o n of cell—cell coope ra t i ve events ( S c h m i t a n d Ratcliffe, 1977) u t i l iz ing , m o r e recent ly, pur i f ied p o p u l a t i o n s of b lood cells ( A n g g r a e n i a n d Ratcliffe, 1991).

D e s p i t e this p rog res s in o u r k n o w l e d g e of insec t i m m u n i t y , m a n y p r o b l e m s r e m a i n u n a n s w e r e d . T h e p u r p o s e of this br ief overview is to identify a t leas t s o m e of these un reso lved q u e s t i o n s a n d to i n d i c a t e poss ib le d i r ec t i ons for fu ture e n d e a v o r s . A t t e n t i o n will be focused p a r t i c u l a r l y o n the insec t ce l lu la r defenses b u t , s ince ev idence is now a c c u m u l a t i n g for a c o m p l e x i n t e r p l a y b e t w e e n the ce l lu la r a n d h u m o r a l c o m p o n e n t s in t he p r o d u c t i o n of t h e over­all i m m u n e react iv i ty of insec ts , such d iv is ions a r e p u r e l y a rb i t r a ry .

II. Main Events in Insect Immune Reactivity

F i g u r e 1 (modif ied from Ratcliffe a n d Rowley, 1987) s u m m a r i z e s the m a i n p h a s e s a n d in t e rac t ions o c c u r r i n g d u r i n g the insec t r e s p o n s e to m i c r o b i a l a n d m a c r o b i a l invas ion . T h e q u e s t i o n m a r k s in this figure i n d i c a t e s o m e , b u t no t all , of t he un re so lved p r o b l e m s in o u r u n d e r s t a n d i n g of t h e p rocesses involved . For conven ience , the insect i m m u n e defenses c a n be d i v i d e d i n t o t h r ee i n t e r a c t i n g p h a s e s (see a lso C h a d w i c k a n d A s t o n , 1978):

(a) A n i m m e d i a t e a n d induc t ive s t age (b) A m a i n l y ce l lu la r a n d syn the t i c s t age (c) A final h u m o r a l / c e l l u l a r s t age

A. Immediate and Inductive Stage

I n s e c t i m m u n i t y is i n d u c e d by w o u n d i n g or by p a r a s i t i c invas ions t h r o u g h the gu t , i n t e g u m e n t , o r t r acheae . H e m o l y m p h e x t r u d e d t h r o u g h t h e in ju ry u p o n e x p o s u r e to t he a i r r a p i d l y coagu la t e s to seal t h e w o u n d . T h e c o a g u l a ­t ion p rocess involves t h e d e g r a n u l a t i o n of b lood cells ( hemocy te s ) t e r m e d g r a n u l a r cells, cys tocytes , a n d / o r p l a s m a t o c y t e s , w h i c h i n t e r ac t w i t h p l a s m a c o m p o n e n t s to form a n inso lub le gel ( B o h n , 1986). T h i s in i t i a t ion of i m m u n e reac t iv i ty poses a n u m b e r of un reso lved p r o b l e m s in insec t i m m u n i t y , a n d it is very no t i ceab l e t h a t in Fig . 1 m o s t of t he q u e s t i o n m a r k s o c c u r d u r i n g this first p h a s e .

T h e si te of or ig in a n d m o d e of d e v e l o p m e n t of t he b lood cells involved in i m m u n i t y in m o s t insect species a r e t h u s still u n k n o w n . A s imi l a r p r o b l e m re la tes to t h e ident i f ica t ion of t he i m m u n e reac t ive cells w i t h a m u l t i t u d e of n a m e s p u b l i s h e d in t h e l i t e r a tu r e for on ly six to e ight ba s i c h e m o c y t e t ypes .

Page 273: Parasites and Pathogens of Insects. Parasites

Figur

e 1

Prop

osed

sch

eme

for

stag

es i

n in

sect

hos

t de

fens

e re

actio

ns.

Mod

ifie

d fr

om R

atcl

iffe

and

Row

ley

(198

7) w

ith

perm

issi

on o

f C

RC

Pr

ess,

Inc

.

Page 274: Parasites and Pathogens of Insects. Parasites

2 7 0 Norman A. Ratcliffe

I n a d d i t i o n , a v i ta l i m m u n e p rocess o c c u r r i n g ear ly o n in t he insec t ' s re ­s p o n s e to e x p o s u r e to non-se l f a n t i g e n s is t he r ecogn i t ion of fore ignness a b o u t w h i c h m u c h h a s ye t to b e l e a r n e d . For e x a m p l e , is th i s p roces s cell a n d / o r p l a s m a m e d i a t e d ? W h i c h cell types a n d molecu les a r e involved? H o w is it con t ro l l ed a n d is it b r o a d s p e c t r u m o r h igh ly specific? H o w does t h e r ecogn i ­t ion p rocess l ead to l a t e r even ts in t he i m m u n e r e sponse? T h e in te rac t ive n a t u r e of t he ce l lu la r a n d h u m o r a l c o m p o n e n t s s h o u l d a lso b e c o n s i d e r e d a t this s t age . T h e s e a r e j u s t a few q u e s t i o n s t h a t have b e e n p o s e d . O t h e r u n r e ­solved p r o b l e m s in this ear ly p h a s e re la te to o u r p o o r u n d e r s t a n d i n g of t h e c o a g u l a t i o n p rocess itself in insec ts a n d w h e t h e r , as in c r u s t a c e a n s , t he p r o p h e n o l o x i d a s e ( p P O ) c o m p l e x is involved .

T h e e n d resu l t of t he first p h a s e t h e n is t he sea l ing of t h e w o u n d si te o r p o r t a l of invas ion , r ecogn i t ion of t h e invader , a n d ac t iva t ion of t h e i m m u n e sys t em. I n m a n y cases , invas ion is h a l t e d a t th is s t age b y a n a r r a y of a n t i ­p a r a s i t i c s u b s t a n c e s such as n a t u r a l l y o c c u r r i n g a n t i m i c r o b i a l factors in t h e h e m o l y m p h (e.g. , Crof t et al., 1982; J o n e s et al., 1989), l y sozyme a n d lysoso­m a l e n z y m e s re leased from the d e g r a n u l a t i n g b lood cells ( Z a c h a r y a n d H o f f m a n n , 1984), a n d a n t i m i c r o b i a l s u b s t a n c e s g e n e r a t e d by ac t iva t ion of t he p P O c o m p l e x (Rowley et al., 1990). Pa ra s i t e s a n d p a t h o g e n s , however , have evolved m a n y s t ra teg ies for avo id ing the insec t i m m u n e defenses so t h a t p rog re s s ion to t he second p h a s e , w h i c h is c h a r a c t e r i z e d b y ce l l -med ia t ed reac t ions a n d the syn thes i s of t he i m m u n e p r o t e i n s , m a y b e cu r t a i l ed . O n l y recen t ly have we l e a r n e d a n y t h i n g a b o u t t h e a v o i d a n c e s t ra teg ies of i n v a d i n g m i c r o b i a l a n d m a c r o b i a l p a r a s i t e s (e.g. , Brehe l in , 1990).

B. Mainly Cellular and Synthetic Stage

I f t h e i n v a d i n g o r g a n i s m surv ives t h e in i t ia l o n s l a u g h t b y t h e insec t i m m u n e defenses b u t is r ecogn ized as foreign, t h e n it m a y r a p i d l y b e p h a g o c y t o s e d a n d / o r e n c a p s u l a t e d by the c i r cu l a t i ng b lood cells. T h e t ype of r eac t ion el ici ted d e p e n d s u p o n the n u m b e r s a n d size as well as t h e p a t h o g e n i c i t y of t h e i n v a d i n g o r g a n i s m . I n Galleria mellonella, p h a g o c y t o s i s a l o n e c a n d e a l w i t h 102— 1 0 3 b ac t e r i a p e r mic ro l i t e r h e m o l y m p h whi le l a rge r n u m b e r s a r e r e m o v e d by n o d u l e fo rma t ion (Wal te rs a n d Ratcliffe, 1983).

T h e r e is c o n s i d e r a b l e d i s a g r e e m e n t as to t he cell t ype ( s ) m a i n l y r e spons i ­b le for phagocy tos i s in insec t s . Ratcliffe a n d Rowley (1979) r e p o r t e d t h a t t h e p l a s m a t o c y t e s a r e t he m o s t i m p o r t a n t p h a g o c y t i c cells, w h e r e a s Brehe l in a n d Z a c h a r y (1986) bel ieve t h a t t h e g r a n u l a r h e m o c y t e s m a y b e t h e m a i n effector cells. T h e s e differences p r o b a b l y resu l t f rom p r o b l e m s in classifying insec t b lood cells a n d f rom the la rge v a r i a t i o n s o c c u r r i n g in h e m o c y t e types even b e t w e e n closely r e l a t ed species . H o w the r e l evan t p h a g o c y t i c b lood cell r ec -

Page 275: Parasites and Pathogens of Insects. Parasites

12. Cellular Defense Responses of Insects 271

ognizes t h e foreign i n v a d e r is a l so a p r o b l e m m e n t i o n e d previous ly . I n in­sec ts , a n d in m a n y o t h e r a r t h r o p o d s too , a t leas t t w o types of mo lecu le s s e e m to b e r e s p o n s i b l e for non-se l f r ecogn i t i on b y t h e b lood cells, name ly , t h e h e m o l y m p h a g g l u t i n i n s a n d factors g e n e r a t e d d u r i n g ac t iva t ion of t h e p P O c a s c a d e . S ince b o t h types of mo lecu le s m a y b e p r o d u c e d o r s to red b y t h e s a m e h e m o c y t e t ype (Ratcliffe, 1991), t h e n t h e in t e rac t ive n a t u r e of t hese factors s e e m s to b e h igh ly p r o b a b l e a n d ev idence for th is poss ib i l i ty is p r e ­s e n t e d in Sec t ion 11 L B . De ta i l s of m o l e c u l a r even t s o c c u r r i n g a t t h e h e m o ­cyte m e m b r a n e a n d s u b s e q u e n t l y in t h e c y t o p l a s m of t he se cells fol lowing b i n d i n g of t h e i n v a d e r o r non-se l f mo lecu le s a r e a lso v i r tua l ly u n k n o w n .

W h a t is b e c o m i n g inc reas ing ly ev iden t , w i t h t he d e v e l o p m e n t of cell s ep ­a r a t i o n t e c h n i q u e s a n d t h e pur i f i ca t ion of reac t ive mo lecu le s a s soc i a t ed w i t h t h e p P O sys t em, is t h a t ce l lu la r i m m u n i t y in a r t h r o p o d s involves cell- to-cell c o o p e r a t i o n t h a t is carefully o r c h e s t r a t e d b y p r o d u c t s of t h e ac t i va t ed cells t hemse lves ( J o h a n s s o n a n d S o d e r h a l l , 1989a; Ratcliffe, 1991). T h u s , i n t e r a c ­tive i m m u n e c o m p e t e n t cells a r e n o t conf ined to t h e v e r t e b r a t e i m m u n e s y s t e m .

T h i s s econd s t a g e of insec t i m m u n i t y is a l so c h a r a c t e r i z e d b y t h e syn thes i s of over 15 i m m u n e p r o t e i n s ( B o m a n a n d H u l t m a r k , 1987; Faye a n d H u l t m a r k , V o l u m e 2, C h a p t e r 2) . T h e q u e s t i o n ar i ses a s to w h e n a n d h o w t h e s y n t h e t i c m a c h i n e r y in t he fat body, h e m o c y t e s , a n d o t h e r t i ssues is t u r n e d o n b y t h e i n v a d i n g o r g a n i s m s ? T h e r e is n o w s o m e t e n t a t i v e e v i d e n c e t h a t t h e non-se l f r ecogn i t ion even t s in insec ts ac t iva te t h e r e l e v a n t i m m u n e p r o t e i n genes (Faye , 1990). I n a d d i t i o n , it h a s r ecen t ly b e e n s h o w n t h a t e n d o t o x i n ( L P S ) a n d l a m i n a r i n (a P~l ,3-glucan) , w h i c h a r e b o t h c o m p o ­n e n t s of m i c r o b i a l cell wal ls a n d ac t iva to r s of t h e p P O recogn i t i on sy s t em, a lso i n d u c e t h e express ion of cec rop ins (one g r o u p of t he i n d u c e d a n t i b a c ­te r ia l p r o t e i n s in insects) in a n insec t cell l ine (Samakov l i s et al., 1990; see Sec t ion I I I . D ) . Final ly , if these i m m u n e p r o t e i n s a r e s u c h i m p o r t a n t c o m p o ­n e n t s of t h e insec t defenses , t h e n w h y a r e s o m e insec ts a p p a r e n t l y i n c a p a b l e of p r o d u c i n g t h e m ?

C Final Humoral/Cellular Stage

D u e to t h e efficiency of t h e first t w o s tages in insec t i m m u n i t y , p r o b a b l y on ly a m i n o r i t y of i n v a d i n g o r g a n i s m s surv ive un t i l t h e final p h a s e , w h i c h resu l t s in e i t he r h o s t recovery o r d e a t h . T h i s s t age occu r s a few h o u r s u p to severa l d a y s after i nvas ion of t h e insec t a n d is m a i n l y m e d i a t e d by t h e newly s y n t h e ­s ized i m m u n e p r o t e i n s . Pa ra s i t e s a n d p a t h o g e n s r e s i s t an t to t h e ki l l ing m e c h ­a n i s m s w i t h i n t h e b lood cells a n d capsu l e s will , however , b r e a k o u t of t hese

Page 276: Parasites and Pathogens of Insects. Parasites

2 7 2 Norman A. Ratcliffe

ce l lu la r s t r u c t u r e s d u r i n g this p h a s e a n d elicit a fu r the r r o u n d of p h a ­gocytos is a n d e n c a p s u l a t i o n by the h e m o c y t e s .

To d a t e , t he insec t i m m u n e p ro t e in s , w h i c h i n c l u d e t h e cec rop ins , a t -t ac ins , d ip t e r i c in s , defens ins , s a rco tox ins , a p i d a e c i n s , a n d ly sozyme ( B o m a n a n d H u l t m a r k , 1987; Cas t ee l s et al., 1990; H o f f m a n n a n d H o f f m a n n , 1990), have all b e e n s h o w n to be a n t i b a c t e r i a l . D o e s th is m e a n t h a t n o s u c h final h u m o r a l s t age is m o u n t e d a g a i n s t o t h e r m i c r o b i a l a n d m a c r o b i a l p a r a s i t e s ? T h i s s eems unl ike ly especia l ly following t h e r e p o r t b y H a m et al. (1991) t h a t a n t i - i m m u n e p r o t e i n a n t i b o d i e s b lock the n o r m a l l y s t r o n g microf i la r ic ida l act ivi ty of t he h e m o l y m p h of Aedes aegypti a n d Simulium ornatum. I n a d d i t i o n , a t t e n t i o n s h o u l d be d r a w n to t he " a n t i b o d y l i k e " r e s p o n s e of Periplaneta ameri-cana d u r i n g w h i c h a l a rge 700 -kDa molecu le is i n d u c e d ( G e o r g e et al., 1987; K a r p , 1990, a n d V o l u m e 1, C h a p t e r 13), w h i c h m a y well be a b l e to n e u t r a l i z e a r a n g e of m i c r o b i a l i n v a d e r s .

A n o t h e r p h e n o m e n o n t h a t cha rac t e r i ze s this final s t age is t h e c o m p l e t i o n of w o u n d hea l i ng p r o b a b l y as a resu l t of t he syn thes i s a n d r e p a i r of t h e b a s e m e n t m e m b r a n e by the h e m o c y t e s ( K n i b i e h l e r et al., 1987). T h e rec ru i t ­m e n t of h e m o c y t e s a r o u n d capsu les a n d the r e p l a c e m e n t by h e m o p o i e s i s of b lood cells u t i l ized in t h e ce l lu la r defenses cease too . I t h a s b e e n sugges t ed t h a t the h e m o c y t e s in capsu le s m a y secre te b o t h " r e c r u i t i n g " a n d "ce s sa t i on fac to rs" a n d t h a t t he r e c r u i t m e n t of b lood cells m a y d e p e n d u p o n t h e re la t ive a m o u n t s of these s u b s t a n c e s (Lackie , 1988). I n ea r ly c apsu l e s , t he r e c r u i t i n g s igna l w o u l d b e s t r o n g b u t w o u l d w e a k e n w i t h t he a d d i t i o n of m o r e cell l ayers . As r e c r u i t m e n t slows, t he h e m o c y t e s wou ld have m o r e o p p o r t u n i t y to secre te t he cessa t ion factors , w h i c h m a y b e t h e h o m o g e n e o u s , gly-c o s a m i n o g l y c a n s r e p o r t e d coa t i ng m a n y m a t u r e capsu l e s a n d poss ib ly r e ­l a ted to b a s e m e n t m e m b r a n e m a t e r i a l (Lackie , 1988).

R e g a r d i n g the r e p l a c e m e n t of cells u t i l ized in t h e ce l lu la r defenses , t hese m a y o r i g ina t e from specific h e m o p o i e t i c t i ssue a n d / o r by re lease of sessile p o p u l a t i o n s a t t a c h e d to t he i n t e r n a l o r g a n s . N o d o u b t h u m o r a l factors , s u c h as t he " p l a s m a t o c y t e dep l e t i on fac tor" of Galleria mellonella ( C h a i n a n d A n ­d e r s o n , 1983), a r e involved, b u t t he w h o l e sub jec t of h e m o p o i e s i s a n d the con t ro l of h e m o c y t e n u m b e r s in insects is no t on ly neg lec ted b u t s o m e w h a t confused. A fasc ina t ing ar t ic le by P a t h a k (1986) i nd i ca t e s t h a t t h e e n d o c r i n e g l a n d s of insec ts p r o b a b l y p l ay a key role in t he con t ro l of b lood cell n u m b e r s a n d cell types as well as in m e d i a t i o n of the i m m u n e s y s t e m itself. T h e subjec t of t h e in t e rac t ion of t he insect e n d o c r i n e a n d i m m u n e s y s t e m s is d e a l t w i t h briefly in Sec t ion 111. A .

T h i s final p h a s e resu l t s e i the r in t he recovery of t h e insec t hos t d u e to t h e efficacy of t he i m m u n e sys t em or else t he i n v a d e r p reva i l s a n d the h o s t is ki l led. T h e ki l l ing of bac t e r i a by t he i m m u n e p ro t e in s is well d o c u m e n t e d a n d h a s b e e n m e n t i o n e d prev ious ly (see Sec t ion I I ) b u t l i t t le is k n o w n of t h e

Page 277: Parasites and Pathogens of Insects. Parasites

12. Cellular Defense Responses of Insects 2 7 3

kil l ing m e c h a n i s m of t he h e m o c y t e s t hemse lves t h a t have inges t ed or sur­r o u n d e d i n v a d e r s . A n d e r s o n et al. (1973) d e s c r i b e d t h e ki l l ing of b a c t e r i a b y Blaberus craniifer h e m o c y t e s a n d W a l t e r s a n d Ratcliffe (1983) showed t h a t w h e n E. colt w e r e s e q u e s t e r e d in n o d u l e s they were r a p i d l y kil led (Wal te r s a n d Ratcliffe, 1983) (Tab le 1). Blaberus h e m o c y t e s too have b e e n s h o w n to c o n t a i n e n d o g e n o u s p e r o x i d a s e ( H . M u l l e t t , u n p u b l i s h e d o b s e r v a t i o n s ) . I n a d d i t i o n , insec t h e m o c y t e s h a v e b e e n r e p o r t e d to c o n t a i n acid p h o s p h a t a s e (e.g. , Cross ley, 1968; Rowley a n d Ratcliffe, 1979), β - g l u c u r o n i d a s e a n d β - g l u c o s a m i n i d a s e (Wal te r s a n d Ratcliffe, 1981), l y sozyme (e.g. , Z a c h a r y a n d H o f f m a n n , 1984), cec rop ins a n d a t t a c in s (T renczek , 1986), a n d t h e p P O s y s t e m , w h i c h h a s recen t ly b e e n s h o w n to have l imi ted a n t i m i c r o b i a l ac t iv i ty (Rowley et al, 1990).

Final ly , m a n y m i c r o b i a l a n d m a c r o b i a l p a r a s i t e s have evolved m e c h a ­n i s m s for a v o i d a n c e or d e p r e s s i o n of t he insec t hos t r e s p o n s e s (Tab le 2) . T h i s sub jec t h a s b e e n rev iewed extens ive ly (e.g. , Ratcliffe et al., 1985; G o t z a n d B o m a n , 1985; Ratcliffe a n d Rowley, 1987; V i n s o n , 1988; B r e h e l i n , 1990; S c h m i d t a n d T h e o p o l d , 1991) a n d is of e x t r e m e i m p o r t a n c e as it n o t on ly revea ls c lues as to t h e m e c h a n i s m s con t ro l l ing insec t i m m u n i t y , b u t a l so a l lows p a r a s i t e s to su rv ive for long p e r i o d s in the i r hos t s , w h i c h t h e n ac t as t h e vec to rs of t h e m o s t d e v a s t a t i n g d i seases (see Sec t ion I I I . E ) .

III. Specific Problems in Insect Immunity

T h e a f o r e m e n t i o n e d br ief s cena r io h a s ident i f ied a l a rge n u m b e r of u n r e ­solved p r o b l e m s in o u r u n d e r s t a n d i n g of insec t i m m u n i t y . I n t he r e m a i n d e r of th is c h a p t e r , s o m e of t he m o r e i m p o r t a n t of these u n a n s w e r e d q u e s t i o n s a r e c o n s i d e r e d in m o r e de ta i l . T h e sub jec t s se lec ted a r e t hose t h a t fo rm t h e bas i s of con t ro l a n d c o o r d i n a t i o n of t h e insec t i m m u n e s y s t e m a n d i n c l u d e t h e following:

(a ) T h e classif icat ion, o r ig ins , a n d m a n i p u l a t i o n of insec t b lood cells (b) T h e r ecogn i t i on of non-se l f i n v a d e r s (c ) C e l l - c e l l c o m m u n i c a t i o n in i m m u n i t y (d) T h e i n t e r r e l a t i o n s h i p of ce l lu la r a n d h u m o r a l i m m u n i t y (e ) F u t u r e a r e a s for s t u d y

T h e final t op ic is i n c l u d e d s ince r ecen t ly t h e r e h a s b e e n a d d i t i o n a l i n t e r e s t in t he i m m u n e sy s t ems of i n v e r t e b r a t e s f rom m o r e a p p l i e d a s p e c t s , i n c l u d i n g t h e poss ib le i m p o r t a n c e of t h e hos t defenses as d e t e r m i n a n t s of infect ivi ty in vec to r species ( C h r i s t e n s e n a n d Severson , V o l u m e 1, C h a p t e r 11) a n d t h e use of c h a n g e s in i m m u n e reac t iv i ty as m o n i t o r s of e n v i r o n m e n t a l po l lu t i on .

Page 278: Parasites and Pathogens of Insects. Parasites

Tab

le 1

Perc

enta

ge R

ela

tive

Via

bili

ty0

(% R

.V.)

of

E. c

oli

and

B.

ce

reus

in N

od

ule

s fr

om

Ga

lleria

me

llone

lla a

nd i

n C

orr

esp

ond

ing

H

aem

olym

ph

or

Gra

ce's

Ins

ect

Med

ium

Inc

ubat

ed C

ont

rols

B. c

ereu

s E

. col

i

Tim

e (h

r po

stin

ject

ion)

E

xper

imen

tal

(in

nodu

les)

H

emol

ymph

G

race

's

Exp

erim

enta

l (i

n no

dule

s)

Hem

olym

ph

Gra

ce's

4 10

.11

± 4.

65*

558.

7 ±

273.

5 13

2.9

± 40

.5

16.1

4 ±

8.12

51

3.0

± 29

1 32

7.9

+ 12

2

6 65

.66

± 41

.6

2087

.6

± 45

1 12

95.0

± 6

48

4.10

± 3

.07

1152

.2 ±

319

31

7.8

112

9 21

0.0

± 86

.8

2334

.2 ±

489

14

09.9

± 5

11

3.99

± 2

.05

1207

.0 ±

436

47

5.0

± 17

4

12

510.

1 ±

153

2874

.0 ±

586

20

65.1

± 7

15

3.29

± 2

.5

1661

.2 ±

730

50

2.9

± 17

6

15

1270

.0 ±

283

25

98.5

±

520

1895

.2

500

3.10

2.

1 11

47.4

± 3

78

538.

2 ±

218

18

Dea

th

1.74

1.

38

1156

.5 ±

520

37

7.3

± 15

3

21

1.64

1.

27

1216

.0

455

572.

7 ±

215

24

1.75

± 1

.28

1367

.1 ±

419

57

3.0

181

aP

erce

ntag

e re

lati

ve v

iabi

lity

at t

ime

"0"

= 10

0%.

* Sta

ndar

d er

ror.

Mod

ified

fro

m W

alte

rs a

nd R

atcl

iffe

(198

3) w

ith p

erm

issio

n of

Per

gam

on P

ress

.

Page 279: Parasites and Pathogens of Insects. Parasites

12. Cellular Defense Responses of Insects 2 7 5

Table 2 Some Avoidance and Resistance Strategies Adopted by Parasites and Pathogens against Invertebrate Host Defense Mechanisms

A. Passive avoidance 1. Organs colonized out of reach of blood

cells 2. Low-reactivity regions of host occupied 3. Immature hosts invaded

B. Active mechanisms 1. Refractory envelopes/cell walls, etc. 2. Mimicry of host tissues 3. Acquisition of host antigens 4. Lysis and abrogation of leukocytes 5. Inhibition of immune recognition factors 6. Inhibition of chemotaxis 7. Inhibition of phagocytosis 8. Inhibition of nodule formation/

encapsulation 9. Provision of alternative targets

10. Utilization of host response 11. Abrogation of immune proteins

C. No obvious mechanism 1. Host swamped by numbers or rate of

growth of parasite/pathogen?

Modified from Ratcliffe et al. (1985).

A. Classification, Origins, and Manipulation of Insect Blood Cells

T h e c h a r a c t e r i z a t i o n of insec t b lood cell t ypes is a con t rovers i a l t op i c t h a t h a s b e e n r ev iewed extens ively in t h e las t t w e n t y yea r s (e .g. , J o n e s , 1962; P r i ce a n d Ratcliffe, 1974; G u p t a , 1979; Rowley a n d Ratcliffe, 1981; B r e h e l i n a n d Z a c h a r y , 1986). T h e p r o b l e m s in t h e classif icat ion of insec t b lood cells a r e d u e m a i n l y to t h e shee r d ivers i ty in insec t fo rms , w h i c h is ref lected in t h e g r e a t v a r i a t i o n in t h e s t r u c t u r e of t h e b lood cells p r e s e n t . T h e s i t u a t i o n is e x a c e r b a t e d b y a vas t r a n g e of different n a m e s in t h e l i t e r a t u r e for six to e igh t bas i c types of cells . T a b l e 3 , f rom Rowley a n d Ratcliffe (1981) , l ists s o m e of t h e s y n o n y m s used in p u b l i c a t i o n s for t h e six ba s i c types of insec t h e m o c y t e s ident i f ied in t h a t s tudy. I n a d d i t i o n , incons i s t enc ies in n o m e n c l a t u r e h a v e a r i s en d u e to t h e use of insec ts in different d e v e l o p m e n t a l s t ages a n d as a r e su l t of t h e u t i l i za t ion of a r a n g e of e x p e r i m e n t a l t e c h n i q u e s . A t t e m p t s h a v e

Page 280: Parasites and Pathogens of Insects. Parasites

Tabl

e 3

List o

f Var

ious

Syn

onym

s fo

r In

sect

Hem

ocyt

es

Cla

ssif

icat

ion

Aut

hor'

s eq

uiva

lent

cla

sses

to:

sche

me 0

Pr

ohem

ocyt

es

Plas

mat

ocyt

es

Gra

nula

r ce

lls

Cys

tocy

tes

Sphe

rule

cel

ls

Oen

ocyt

oids

Hol

land

e (1

911)

pr

oleu

cocy

tes

phag

ocyt

es

gran

ular

leu

cocy

tes

adip

oleu

cocy

tes*

sp

heru

le c

ells

oe

nocy

toid

s

Met

alni

kov

(192

4)

lym

phoc

ytes

ce

ll sp

heru

leus

es

prol

euco

cyte

s <

leuc

ocyt

es

> C

amer

on

(193

4)

lym

phoc

ytes

le

ucoc

ytes

le

ucoc

ytes

? sp

heru

le c

ells

oe

nocy

tes

Yea

ger

(194

5)

prol

euco

cyto

ids

plas

mat

ocyt

es

podo

cyte

s'

verm

ifor

m c

ells

'

chro

mop

hilic

cel

ls?

cyst

ocyt

es

sphe

roid

ocyt

es

oeno

cyte

like

cells

Wig

gles

wor

th

(195

9)

prol

euco

cyte

s ph

agoc

ytic

am

oebo

cyte

s ph

agoc

ytic

am

oebo

cyte

s?

oeno

cyto

ids

Jone

s (1

962)

; A

r­pr

ohem

ocyt

es

plas

mat

ocyt

es

gran

ular

hem

ocyt

es

cyst

ocyt

es

sphe

rule

cel

ls

oeno

cyto

ids

nold

(19

74)

podo

cyte

s'

verm

ifor

m c

ells

'

adip

ohem

ocy

tes *

Bre

helin

et a

l. (1

978)

pr

ohem

ocyt

es

plas

mat

ocyt

es

gran

uloc

ytes

? th

rom

bocy

toid

s'

podo

cyte

s'

gran

uloc

ytes

co

agul

ocyt

es

sphe

rule

cel

ls

oeno

cyto

ids

Gup

ta

(197

9)

proh

emoc

ytes

pl

asm

atoc

ytes

gr

anul

ocyt

es

coag

uloc

ytes

sp

heru

locy

tes

oeno

cyto

ids

"Ref

eren

ces

cite

d in

Row

ley

and

Rat

cliff

e (1

981)

. *S

ome

wor

kers

cla

ss a

dipo

hem

ocyt

es a

s gr

anul

ar c

ells

. 'I

n so

me

inst

ance

s th

ese

may

be

clas

sfie

d w

ith

the

plas

mat

ocyt

es.

Page 281: Parasites and Pathogens of Insects. Parasites

12. Cellular Defense Responses of Insects 2 7 7

even b e e n m a d e a lso to classify t h e b lood cells j u s t o n t he u l t r a s t r u c t u r a l a p p e a r a n c e of t he i r g r a n u l e s . S o m e v a r i a t i o n in g r a n u l e s t r u c t u r e is to be expec t ed in a g r o u p c o n t a i n i n g 1-3 mi l l ion species! A c o m m o n e r r o r m a d e b y w o r k e r s n e w to th is field is to a d o p t v e r t e b r a t e m e t h o d s in t h e p r e p a r a t i o n of insec t b lood cells for m ic roscop i ca l e x a m i n a t i o n . N o t h i n g is g u a r a n t e e d m o r e to d i s to r t a n d lyse t h e fragile h e m o c y t e s of insec ts t h a n s m e a r i n g t h e m on a m i c r o s c o p e s l ide. A final p r o b l e m c e r t a i n to confuse i n e x p e r i e n c e d w o r k e r s is t h e r e t e n t i o n of v e r t e b r a t e t e r m s s u c h as " g r a n u l o c y t e " for d e ­s c r i b ing insec t b lood cells w h e n t h e r e is l i t t le ev idence for h o m o l o g y of a n y cell t ypes in these two g r o u p s of a n i m a l s .

B rehe l in a n d Z a c h a r y (1986) h a v e a lso d i scussed in de t a i l s o m e of t h e p r o b l e m s in ca t ego r i z ing insec t b l o o d cells a n d s t ressed t h e p o i n t t h a t des ig ­n a t i o n s b a s e d p u r e l y o n h e m o c y t e func t ions a r e a lso u n r e l i a b l e . T h u s , in Locusta migratoria a n d Melolontha melolontha, c apsu le s a r e fo rmed b y g r a n u l a r cells in t h e fo rmer a n d by p l a s m a t o c y t e s in t he la t te r . F u n c t i o n a l l y these two cell t ypes a r e iden t i ca l b u t m o r p h o l o g i c a l l y they a r e q u i t e d i s t inc t . T h e y p r o p o s e d t h a t s tud ie s of insec t b lood cells s h o u l d i n c l u d e u l t r a s t r u c t u r a l , func t iona l , a n d e n z y m a t i c a spec t s in o r d e r for a c lear def in i t ion to b e de r ived (Brehe l in a n d Z a c h a r y , 1986). T o th is list s h o u l d a lso b e a d d e d p h a s e -c o n t r a s t o b s e r v a t i o n s of unf ixed cells. T h i s t e c h n i q u e is p a r t i c u l a r l y useful as it revea ls n o t on ly m o r p h o l o g i c a l cha rac t e r i s t i c s b u t a lso o t h e r p r o p e r t i e s of t h e cells s u c h as the i r s tab i l i ty a n d b e h a v i o r in vitro.

Recent ly , cell types have b e e n ident i f ied by t h e n a t u r e of t he i r cel l -surface d e t e r m i n a n t s as d e t e c t e d by s t a i n i n g w i t h lec t ins a n d m o n o c l o n a l a n t i b o d i e s ( m A b ) . I n Drosophila, for e x a m p l e , t h e h e m o c y t e s r e spons ib l e for t h e e n c a p ­su l a t i on of a b e r r a n t t i ssues a n d p a r a s i t e s , as well as for t h e re jec t ion of foreign t i s sue i m p l a n t s , have b e e n s h o w n to b i n d fluorescein-labeled w h e a t g e r m a g g l u t i n i n (Rizki a n d Rizki , 1982; N a p p i a n d Si lvers , 1984). Similar ly , in Aedes aegypti t h e r e is a fivefold i nc r ea se in t he p e r c e n t a g e of cells b i n d i n g w h e a t g e r m a g g l u t i n i n following i n o c u l a t i o n w i t h Dirofilaria immitis m i c r o ­filaria ( N a p p i a n d C h r i s t e n s e n , 1986). L e c t i n - b i n d i n g c a n a lso d i s t i n g u i s h b e t w e e n c e r t a i n h e m o c y t e types in t h e p h a s m i d Extatosoma tiaratum, a l t h o u g h t h e r e is c o n s i d e r a b l e s t a i n i n g c ross - reac t iv i ty w i t h t h e different cell types ( R i c h a r d s et al., 1989), w h i c h l imi t s i ts usefulness for func t iona l work . A n a l t e r n a t i v e a p p r o a c h b y T r e n c z e k a n d B e n n i c h (1992) h a s b e e n to ra i se m A b a g a i n s t specific s u b p o p u l a t i o n s of p l a s m a t o c y t e s a n d g r a n u l a r cells f rom c e c r o p i a m o t h s . M u l l e t t et al. (1993) have l ikewise p r o d u c e d m A b a g a i n s t Blaberus discoidalis a n d Galleria mellonella h e m o c y t e s so t h a t t he se w o r k e r s n o w h a v e powerful tools w i t h w h i c h to p r o b e b lood cell i n t e r r e l a t i o n s h i p s a n d i n t e r a c t i o n s . O n e d r a w b a c k of m A b is t h a t t hey m a y b e genus-spec i f ic (Tab l e 4) a n d therefore unl ike ly to p rov ide a m e a n s of d e r i v i n g a unif ied classifica­t ion of insec t b lood cells across a r a n g e of insec t o r d e r s .

Page 282: Parasites and Pathogens of Insects. Parasites

2 7 8 Norman A. Ratcliffe

Table 4 Cross-reactivity of two Blaberus discoidolis Monoclonal Antibodies against the Hemocytes of a Number of Insect Species*

Monoclonal

Species B5 l H b

Blaberus discoidalis + + + + + + Blaberus craniifer + + + + Gromphadorhina sp. + + Periplaneta americana - + Galleria mellonella - -" + + + / + + / + / — = intensity of staining by FITC labeling.

From Mullett et al. (1993).

T h e m e s s a g e is c lear for insect h e m a t o l o g i s t s a n d o t h e r sc ient is t s in th is field. Very useful classif icat ion s c h e m e s for insect h e m o c y t e s a r e ava i l ab le in t he l i t e r a t u r e (e.g. , J o n e s , 1962; Pr ice a n d Ratcliffe, 1974; Brehe l in a n d Zacha ry , 1986). T h e s e s c h e m e s p rov ide t he bas is for ca t egor i z ing t h e h e m o ­cytes of m o s t insec t species b u t b e p r e p a r e d for t h e u n u s u a l (e .g. , F ig . 2) . I n a d d i t i o n , as a first s tep , e x a m i n e the cells carefully u n d e r p h a s e - c o n t r a s t op t ics b u t b e w a r e of ar t i facts t h a t r ead i ly o c c u r w i t h th is t e c h n i q u e (see A z a m b u j a et al., 1991).

T h e a p p a r e n t d ivers i ty of b lood cells in insec ts is l ikewise reflected in t h e v a r i a t i o n in loca t ion a n d s t r u c t u r e of t he h e m o p o i e t i c t i ssues in these a n i m a l s (e.g. , J o n e s , 1970; G u p t a , 1979; Rowley a n d Ratcliffe, 1981). I n s o m e d i p -t e r a n s s u c h as Musca domestica, t hey m a y b e fo rmed by diffuse col lec t ions of cells, w h e r e a s in t he o r t h o p t e r a n s Gryllus bimaculatus a n d Locusta migratoria, t hey m a y be h igh ly deve loped w i t h s o m e signs in t h e fo rmer species of d i f ferent ia t ion in to va r ious zones , as in h i g h e r a n i m a l g r o u p s ( H o f f m a n n et al., 1979). H e m o c y t e s a r e a lso p r o b a b l y de r ived by t h e mi to t i c d iv i s ion of t h e c i r cu l a t i ng cells. J o n e s a n d L iu (1968) showed t h a t in t h e w a x m o t h Galleria mellonella, a l t h o u g h the mi to t i c r a t e w a s on ly 1 % , th is is sufficient to m a i n t a i n l a rva l h e m o c y t e n u m b e r s a n d p r e c l u d e t he need for h e m o p o i e t i c t i s sue . A n ­o t h e r sou rce of c i r cu l a t i ng h e m o c y t e s is b y t he re lease of sessile cells loosely a t t a c h e d to t he i n t e r n a l o r g a n s . Recent ly , for e x a m p l e , it h a s b e e n s h o w n t h a t t he t r e a t m e n t of Tipula paludosa l a rvae w i t h e t h e r a n d acet ic ac id v a p o r s i n c r e a s e d the to ta l h e m o c y t e c o u n t s by 2.8-fold d u e to t h e re lease of sessile cells ( G r e e n a n d C a r t e r , 1991).

Page 283: Parasites and Pathogens of Insects. Parasites

12. Cellular Defense Responses of Insects 2 7 9

Figure 2 Giant cell of Rhodnius robustus with ingested granular cells. Scale bar is 10 μπι. From Azambuja et al. (1991) with permission of Memorias Do Instituto Oswaldo Crus.

D e s p i t e these o b s e r v a t i o n s , we still h a v e on ly l imi ted k n o w l e d g e a b o u t t h e i n t e r r e l a t i o n s h i p s of t he va r ious h e m o c y t e types a n d t h e m e c h a n i s m s in­volved in t he con t ro l of t he d e v e l o p m e n t a n d l i be ra t i on of t h e b lood cells i n to t h e c i r cu l a t i on (Lack ie , 1988). U n f o r t u n a t e l y , few sc ient is t s a r e a t t r a c t e d to th is a r e a of c o m p a r a t i v e hema to logy .

M o s t w o r k e r s r ecogn ize t h e ba s i c b lood cell t ype , t h e p r o h e m o c y t e , f rom w h i c h t h e o t h e r h e m o c y t e types m a y b e de r ived (Lack ie , 1988). M a n y insec t h e m a t o l o g i s t s bel ieve t h a t t he c o m m o n l y d e s c r i b e d b lood cells, t h a t is, t h e p l a s m a t o c y t e s , g r a n u l a r cells, cys tocy tes , s p h e r u l e cells, a n d o e n o c y t o i d s , m a y b e s t ages in d e v e l o p m e n t f rom o n e o r two bas i c cell types (Rowley a n d Ratcliffe, 1981). S h r i v a s t a v a a n d R i c h a r d s (1965) showed in a n a u t o ­r a d i o g r a p h i c s t u d y of G. mellonella t h a t a d e v e l o p m e n t a l ser ies exis ts p a s s i n g f rom p r o h e m o c y t e s to p l a s m a t o c y t e s to g r a n u l a r cells, w h e r e a s t h e l e p i d o p ­t e r a n oenocy to id m a y h a v e a s e p a r a t e l i neage ( B e e m a n et aL, 1983). O n e poss ib le , b u t specu la t ive , d e v e l o p m e n t a l s c h e m e is s h o w n in F ig . 3 for t he b lood cells of t h e st ick insec t Clitumnus extradentatus, w i t h t h e m a i n o n t o g e n e t i c p a t h w a y o c c u r r i n g from the p r o h e m o c y t e ( s t em cell) to t h e cys tocy te ( R a t ­cliffe a n d Rowley, 1987).

R e g a r d i n g t h e con t ro l of t he d e v e l o p m e n t a n d l i be ra t i on of t h e h e m o c y t e s i n to t h e c i r cu l a t i on , t h e r e is ev idence t h a t t h e h e m o g r a m , a n d h e n c e t h e insec t i m m u n e sy s t em, is u n d e r e n d o c r i n e con t ro l ( rev iewed in P a t h a k , 1986). L i g a t u r e e x p e r i m e n t s to i sola te t h e a n t e r i o r e n d o c r i n e g l a n d s show

Page 284: Parasites and Pathogens of Insects. Parasites

2 8 0 Norman A. Ratcliffe

CYSTOCYTE

Figure 3 Diagrammatic, but speculative, scheme for hemocyte differentiation in the stick insect Clitumnus extradentatus. Modified from Ratcliffe and Rowley (1987) with permission of CRC Press, Inc.

t h a t these s t r u c t u r e s g rea t ly inf luence t he i n t e r conve r s ion of h e m o c y t e types , i nc rease t he mi to t i c ind ices , re lease t he h e m o c y t e s from t h e h e m o p o i e t i c o r g a n s , a n d mob i l i ze t h e sessile cells (e.g. , H i n k s a n d A r n o l d , 1977). S t u d i e s involv ing in ju r ing , b l eed ing , a n d ce l lu la r r eac t ions s u c h as e n c a p s u l a t i o n a lso sugges t t h a t w o u n d s a n d / o r p a r a s i t e s p r o d u c e s o m e factor(s) c a u s i n g the n e u r o e n d o c r i n e sys t em to p r o d u c e m o r e h o r m o n e s t h a t t h e n inf luence t he mi to t i c ind ices a n d re lease of h e m o c y t e s ( P a t h a k , 1986). T h e fact t h a t m a n y p a r a s i t e s , such as t he p a r a s i t o i d s , i n d u c e r a d i c a l hos t e n d o c r i n e c h a n g e s (Beckage , 1990) m u s t have a p r o f o u n d effect o n t h e i m m u n e p o t e n ­t ial of t h e hos t insect . Final ly, a b l a t i o n a n d i m p l a n t a t i o n s tud ie s of e n d o c r i n e g l a n d s i n d i c a t e too t h a t these o r g a n s g rea t ly affect h e m o c y t e n u m b e r s (Pa­t h a k , 1983).

I n o r d e r to s t u d y the i n t e r r e l a t i onsh ip s of insec t b lood cells, a s well as the i r funct ions in i m m u n e reactivi ty, t e c h n i q u e s m u s t b e d e v e l o p e d for m a ­n i p u l a t i n g t he cells a n d s t u d y i n g t h e m in vitro. I n sec t h e m o c y t e s a r e n o t o ­r ious ly difficult to m a n i p u l a t e a n d this is reflected in t he fact t h a t it w a s n o t un t i l 1974 t h a t p h a g o c y t o s i s w a s first s t u d i e d in vitro (Ratcliffe a n d Rowley, 1974) a n d on ly in 1991 d id it b e c o m e poss ib le to s e p a r a t e t he m a i n i m m u n e reac t ive cells a n d o b t a i n func t iona l m o n o l a y e r s in vitro ( A n g g r a e n i a n d R a t ­cliffe, 1991). T h e ex ten t of th is p r o b l e m is i l l u s t r a t ed by a t t e m p t s to s e p a r a t e

Page 285: Parasites and Pathogens of Insects. Parasites

12. Cellular Defense Responses of Insects 281

t h e different h e m o c y t e types of two Blaberus spec ies . We r e p o r t e d p rev ious ly t h e successful s e p a r a t i o n of t h e b lood cells of B. craniifer u s i n g c o n t i n u o u s g r a d i e n t s of Percol l ( M e a d et al., 1986). Howeve r , a t t e m p t s to i so la te t h e h e m o c y t e s of B. discoidalis h ave failed even t h o u g h t h e cells a p p e a r i den t i ca l to t hose of B. craniifer u n d e r t h e l ight m i c r o s c o p e a n d t h e p r o t o c o l a d o p t e d w a s i den t i c a l to t h a t u s e d for t h e B. craniifer cells ( H . M u l l e t t , u n p u b l i s h e d o b s e r v a t i o n s ) . Possibly, as in Schistocerca gregaria ( H u x h a m a n d Lack ie , 1988), t h e B. discoidalis cells m a y c o m p r i s e a m o r e finely g r a d e d r a n g e of g r a n u l e -c o n t a i n i n g cells t h a n those of B. craniifer, w h i c h m a k e s s e p a r a t i o n o n c o n t i n u ­o u s g r a d i e n t s i m p o s s i b l e .

T h u s , to d a t e , on ly in o n e insec t species , G. mellonella, h a v e s e p a r a t e d a n d i m m u n e reac t ive h e m o c y t e s b e e n o b t a i n e d in vitro (Tab le 5) ( A n g g r a e n i a n d Ratcliffe, 1991). O n e of t h e m a i n p r o b l e m s is t h e a l m o s t i n s t a n t a n e o u s coag ­u l a t i o n a n d ge l a t ion of t h e h e m o l y m p h following b l eed ing . T h i s c o a g u l a t i o n is d u e to t h e fragile n a t u r e of t he g r a n u l a r cells o r cys tocy tes (des igna ­t ion d e p e n d s u p o n species) . T h e s e cells a r e p r i m e d to d i s c h a r g e the i r con­t en t s u p o n c o n t a c t w i t h m i n u t e q u a n t i t i e s of m i c r o b i a l p r o d u c t s s u c h as β - l j S - g l u c a n s a n d e n d o t o x i n ( L e o n a r d et al., 1985b; Ratcliffe et al., 1991), w h i c h a r e p r e s e n t in a b u n d a n c e on all g l a s s w a r e a n d so lu t ions un les s specific p r e c a u t i o n s a r e t a k e n . Now, for tunate ly , th is p r o b l e m c a n b e p a r t i a l l y over­c o m e b y u s i n g a n ice-cold i so ton ic , a n t i c o a g u l a n t so lu t ion c o n t a i n i n g E D T A a n d a t low p H to s tab i l ize t h e cells ( M e a d et a/,^1986). E v e n so , however , t h e

Table 5 Percentage of Galleria mellonella Plasmatocytes and Granular Cells Alone or Mixed, from Washed Cell Preparations Phagocytosing Bacillus cereus after 1 hr Incubation of Monolayers at 25°C

Percentage of cells phagocytic*1

Type of monolayer Cell type counted Control* Experimental*

Plasmatocytes alone Plasmatocytes 5.3 ± 1.3 13.4 ± 2.1*

Granular cells alone Granular cells 0 0

Mixed Plasmatocytes 8.7 ± 2.7 30.1 ± 3.4*/**

Granular cells 0 0

a M e a n value of 18 monolayers from six gradients ± SD. * Monolayers were overlaid with B. cereus suspended in Tris overlay buffer. 'Monolayers were overlaid with B. cereus suspended in Tris overlay buffer containing 0.1 mg m l - 1 laminarin.

* Significantly different compared with control (P < 0.05). **Significantly different compared with plasmatocytes alone (P < 0.005).

Modified from Anggraeni and Ratcliffe (1991) with permission of Pergamon Press.

Page 286: Parasites and Pathogens of Insects. Parasites

2 8 2 Norman A. Ratcliffe

a m o u n t of m a n i p u l a t i o n poss ib le in t e r m s of cen t r i fuga t ion a n d p i p e t t i n g is s t r ic t ly l imi ted a n d d e p e n d s very m u c h u p o n t h e species u n d e r s tudy. T h u s , G. mellonella b lood cells a r e eas ie r to h a n d l e t h a n those of Locusta migratoria o r Schistocerca gregaria, w h i c h in t u r n a r e m o r e s t ab l e t h a n t hose of s o m e cock­roaches a n d p h a s m i d s such as B. discoidalis a n d Extatosoma tiaratum. M u c h a d d i t i o n a l work is r e q u i r e d i n t o t h e s t ab i l i za t ion a n d s e p a r a t i o n of t h e b l o o d cells of a r a n g e of insec t species in o r d e r for a d d i t i o n a l in vitro m o d e l s to b e ava i l ab le for s tudy.

B. Recognition of Non-Self Invaders

T h e bas i s of a n y i m m u n e r e s p o n s e is t h e ab i l i ty to r ecogn ize as foreign a n y o r g a n i s m s i n v a d i n g the body. In sec t s have b e e n s h o w n to b e very effective a t c l ea r ing foreign i n v a d e r s of t he h e m o c o e l by p h a g o c y t o s i s a n d c a p s u l e fo rma­t ion (Ratcliffe a n d Rowley, 1987), so t h e y c a n c lear ly d i s c r i m i n a t e self f rom non-self. T h e level of th is d i s c r i m i n a t i o n m a y a lso b e finely t u n e d s ince K a r p a n d his co l leagues ( rev iewed in K a r p , 1990) h a v e r e p o r t e d t h e p r e s e n c e of al lograf t re jec t ion of b o t h in t e g u m e n t a l grafts a n d i m p l a n t s by Periplaneta americana. As m e n t i o n e d p rev ious ly (Sect ion I I . B ) , two poss ib le factors m a y act as non-se l f r ecogn i t ion molecu les in insec ts , t h a t is, t h e h e m o l y m p h a g g l u t i n i n s (often t e r m e d lect ins b y m a n y a u t h o r s a l t h o u g h n o t to ta l ly syn­o n y m o u s ) a n d c o m p o n e n t s of t h e p r o p h e n o l o x i d a s e c a s c a d e . To these recog­n i t ion factors m a y a lso b e a d d e d the i m m u n e p r o t e i n h a e m o l i n (p4) , w h i c h b i n d s to bac t e r i a a n d m a y in i t i a t e t he syn thes i s of t he i m m u n e p r o t e i n s (Faye , 1990) (see Sec t ion I I I . D ) .

T h e a g g l u t i n i n s a r e p r e s e n t in t he h e m o l y m p h a n d in t i ssues , s u c h as t h e gu t , of m o s t insec ts . T h e h e m o l y m p h lect ins a r e syn thes i zed b y b o t h t h e h e m o c y t e s (Fig . 4) a n d the fat b o d y ( rev iewed b y Rowley et al., 1986). T h e o c c u r r e n c e a n d func t ion ing of these molecu le s a r e , however , c o m p l e x . T h u s in s o m e species , s u c h as t h e flesh fly, Sarcophagaperegrina ( K o m a n o et al., 1980), P. americana, a n d S. gregaria ( I n g r a m et al., 1984), t hey a r e i n d u c i b l e , w h e r e a s in o t h e r s , i n c l u d i n g Spodoptera exigua ( P e n d l a n d a n d B o u c i a s , 1986), t hey a r e a p p a r e n t l y no t . I n a d d i t i o n , t h e h e m o l y m p h of t h e c o c k r o a c h B. discoidalis c o n t a i n s n o t o n e b u t t h r e e a g g l u t i n i n s e a c h w i t h i ts o w n c h a r a c ­ter i s t ic s u g a r - b i n d i n g specificity ( C h e n et al., 1993).

T h e r e is a lso d i s a g r e e m e n t r e g a r d i n g t h e role of t h e a g g l u t i n i n s in i m ­m u n e r ecogn i t ion . A n d e r s o n et al. (1973) a n d Rowley a n d Ratcliffe (1980) r e p o r t e d t h a t bac t e r i a o r e r y t h r o c y t e s p resens i t i zed w i t h w h o l e h e m o l y m p h of B. craniifer, P. amencana, o r Clitumnus extradentatus w e r e n o t i n t e r n a l i z e d a n y m o r e effectively by t h e h e m o c y t e s t h a n w e r e u n t r e a t e d tes t pa r t i c l e s . L ike ­wise , B r a d l e y et al. (1989) showed t h a t t he pur i f ied lec t in f rom t h e g r a s s h o p ­p e r Melanoplus differentialis failed to e n h a n c e t he in vitro a s soc ia t ion of Bacillus

Page 287: Parasites and Pathogens of Insects. Parasites

12. Cellular Defense Responses of Insects 2 8 3

LYSOZYME (bacterial killing)

CECROPINS (bacterial killing)

\ / P H A G O C Y T O S I S ^ ^ NODULES and

C A P S U L E S

COAGULOGENS (hemolymph coagulation)

PROPHENOLOXIDASE (recognition)

AGGLUTININS (recognition)

Figure 4 Diagram illustrating the multifunctional role of insect granule-containing cells ( = granular cells or cystocytes). Modified from Ratcliffe and Rowley (1987) with permission of C R C Press, Inc.

thuringiensis, Nosema locustae s po re s , o r e r y t h r o c y t e s w i t h t h e h e m o c y t e s of th is insec t . I n c o n t r a s t to these s t ud i e s , P e n d l a n d et al. (1988) , w o r k i n g w i t h S. exigua, i so la ted a D-galac tose-spec i f ic h e m o l y m p h lect in t h a t e n h a n c e d b o t h t h e c l e a r a n c e of fungal spo res from t h e b o d y a n d the i r a s soc i a t i on w i t h t h e h e m o c y t e s , w h e r e a s R i c h a r d s a n d Ratcliffe (1990) s h o w e d t h a t t h e pur i f ied a g g l u t i n i n f rom t h e p h a s m i d Extatosoma tiaratum in t h e p r e s e n c e of C a 2 +

s ignif icant ly i n c r e a s e d t h e ro se t t i ng of tes t e r y t h r o c y t e s a r o u n d t h e h e m o ­cytes of th is species (Tab le 6) . D r i f a n d B r e h e l i n (1989) r e p o r t e d , too , t h a t t h e a g g l u t i n i n in t h e h e m o l y m p h of Locusta migratona ac ts as a n o p s o n i n to e n h a n c e e r y t h r o c y t e u p t a k e b y t h e h e m o c y t e s . T h e s e a p p a r e n t c o n t r a d i c ­t ions for a role for insec t a g g l u t i n i n s in i m m u n e r ecogn i t i on a r e confus ing . T h i s s i t u a t i o n is c o n f o u n d e d b y t h e r e c e n t s tud ie s of K u b o et al. (1990) a n d K a w a g u c h i et al. (1991) , w h o have s h o w n t h a t , in P. americana a n d S. peregnna, t h e h e m o l y m p h lec t ins m a y b e invo lved n o t on ly in defense b u t a l so in d e v e l o p m e n t a n d r e g e n e r a t i o n p roces ses .

N o d o u b t s o m e , b u t n o t al l , of t h e func t iona l differences r e p o r t e d for insec t a g g l u t i n i n s c a n be e x p l a i n e d b y s u b o p t i m a l e x p e r i m e n t a l c o n d i t i o n s . F o r e x a m p l e , g r e a t c a r e m u s t b e exerc i sed in u s i n g v e r t e b r a t e e r y t h r o c y t e s a s tes t pa r t i c l e s as t hey f requen t ly c l u m p following sens i t i za t ion w i t h lec t in so i m ­p e d i n g the i r u p t a k e b y t h e h e m o c y t e s (Rowley a n d Ratcliffe, 1980). O t h e r

Page 288: Parasites and Pathogens of Insects. Parasites

Tab

le 6

Influ

ence

of

Ca

2+

and

Pur

ifie

d E

xta

toso

ma

tia

ratu

m (

Et)

Lect

in o

n Sp

ont

ane

ous

Ro

setti

ng o

f Ra

bb

it Er

ythr

oc

yte

s (R

E) a

roun

d L

ive

and

Fi

xed

Et

Hem

ocyt

e M

ono

laye

rs

Liv

e he

moc

ytes

0 F

ixed

hem

ocyt

es*

Tre

atm

ent

1 T

reat

men

t 2

PL

S

G c

ells

O

vera

ll P

L

SG

cel

ls

Ove

rall

1. T

BS

/CA

2+

RE

/Ca

2+

11.3

± 2

.7*

57.9

±

4.0

18.2

± 4

.1

9.4

2.3*

48

.5

3.7

14.8

2.

6

2.

TB

S/N

o C

a2

+ R

E/N

o C

a2

+ 3.

8 ±

1.2

24.6

±

2.7

6.8

± 2.

7 2.

0 0.

6 12

.0

1.3

4.2

± 1.

3 3.

E

t le

ctin

/Ca2

+ R

E/C

a2

+ 43

.7 ±

5.4

74

.2

± 5.

7 45

.0

± 5.

3 40

.9

5.9

73.3

5.

1 42

.6 ±

5.5

4.

Et

lect

in/N

o C

a2

+ R

E/C

a2

+ 16

.1 ±

4.6

61

.0

± 5.

8 24

.0

± 5.

6 15

.1 ±

4.2

60

.8 ±

5.6

22

.4 ±

4.1

5.

E

t le

ctin

/Ca2

+ 20

0 m

M D

-gal

acto

se

RE

/Ca2

+ N

D'

ND

N

D

10.4

± 3

.6

48.7

± 5

.2

15.4

± 4

.7

Cat

egor

ies

coun

ted:

pla

smat

ocyt

es (

PL),

spre

adin

g gr

anul

ar (

SG

) cel

ls,

all

cell

type

s (O

vera

ll).

*Mea

n of

8 v

alue

s ±

SD

. 'N

D =

not

don

e.

Mod

ified

fro

m R

icha

rds

and

Ratc

liffe

(19

90)

with

per

miss

ion

of P

erga

mon

Pre

ss.

Page 289: Parasites and Pathogens of Insects. Parasites

12. Cellular Defense Responses of Insects 2 8 5

factors t h a t g rea t ly inf luence test p a r t i c l e - h e m o c y t e a s soc ia t ion i n c l u d e w h e t h e r t h e test pa r t i c l e o r t he h e m o c y t e m o n o l a y e r s a r e p re sens i t i zed w i t h lect in a n d the e x t e n t to w h i c h t h e h e m o c y t e s a r e flattened in t h e m o n o l a y e r s . R i c h a r d s a n d Ratcliffe (1990) found t h a t t h e r e is a g r e a t e r o p s o n i c effect w h e n t h e h e m o c y t e s r a t h e r t h a n t h e tes t pa r t i c l e s a r e sens i t ized w i t h t h e lec t in , wh i l e excessively flattened h e m o c y t e s m a y have too few r e c e p t o r s p e r u n i t surface a r e a to b i n d test pa r t i c l e s effectively.

If, as s eems likely, insect h e m o l y m p h a g g l u t i n i n s d o func t ion a s r ecogn i ­t ion mo lecu le s , t he q u e s t i o n of h o w they i n t e r ac t w i t h t h e h e m o c y t e surface to form b r i d g i n g molecu les a t t a c h i n g t h e foreign pa r t i c l e s to t h e b lood cells n e e d s to b e a d d r e s s e d . N a i v e insec ts c o n t a i n h e m o l y m p h a g g l u t i n i n s a n d yet these mo lecu le s r e m a i n in t h e c i r cu l a t i on r a t h e r t h a n a t t a c h i n g to t h e b lood cells. S u b s e q u e n t e x p o s u r e a n d a t t a c h m e n t to foreign a n t i g e n s m u s t i n d u c e s o m e sor t of modi f i ca t ion in t he lect in so t h a t it c a n i n t e r ac t w i t h c a r b o h y ­d r a t e moie t i e s on t h e h e m o c y t e surface. Al te rna t ive ly , t h e modif ied lect in m a y expose a p e p t i d e s e q u e n c e for w h i c h the cell h a s a r ecep to r . T h e w o r k of K o m a n o et al. (1981) on t h e lect in i n d u c e d in in ju red S. peregnna l a rvae m a y b e r e l evan t h e r e . T h e y r e p o r t e d t h a t t he lect in consis ts of α a n d β s u b u n i t s a n d p o s t u l a t e d t h a t s o m e of t he α s u b u n i t s a r e c o n v e r t e d to t he β s u b u n i t s by p a r t i a l p ro teo lys i s to form the act ive lect in w i t h t he s t r u c t u r e of α 4 β 2 . T h i s ac t ive m o l e c u l e m a y poss ib ly be a b l e to b i n d to t he o u t s i d e of t h e h e m o c y t e s a n d t h e p ro teo lys i s involved in p r o d u c i n g t h e act ive m o l e c u l e m a y resu l t f rom t h e re lease of se r ine p r o t e a s e s involved in ac t iva t ion of t h e p P O c a s c a d e ( rev iewed in A s h i d a a n d Y a m a z a k i , 1990; Ratcliffe, 1991).

R e g a r d i n g t h e role of t h e p P O c a s c a d e in i m m u n e r ecogn i t i on a n d o t h e r a s p e c t s of i m m u n e r egu l a t i on , it is m u c h m o r e difficult to o b t a i n defini t ive p r o o f for t h e func t ion ing of p P O in insec t i m m u n i t y b e c a u s e of t h e c o m p l e x ­ity of t h e sys t em. T h e p P O s y s t e m cons is t s of a c a s c a d e of e n z y m e s a n d a s soc i a t ed factors s u c h as va r ious p l a s m a r e c e p t o r s , se r ine p r o t e a s e s , a n d i n h i b i t o r s (Fig . 5) ( J o h a n s s o n a n d S o d e r h a l l , 1989a; A s h i d a a n d Y a m a z a k i , 1990; Ratcliffe, 1991), w h i c h a r e often difficult to purify in a s t ab l e fo rm.

T h e p P O s y s t e m h a s b e e n r e p o r t e d f rom b o t h t he b lood cells ( A s h i d a et aL, 1988) a n d p l a s m a (Sau l et al., 1987). T h i s difference p r o b a b l y r e su l t s f rom t h e ins tab i l i ty of t he h e m o c y t e s of m a n y insec ts t h a t r ead i ly d i s c h a r g e the i r c o n t e n t s following b l eed ing . I t is a l so s ignif icant t h a t t h e g r a n u l a r cell t ype ( = cys tocy te in s o m e species) m a y c o n t a i n n o t on ly a g g l u t i n i n s b u t a l so c o m p o n e n t s of t h e p P O s y s t e m (Fig . 4) ( rev iewed in Rowley et al., 1986). T h i s cell t y p e r a p i d l y d e g r a n u l a t e s in con t ac t w i t h non-se l f m a t e r i a l s ( R a t ­cliffe a n d Rowley, 1979) to re lease t h e non-se l f r ecogn i t i on mo lecu l e s . I n Bombyx mori, however , t h e oenocy to id s a n d p l a s m a t o c y t e s c o n t a i n t h e major ­i ty of t h e p P O a n d t h e g r a n u l a r cells d o n o t have a p p r e c i a b l e a m o u n t s of th is e n z y m e ( A s h i d a et al., 1988). T h e s e differences a r e difficult to reconc i le ,

Page 290: Parasites and Pathogens of Insects. Parasites

2 8 6 Norman A. Ratcliffe

PLASMA CELL •RECEPTORS" MEMBRANE? COAGULOGEN COAGULIN

LPS • • W

B1.3-GLUCANS— X

PEPTIDOGLYCAN - Y

CAPSULAR Ζ POLYSACCHARIDES

SPONTANEOUS ACTIVATION

(eg. low Ca2+,heat etc.)

• / • /

OPSONISATION KILLING CELL DEGRANULATION IMMUNE HAEMOPOIESIS? MOVEMENTS PROTEINS

Figure 5 Hypothetical scheme for activation of arthropod prophenoloxidase (pPO). LPS = lipopolysaccharide; P O = phenoloxidase. Based largely on the work of Soderhall, Ashida, and colleagues. See text for references. Modified from Ratcliffe (1991) with permission of CRC Press Inc.

a l t h o u g h t h e ma jo r i t y of insec t species do not c o n t a i n oenocy to id s a n d w o u l d r e q u i r e a n a l t e r n a t i v e si te for s y n t h e s i s / s t o r a g e of p P O .

E v i d e n c e for p a r t i c i p a t i o n of p P O in insect i m m u n i t y is r ev iewed else­w h e r e (Ratcliffe, 1991). T h e m o s t conv inc ing p roof is p r o v i d e d by a ser ies of in vitro p h a g o c y t o s i s e x p e r i m e n t s s imi l a r t o t hose d e s c r i b e d b y S m i t h a n d S o d e r h a l l (1983) for c r u s t a c e a n h e m o c y t e m o n o l a y e r s over la id w i t h a m a r i n e bac te r i a l i so la te , Moraxella. H e m o c y t e m o n o l a y e r s of Galleria mellonella, Leuco-phaea maderae, a n d Blaberus craniifer w e r e set u p a n d over la id w i t h t h e b a c t e ­r i u m Bacillus cereus, p l u s p - l , 3 - g l u c a n , d e x t r a n , l i p o p o l y s a c c h a r i d e ( L P S ) , a n d a p o t e n t i n h i b i t o r of ser ine p r o t e a s e ( p - N P G B ) . T h e P - l ,3 -g lucan a n d L P S , w h i c h a r e b o t h m i c r o b i a l cel l -wall c o m p o n e n t s a n d ac t iva to r s of p P O , e n h a n c e d p h a g o c y t o s i s of B. cereus five- to sixfold (Tab l e 7) (Ratcliffe et al., 1984; L e o n a r d et al., 1985a) . T h e s e e x p e r i m e n t s s e e m to i n d i c a t e t h a t s ince p P O g e n e r a t e s s t icky p r o t e i n s t h a t a d h e r e to foreign i n v a d e r s ( S o d e r h a l l et al., 1979), t h e n the tes t bac t e r i a b e c o m e coa t ed in s t icky o p s o n i c m a t e r i a l t h a t is r ecogn ized as foreign by t h e p h a g o c y t i c cells. T h e s e resu l t s , however , c o n t r a s t w i t h t h e w o r k of D u l a r a y a n d Lack ie (1985) , w h o failed to i n d u c e a n e n c a p s u l a t i o n r e s p o n s e in t he locus t Schistocerea gregaria, in w h i c h S e p h a r o s e b e a d s w e r e p r e c o a t e d w i th p h e n o l o x i d a s e a n d a t leas t four a d d i t i o n a l p r o ­te ins g e n e r a t e d b y t h e p P O c a s c a d e . A g a i n , t h e r e is n o r e a d y e x p l a n a t i o n for this c o n t r a d i c t i o n in e x p e r i m e n t a l resu l t s excep t t h a t t h e p u t a t i v e o p s o n i n

Page 291: Parasites and Pathogens of Insects. Parasites

12. Cellular Defense Responses of Insects 2 8 7

Table 7 Effect of Laminarin on Phagocytosis of Bacillus cereus by Hemocytes from Three Different Insect Species

Treatment % Hemocytes

phagocytic % Plasmatocytes

phagocytic

% Cystocytes/ Number of granular cells bacteria/100

phagocytic hemocytes

G. mellonella Laminarin (1 mg m l " 1 ) 8.0 ± 1.8** 14.1 ± 3.7* 4.3 ± 1.4* 17.4 ± 3.1* GIM control' 1.2 ± 0.7 2.0 ± 0.6 0.7 ± 0.5 1.8 ± 0.9 0.01 mA//>NPGB/ 1.3 ± 0.5 2.4 ± 1.0 0.7 ± 0.4 2.2 ± 1.1 Laminarin + />NPGB 1.5 ± 0.6 2.8 ± 1.6 0.5 ± 0.4 2.2 ± 0.8 Dextran (1 mg m l " 1 ) 1.9 ± 0.6 2.7 ± 1.1 1.0 ± 0.5 2.6 ± 0.8

L. maderae Laminarin (1 mg m l " 1 ) 9.8 ± 1.6*>< 15.9 ± 4.3* 4.7 ± 1.6* 26.8 ± 6.8* L-J contro l 1.5 ± 0.7 2.2 ± 1.1 0.9 ± 0.8 2.2 ± 1.9 0 .01mM/>NPGB 0.9 ± 0.5 1.2 ± 0.6 0.6 ± 0.4 1.2 ± 0.9 Laminarin + />NPGB 1.4 ± 0.7 0.7 ± 0.6 1.2 ± 0.8 2.3 ± 1.7

B. craniifer Laminarin (1 mg m l " 1 ) 4.6 ± 0.6*^ 9.6 ± 1.4* 1.2 ± 0.4* 10.7 ± 1.8* Carlson's control 0.7 ± 0.3 1.2 ± 0.4 0.6 ± 0.4 1.5 ± 0.6 0.01 mAfj&NPGB 0.9 ± 0.2 1.2 ± 0.4 0.8 ± 0.4 1.3 ± 0.5 Laminarin + />NPGB 1.1 ± 0.2 1.5 ± 0.6 0.8 ± 0.3 1.6 ± 0.5

"Mean value of 20 monolayers (from a total of 28 insects in four experiments) ± SD. bP ^ 0.05 compared with controls. c Mean value of 10 monolayers (from a total of 14 insects in two experiments) ± SD. ^Mean value of 10 monolayers (from a total of 8 insects in two experiments) ± SD. 'GIM = Grace's insect medium. //>NPGB = />-nitrophenyl-/>'-guanidinobenzoate. *L-J = Landureau and Jolles medium.

From Leonard et al. (1985a) with permission of Pergamon Press.

m a y b e ve ry shor t - l ived a n d lost o r i nac t i va t ed b y t h e e x p e r i m e n t a l p r o c e ­d u r e a d o p t e d b y D u l a r a y a n d Lack ie (1985) .

T h e mu l t i f unc t i ona l ro le of t h e insec t g r a n u l a r h e m o c y t e s ( = cys tocytes ) m u s t a l so b e c o n s i d e r e d s ince these cells c o n t a i n n o t on ly factors a s soc i a t ed w i t h t h e p P O s y s t e m b u t a lso a g g l u t i n i n s (Fig . 4) (Rowley et al., 1986). D e g r a n u l a t i o n of t h e h e m o c y t e s in r e s p o n s e to i n v a d i n g o r g a n i s m s will t h u s re lease c o m p o n e n t s of t h e p P O c a s c a d e as well as t h e a g g l u t i n i n s t h a t h a v e b e e n s h o w n to ac t as r ecogn i t i on mo lecu le s (see t h e foregoing) . E v e n t h e e x p e r i m e n t s d e s c r i b e d p rev ious ly u t i l i z ing p r e sens i t i z a t i on of h e m o c y t e s o r tes t pa r t i c l e s w i t h pur i f ied lect in ( R i c h a r d s a n d Ratcliffe, 1990) d o n o t p r o -

Page 292: Parasites and Pathogens of Insects. Parasites

2 8 8 Norman A. Ratcliffe

v ide defini t ive p r o o f for a n o p s o n i c role for h e m o l y m p h a g g l u t i n i n s s ince they cou ld b e i n t e r p r e t e d in t e r m s of t he lect in s t i m u l a t i n g t he re lease of t h e p P O to e n h a n c e t he u p t a k e of t he foreign pa r t i c l e s . A d d i t i o n a l w o r k is t h u s ur­gen t ly r e q u i r e d , p re fe rab ly us ing puri f ied molecu les , to d e t e r m i n e t he re la ­tive roles of t he p P O a n d agg lu t in in s as well as surface c h a r g e ( rev iewed in Lack ie , 1988) in t h e i m m u n e reac t iv i ty of insec ts .

Recent ly , c lues to t he re la t ive roles of p P O a n d h e m o l y m p h a g g l u t i n i n s have b e c o m e ava i l ab le . F i rs t , R i c h a r d s a n d Ratcliffe (1990) s h o w e d in t h e p h a s m i d Extatosoma tiaratum t h a t s imi l a r p e r c e n t a g e s of e r y t h r o c y t e r o se t t i ng a r o u n d the h e m o c y t e s were i n d u c e d by the pur i f ied p h a s m i d lect in in b o t h live a n d g lu t a ra ldehyde - f ixed m o n o l a y e r s (Tab le 6) . I n o t h e r w o r d s , a t t a c h ­m e n t of foreign pa r t i c l es to t he h e m o c y t e s was n o t d e p e n d e n t u p o n t h e re lease of s t icky p P O p ro t e in s from these cells. T a b l e 6 a lso shows t h e i m p o r ­t a n c e of C a 2 + in th is in i t ia l b i n d i n g o r r ecogn i t ion p rocess (for a d e t a i l e d d i scuss ion of poss ib le inf luence of C a 2 + in l e c t i n - m e d i a t e d r ecogn i t i on in i n v e r t e b r a t e s , see R i c h a r d s a n d R e n w r a n t z , 1991).

Second , H . D u r r a n t , N . A. Ratcliffe, a n d C . C . C h e n ( u n p u b l i s h e d obser ­va t ions ) r e p o r t e d t h a t lec t ins i so la ted from the h e m o l y m p h of Blaberus dis­coidalis s ignif icant ly e n h a n c e d the p h e n o l o x i d a s e ac t iva t ion of h e m o c y t e lysa te p r e p a r a t i o n s ( H L S ) of this cockroach by the m i c r o b i a l a c t i va to r l a m i ­n a r i n (a 3 - l , 3 -g lucan) (Tab le 8) . O n e of t he lec t ins , t h e so-cal led p l a s m a factor ( P F ) , was P - l ,3-glucan-specif ic , w h e r e a s t h e o t h e r w a s g a l a c t o s e / glucose-specif ic . T h e P F w a s r e p o r t e d p rev ious ly to e n h a n c e l a m i n a r i n act i ­va t i on of Blaberus p h e n o l o x i d a s e (Sode rha l l et aL, 1988), b u t on ly by m o d ­ification of t he pur i f ica t ion p r o c e d u r e was its a g g l u t i n i n ac t iv i ty r evea led ( C . C . C h e n , N . A . Ratcliffe, a n d A. F . Rowley, u n p u b l i s h e d resu l t s ) . I n t e r ­estingly, p r e i n c u b a t i o n of t he two Blaberus lect ins w i t h the i r specific l i g a n d s u g a r s failed to a b r o g a t e the i r p h e n o l o x i d a s e - a c t i v a t i n g p r o p e r t i e s . Possibly, these lect ins have m u l t i p l e d o m a i n s , as d e s c r i b e d for t he Limulus factor C ( M u t a et aL, 1991), w i th t he s u g a r - b i n d i n g a n d p h e n o l o x i d a s e - a c t i v a t i n g d o m a i n s b e i n g s e p a r a t e . I n a d d i t i o n , v a r i o u s he t e ro logous p l a n t lec t ins s u c h as c o n c a n a v a l i n A , Tetragonolobus purpureas, a n d Bandeiraea simplicifolia a lso e n h a n c e d l a m i n a r i n ac t iva t ion of the Blaberus p h e n o l o x i d a s e , w h e r e a s severa l con t ro l p ro t e in s s u c h as t h y r o g l o b u l i n , a ldo lase , l y sozyme , a n d bov ine s e r u m a l b u m i n d id n o t ( H . D u r r a n t , N . A. Ratcliffe, a n d C . C . C h e n , u n p u b l i s h e d resul t s ) (Tab le 8) .

T h e l a t t e r e x p e r i m e n t s , a l t h o u g h on ly p re l imina ry , a r e i n t e r e s t i n g as t hey h e l p to exp la in t he a p p a r e n t p r e s e n c e of two i m m u n e r ecogn i t ion s y s t e m s in insec ts a n d o t h e r a r t h r o p o d s . I n fact, t h e r e m a y be on ly o n e non-se l f r ecogn i ­t ion scena r io w i t h ea r ly even t s con t ro l l ed b y the h e m o l y m p h a g g l u t i n i n s , as sugges t ed or ig ina l ly in Fig . 1, a n d l a t e r even ts involv ing the p P O c o m p l e x .

Page 293: Parasites and Pathogens of Insects. Parasites

12. Cellular Defense Responses of Insects 2 8 9

Table 8 Enhancement of Activation of Blaberus discoidalis Prophenoloxidase by Laminarin in the Presence of Various Lectins

Maximum phenoloxidase activity" at optimal Activation mixture lectin/protein concentration ΔΑ490 10 m i n - 1

HLS* + cac. buffer 0.040 ± 0.012

HLS + lam< 0.111 ± 0.022

HLS + L2d 0.100 0.015

HLS + L2 + lam 0.184 ± 0.029

HLS + pf< 0.119 ± 0.016

HLS + pf + lam 0.206 ± 0.033

HLS + con A 0.087 ± 0.017

HLS + con A + lam 0.157 ± 0.022

HLS + lysozyme/ 0.033 ± 0.015

HLS + lysozyme + lam 0.115 ± 0.020

"Assay carried out in multiwell trays and read on a Biorad EIA reader. *Hemocyte lysate supernatant at protein concentration of 2.0 mg m l - 1 . cLaminarin 1.0 mg m l - 1 . dh2 = purified B. discoidalis serum lectin. 'pf = purified B. discoidalis plasma factor (a β-1,3^1υΰ3η-8ρεαίΐΰ lectin). /Protein control.

From H. Durrani, N. A. Ratcliffe, and C. C. Chen (unpublished results).

T h e de t a i l s of t he i n t e r ac t i on of these t w o sets of mo lecu le s awa i t fu r the r inves t iga t ion .

T h i r d , a d d i t i o n a l ev idence for t h e i n t e r ac t i on of t h e h e m o l y m p h lec t ins a n d t h e p P O s y s t e m is p r e s e n t in t h e l i t e r a t u r e . T h u s M i n n i c k et al. (1986) pur i f ied a glucose-specif ic lec t in f rom t h e t o b a c c o h o r n w o r m Manduca sexta, t e r m e d Μ 1 3 , a n d showed t h a t w h e n a d d e d to h e m o l y m p h of t h e s a m e species it p r o v o k e d a c o a g u l a t i o n r e s p o n s e . T h e p P O sys t em m a y well b e involved in c o a g u l a t i o n r e s p o n s e s in insec ts as in s o m e o t h e r a r t h r o p o d s . Also s igni f icant w a s t h e w o r k of D u n p h y a n d G h a d w i c k (1989) w i t h G. mellonella h e m o c y t e s in vitro. T h e y s t u d i e d t h e inf luence of v a r i o u s c a r b o h y d r a t e s o n t h e a d h e s i o n of t h e b a c t e r i a Pseudomonas aeruginosa a n d Proteus mirabilis to t h e h e m o c y t e s a n d n o t e d t h a t c e r t a i n s u g a r s e n h a n c e d b o t h bac t e r i a l a d h e s i o n a n d p P O ac t iva t ion . As a resu l t of t hese e x p e r i m e n t s , D u n p h y a n d C h a d w i c k (1989) sugges t ed t h a t b o t h t he lec t ins a n d t h e p P O s y s t e m a r e o p s o n i c a n d e n h a n c e t h e b i n d i n g of b a c t e r i a to t h e b lood cells.

Page 294: Parasites and Pathogens of Insects. Parasites

2 9 0 Norman A. Ratcliffe

C Cell—Cell Communication in Immunity

A n o t h e r a r e a of insec t i m m u n i t y in n e e d of fu r the r c lar i f ica t ion is t h e de te r ­m i n a t i o n of t h e re la t ive roles a n d in t e r ac t i ons of t h e i m m u n e reac t ive cells . T h e w a x m o t h , Galleria mellonella, h a s p roved to b e a n idea l sub jec t for th is w o r k b e c a u s e of t h e ease of ident i f ica t ion a n d re la t ive s tab i l i ty of t h e b l o o d cells. I n Galleria, a n d p r o b a b l y o t h e r insec ts too , t h e t w o m a i n b lood cell types r e spons ib l e for t he ce l lu la r defenses a r e t he g r a n u l a r cells ( = cys tocy tes of s o m e species) a n d t h e p l a s m a t o c y t e s , a l t h o u g h t h e oenocy to id s a r e a lso a si te of s t o r a g e / s y n t h e s i s of p P O ( S c h m i t et aL, 1977). T h e g r a n u l a r cells (see F ig . 4) c o n t a i n b o t h p P O a n d a lso p r o b a b l y a g g l u t i n i n s (Ratcliffe a n d Row­ley, 1987), a r e n o n p h a g o c y t i c , u n s t a b l e in vitro, a n d c lear ly d i s t i n g u i s h a b l e f rom the p l a s m a t o c y t e s , w h i c h a r e m a i n l y a g r a n u l a r , p h a g o c y t i c , a n d h igh ly s t ab l e in vitro. T h e fact t h a t t he Galleria p l a s m a t o c y t e s a r e u sua l ly a g r a n u l a r c o n t r a s t s w i t h m a n y o t h e r insec t species (e.g. , cock roaches , locus t s , o t h e r l e p i d o p t e r a n s , etc .) in w h i c h t h e p r e s e n c e of n u m e r o u s g r a n u l e s often m a k e s it difficult to d i s ce rn t h e m from g r a n u l a r cells a n d cys tocy tes . I n a d d i t i o n , g r a n u l e d i s c h a r g e f rom t h e p l a s m a t o c y t e s e n h a n c e s t h e difficulty of u n d e r ­s t a n d i n g the even t s involved d u r i n g ce l lu la r i m m u n i t y in insec t s .

Ea r l i e r s tud ie s by Ratcliffe a n d G a g e n (1977) a n d S c h m i t a n d Ratcliffe (1977) n o t e d t h a t in Galleria l a rvae , d u r i n g n o d u l e formation a n d e n c a p s u l a ­t ion in r e s p o n s e to b a c t e r i a a n d foreign i m p l a n t s , respect ively, t h e first a n d i m m e d i a t e (wi th in a few seconds usua l ly ) r e s p o n s e to foreign a n t i g e n s is t h e d e g r a n u l a t i o n of t h e fragile g r a n u l a r cells. P l a s m a a g g l u t i n i n s too m a y well b e involved in th is in i t ia l foreign b o d y - g r a n u l a r cell r ecogn i t i on even t (see Sec t ion I I I . B ) . T h e g r a n u l a r cells t h u s re lease the i r p u t a t i v e non-se l f r ecog­n i t ion molecu le s , t h a t is, t he p P O factors a n d a g g l u t i n i n s , o n t o t h e surface of t h e foreign m a t e r i a l , w h i c h often t h e n beg ins to m e l a n i z e . W i t h i n 1 0 - 1 5 m i n t h e s econd i m m u n e reac t ive cell t ype in Galleria, t h e p l a s m a t o c y t e s , a r r ives a t t h e scene a n d forms a mu l t i c e l l u l a r s h e a t h a r o u n d t h e c e n t r a l m e l a n o t i c core of d e g r a n u l a t e d a n d lysed g r a n u l a r cells. E v e n t s s imi l a r to these have a lso b e e n obse rved in t h e st ick insec t Clitumnus extradentatus, t h e locus t Schistocerca gregaria, a n d the bee t le Tenebrio molitor (Ratcliffe a n d Rowley, 1979), so t h a t t hey m a y b e w i d e s p r e a d in insec ts . T h u s , cell—cell c o o p e r a t i o n is involved d u r i n g ce l lu la r reac t iv i ty a n d p r o b a b l y occu r s d u r i n g b o t h c a p ­sule f o rma t ion a n d p h a g o c y t o s i s in insec ts (Fig . 6) (see t h e fol lowing).

M o r e recent ly, a d d i t i o n a l s tud ie s on ce l l - ce l l c o o p e r a t i o n h a v e b e e n u n ­d e r t a k e n w i t h pur i f ied p o p u l a t i o n s of Gallena g r a n u l a r cells a n d p l a s ­m a t o c y t e s ( A n g g r a e n i a n d Ratcliffe, 1991). T h e h e m o c y t e s w e r e pur i f ied o n c o n t i n u o u s Percol l g r a d i e n t s a n d m o n o l a y e r s p r e p a r e d f rom t h e s e p a r a t e d p l a s m a t o c y t e s o r g r a n u l a r cells o r from a m i x t u r e of t h e two . T h e m o n o l a y e r s

Page 295: Parasites and Pathogens of Insects. Parasites

12. Cellular Defense Responses of Insects 291

w e r e t h e n over la id w i t h hea t -k i l l ed Bacillus cereus e i t he r s u s p e n d e d in buffer a l o n e (cont ro l s ) o r w i t h l a m i n a r i n (a 3 - l , 3 -g lucan ac t iva to r of p P O — expe r i -m e n t a l s ) a n d i n c u b a t e d for 1 h r to al low p h a g o c y t o s i s to occur . T h e resu l t s con f i rmed p l a s m a t o c y t e s a s t h e m a i n p h a g o c y t i c cell t y p e in Galleria; n o inges t ion a t all w a s r e c o r d e d for t he g r a n u l a r cells. P h a g o c y t o s i s b y t h e p l a s m a t o c y t e s i n c r e a s e d f rom 5.3 to 8 . 7 % for con t ro l s (i .e. , w i t h o u t l a m i ­n a r i n ) a n d f rom m o r e t h a n 13.4 to 3 0 % for e x p e r i m e n t a l s ( i .e . , w i t h l a m i ­n a r i n ) u p o n a d d i t i o n of g r a n u l a r cells back to t h e i so la t ed p l a s m a t o c y t e s ( T a b l e 5) . A n inc r ea se in p h a g o c y t o s i s f rom 5.3 to 1 3 . 4 % b y p l a s m a t o c y t e s u p o n a d d i t i o n of l a m i n a r i n w a s p r o b a b l y d u e to a s m a l l c o n t a m i n a n t p o p u l a ­t ion of g r a n u l a r cells. T h e s e resu l t s c lear ly show t h a t t he g r a n u l a r cel ls , a l t h o u g h n o t p h a g o c y t i c t hemse lves , c o n t a i n s o m e factor(s) ( p r o b a b l y p P O a n d / o r a g g l u t i n i n ) essen t ia l for o p t i m a l func t ion ing of t h e p l a s m a t o c y t e s d u r i n g ce l lu la r react ivi ty.

S i m i l a r ce l l - ce l l coope ra t i ve even t s h a v e b e e n d e s c r i b e d d u r i n g ce l lu la r i m m u n e even t s w i t h c r u s t a c e a n b lood cells in vitro (Sode rha l l et al., 1986; Pe r s son et al., 1987) (Fig . 6) a n d t h e role of a 7 6 - k D a p r o t e i n i n ce l lu la r c o m m u n i c a t i o n even t s h a s b e e n ident i f ied ( J o h a n s s o n a n d Soderhall, 1985, 1989a; K o b a y a s h i et al., 1990). T h i s 7 6 - k D a p r o t e i n is a s soc i a t ed w i t h t h e p P O s y s t e m a n d is mu l t i f unc t i ona l s ince it ac ts as a cell a d h e s i o n factor for crayf ish s e m i g r a n u l a r a n d g r a n u l a r cells ( J o h a n s s o n a n d S o d e r h a l l , 1988), c a n d e g r a n u l a t e b o t h s e m i g r a n u l a r a n d g r a n u l a r cells b y a r e g u l a t e d exo-cytos is ( J o h a n s s o n a n d Soderhall, 1989b) , a n d a l so func t ions to p r o m o t e e n c a p s u l a t i o n ( K o b a y a s h i et al., 1990). I n insec ts , l i t t le is k n o w n a b o u t m o ­lecu l a r even t s con t ro l l i ng ce l l - ce l l c o m m u n i c a t i o n , a l t h o u g h R a n t a m a k i et al. (1991) p a r t i a l l y pur i f ied a 9 0 - k D a p r o t e i n f rom Blaberus craniifer h e m o c y t e s t h a t c ros s - r eac t ed w i t h a monospec i f i c a n t i s e r u m a g a i n s t t h e 7 6 - k D a p r o t e i n f rom crayf ish b lood cells. T h i s 9 0 - k D a p r o t e i n , like t h e 7 6 - k D a m o l e c u l e in crayf ish , a l so func t ions to e n h a n c e a d h e s i o n of t h e cock roach h e m o c y t e s to t h e s u b s t r a t u m a n d to i n d u c e d e g r a n u l a t i o n of these cells .

O t h e r factors , a p a r t f rom t h e 9 0 - k D a p r o t e i n , a r e likely to inf luence c e l l -cell c o m m u n i c a t i o n a n d t h e b e h a v i o r of insec t h e m o c y t e s d u r i n g i m m u n e r eac t ions . S o m e of these s u b s t a n c e s have b e e n d e s c r i b e d in d e t a i l b y Lack i e (1988) a n d i n c l u d e a n e n c a p s u l a t i o n - p r o m o t i n g factor ( E P F ) ( R a t n e r a n d V i n s o n , 1983; D a v i e s et al., 1988), c h e m o k i n i n s ( H u x h a m a n d Lack ie , 1988)j a n d v a r i o u s w o u n d factors (e.g. , C h e r b a s , 1973). All of these s u b s t a n c e s a r e p r o b a b l y involved in t h e in i t i a t ion of i m m u n i t y by w o u n d i n g b u t , a p a r t f rom E P F , l i t t le is k n o w n a b o u t t hese mo lecu le s . E P F h a s b e e n p a r t i a l l y pur i f ied f rom t h e p l a s m a of Heliothis virescens a n d is a s m a l l 3 .5 -kDa , h e a t - s t a b l e p e p t i d e poss ib ly o r i g i n a t i n g f rom the h e m o c y t e s . T h e func t ion of E P F is to p r o m o t e t h e a d h e s i v e b e h a v i o r a n d e n c a p s u l a t i o n ab i l i ty of p l a s m a t o c y t e s in

Page 296: Parasites and Pathogens of Insects. Parasites

Insects C r u s t a c e a n s

S T A G E 1 1. Microbial contact

with granular cells

ζ^^>~ bacterium

2. Degranulation and opeonieation by 90kDa protein

bacterium

S T A G E 2

3. Ingestion by phagocyte

S T A G E 1 1. Microbial contact with

semigranular cells

2. Degranulation

c m

S T A G E _ 2

3. Degranulation of granular(a) and further semigranular(b) cells and opsonisation by 76kDa protein

S T A G E

4 . Ingestion by Phagocyte

Page 297: Parasites and Pathogens of Insects. Parasites

12. Cellular Defense Responses of Insects 2 9 3

vitro (Dav ies et al., 1988). E P F m a y poss ib ly b e p r o d u c e d b y ac t iva t ion of t h e p P O c a s c a d e , as m a y the c h e m o k i n i n s (Lackie , 1988).

D. Interrelationship of Cellular and Humoral Immunity

I t is a p p a r e n t f rom p r e v i o u s sec t ions t h a t t he d iv is ion of insec t i m m u n i t y i n t o ce l lu la r a n d h u m o r a l c o m p o n e n t s is a m a t t e r of c o n v e n i e n c e r a t h e r t h a n of fact. T h u s , p l a s m a a g g l u t i n i n s a r e de r ived from the fat b o d y a n d / o r h e m o ­cytes ( T a k a h a s h i et al., 1985; Rowley et al., 1986) a n d re leased i n t o t h e p l a s m a , w h e r e t hey u n d e r t a k e the i r i m m u n e r e g u l a t o r y role t h a t r esu l t s in t h e b i n d i n g of foreign a n t i g e n s a n d a s soc ia t ed a g g l u t i n i n s o n t o t h e h e m o c y t e surface (see Sec t ion I I I . B ) . L ikewise , t he p P O s y s t e m is, a t l eas t par t ia l ly , s y n t h e s i z e d in t h e h e m o c y t e s a n d re leased b y d e g r a n u l a t i o n in to t h e p l a s m a . V a r i o u s i nh ib i t o r s a n d ac t iva to r s con t ro l l i ng t he p P O s y s t e m in a r t h r o p o d s have , however , b e e n i so la ted f rom the p l a s m a ( H e r g e n h a h n et al., 1987, 1988; S o d e r h a l l et al., 1988) so t h a t a c o m p l e x i n t e r p l a y b e t w e e n p l a s m a a n d ce l lu la r c o m p o n e n t s con t ro l s t h e p P O c a s c a d e . Add i t iona l ly , t h e a n t i b a c ­te r ia l p r o t e i n s have recen t ly b e e n s h o w n in Drosophila a n d o t h e r species to b e syn thes i zed no t on ly in t he fat b o d y b u t a l so in t he h e m o c y t e s (D ick in son et al., 1988; M a t s u y a m a a n d N a t o r i , 1988; Samakov l i s et al., 1990) for re lease i n t o t h e h e m o l y m p h to form t h e h u m o r a l c o m p o n e n t of t h e i m m u n e re ­sponse .

T h e r e is c o m p e l l i n g ev idence p r o v i d e d by h e m o c y t e t ransfe r e x p e r i m e n t s w i t h Galleria mellonella l a rvae for a role for insec t b lood cells in i n d u c t i o n of a h u m o r a l a n t i b a c t e r i a l r e s p o n s e (de V e r n o et al., 1983, 1984). I n t h e first of these s t u d i e s , h e m o c y t e s f rom Galleria p rev ious ly i m m u n i z e d w i t h Pseu-domonas aeruginosa e n d o t o x i n ( L P S ) w e r e in jected i n t o na ive l a rvae before c h a l l e n g i n g these w i th live P. aeruginosa a t va r i ous t i m e in t e rva l s . G o o d p r o -

Figure 6 Two hypothetical models for cell—cell cooperation in arthropod immunity. T h e insect model is based on observations with Galleria mellonella in which it is proposed that non-self recognition is carried out by the granular cells and ingestion by the plasmatocytes (phagocytes). The crustacean model differs from the insect scheme in having an amplification step at stage 2 in which adjacent granular and semigranular cells are induced to discharge their p P O system. Since most insects have many more granule-containing cells than Galleria, the crustacean scheme may well be present in such species. Circulating agglutinins are probably involved in enhancing contact and binding of the microbial invaders to the surfaces of the granular /semi­granular cells at stage 1. Based on the work of Ratcliffe et al. (1984), Soderhall and Smith (1986), Johansson and Soderhall (1988), and colleagues. See text for additional references. Modified from Ratcliffe (1991) with permission of CRC Press, Inc.

Page 298: Parasites and Pathogens of Insects. Parasites

2 9 4 Norman A. Ratcliffe

t ec t ion w a s afforded b y the t r ans fe r red h e m o c y t e s p r o v i d e d t h a t t hey w e r e in jected in to t h e l a rvae w i t h i n 4 h r of L P S inocu l a t i on of t h e d o n o r s . H e m o ­cytes from n o n - L P S - i m m u n i z e d l a rvae p r o v i d e d n o p r o t e c t i o n to r ec ip i en t s cha l l enged w i t h P. aeruginosa. D e V e r n o et al. (1983) bel ieve these resu l t s show t h a t t h e h e m o c y t e s a r e act ive in t he i n d u c t i o n of h u m o r a l i m m u n i t y ea r ly in t h e i m m u n e r e s p o n s e a n d m a y b e re leas ing factor(s) to s t i m u l a t e t h e fat b o d y cells to p r o d u c e a n t i b a c t e r i a l p r o t e i n s . Faye a n d W y a t t (1980) a n d A b u -H a k i m a a n d Faye (1981) a lso no t i ced a n i n t i m a t e a s soc ia t ion in vitro b e t w e e n h e m o c y t e s c o n t a i n i n g bac t e r i a a n d the fat b o d y cells f rom Cecropia p u p a e , a n d sugges t ed t h a t t he p h a g o c y t i c g r a n u l a r cells m o v e to a n d d i s i n t e g r a t e in t h e reg ion of t he fat body. I n s u b s e q u e n t e x p e r i m e n t s , D e V e r n o et al. (1984) u s i n g Galleria fat b o d y in vitro a lso showed t h a t m a x i m a l p r o d u c t i o n of a n t i ­bac t e r i a l act ivi ty w a s s t i m u l a t e d by the p r e s e n c e of L P S a n d / o r h e m o c y t e s . T h e y sugges t ed t h a t t he L P S causes t he re lease of h e m o c y t e factor(s) resu l t ­ing in e n h a n c e d p r o d u c t i o n of a n t i b a c t e r i a l p r o t e i n s by t h e fat body.

S imi l a r e x p e r i m e n t s u t i l iz ing t he fat b o d y of Manduca sexta ( D u n n et al., 1985) a n d Hyalophora cecropia (T renczek a n d Faye , 1988) p r o d u c e d a d d i t i o n a l s u p p o r t for a role for t he h e m o c y t e s in i n d u c i n g t he syn thes i s of a n t i b a c t e r i a l p r o t e i n s . I n Manduca, D u n n et al. (1985) sugges t ed t h a t f r a g m e n t s of p e p -t idog lycan l i be ra t ed by d iges t ion of t he bac t e r i a by p l a s m a ly sozyme or following phagocy tos i s by t he h e m o c y t e s m a y serve as el ic i tors of p r o t e i n p r o d u c t i o n . T h i s conc lus ion m a y differ s l ight ly f rom t h a t j u s t d e s c r i b e d for Galleria, as t he el ici tor is de r ived f rom the b a c t e r i a a n d n o t f rom t h e h e m o ­cytes , a l t h o u g h d e V e r n o et al. (1984) d id r e p o r t t h a t a n t i b a c t e r i a l ac t iv i ty cou ld a lso b e s t i m u l a t e d by L P S a lone . Similar ly, w i t h Hyalophora fat b o d y cu l t u r e s , T r e n c z e k a n d Faye (1988) r e p o r t e d t h a t a n t i b a c t e r i a l p r o t e i n p r o ­d u c t i o n w a s s t i m u l a t e d by L P S a n d bac te r i a . T h e y a lso showed , however , t h a t h e m o c y t e s from in ju red or i m m u n i z e d p u p a e a n d n o t t hose f rom u n ­t r e a t e d insec ts h a d a n el ici tor effect.

M o s t of t he s tud ie s d e s c r i b e d c lear ly i n d i c a t e a role for t h e h e m o c y t e s in t he i n d u c t i o n of t h e h u m o r a l a n t i b a c t e r i a l p r o t e i n s . T h e fact t h a t t h e p rocess of i n ju r ing t he insec ts d u r i n g d i ssec t ion m a y elicit a n t i b a c t e r i a l p r o t e i n syn­thesis shows , however , t h a t s ignals o t h e r t h a n those p r o d u c e d t h r o u g h h e m o c y t e - p r o c e s s e d bac te r i a l s u b s t a n c e s m u s t b e involved ( T r e n c z e k a n d Faye , 1988; Samakov l i s et al., 1990). I t m a y be of s ignif icance t h a t pep t idog ly -c a n , L P S , a n d p- l , 3 -g lucan n o t on ly i n d u c e a n t i b a c t e r i a l p r o t e i n p r o d u c t i o n ( D u n n et al., 1985; Samakov l i s et al., 1990) b u t a lso ac t iva te t h e p P O s y s t e m . T h e l a t t e r too is e n h a n c e d b y h e m o l y m p h lect ins ( H . D u r r a n t , N . A. R a t ­cliffe, a n d C . C . C h e n , u n p u b l i s h e d resul t s ) so t h a t a n e x t r e m e l y c o m p l i c a t e d n e t w o r k is g r a d u a l l y e m e r g i n g t h a t m a y involve m i c r o b e s , a g g l u t i n i n s , p P O , h e m o c y t e s , d a m a g e d t issues , a n d fat b o d y cells. T h e s i t u a t i o n is fu r the r

Page 299: Parasites and Pathogens of Insects. Parasites

12. Cellular Defense Responses of Insects 2 9 5

c o m p l i c a t e d by t h e poss ib le i n v o l v e m e n t of t h e e n d o c r i n e s y s t e m m e d i a t i n g i m m u n e reac t iv i ty even t s d u r i n g t h e life of t h e insec t (Sh i ra i sh i a n d N a t o r i , 1989).

Final ly , Faye (1990) h a s r e p o r t e d a poss ib le c o n n e c t i o n b e t w e e n t h e r ecog­n i t ion of b a c t e r i a a n d the ac t iva t ion of t h e i m m u n e p r o t e i n genes in Hy-alophora. T h i s p rocess involves t he i m m u n e p r o t e i n h a e m o l i n , p r ev ious ly ca l led P4 , w h i c h is p r e s e n t in n o r m a l h e m o l y m p h a n d b i n d s to t h e b a c t e r i a l surface in vitro to form a c o m p l e x w i t h a n o t h e r h e m o l y m p h p r o t e i n w i t h a m a s s of a b o u t 125 k D a ( S u n et al., 1990). T h i s c o m p l e x m a y func t ion to de l iver a r ecogn i t i on s igna l to t h e cells r e spons ib l e for t h e syn thes i s of t h e i m m u n e p r o t e i n s . T h e r e a s o n h a e m o l i n is be l ieved to func t ion in i m m u n e r ecogn i t i on a n d ac t iva t ion is, first, b e c a u s e it b i n d s to t h e bac t e r i a l surface a n d , s econd , b e c a u s e it h a s four i m m u n o g l o b u l i n d o m a i n s a n d s h a r e s 3 8 % h o m o l o g y w i t h t he i m m u n o g l o b u l i n p a r t of t h e insect cell r ecogn i t i on m o l e ­cu le , n e u r o g l i a n (Faye , 1990).

E. Future Areas for Study

F r o m this br ie f overview, it is a p p a r e n t t h a t , w i t h t he a p p l i c a t i o n of m o d e r n b i o c h e m i c a l a n d m o l e c u l a r t e c h n i q u e s , p rog re s s in o u r u n d e r s t a n d i n g of insec t i m m u n i t y h a s b e e n acce l e ra t ing . T h i s p r o g r e s s will n o d o u b t c o n ­t i n u e in t h e a r e a s o u t l i n e d in t h e foregoing. I n a d d i t i o n , as k n o w l e d g e h a s a c c r u e d of h o w i n v e r t e b r a t e s d e a l w i t h i n v a d i n g p a r a s i t e s a n d p a t h o g e n s , a t t e n t i o n is b e g i n n i n g to focus on m o r e a p p l i e d a spec t s of t h e i m m u n e sys­t e m s of i n v e r t e b r a t e s . T h u s , t h e poss ib le i m p o r t a n c e of t h e hos t defenses as d e t e r m i n a n t s of infectivi ty in v e c t o r - p a r a s i t e e n c o u n t e r s a n d t h e u s e of c h a n g e s in i m m u n e reac t iv i ty as m o n i t o r s of e n v i r o n m e n t a l po l l u t i on a r e n o w b e i n g e x a m i n e d .

R e g a r d i n g v e c t o r - p a r a s i t i c i n t e r ac t i ons , ev idence h a s b e e n a c c u m u l a t i n g for t h e i m p o r t a n c e of t he vec to r hos t defenses in d e t e r m i n i n g t h e o u t c o m e of s u c h a s soc ia t ions ( rev iewed in M o l y n e u x et al., 1986; Ratcliffe a n d Rowley, 1987; K a a y a , 1989). For e x a m p l e , Co l l ins et al. (1986) r e p o r t e d t h a t in s t r a i n s of Anopheles gambiae ref ractory a n d suscep t ib l e t o w a r d Plasmodium cynomolgi, t h e r e w a s a different ial ab i l i ty of t h e hos t m o s q u i t o e s to e n c a p s u l a t e t h e ook ine t e s in t h e m i d g u t wal l . T h e refractory s t r a in e n c a p s u l a t e d t h e p a r a s i t e s in a l ayer of m e l a n i n l i k e s u b s t a n c e w h e r e a s in suscep t ib l e insec t s on ly a r e d u c e d r eac t ion o c c u r r e d (Paskewi tz et al., 1989). I t w a s sugges t ed t h a t re f rac tor iness is d u e to a g r e a t e r ab i l i ty of t he hos t to r ecogn ize t h e l iv ing p a r a s i t e s . I t is poss ib le t h a t t h e m e l a n i n l i k e s u b s t a n c e r e su l t ed f rom en ­h a n c e d levels of p P O in t he ref rac tory s t r a in . F u r t h e r m o r e , in s t r a i n s of t h e t se tse flies Glossina palpalis palpalis a n d Glossina morsitans morsitans, w h i c h a r e

Page 300: Parasites and Pathogens of Insects. Parasites

2 9 6 Norman A. Ratcliffe

ref rac tory a n d suscep t ib l e to Trypanosoma brucei rhodesiense, respect ively, p P O act iv i ty in t h e h e m o l y m p h a n d m i d g u t h a s a lso b e e n s h o w n to b e far g r e a t e r in t h e r e s i s t an t flies. E v e n m o r e s ignif icant were differences b e t w e e n t h e sexes of G. m. morsitans in w h i c h the females show 7 % a n d m a l e s 2 7 % sa l iva ry g l a n d infect ions ( I . M a u d l i n a n d S. C . W e l b u r n , p e r s o n a l c o m m u n i c a t i o n ) . T h e females h a d m u c h h i g h e r levels t h a n the m a l e s of p P O ac t iva t ion of t he h e m o l y m p h w h e n p a r a s i t e s w e r e u sed as el ici tors (Tab le 9) ( N i g a m a n d Ratcliffe, 1991; Y. N i g a m , N . A . Ratcliffe, I . M a u d l i n , a n d S. C . W e l b u r n , u n p u b l i s h e d obse rva t i ons ) . T h e c o n t r i b u t i o n , if any, of t h e h e m o c y t e s to these resu l t s h a s n o t yet b e e n d e t e r m i n e d . A d d i t i o n a l work is c lear ly r e q u i r e d on the role of p P O i m m u n e recogn i t ion in these vec to r spec ies .

T h e i m p o r t a n c e of lect ins in t he g u t a n d h e m o l y m p h of t se tse flies in t h e t r a n s m i s s i o n of t r y p a n o s o m e s h a s a lso b e e n r e p o r t e d (Pere i ra et al., 1981; I b r a h a m et al., 1984; M o l y n e u x et al., 1986; M a u d l i n a n d W e l b u r n , 1987, 1988a ,b ; I n g r a m a n d M o l y n e u x , 1988; W e l b u r n a n d M a u d l i n , 1989, 1990; W e l b u r n et al., 1989). T h e s e worke r s have d e t e c t e d a g g l u t i n i n s for t r y p a n o ­s o m e s in t h e g u t a n d h e m o l y m p h of tse tse flies a n d bel ieve t h a t t hese m o l e ­cules a r e i m p o r t a n t for t h e d e v e l o p m e n t of t he p a r a s i t e in t he vec to r insec t . T h u s , a ref rac tory l ine of G. m. morsitans k i l l ing 5 0 % of t r y p a n o s o m e s in 170 h r h a d h i g h e r t i te rs of m i d g u t lec t ins t h a n a suscep t ib l e l ine ki l l ing on ly 1 0 % of p a r a s i t e s in th is t i m e ( W e l b u r n et al., 1989). T h e y c o n c l u d e d t h a t t h e lect in p r e v e n t e d t r y p a n o s o m e e s t a b l i s h m e n t in t he m i d g u t p e r h a p s by lysis of t h e p a r a s i t e s . T h e fact t h a t b lock ing the lect in w i t h its s u g a r l i gand , D -g lu -c o s a m i n e , s ignif icant ly i nc r ea sed m i d g u t infect ion r a t e s of Trypanosoma con-

Table 9 Phenoloxidase Activity of Male and Female Flies of Susceptible G. morsitans morsitans 1/6 Strain

Treatment of Incubation time (hr)

hemolymph 0.25 0.5 1.0 2.0 4.0 6.0 8.0

Control 4 1 male 0 . 2 5 ^ 0.34 0.79 1.10 1.16 1.26 1.33

Control* female 1.37 2.19 2.85 3.02 3.18 3.49 3.57

Procyclics*" male 0.17 0.32 0.90 1.23 1.29 1.29 1.33

Procyclics*" female 1.31 2.23 2.98 3.50 3.73 4.09 4.28

a Controls contained buffer, hemolymph, and L-dopa. ^Measured as units of phenoloxidase where 1U — 1A492 m g - 1 protein. c Means of three experiments but standard deviations not given here.

''Procyclics of Trypanosoma brucei rhodesiense in buffer incubated with hemolymph and L-dopa.

From Y. Nigam, N. A. Ratcliffe, I. Maudlin, and S. C. Welburn (unpublished results).

Page 301: Parasites and Pathogens of Insects. Parasites

12. Cellular Defense Responses of Insects 2 9 7

golense a n d T. brucei rhodesiense s u p p o r t s th is i dea ( M a u d l i n a n d W e l b u r n , 1987). C o n c o m i t a n t l y , however , it h a s b e e n r e p o r t e d t h a t t h e m i d g u t lec t in a n d a h e m o l y m p h lect in in t se tse a r e involved in m a t u r a t i o n of t r y p a n o s o m e s ( W e l b u r n a n d M a u d l i n , 1989, 1990). T h i s a p p a r e n t d u a l ro le for t h e lec t ins i n d i c a t e s t h e c o m p l e x i t y of this v e c t o r - p a r a s i t e a s soc ia t ion .

A d d i t i o n a l ev idence for a role of t h e vec to r i m m u n e s y s t e m as a d e t e r m i ­n a n t of infect ivi ty is p r o v i d e d b y h e m o l y m p h t ransfe r e x p e r i m e n t s w i t h s im-ul i ids (blackflies) ( H a m , 1986) a n d b y n u m e r o u s r e p o r t s of t h e e n c a p s u l a t i o n of p a r a s i t e s in m o s q u i t o e s ( rev iewed in Ratcliffe, 1982; K a a y a , 1989). H a m (1986) d e s c r i b e d t h e p r e s e n c e of a p a r a s i t e - i n d u c e d or -de r ived factor in t h e h e m o l y m p h of s imul i id s infected w i t h Onchocerca lienalis t h a t confers p r o t e c ­t ion w h e n t r ans fe r r ed to na ive flies. E x a m p l e s of e n c a p s u l a t i o n in m o s q u i t o e s i n c l u d e a r e p o r t b y C h r i s t e n s e n a n d F o r t o n (1986) t h a t t h e in i t ia l s t a g e in e n c a p s u l a t i o n of Dirofilana immitis microf i la r iae in jected in to Aedes aegypti w a s t h e lysis of h e m o c y t e s a t o r n e a r t h e surface of t h e p a r a s i t e p r i o r to d e p o s i t i o n of a m e l a n i n l i k e p i g m e n t , a n d the o b s e r v a t i o n of C h e n a n d L a u r e n c e (1985) t h a t t h e e n c a p s u l a t i o n of Brugia pahangi microf i la r iae in Anopheles quadri-maculatus involved b o t h h u m o r a l a n d ce l lu la r even t s .

O n c e t h e de ta i l s of t he vec to r i m m u n e reac t ions a r e fully u n d e r s t o o d , it m i g h t b e poss ib le to m a n i p u l a t e t h e m a n d inc rea se t h e re f rac tor iness of t h e h o s t insec t s to p a r a s i t i c i nvas ion . T h i s m i g h t involve t h e i n se r t i on of specific genes to i nc r ea se t h e p o t e n c y of t h e vec to r i m m u n e r e s p o n s e to p r o d u c e ref rac tory s t r a i n s of insec ts ( K a a y a , 1989).

Final ly , t h e fact t h a t t h e i m m u n e sy s t ems of i n v e r t e b r a t e s a r e exquis i t e ly sens i t ive a n d c o n s t a n t l y s a m p l i n g a n d r e s p o n d i n g to m i n u t e q u a n t i t i e s of e n v i r o n m e n t a l mo lecu le s m e a n s t h a t a n y c o n t a m i n a n t s p r e s e n t a r e likely to modify i m m u n i t y in s o m e way. I f s u c h modi f i ca t ions c a n b e careful ly d o c u ­m e n t e d t h e n it m a y b e poss ib le to u se t h e i n v e r t e b r a t e i m m u n e s y s t e m s as m o n i t o r s of e n v i r o n m e n t a l po l l u t i on . For e x a m p l e , M i o s k y et al. (1989) in m o l l u s k s h a v e d e m o n s t r a t e d t h e v a l u e of m o n o c l o n a l a n t i b o d i e s in m o n i t o r i n g t h e i n c r e a s e d i n c i d e n c e of a l eukemic l ike c o n d i t i o n in t h e soft-shell c l a m , Mya arenaria, co l lec ted f rom p o l l u t e d w a t e r s of M a i n e . W i t h insec ts , un fo r tuna te ly , l i t t le is k n o w n of t h e ac t ion of xenob io t i c s o n t h e i m m u n e s y s t e m . Feir (1979) briefly r ev i ewed i n f o r m a t i o n o n insec t i m m u n e r e sponses to tox ic s u b s t a n c e s s u c h as insec t ic ides , wh i l e S a x e n a a n d S a x e n a (1985) d e s c r i b e d c y t o p a t h o l o g i -cal c h a n g e s in t h e h e m o c y t e s of Periplaneta americana after e x p o s u r e to t h e pes t i c ide , m a l a t h i o n . M o r e recent ly , J o n e s et al. (1989) a lso showed t h a t t h e a n t i b a c t e r i a l ac t iv i ty of t h e h e m o l y m p h of t h e l e p i d o p t e r a n Pieris brassicae w a s s ignif icant ly s u p p r e s s e d b y e x p o s u r e to 2 ,4 ,5 - t r i ch lo rophenoxyace t i c ac id (2 ,4 ,5 -T) . Clear ly , m o r e w o r k is r e q u i r e d in o r d e r to d e t e r m i n e t h e effects of e n v i r o n m e n t a l in su l t s o n a r a n g e of i m m u n e p a r a m e t e r s .

Page 302: Parasites and Pathogens of Insects. Parasites

2 9 8 Norman A. Ratcliffe

I am grateful to the Nuffield Foundation, The British Council, and The Science and Engineering Research Council (Grants GR/F/17421 , GR/G/60857 , and GR/G/40224) for financial sup­port.

References

Abu-Hakima, R., and Faye, I. (1981). An ultrastructural and autoradiographic study of the immune response in Hyalophora cecropia pupae. Cell Tissue Res. 217:311-320.

Anderson, R. S., Holmes, B., and Good, R. A. (1973). In vitro bactericidal capacity οϊ Blaberus craniifer hemocytes. J. Invertebr. Pathol. 22:127-135.

Anggraeni, T., and Ratcliffe, N. A. (1991). Studies on cell-cell cooperation during phagocytosis by purified haemocyte populations of the wax moth, Galleria mellonella. J. Insect Physiol. 37:453-460.

Ashida, M., and Yamazaki, Η. I. (1990). Biochemistry of the phenoloxidase system in insects: With special reference to its activation. In "Molting and Metamorphosis" (E. Ohnishi and H. Ishizaki, eds.), pp. 239-265. Jpn. Sci. Soc. Press, Tokyo/Springer-Verlag, Berlin.

Ashida, M., Ochiai, M., and Niki, T. (1988). Immunolocalization of prophenoloxidase among hemocytes of the silkworm, Bombyx mori. Tissue Cell 20:599-610.

Azambuja, P. D., Garcia, E. S., and Ratcliffe, N. A. (1991). Aspects of classification of hemiptera hemocytes from six triatomine species. Mem. Inst. Oswaldo Cruz 86 :1 -10 .

Beckage, Ν. E. (1990). Parasite effects on host development. In "New Directions in Biological Control: Alternatives for Suppressing Agriculture" (R. Baker and P. E. Dunn, eds.), pp. 4 9 7 -515. Liss, New York.

Beeman, S. C , Wilson, Μ. E., Bulla, L. Α., and Consigli, R. A. (1983). Structural characterisa­tion of the hemocytes of Plodia interpunctella. J. Morphol. 175:1-16.

Bohn, H. (1986). Hemolymph clotting in insects. In "Immunity in Invertebrates" (M. Brehelin, ed.), pp. 188-207. Springer-Verlag, Berlin.

Boman, H. G., and Hultmark, D. (1987). Cell-free immunity in insects. Annu. Rev. Microbiol. 41:103-126.

Bradley, R. S., Stuart, G. S., Stiles, B., and Hapner, K. D. (1989). Grasshopper haemagglutinin: Immunochemical localization in haemocytes and investigation of opsonic properties. J. Insect Physiol. 35:353-361.

Brehelin, M. (1990). Depression of immune reactions in insects. Res. Immunol. 141:935-938. Brehelin, M., and Zachary, D. (1986). Insect haemocytes: A new classification to rule out the

controversy. In "Immunity in Invertebrates" (M. Brehelin, ed.), pp. 36-48 . Springer-Verlag, Berlin.

Casteels, P., Ampe, C , Riviere, L., Damme, J. V , Elicone, C , Fleming, M., Jacobs, F., and Tempst, P. (1990). Isolation and characterization of abaecin, a major antibacterial response peptide in the honeybee (Apis mellifera). Eur. J. Biochem. 187:381-386.

Chadwick, J. M., and Aston, W. P. (1978). An overview of insect immunity. In "Animal Models of Comparative and Developmental Aspects of Immunity and Disease" (Μ. E. Gershwin and E. L. Cooper, eds.), p. 1. Pergamon, New York.

Chain, Β. M., and Anderson, R. S. (1983). Inflammation in insects: The release of plasmatocyte depletion factor following interaction between bacteria and haemocytes. J. Insect Physiol. 2 9 : 1 - 4 .

Acknowledgments

Page 303: Parasites and Pathogens of Insects. Parasites

12. Cellular Defense Responses of Inseds 2 9 9

Chen, G. C , and Laurence, B. R. (1985). An ultrastructural study on the encapsulation of microfilariae of Brugia pahangi in the haemocoel of Anopheles quadrimaculatus. Int. J. Parasitol. 15:421-428.

Chen, C. C , Ratcliffe, Ν. Α., and Rowley, A. F. (1993). Detection, isolation and characterization of multiple lectins from the haemolymph of the cockroach, Blaberus discoidalis. Biochem. J. (in press).

Cherbas, L. (1973). The induction of an injury reaction in cultured haemocytes from saturniid pupae. J. Insect Physiol. 19:2011-2023.

Christensen, Β. M., and Forton, K. F. (1986). Hemocyte-mediated melanization of microfilariae in Aedes aegypti. J. Parasitol. 72:220-225.

Collins, F. H., Sakai, R. K., Vernick, K. D., Paskewitz, S., Seeley, D. C , Miller, L. H., Collins, W. E., Campbell, C. C , and Gwadz, R. W. (1986). Genetic selection of a plasmodium-refractory strain of the malaria vector Anopheles gambiae. Science 234:607-609.

Croft, S. L., East, J. S., and Molyneux, D. H. (1982). Antitrypanosomal factor in the haemo­lymph of Glossina. Acta Trop. 39:293.

Crossley, A. C. (1968). The fine structure and mechanism of breakdown of larval intersegmental muscles in the blowfly, Calliphora erythrocephala. J. Insect Physiol. 14:1389-1407.

Davies, D. H., Hayes, Τ. K., and Vinson, S. B. (1988). Preliminary characterization and purification of MI vitro encapsulation promoting factor: A peptide that mediates insect haemo-cyte adhesion. Dev. Comp. Immunol. 12:241-254.

de Verno, P. J., Aston, W. P., and Chadwick, J. S. (1983). Transfer of immunity against Pseu-domonas aeruginosa pp. 1-11 in Galleria mellonella larvae. Dev. Comp. Immunol. 7:423—434.

de Verno, P. J., Chadwick, J. S., Aston, W. P., and Dunphy, G. B. (1984). The in vitro generation of an antibacterial activity from the fat body and hemolymph of non-immunised larvae of Galleria mellonella. Dev. Comp. Immunol. 8:537—546.

Dickinson, L., Russell, V , and Dunn, P. E. (1988). A family of bacteria-regulated, cecropin D-like peptides from Manduca sexta. J. Biol. Chem. 263:19424-19429.

Drif, L., and Brehelin, M. (1989). Agglutinin mediated immune recognition in Locusta migratoria (Insecta). J. Insect Physiol. 35:729-736.

Dularay, B., and Lackie, A. M. (1985). Haemocytic encapsulation and the prophenoloxidase activation pathway in the locust Schistocerca gregaria. Insect Biochem. 15:827-834.

Dunn, P. E., Dai, W., Kanost, M. R., and Geng, C. (1985). Soluble peptidoglycan fragments stimulate antibacterial protein synthesis by fat body from larvae of Manduca sexta. Dev. Comp. Immunol. 9:559-568.

Dunphy, G. B., and Chadwick, J. S. (1989). Effects of selected carbohydrates and the contribu­tion of the prophenoloxidase cascade system to the adhesion of strains of Pseudomonas aeruginosa and Proteus mirabilis to hemocytes of non immune larval Galleria mellonella. Can. J. Microbiol. 35:524-527.

Faye, I. (1990). Acquired immunity in insects: The recognition of non-self and the subsequent onset of immune protein genes. Res. Immunol. 141:927-931.

Faye, I., and Wyatt, G. R. (1980). The synthesis of antibacterial proteins in isolated fat body from cecropia silkmoth pupae. Experientia 36:1325-1326.

Feir, D. (1979). Cellular and humoral responses to toxic substances. In "Insect Hemocytes: Development, Forms, Functions and Techniques" (A. P. Gupta, ed.), pp. 415-421 . Cam­bridge Univ. Press, New York and London.

George, J. F., Howcroft, Τ. K., and Karp, R. D. (1987). Primary integumentry allograft reac­tivity in the American cockroach, Periplanata americana. Transplantation 43:514-519.

Gotz, P., and Boman, H. G. (1985). Insect immunity. In "Comprehensive Insect Physiology, Biochemistry and Pharmacology" (G. A. Kerkut and L. I. Gilbert, eds.), pp. 453-485. Pergamon, Oxford.

Page 304: Parasites and Pathogens of Insects. Parasites

3 0 0 Norman A. Ratcliffe

Green, Ε. I., and Carter, J. B. (1991). Increased hemocyte counts in Tipula paludosa (Diptera, Tipulidae) hemolymph after exposure of larvae to diethyl ether and acetic acid vapors. J. Invertebr. Pathol. 57:437-438.

Gupta, A. P., ed. (1979). "Insect Hemocytes: Development, Forms, Functions and Techniques." Cambridge Univ. Press, New York and London.

Ham, P.J. (1986). Acquired resistance to Onchocerca lienalis infections in Simulium ornatum Meigen and Simulium lineatum Meigen following passive transfer of hemolymph from previously in­fected simuliids (Diptera, Simuliidae). Parasitology 92:269-277.

Ham, P. J., Nolan, G., and Natori, S. (1991). Antibody blocking of microfilaricidal activity of mosquito and black fly immune haemolymph. Br. Soc. Parasitol., Liverpool, England, Abstr., p. 53.

Hergenhahn, H.-G., Aspan, Α., and Soderhall, K. (1987). Purification and characterization of a high-Mr proteinase inhibitor of prophenoloxidase activation from crayfish plasma. Biochem. J. 248:223-228.

Hergenhahn, H.-G., Hall, M., and Soderhall, K. (1988). Purification and characterization of an a 2-macroglobulin-like proteinase inhibitor from plasma of the crayfish Pacifastacus leniusculus. Biochem. J. 255:801-806.

Hinks, C. F., and Arnold, J. W. (1977). Haemopoiesis in Lepidoptera. II. The role of the haemopoietic organs. Can J. Zool. 55:1740-1755.

Hoffmann, J. Α., and Hoffmann, D. (1990). The inducible antibacterial peptides of dipteran insects. Res. Immunol. 141:910-918.

Hoffmann, J. Α., Zachary, D., Hoffmann, D. , and Brehelin, M. (1979). Postembryonic develop­ment and differentiation: Hemopoietic tissues and their functions in some insects. In "Insect Hemocytes: Development, Forms, Functions and Techniques" (A. P. Gupta, ed.), pp. 29 -82 . Cambridge Univ. Press, New York and London.

Huxham, I. M., and Lackie, A. M. (1988). Behaviour in vitro of separated haemocytes from the locust, Schistocerca gregaria. Cell Tissue Res. 251:677-684.

Ibrahim, E.A.R., Ingram, G. Α., and Molyneux, D. H. (1984). Haemagglutinins and parasite agglutinins in haemolymph and gut of Glossina. Tropenmed. Parasitol. 35:151-156.

Ingram, G. Α., and Molyneux, D. H. (1988). Sugar specificities of anti-human ABO(H) blood group erythrocyte agglutinins (lectins) and haemolytic activity in the haemolymph and gut extracts of three Glossina species. Insect. Biochem. 18:267-279.

Ingram, G. Α., East, J., and Molyneux, D. H. (1984). Naturally occurring agglutinins against trypanosomatid flagellates in the haemolymph of insects. Parasitology 89:435-451.

Johansson, M. W., and Soderhall, K. (1985). Exocytosis of the prophenoloxidase activating system from crayfish haemocytes. J. Comp. Physiol. Β 156:175-181.

Johansson, M. W., and Soderhall, K. (1988). Isolation and purification of a cell adhesion factor from crayfish blood cells. J. Cell Biol. 106:1795-1803.

Johansson, M. W., and Soderhall, K. (1989a). Cellular immunity in crustaceans and the proPO system. Parasitol. Today 5:171.

Johansson, M. W., and Soderhall, K. (1989b). A cell adhesion factor from crayfish hemocytes has degranulating activity towards crayfish granular cells. Insect Biochem. 19:183-190.

Jones, J. C. (1962). Current concepts concerning insect hemocytes. Am. Zool. 2:209-246. Jones, J. C. (1970). Hemocytopoiesis in insects. In "Regulation of Hematopoiesis" (A. S. Gor­

don, ed.), pp. 7-65. Appleton, New York. Jones, J. C , and Liu, D. P. (1968). A quantitative study of mitotic divisions of haemocytes of

Galleria mellonella larvae. J. Insect Physiol. 14:1055-1061. Jones, R. D., Rowley, A. F., and Ratcliffe, N. A. (1989). Effect of exposure οϊ Pieris brassicae larvae

to 2,4,5-trichlorophenoxyacetic acid on the natural antibacterial activity of serum. J. Invertebr. Pathol. 54:63-70 .

Page 305: Parasites and Pathogens of Insects. Parasites

12. Cellular Defense Responses of Insects 301

Kaaya, G. P. (1989). A review of the progress made in recent years on research and understand­ing of immunity in insect vectors of human and animal diseases. Insect Sci. Appl. 1 0 : 7 5 1 -769.

Karp, R. D. (1990). Transplantation immunity in insects: Does allograft responsiveness exist? Res. Immunol. 141:923-927.

Kawaguchi, N., Kamano, H., and Natori, S. (1991). Involvement of Sarcophaga lectin in the development of imaginal discs of Sarcophaga peregrina in an autocrine manner. Dev. Biol. 144:86-93 .

Knibiehler, B., Mirre, C., Cacchini, J.-R, and Le Parco, Y. (1987). Haemocytes accumulate collagen transcripts during Drosophila melanogaster metamorphosis. Wilhelm Roux's Arch. Dev. Biol. 196:243-247.

Kobayashi, M., Johansson, M. W., and Soderhall, K. (1990). The 76 kD cell adhesion factor from crayfish haemocytes promotes encapsulation in vitro. Cell Tissue Res. 260:13-18 .

Komano, H., Mizuno, D. , and Natori, S. (1980). Purification of lectin induced in the hemo­lymph of Sarcophaga peregrina larvae on injury. J. Biol. Chem. 255:2919.

Komano, H., Mizuno, D., and Natori, S. (1981). A possible mechanism of induction of insect lectin. J. Biol. Chem. 256:7087-7089.

Kubo, T , Kawasaki, K., and Natori, S. (1990). Sucrose-binding lectin in regenerating cock­roach (Periplaneta americana) legs: Its purification from adult hemolymph. Insect Biochem. 6:585-591.

Lackie, A. M. (1988). Haemocyte behaviour. Adv. Insect Physiol. 21:85-177. Leonard, C., Ratcliffe, Ν. Α., and Rowley, A. F. (1985a). The role of prophenoloxidase activation

in non-self recognition and phagocytosis by insect blood cells. J. Insect Physiol. 31:789-799. Leonard, C., Soderhall, K., and Ratcliffe, N. A. (1985b). Studies on prophenoloxidase and

proteinase activity of Blaberus craniifer haemocytes. Insect Biochem. 15:803-810. Matsuyama, K., and Natori, S. (1988). Molecular cloning of cDNA for sapecin and unique

expression of the sapecin gene during the development of Sarcophaga peregrina. J. Biol. Chem. 263:17117-17121.

Maudlin, L, and Welburn, S. C. (1987). Lectin mediated establishment of midgut infections of Trypanosoma congolense and Trypanosoma brucei in Glossina morsitans. Tropenmed. Parasitol. 38 :167 -170.

Maudlin, L, and Welburn, S. C. (1988a). The role of lectins and trypanosome genotype in the maturation of midgut infections in Glossina morsitans. Tropenmed. Parasitol. 39:56-58 .

Maudlin, I., and Welburn, S. C. (1988b). Tsetse immunity and the transmission of try­panosomiasis. Parasitol. Today 4:109— 111.

Mead, G. P., Ratcliffe, Ν. Α., and Renwrantz, L. R. (1986). The separation of insect haemocyte types on Percoll gradients: Methodology and problems. J. Insect Physiol. 32:167-177.

Minnick, M. F., Rupp, R. Α., and Spence, K. D. (1986). A bacterial-induced lectin which triggers hemocyte coagulation in Manduca sexta. Biochem. Biophys. Res. Commun. 37:729-735.

Miosky, D. L., Smolowitz, R. M., and Reinisch, C. L. (1989). Leukemia cell specific protein of the bivalve mollusc Mya arenaria. J. Invertebr. Pathol. 53:32-40 .

Molyneux, D. H., Takle, G., Ibrahim, Ε. Α., and Ingram, G. A. (1986). Insect immunity in Trypanosomatidae. In "Immune Mechanisms in Invertebrate Vectors" (A. M. Lackie, ed.), pp. 117-144. Clarendon Press, Oxford.

Mullett, Η. T , Ratcliffe, Ν. Α., and Rowley, A. F. (1993). The generation and characterization of anti-insect blood cell monoclonal antibodies. J. Cell Sci. (in press).

Muta, T , Miyata, T , Misumi, Y , Tokunaga, F., Nakamura, T , Toh, Y , Ikehara, Y , and Iwanaga, S. (1991). An endotoxin-sensitive serine protease zymogen with a mosaic structure of complement-like, epidermal growth factor-like, and lectin-like domains. J. Biol. Chem. 266:6554-6561.

Page 306: Parasites and Pathogens of Insects. Parasites

3 0 2 Norman A. Ratcliffe

Nappi, A. J., and Christensen, Β. M. (1986). Hemocyte cell surface changes in Aedes aegypti in response to mirofilariae οϊ Dirofilaria immitis. J. Parasitol. 72:875-879.

Nappi, A. J., and Silvers, M. (1984). Cell surface changes associated with cellular immune reactions in Drosophila. Science 225:1166-1168.

Nigam, Y., and Ratcliffe, N. A. (1991). Activation of the prophenoloxidase system in vectors of trypanosomes and its possible role in infectivity. Br. Soc. Parasitol. Liverpool, England, Abstr., p. 53.

Paskewitz, S. M., Brown, Μ. B., Collins, F. H., and Lea, A. O. (1989). Ultrastructural localiza­tion of phenoloxidase in the midgut of refractory Anopheles gambiae and association of the enzyme with encapsulated Plasmodium cynomolgi. J. Parasitol. 75:594-600.

Pathak, J.P.N. (1983). Effect of endocrine glands on the unfixed total haemocyte counts of the bug, Halys dentata. J. Insect Physiol. 29:91-94 .

Pathak, J.P.N. (1986). Haemogram and its endocrine control in insects. In "Immunity in Inver­tebrates" (M. Brehelin, ed.), pp. 49-59 . Springer-Verlag, Berlin.

Pendland, J. C , and Boucias, D. G. (1986). Characteristics of a galactose-binding hemagglutinin (lectin) from hemolymph of Spodoptera exigua larvae. Dev. Comp. Immunol. 10:477-488.

Pendland, J. C , Heath, Μ. Α., and Boucias, D. G. (1988). Function of a galactose-binding lectin from Spodoptera exigua larval haemolymph: Opsonization of blastopores from ento-mopathogenous hypomycetes. J. Insect Physiol. 34:533-540.

Pereira, M.E.A., Andrade, A.F.B., and Ribeiro, J .M.C. (1981). Lectins of distinct specificity in Rhodnius prolixus react selectively with Trypanosoma cruzi. Science 211:597-600.

Persson, M., Vey, Α., and Soderhall, K. (1987). Encapsulation of foreign particles in vitro by separated blood cells from crayfish, Astacus leptodactylus. Cell Tissue Res. 246:409-415 .

Price, C. D., and Ratcliffe, N. A. (1974). A reappraisal of insect haemocyte classification by the examination of blood from fifteen insect orders. Z. Zellforsch. Mikrosk. Anat. 147 :313-324.

Rantamaki, J., Durrant, H., Liang, Z., Ratcliffe, Ν. Α., Duvic, B., and Soderhall, K. (1991). Isolation of a 90 kD protein from haemocytes οϊ Blaberus craniifer which has similar functional and immunological properties to the 76 kD protein from crayfish haemocytes. J. Insect Physiol. 37:627-634.

Ratcliffe, N. A. (1982). Cellular defense reactions in insects. In "Immune Reactions to Parasites" (W. Frank, ed.), pp. 223-244. Fischer-Verlag, New York.

Ratcliffe, N. A. (1991). The prophenoloxidase system and its role in arthropod immunity. In "Phylogenesis of Immune Functions" (G. W. Warr and N. Cohen, eds.), pp. 46 -65 . CRC Press, Boca Raton, FL.

Ratcliffe, Ν. Α., and Gagen, S.J. (1977). Studies on the in vivo cellular reactions of insects: An ultrastructural analysis of nodule formation in Galleria mellonella. Tissue Cell 9 :73-85.

Ratcliffe, Ν. Α., and Rowley, A. F. (1974). In vitro phagocytosis of bacteria by insect blood cells. Nature (London) 225:391-392.

Ratcliffe, Ν. Α., and Rowley, A. F. (1979). Role of hemocytes in defense against biological agents. In "Insect Hemocytes: Development, Forms, Functions and Techniques" (A. P. Gupta, ed.), pp. 331-414. Cambridge Univ. Press, London and New York.

Ratcliffe, Ν. Α., and Rowley, A. F. (1987). Insect responses to parasites and other pathogens. In "Immune Responses in Parasitic Infections: Immunology, Immunopathology, and Immu-noprophylaxis" (EJ.L. Soulsby, ed.), Vol. 4, pp. 271-332. CRC Press, Boca Raton, FL.

Ratcliffe, Ν. Α., Leonard, C , and Rowley, A. F. (1984). Prophenoloxidase activation: Nonself recognition and cell cooperation in insect immunity. Science 225:557-559.

RatclhTe, Ν. Α., Rowley, A. F., Fitzgerald, S. W., and Rhodes, C. P. (1985). Invertebrate immunity: Basic concepts and recent advances. Int. Rev. Cytol. 97:183.

Ratcliffe, Ν. Α., Brookman, J. L., and Rowley, A. F. (1991). Activation of the prophenoloxidase

Page 307: Parasites and Pathogens of Insects. Parasites

12. Cellular Defense Responses of Insects 3 0 3

cascade and initiation of nodule formation in locusts by bacterial lipopolysaccharides. Dev. Comp. Immunol. 15:33-39.

Ratner, S., and Vinson, S. B. (1983). Encapsulation reactions in vitro by haemocytes οϊ Heliothis virescens. J. Insect Physiol. 11:855-863.

Richards, Ε. H., and Ratcliffe, N. A. (1990). Direct binding and lectin-mediated binding of erythrocytes to haemocytes of the insect, Extatosoma tiaratum. Dev. Comp. Immunol. 14:269-281.

Richards, Ε. H., and Renwrantz, L. R. (1991). Two lectins on the surface of Helix pomatia haemocytes: A Ca 2 + -dependent , GalNac-specific lectin and a Ca 2 + - independent mannose 6-phosphate-specific lectin which recognises activated homologous opsonins. J. Comp. Physiol. Β 161:43-54 .

Richards, Ε. H., Ratcliffe, Ν. Α., and Renwrantz, L. (1989). The binding of lectins to carbohy­drate moieties on haemocytes of insects, Blaberus craniifer (Dictyoptera) and Extatosoma ti­aratum (Phasmida). Cell Tissue Res. 275:445-454.

Rizki, Τ. M., and Rizki, R. M. (1982). Blood cell surface changes in Drosophila mutants with melanotic tumours. Science 220:73-75 .

Rowley, A. F., and Ratcliffe, N. A. (1979). An ultrastructural and cytochemical study of the interaction between latex particles and the haemocytes of the wax moth Galleria mellonella in vitro. Cell Tissue Res. 199:129-137.

Rowley, A. F., and Ratcliffe, N. A. (1980). Insect erythrocyte agglutinins. In vitro opsonization experiments with Clitumnus extradentatus and Periplaneta americana haemocytes. Immunology 40:483-492 .

Rowley, A. F., and RatclhTe, N. A. (1981). Insects. In "Invertebrate Blood Cells" (N. A. Ratcliffe and A. F. Rowley, eds.), Vol. 2, pp. 421-488. Academic Press, London.

Rowley, A. F., Ratcliffe, Ν. Α., Leonard, C. M., Richards, Ε. H., and Renwrantz, L. (1986). Humoral recognition factors in insects, with particular reference to agglutinins and the prophenoloxidase system. In "Hemocytic and Humoral Immunity in Arthropods" (A. P. Gupta, ed.), pp. 381-406. Wiley, New York.

Rowley, A. F., Brookman, J. L., and Ratcliffe, N. A. (1990). Possible involvement of the pro­phenoloxidase system of the locust, Locusta migratoria, in antimicrobial activity. J. Invertebr. Pathol. 56:31-38 .

Samakovlis, C , Kimbrell, D. Α., Kylsten, P., Engstrom, Α., and Hultmark, D. (1990). The immune response in Drosophila: Pattern of cecropin expression and biological activity. EMBO J. 9:2969-2976.

Saul, S. J., Bin, L., and Sugumaran, M. (1987). The majority of prophenoloxidase in the hemolymph of Manduca sexta is present in the plasma and not in the hemocytes. Dev. Comp. Immunol. 11:479-485.

Saxena, S. C , and Saxena, P. N. (1985). Cytopathological and numerical changes in hemocytes of Periplaneta americana after treatment with malathion. Bull. Environ. Contam. Toxicol. 3 4 : 8 4 2 -849.

Schmidt, O., and Theopold, U. (1991). Immune defense and suppression in insects. BioEssays 13:343-346.

Schmit, A. R., and Ratcliffe, N. A. (1977). The encapsulation of foreign tissue implants in Galleria mellonella larvae. J. Insect Physiol. 24:511-521 .

Schmit, A. R., Rowley, A. F., and Ratcliffe, N. A. (1977). The role of Galleria mellonella hemocytes in melanin formation. J. Invertebr. Pathol. 29:232-234.

Shiraishi, Α., and Natori, S. (1989). Humoral factor activating the Sarcophaga lectin gene in cultured fat body. Insect Biochem. 19:261-267.

Smith, V. J., and Soderhall, K. (1983). β-l,3-Glucan activation of crustacean hemocytes in vitro and in vivo. Biol. Bull. (Woods Hole, Mass.) 164:299-314.

Soderhall, K., and Smith, V .J . (1986). Prophenoloxidase-activating cascade as a recognition

Page 308: Parasites and Pathogens of Insects. Parasites

3 0 4 Norman A. Ratcliffe

and defense system in arthropods. In "Hemocytic and Humoral Immunity in Arthropods" (A. P. Gupta, ed.), pp. 251-285. Wiley, New York.

Soderhall, K., Hall, L., Unestam, T., and Nyhlen, L. (1979). Attachment of phenoloxidase to fungal cell walls in arthropod immunity. J. Invertebr. Pathol. 34:285-294.

Soderhall, K., Smith, V. J., and Johansson, M. W. (1986). Hemocyte lysate enhancement of fungal spore encapsulation by crayfish hemocytes. Dev. Comp. Immunol. 8:23—30.

Soderhall, K., Rogener, W , Soderhall, I., Newton, R. P., and Ratcliffe, N. A. (1988). The properties and purification of a Blaberus craniifer plasma protein which enhances the activa­tion of haemocyte prophenoloxidase by a $\$-g\\iC2Ln. Insect Biochem. 18:323-330.

Srivastava, S. C., and Richards, A. G. (1965). An autoradiographic study of the relation between haemocytes and connective tissue in the wax moth Galleria mellonella. Biol. Bull. (Woods Hole, Mass.) 128:337-345.

Sun, S.-C., Lindstrom, I., Boman, H. G., Faye, I., and Schmidt, O. (1990). Hemolin: An insect immune protein belonging to the immunoglobin super family. Science 250:1729-1732.

Takahashi, H , Komano, H , Kawaguchi, N., Kitamura, N., Nakanishi, S., and Natori, S. (1985). Cloning and sequencing of cDNA of Sarcophaga peregnna humoral lectin induced on injury of the body wall. J. Biol. Chem. 260:12,228-12,233.

Takahashi, H , Komano, H , and Natori, S. (1986). Expression of the lectin gene in Sarcophaga peregnna during normal development and under conditions where the defense mechanism is activated. J. Insect Physiol. 32:771-779.

Trenczek, T. (1986). Injury and immunity in insects. Dev. Comp. Immunol. 10:627. Trenczek, T , and Bennich, H. (1992). Characterization of haemocytes by monoclonal anti­

bodies. In "Molecular Insect Science" (Η. H. Hagedorn, J. G. Hildebrand, M. G. Kidwell, and J. H. Law, eds.), Plenum, New York.

Trenczek, T , and Faye, I. (1988). Synthesis of immune proteins in primary cultures of fat body from Hyalophora cecropia. Insect Biochem. 18:299-312.

Vinson, S. B. (1988). Physiological studies of parasitoids reveal new approaches to the biological control of insect pests. IS I Atlas Sci.: Anim. Plant Sci., pp. 25 -31 .

Walters, J. B., and Ratcliffe, N. A. (1981). A comparison of the immune response of the wax-moth, Galleria mellonella to pathogenic and nonpathogenic bacteria. In "Aspects of Develop­mental and Comparative Immunology I" (J. B. Solomon, ed.), pp. 147-152. Pergamon, Oxford.

Walters, J. B., and Ratcliffe, N. A. (1983). Studies on the in vivo cellular reactions of insects: Fate of pathogenic and nonpathogenic bacteria in Galleria mellonella nodules. J. Insect Physiol. 29:417-424.

Welburn, S. C , and Maudlin, I. (1989). Lectin signalling of maturation of T. congolense infections in tsetse. Med. Vet. Entomol. 3:141-145.

Welburn, S. C , and Maudlin, I. (1990). Haemolymph lectin and the maturation of trypanosome infections in tsetse. Med. Vet. Entomol. 4:43—48.

Welburn, S. C , Maudlin, I., and Ellis, D. S. (1989). Rate of trypanosome killing by lectins in midguts of different species and strains of Glossina. Med. Vet. Entomol. 3 :77-82.

Zachary, D., and Hoffmann, D. (1984). Lyzozyme is stored in the granules of certain haemocyte types, f. Insect Physiol. 30:405-411.

Page 309: Parasites and Pathogens of Insects. Parasites

Chapter 13

The Response to Foreign Tissue Transplants in Insects Richard D. Karp Department of Biological Sciences University of Cincinnati Cincinnati, Ohio

I. Introduction: What Is the Significance of Studying Graft Rejection in Insects?

II. Historical Perspective A. The Encapsulation Response

to Foreign Objects B. The Response to the Transplantation

of Foreign Tissue C. The Issue of Immunologic Memory

III. Mediation and Regulation of the Roach Graft Response A. Inhibition of Graft Rejection

by Gamma Irradiation B. The Effects of Eicosinoids on the

Xenograft Response

IV. Discussion and Conclusions: Where Do We Go from Here?

Acknowledgments References

I. Introduction: What Is the Significance of Studying Graft Rejection in Insects?

W h e n o n e p e r u s e s t he c o n t e m p o r a r y l i t e r a tu r e , it b e c o m e s q u i t e e v i d e n t t h a t t h e use of insec ts as m o d e l s for t he s t u d y of evo lu t ion of i m m u n i t y is i n c r e a s ­ing a t a t r e m e n d o u s r a t e . T h e i m p o r t a n c e of insec ts in r e s e a r c h is n o mys te ry , s ince they a r e t he d o m i n a n t a n i m a l life-form o n the p l a n e t , a n d therefore r e p r e s e n t o u r m a j o r c o m p e t i t o r in t he ecosys t em. T h e y no t on ly c o m p r i s e a c o n s t a n t t h r e a t to o u r food supply , b u t a l so ac t as vec to rs for m a n y m a j o r p a r a s i t i c d i seases t h a t d e v a s t a t e h u m a n s a r o u n d the wor ld , p a r t i c u l a r l y in t h i r d wor ld c o u n t r i e s . T h u s , a n y t h i n g we c a n l ea rn a b o u t h o w they func t ion , a n d in p a r t i c u l a r defend themse lves a g a i n s t t he m a n y insu l t s of n a t u r e , m i g h t give us s o m e ins igh t s as to h o w to deve lop m e t h o d s for the i r con t ro l . F r o m a p u r e l y b a s i c scientific p o i n t of view, insec ts n o t on ly r e p r e s e n t t h e m a j o r g r o u p of e x t a n t i n v e r t e b r a t e s , b u t a l so c o m p r i s e o n e of t h e few inve r t e -

Parasites and Pathogens of Insects Volume 1: Parasites 305

Copyright © 1993 by Academic Press, Inc. All rights of reproduction in any form reserved.

Page 310: Parasites and Pathogens of Insects. Parasites

3 0 6 Richard D. Karp

b r a t e r ep re sen t a t i ve s t h a t c a n be ra i sed successfully in t h e l a b o r a t o r y in n u m b e r s sufficient to b e used to des ign mean ing fu l m o l e c u l a r a n d gene t i c s tud ies to u n r a v e l s ignif icant b iological q u e s t i o n s . T h u s , t hey a r e a n o b v i o u s r e sou rce for d e v e l o p m e n t a l a n d c o m p a r a t i v e s tud ies w h o s e focus is to b e t t e r u n d e r s t a n d t he or ig ins of a d a p t i v e i m m u n i t y . O n e a p p r o a c h for s u c h s tud ie s is t he t r a n s p l a n t a t i o n of foreign t i ssue . Gra f t ing h a s b e c o m e a very a c c e p t e d w a y of s t u d y i n g ce l l -med ia t ed i m m u n i t y in i n v e r t e b r a t e s , a n d t h u s h a s b e e n wide ly used in e x p e r i m e n t a t i o n p r o b i n g t h e l imi ts of a d a p t i v e i m m u n i t y in these a n i m a l s . I t w a s on ly n a t u r a l t h a t such t e c h n i q u e s w o u l d b e a p p l i e d to insec ts in a n effort to l e a rn t he ex t en t of the i r defense capab i l i t i e s . W h a t follows in this c h a p t e r is t he i n t e r e s t i ng h i s to ry of t h e s t u d y of graft r e s p o n ­siveness in insec ts a n d the conc lus ions t h a t c a n be d r a w n from the resu l t s .

II. Historical Perspective

Insec t s a r e k n o w n to have several m a j o r ce l lu la r defense m e c h a n i s m s for d e a l i n g w i t h foreign i n v a d e r s . T h e s e i n c l u d e p h a g o c y t o s i s , n o d u l e f o r m a t i o n , a n d e n c a p s u l a t i o n . N o d u l e fo rma t ion is a s t r a t egy u s e d b y m a n y inve r t e ­b r a t e s to c o n t a i n l a rge n u m b e r s of bac t e r i a by e n t r a p p i n g t h e m w i t h h e m o ­cytes , w h e r e a s e n c a p s u l a t i o n is t h e use of h e m o c y t e s to wal l off objec ts t h a t a r e too l a rge to b e p h a g o c y t o s e d , such as n e m a t o d e p a r a s i t e s (as r ev iewed by Dav ie s a n d Siva-Jothy, 1991). T h e la t te r , a l o n g w i t h t h e t r a n s p l a n t a t i o n of foreign t i ssue , h a s b e e n used as a m e a n s of a s s ay in g for t h e abi l i ty of a n insec t to recognize non-se l f a n d r e s p o n d to this cha l l enge in a specific m a n n e r . T h e d iscovery of such respons iveness w o u l d be t a k e n as ev idence for t he ex i s tence of a t r u e i m m u n e r e s p o n s e in these a n i m a l s . Severa l l a b o r a t o r i e s have b e e n in t e re s t ed in this q u e s t i o n t h r o u g h t he yea r s . T h e following is a br ie f s u m m a ­ry of s o m e of t he va r ious a p p r o a c h e s t h a t have b e e n used to tes t w h e t h e r specific ce l l -med ia t ed re spons iveness exists in insec ts , a n d t h e conflicts t h a t a rose from the i n t e r p r e t a t i o n of t h e resu l t s g e n e r a t e d by these s t ud i e s .

A. The Encapsulation Response to Foreign Objects

T h e e n c a p s u l a t i o n r e sponse is a h e m o c y t e - m e d i a t e d act ivi ty t h a t essent ia l ly wal ls off l a rge pa r t i c l es f rom the res t of t h e h e m o c o e l a n d its c o n t e n t s . S ince it is c o m m o n l y a s s u m e d t h a t s o m e type of r ecogn i t ion even t in i t i a tes t he p r o ­cess , s o m e worke r s have ut i l ized e n c a p s u l a t i o n as a m e a n s of d e t e r m i n i n g if insec ts c a n recogn ize a n d reac t to foreign t i ssue . A class ic e x a m p l e of t h e u s e of this t e c h n i q u e is r e p r e s e n t e d by the s t u d y of C a r t o n (1976) in w h i c h insec t eggs of v a r y i n g fore ignness were i m p l a n t e d in to t he h e m o c o e l s of Pimpla

Page 311: Parasites and Pathogens of Insects. Parasites

13. The Response to Foreign Tissue Transplants in Insects 3 0 7

instigator l a rvae . T h e m o s t impres s ive e n c a p s u l a t i o n r eac t ions w e r e i n d u c e d by t h e eggs t h a t w e r e t h e m o s t x e n o g e n e i c re la t ive to t he hos t . Al logene ic eggs a lso i n d u c e d a s ignif icant r e s p o n s e , b u t o n e t h a t w a s n o t a s i n t e n s e as t h a t for x e n o g e n e i c eggs . I t h a s b e e n a r g u e d t h a t t he r e s p o n s e to a l logene ic eggs w a s d u e to t he p r e s e n c e of foreign secre t ions o r v i rus l ike pa r t i c l e s coa t ­ing t h e eggs f rom p a r a s i t i z e d d o n o r s (Lack ie , 1983b) . Howeve r , t h e eggs u s e d in t h e C a r t o n s t u d y were d i s sec ted from Pimpla s t ock -cu l t u r ed a n i m a l s , a n d t h u s d i d n o t c o m e from p a r a s i t i z e d a n i m a l s . E v e n if t h a t w e r e n o t t h e case , severa l s t ud i e s have c lear ly s h o w n t h a t a s soc ia t ed v i rus l ike pa r t i c l e s o r p o l y d n a v i r u s e s t h a t a r e injected in to t h e hos t a l o n g w i t h t h e p a r a s i t o i d eggs ac tua l ly i n h i b i t t h e e n c a p s u l a t i o n r e s p o n s e r a t h e r t h a n s t i m u l a t e its i n d u c ­t ion (Sal t , 1964, 1965; E d s o n et aL, 1980; Rizki a n d Rizki , 1984; See o t h e r c h a p t e r s in this v o l u m e ) .

A l t h o u g h t h e use of e n c a p s u l a t i o n as a m e a n s of a s s a y i n g for t h e r ecogn i ­t ion of fore ignness w o u l d a p p e a r to b e a very s t r a i g h t f o r w a r d p roces s , n u m e r ­o u s r e p o r t s i n d i c a t e t h a t t he r e a r e m a n y va r i ab l e s t h a t exist t h a t m a y c loud t h e i n t e r p r e t a t i o n of t he d a t a . Severa l s tud ies have i n d i c a t e d t h a t t he ab i l i ty to m o u n t a n e n c a p s u l a t i o n r e s p o n s e c a n b e g rea t ly affected by species differ­ences (Sal t , 1963; Lack ie , 1979; Lack ie et aL, 1985; Tackle , 1988). V a r i a t i o n s in r e spons iveness c a n b e d u e to differences in t h e n o r m a l n u m b e r of c i r cu la t ­ing h e m o c y t e s in a species (Lackie , 1979), t h e role of gene t i c h e t e r o g e n e i t y w i t h i n a species ( C a r t o n a n d B o u l e t r e a u , 1985), t h e d e g r e e of surface c h a r g e (Lack ie , 1983a; C h r i s t e n s e n et aL, 1987), a n d we t t ab i l i t y of t he i m p l a n t e d s u b s t a n c e s (Lack ie , 1983a) . T h u s , t h e inab i l i ty to g e n e r a t e a n e n c a p s u l a t i o n r e s p o n s e to foreign m a t e r i a l m a y b e d u e to i n n a t e species cha rac t e r i s t i c s t h a t h a v e n o t h i n g to d o w i t h t he p r e s e n c e o r a b s e n c e of a d a p t i v e i m m u n e m e c h a ­n i s m s .

Sco t t (1971) r e p o r t e d on a s t u d y in w h i c h e n c a p s u l a t i o n w a s u s e d to m o n i t o r t h e r ecogn i t i on of xenogene i c , a l logeneic , a n d syngene i c n e r v e co rd i m p l a n t s in t h e A m e r i c a n cockroach , Periplaneta americana. X e n o g e n e i c i m ­p l a n t s w e r e heavi ly e n c a p s u l a t e d , b u t a l logene ic i m p l a n t s w e r e e n c a p s u l a t e d on ly if t hey h a d b e e n exposed to p ro t eo ly t i c e n z y m e s p r i o r to i m p l a n t a t i o n . O n e i n t e r p r e t a t i o n of these resu l t s cou ld be t h a t t he a l l o a n t i g e n s p r e s e n t o n t h e ne rve co rd w e r e c ryp t i c a n d n o t ava i l ab le for r ecogn i t i on u n t i l e x p o s e d to t h e e n z y m a t i c t r e a t m e n t . I f th i s is t h e case , t h e n lack of r e spons iveness does n o t necessa r i ly m e a n t h a t t he c o r r e s p o n d i n g i m m u n e m e c h a n i s m does n o t exist .

T h e r e is n o q u e s t i o n t h a t t he e n c a p s u l a t i o n r eac t ion is a n essen t ia l w e a p ­on in t h e defensive a r s e n a l possessed by insec ts a n d serves as a h igh ly effec­tive m e a n s of d e a l i n g w i t h i n v a d i n g o r g a n i s m s . Howeve r , b a s e d o n the re la ­tively long list of va r i ab l e s t h a t c a n affect its p e r f o r m a n c e , e n c a p s u l a t i o n leaves m u c h to b e des i r ed as a re l i ab le m e a n s of m o n i t o r i n g specific r ecogn i -

Page 312: Parasites and Pathogens of Insects. Parasites

3 0 8 Richard D. Κα φ

t ion of fore ignness in s tud ies d e s i g n e d to d e t e r m i n e if a d a p t i v e ce l l -med ia t ed i m m u n i t y exists in insec ts .

B. The Response to the Transplantation of Foreign Tissue

A different a p p r o a c h t h a t h a s b e e n used w i t h s o m e r egu l a r i t y in t h e s t u d y of ce l l -med ia t ed i m m u n i t y in i n v e r t e b r a t e s is t he r e s p o n s e to foreign t i s sue grafts . T h e graf t ing s tud ies in insec ts have no t b e e n w i t h o u t the i r s h a r e of controversy. For i n s t a n c e , a l t h o u g h m o s t worke r s ag r ee t h a t insec ts a r e a b l e to r ecogn ize xenogra f t s , t h e r e is s o m e difference of o p i n i o n as to w h e t h e r these a n i m a l s c a n d i s c r i m i n a t e b e t w e e n a l logene ic differences. T h e r e h a s a lso b e e n a w ide r a n g e of e x p e r i m e n t a l a p p r o a c h e s e m p l o y e d to de t ec t recog­n i t ion a n d respons iveness to foreign t i ssue , s o m e of w h i c h have b e e n q u e s ­t ioned as to the i r effectiveness a n d accuracy. T h e d a t a f rom these a s says have b e e n g a t h e r e d e i the r b y m a c r o s c o p i c o b s e r v a t i o n o r b y t h e u s e of h i s to logica l t e c h n i q u e s . T h i s h a s a d d e d to t h e confusion s ince t he l a t t e r is far m o r e sensi t ive t h a n the former , a n d t h u s one c a n a r r ive a t very different conc lu ­s ions d e p e n d i n g on h o w the d a t a a r e col lec ted.

I n t he ea r ly 1980s, severa l l abo ra to r i e s p u b l i s h e d s tud ie s r e p o r t i n g o n the t r a n s p l a n t a t i o n of i n t e g u m e n t b e t w e e n insec ts . T h o m a s a n d Ratcliffe (1982) graf ted va r ious species of insec ts a n d followed the i r p rog re s s by g ross obser ­va t ion of t h e t r a n s p l a n t s . C o l o r a t i o n , m e l a n i z a t i o n , a n d d i s i n t e g r a t i o n w e r e used as c r i te r ia for sco r ing re jec t ion. B a s e d o n those p a r a m e t e r s , xenogra f t s a p p e a r e d to b e r a p i d l y re jected a n d m e l a n i z e d , w h e r e a s al lograf ts a n d a u t o ­grafts were no t . However , w h e n a few of t he grafts were e x a m i n e d h i s to ­logically, it w a s found t h a t t he al lograf ts h a d s t i m u l a t e d ce l lu la r inf i l t ra t ion in t he graft b e d . T h u s , g ross o b s e r v a t i o n of t he al lograf ts in th is s t u d y m a y no t have b e e n sensi t ive e n o u g h to reveal a n a c c u r a t e p i c t u r e of w h a t w a s ac tua l ly o c c u r r i n g in t he hos t a n i m a l .

T h e t r a n s p l a n t a t i o n s tud ies of J o n e s a n d Bell (1982) re l ied solely o n h i s to ­logical e v a l u a t i o n of t he grafts . Periplaneta americana w a s u sed as t h e r ec ip i en t of i n t e g u m e n t a r y grafts f rom d o n o r s of v a r y i n g p h y l o g e n e t i c d i s t a n c e s f rom Periplaneta. Graf t s were s a m p l e d after va r ious pe r iods of t i m e a n d p r e p a r e d his to logical ly for e x a m i n a t i o n . T h e grafts w e r e scored b y s ta t i s t ica l ly a n a l y z ­ing the n u m b e r of h e m o c y t e s inf i l t ra t ing each graft s i te , a n d c o m p a r i n g th is to t he a m o u n t of inf i l t ra t ion u n d e r au togra f t con t ro l s . Periplaneta americana vigorous ly re jected xenograf t s f rom Blaberus, Nauphoeta, a n d Leucophaea. O f p a r t i c u l a r in te res t w a s t he fact t h a t t he m o r e sensi t ive h is to logica l p r o c e d u r e revea led a s ignif icant r e sponse to a closely r e l a t ed species , Periplaneta brunnea. J o n e s a n d Bell a l so c o m p a r e d the r e s p o n s e to al lograf ts as c o m p a r e d to au togra f t s , b u t found on ly a s l ight difference t h a t w a s no t s ta t i s t ica l ly signifi­c a n t .

Page 313: Parasites and Pathogens of Insects. Parasites

13. The Response to Foreign Tissue Transplants in Insects 3 0 9

Lack ie (1983b) a lso e m p l o y e d P. americana in h e r graf t ing s tud i e s b u t w a s u s i n g a q u i t e different a p p r o a c h for e v a l u a t i n g r e spons iveness . T h e expe r i ­m e n t a l de s ign w a s to graft foreign i n t e g u m e n t o n t o n y m p h s a n d follow ac­c e p t a n c e o r re jec t ion by d e t e r m i n i n g w h e t h e r t h e d o n o r t i ssue su rv ived t h e nex t m o l t of t he hos t . I f t h e d o n o r w a s n o t r ecogn ized as foreign, t h e u n r e -j e c t e d e p i d e r m a l l ayer u n d e r l y i n g t h e cut ic le w o u l d p r o d u c e m o r e cu t ic le of t h e d o n o r t y p e . T h i s w a s d e t e r m i n e d by o b s e r v i n g t h e color of t h e t r a n s p l a n t fol lowing t h e mol t : if t h e color w a s d a r k b r o w n ( the color of t h e Blatta orientalis d o n o r cut ic le) , t h e graft w a s scored as accep ted ; if t h e color w a s r e d d i s h b r o w n ( the color of t he Periplaneta americana hos t ) , t h e graft w a s scored as re jec ted . A l t h o u g h it w a s r e p o r t e d t h a t t h e x e n o g e n e i c i n t e g u m e n t f rom Blaberus craniifer w a s re jec ted , c u t i c u l a r t r a n s p l a n t s f rom t h e m o r e closely r e l a t e d Blatta orientalis w e r e no t . I t w a s c o n c l u d e d t h a t t h e ab i l i ty of t h e insec t to r ecogn ize non-se l f w a s r a t h e r weak . H o w e v e r , these resu l t s w e r e in d i r ec t conflict w i t h those of J o n e s a n d Bell (1982) , w h o conv inc ing ly d e m o n s t r a t e d , u s i n g t h e m o r e sensi t ive h is to logica l assay, t h a t P. americana cou ld signifi­c a n t l y (0 .001 > Ρ > 0.005) reject i n t e g u m e n t a r y grafts f rom Bl. orientalis d o n o r s . O t h e r c i r c u m s t a n c e s t h a t m i g h t affect t h e i n t e r p r e t a t i o n of t h e re ­su l t s of t h e m o l t i n g a s say a r e : (1) As m u c h as 9 0 % of t he m o l t e d cut ic le m a y b e r e s o r b e d following e n z y m a t i c d iges t ion , a n d even tua l ly be i n c o r p o r a t e d in to t h e n e w cut ic le ( H e p b u r n , 1985). T h i s cou ld obv ious ly have a n effect o n t h e color of t he n e w cut ic le r ega rd l e s s of t h e o r ig in of t he e p i d e r m a l l ayer (2) T h e r e w e r e n o au tog ra f t con t ro l s p e r f o r m e d to e n s u r e t h a t Periplaneta cu t ic le w o u l d n o t t u r n d a r k b r o w n d u e to m e l a n i z a t i o n c a u s e d b y t h e t r a u m a of t h e gra f t ing p r o c e d u r e , t h u s g iv ing false pos i t ive resu l t s .

O u r in i t ia l s tud ie s on t r a n s p l a n t a t i o n reac t iv i ty in Periplaneta americana, u s i n g t h e quan t i f i c a t i on of inf i l t ra t ing h e m o c y t e s as a m e a s u r e of r e spons ive ­ness ( s imi la r to t h e p ro toco l of J o n e s a n d Bell , 1982), r evea led s t r o n g t r a n s ­p l a n t a t i o n i m m u n i t y a g a i n s t xenogra f t s , b u t a g a i n t h e r e w a s n o c lea r -cu t ev idence for t he p r e s e n c e of al lograf t i m m u n i t y ( G e o r g e et al., 1984). I t w a s o u r bel ief t h a t t h e p a r t i c u l a r a s s a y w e were u s i n g w a s n o t sens i t ive e n o u g h to d e t e r m i n e if a l lograf t i m m u n i t y exis ted in t h e roach , b e c a u s e it w a s b a s e d o n q u a n t i f y i n g t h e n u m b e r s of h e m o c y t e s in t h e graft b e d w i t h n o i n d i c a t i o n of w h e t h e r o r n o t t hey w e r e func t ion ing as i m m u n o c y t e s . W e n e e d e d a m o r e d i r ec t a p p r o a c h for t h e o b s e r v a t i o n of ac t iv i ty a g a i n s t foreign a l lograf ts . After r ev i ewing t h e d a t a from t h e p r e v i o u s s tudy , we o b s e r v e d t h a t al l t h e x e n o ­grafts w e r e m i s s i n g t h e s u b c u t i c u l a r e p i d e r m a l layer , w h i c h is la rge ly r e s p o n ­sible for t h e p r o d u c t i o n of t h e exoske le ton (Fig . 1A). H o w e v e r , au tog ra f t con t ro l s , even t h o u g h they m i g h t have s o m e h e m o c y t i c inf i l t ra te p r e s e n t , a l w a y s showed in t ac t e p i d e r m a l layers u n d e r n e a t h t h e cut ic le (Fig . IB ) .

A n e w gra f t ing s t u d y w a s u n d e r t a k e n to test for t h e ex i s tence of a l lograf t i m m u n i t y u s i n g t h e n e w c r i t e r ion of o b s e r v i n g t h e fate of t h e s u b c u t i c u l a r

Page 314: Parasites and Pathogens of Insects. Parasites

310 Richard D. Κα φ

Figure 1 Scoring of graft rejection based on the fate of the subcuticular epidermal layer. (A) Five-day xenograft from Eublaberus distanti on Periplaneta americana. (B) Five-day autograft control from the same recipient as above. Note the absence of the subcuticular epidermal layer in the xenograft, whereas the epidermis is fully intact in the autograft control. C = cuticle; Ε = epidermal layer; F = fat body. Bar = 20 μπι.

Page 315: Parasites and Pathogens of Insects. Parasites

13. The Response to Foreign Tissue Transplants in Insects 311

e p i d e r m a l l ayer as a d e t e r m i n a t i o n of w h e t h e r o r no t t h e t i ssue h a d b e e n re jec ted . T h e resu l t s of these s tud ie s ( G e o r g e et al., 1987) c lear ly i n d i c a t e d t h a t a l lograf ts w e r e r ecogn ized as foreign, s ince 9 2 % of t he a l logene ic ep ide r ­m a l l ayers h a d b e e n des t royed by d a y 7 p o s t t r a n s p l a n t a t i o n ve r sus on ly 8 % in au tog ra f t con t ro l s (Tab le 1). A l t h o u g h the al lograf t r e s p o n s e c a n b e con­s ide red to be a c u t e , it is re la t ively s lower t h a n the r e s p o n s e to xenogra f t s (Tab le 1), w h i c h is t he s a m e p a t t e r n t h a t is obse rved in m a m m a l s . A s e c o n d s t u d y u s i n g i m p l a n t s seeded w i th a l logene ic h e m o c y t e s l abe led w i t h [ 3 H ] thy­m i d i n e con f i rmed n o t on ly t h a t a l lograf t i m m u n i t y exis ted in t h e r o a c h , b u t t h a t t h e r e s p o n s e to t he foreign t i ssue w a s cy to tox ic in n a t u r e (Howcrof t a n d K a r p , 1987). T h u s , t h e d i rec t o b s e r v a t i o n of t he fate of l iv ing foreign t i ssue t r a n s p l a n t e d i n t o t he A m e r i c a n cockroach i n d i c a t e d t h a t th is insec t w a s fully c a p a b l e of r ecogn iz ing a n d r eac t ing to a l logene ic differences.

C The Issue of Immunologic Memory

A long-e s t ab l i shed def ini t ion of t r u e a d a p t i v e i m m u n i t y is t h a t s u c h re ­sponses d i s p l a y b o t h specificity a n d i m m u n o l o g i c m e m o r y . We therefore w e r e i n t e r e s t ed in d e t e r m i n i n g if these i m p o r t a n t c r i t e r ia w e r e p r e s e n t in t h e r o a c h al lograf t r e s p o n s e . Fo r this p u r p o s e a n i m a l s rece ived filter p a p e r i m p l a n t s s eeded w i t h a l logene ic d o n o r h e m o c y t e s as a first-set graft . T h e filter p a p e r t e c h n i q u e w a s e m p l o y e d so t h a t t h e s a m e d o n o r cou ld be u s e d a g a i n . Seven d a y s la ter , t h e r ec ip ien t s rece ived a second-se t i n t e g u m e n t a r y al lograf t f rom

Table 1 Rejection of Foreign Integumentary Grafts by Periplaneta americana

Days posttransplantation

Percentage of graft s rejected a

Days posttransplantation Xenografts Autografts Allografts Autografts

1 94 10 38 15

3 100 16 60 9

5 100 6 80 9

7 100 11 92 8

10 — — 95 5

20 — — 93 7

"Scoring or rejection is based on the presence or absence of the subcuticular epidermal layer as determined by histological examination of the grafts. Values are an average of at least two trials with total sample sizes exceeding 30 animals (except for allograft days 10 and 20, which had sample sizes of 23 and 15, respectively). Data summarized from George et al. (1987).

Page 316: Parasites and Pathogens of Insects. Parasites

312 Richard D. Κα φ

t h e s a m e d o n o r as well as a n o t h e r a l logeneic graft f rom a n u n r e l a t e d d o n o r as a t h i r d - p a r t y con t ro l . T h u s , we cou ld test for t he p r e s e n c e of b o t h specificity a n d m e m o r y . Graf t s were r e m o v e d after va r i ous p e r i o d s of t i m e a n d scored his to logical ly for t he p r e s e n c e o r a b s e n c e of t he s u b c u t i c u l a r e p i d e r m a l layer . T h e resu l t s ( H a r t m a n a n d K a r p , 1989) i n d i c a t e d t h a t t he second-se t a l ­lografts w e r e re jec ted in a n acce le ra t ed fashion, s ince p e a k reac t iv i ty oc ­c u r r e d in 3 d a y s , w h e r e a s t h i r d - p a r t y con t ro l s followed first-set re jec t ion k ine t ics . T h e s e resu l t s i n d i c a t e d t h a t no t on ly w a s t h e r e a t leas t s h o r t - t e r m m e m o r y p r e s e n t , b u t t h a t t he r e sponse w a s h igh ly specific s ince t h e r ec ip i en t r eac t ed to t he second-se t a n d t h i r d - p a r t y grafts in a differential m a n n e r . T h e rec ip ien t w a s t h u s ab l e to d i s t i ngu i sh b e t w e e n t w o different a l logene ic d o ­n o r s . T h u s , t h e al lograf t r e sponse in t h e A m e r i c a n cock roach d i sp l ays t h e h a l l m a r k s of t r u e a d a p t i v e i m m u n i t y .

III. Mediation and Regulation of the Roach Graft Response

We have successfully e s t ab l i shed t h a t t he A m e r i c a n cockroach c a n r ecogn ize a n d reject xenograf t s a n d al lograf ts . T h e nex t s t ep in o u r s tud ie s is to find ways to d e t e r m i n e h o w these r e sponses a r e m e d i a t e d a n d r e g u l a t e d . We h a v e b e e n deve lop ing s o m e tools t h a t m a y prove to b e p r o m i s i n g in th is r e g a r d .

A. Inhibition of Graft Rejection by Gamma Irradiation

I t is c o m m o n l y k n o w n t h a t t he use of X i r r a d i a t i o n will i nh ib i t a d a p t i v e i m m u n i t y in m a m m a l s d u e to t he fact t h a t these r e sponses h a v e a ce l lu la r bas i s . S ince gross o b s e r v a t i o n of graft b e d s in t r a n s p l a n t e d roaches revea led t h e p r e s e n c e of h e m o c y t e inf i l t ra tes , we w o n d e r e d if i r r a d i a t i o n w o u l d have a s imi l a r effect on t he roach r e sponse to foreign i n t e g u m e n t . In i t i a l exper i ­m e n t s revea led t h a t w h e n roaches were sub jec ted to 5000 r a d s of g a m m a i r r a d i a t i o n , t he n u m b e r of c i r cu l a t i ng h e m o c y t e s w a s r e d u c e d to o n e - t h i r d of n o r m a l . O n the bas i s of th is , we exposed rec ip ien t s to 5000 r a d s of r a d i a t i o n a n d t h e n graf ted t h e m w i t h xenograf t s a n d au togra f t s , e i the r o n t h e s a m e d a y as t h e r a d i a t i o n t r e a t m e n t o r 24 h r la ter . T h e grafts w e r e t h e n scored for re jec t ion after v a r i o u s pe r iods of t i m e p o s t t r a n s p l a n t a t i o n . T h e resu l t s i nd i ­ca t ed t h a t a n i m a l s rece iv ing t r a n s p l a n t s 24 h r after i r r a d i a t i o n , w h e n h e m o ­cyte n u m b e r s w e r e dep l e t ed , h a d the m a x i m u m r e s p o n s e to xenograf t s d e ­layed for 10 d a y s as c o m p a r e d to u n t r e a t e d con t ro l s ( E p p e n s t e i n e r a n d K a r p , 1989). T h e r e was a d i r ec t co r re l a t ion b e t w e e n t h e recovery of h e m o c y t e n u m b e r s a n d the recovery of t he full capab i l i t y to reject foreign t i ssue . T h i s ,

Page 317: Parasites and Pathogens of Insects. Parasites

13. The Response to Foreign Tissue Transplants in Insects 313

t a k e n w i t h p r e v i o u s d a t a i n d i c a t i n g t h a t l abe led h e m o c y t e s a r e n o t kil led w h e n i n c u b a t e d w i t h a l logene ic cell-free h e m o l y m p h (Howcrof t a n d K a r p , 1987), i n d i c a t e d t h a t graft re jec t ion in t h e r o a c h is c e l l -med ia t ed in n a t u r e . I n a d d i t i o n , t hese s tud ie s offer a n e w a p p r o a c h for d e t e r m i n i n g w h i c h t y p e of h e m o c y t e m e d i a t e s graft re jec t ion in t he roach . R o a c h e s cou ld b e i r r a d i a t e d a n d , 24 h r la ter , r e c o n s t i t u t e d w i t h different s u b p o p u l a t i o n s of c i r c u l a t i n g h e m o c y t e s f rom b o t h sens i t ized a n d nonsens i t i zed a n i m a l s to see w h i c h cell t y p e will fully r e s to re t h e r e s p o n s e to foreign graf ts . T h i s w o u l d p r o v i d e d i r ec t ev idence for t he ex i s tence of i m m u n o c y t e s in th is insec t .

B. The Effects of Eicosinoids on the Xenograft Response

P r o d u c t s of e icos inoid b i o s y n t h e t i c p a t h w a y s , s u c h as t he p r o s t a g l a n d i n s , a r e well k n o w n to have powerful effects on m a m m a l i a n i m m u n e r e s p o n s e s ( S t r o m et al., 1977; P l a u t , 1987). I t w a s of in t e res t to us to d e t e r m i n e if e icos inoids h a d s imi l a r effector o r r e g u l a t o r y effects o n t h e r o a c h i m m u n e r e s p o n s e . T h e a p p r o a c h w a s to t r e a t a n i m a l s w i t h d e x a m e t h a s o n e (dex) , w h i c h is a gene ra l i zed i n h i b i t o r of e icos inoids s ince it in terferes w i t h ar -a c h a d o n i c acid re lease , a n d obse rve w h a t effect t he i n h i b i t o r h a d o n x e n o ­graft re jec t ion in t he roach . A n i m a l s w e r e t r e a t e d w i t h two different doses of d e x e i t he r 24 h r p r i o r to graf t ing , s i m u l t a n e o u s l y w i t h graf t ing , o r 12 h r pos tg ra f t ing . A n i m a l s in jected w i t h 0.2 m g / m l of d e x showed a severely r e d u c e d c a p a b i l i t y for re jec t ing xenogra f t s , n o m a t t e r w h e n they rece ived t h e d e x ( K a r p et al., 1993). P re in jec ted a n i m a l s h a d on ly a 3 5 % r a t e of re jec t ion , s i m u l t a n e o u s h a d on ly 1 7 % , a n d pos t in jec ted h a d on ly 2 1 % , w h e r e a s u n ­t r e a t e d con t ro l s showed n o r m a l r a t e s of re jec t ion. H o w e v e r , a t a c o n c e n t r a ­t ion of 0.02 m g / m l , d e x showed a different p a t t e r n of resu l t s . W h e n t h e low d o s e w a s g iven pregraf t , d e x ac tua l ly e n h a n c e d graft re jec t ion w i t h a r a t e of 8 8 % . W h e n t h e low dose of d e x w a s g iven s i m u l t a n e o u s l y w i t h graf t ing o r 12 h r pos tgraf t , t h e effects w e r e s imi l a r to t h a t of t he h igh dose of d e x , in t h a t re jec t ion w a s o n c e m o r e i nh ib i t ed , w i t h r a t e s fall ing to 30 a n d 3 3 % , r e spec ­tively. By t h e use of d i r ec t cell c o u n t i n g , we k n o w t h a t d e x is n o t d i r ec t ly cy to tox ic to h e m o c y t e s a n d t h u s is n o t cu r t a i l i ng t h e graft r e s p o n s e in th is way. R a t h e r , it w o u l d s e e m t h a t d e x is s h u t t i n g d o w n the graft r e s p o n s e in s o m e u n d e t e r m i n e d r e g u l a t o r y way. T h e use of m o r e specific i nh ib i t o r s in t h e fu tu re will a l low us to identify w h e t h e r it is t he p r o d u c t s of t h e cyclooxy-g e n a s e o r l i poxygenase p a t h w a y s (or b o t h ) t h a t a r e involved in th is p h e n o m ­e n o n . I n a d d i t i o n , t h e differential effects of t h e low dose of d e x m i g h t a l low us to d issec t t h e r e s p o n s e i n t o its v a r i o u s c o m p o n e n t s (i .e. , r ecogn i t i on ve r sus effector func t ion) so t h a t w e m i g h t even tua l ly u n d e r s t a n d h o w insec t i m m u ­nocy te s work .

Page 318: Parasites and Pathogens of Insects. Parasites

314 Richard D. Karp

IV. Discussion and Conclusions: Where Do We Go from Here?

T h e resu l t s f rom severa l different s tud ies conv inc ing ly i n d i c a t e t h a t long-lived insec ts , s u c h as cockroaches , have t he abi l i ty to r ecogn ize a n d reject xenograf t s . O u r ex tens ive s tud ies m a k e it very c lear t h a t roaches a lso possess t he abi l i ty to recognize a l logeneic differences a n d r e s p o n d to t h e m v ia m e c h ­a n i s m s t h a t d i sp l ay t he cha rac te r i s t i c s of t r ue a d a p t i v e ce l l -med ia t ed i m m u ­ni ty ( G e o r g e et aL, 1987; Howcrof t a n d K a r p , 1987). T h e rea l s ignif icance of these f indings goes b e y o n d the o b s e r v a t i o n t h a t th is a n i m a l h a s t he ab i l i ty to reject t r a n s p l a n t e d a l logeneic t i ssue . M o r e i m p o r t a n t l y , it impl ies t h a t roaches have evolved a su rve i l l ance m e c h a n i s m w h e r e b y they c a n recogn ize a n t i g e n i c c h a n g e s on the i r cells o r t i ssues t h a t have c o m e a b o u t t h r o u g h m u t a t i o n or s o m e o t h e r t ype of u n w a n t e d modi f ica t ion . S ince s u c h modi f ica­t ions m i g h t cons t i t u t e a t h r e a t to t he wel l -be ing of t h e o r g a n i s m , a func t ion­ing su rve i l l ance sys t em wou ld recognize these c h a n g e s a n d s t i m u l a t e defen­sive c o u n t e r m e a s u r e s to r emove t h e m .

O u r fu ture s tud ies will focus on the m e c h a n i s m s involved in t he c o c k r o a c h graft r e sponse . We need to identify t he cell type t h a t ac tua l ly m e d i a t e s t h e r e s p o n s e , a s well as define t he m o l e c u l a r c o m p o n e n t s , s u c h as r e c e p t o r s , t h a t a r e r e spons ib l e for r ecogn i t ion of fore ignness . T h e use of r a d i a t i o n c h i m e r a s a n d pass ive t ransfer s tud ie s , as m e n t i o n e d ear l ier , will hopeful ly p rove useful in ident i fy ing t h e i m m u n o c y t e t h a t is r e spons ib l e for graft re jec t ion in t he roach . T h e fact t h a t s u c h cells c a n specifically reject foreign grafts obv ious ly m e a n s t h a t a cell-surface r ecep to r m u s t b e involved in d i s t i n g u i s h i n g self f rom non-self. I n th is r e g a r d , r ecen t s tud ies in o u r l a b i n d i c a t e t h a t x e n o -graf ted roaches show a n inc reased i n d u c t i o n of a 102-kDa h e m o l y m p h p r o ­tein 14 d a y s p o s t t r a n s p l a n t a t i o n ( H a r j u a n d K a r p , 1993). T h e 102-kDa p r o ­tein b a n d is t he s a m e o n e t h a t is so closely a s soc ia t ed w i t h t h e a d a p t i v e h u m o r a l r e sponse in t he roach t h a t is i n d u c e d by t h e inject ion of so lub le p r o t e i n s ( D u w e l - E b y et aL, 1991). T h i s ra ises t h e poss ib i l i ty t h a t t h e m o l e ­cule a s soc ia t ed w i th h u m o r a l i m m u n i t y in t he roach m a y a lso serve as a cell-surface r e c e p t o r in ce l l -med ia t ed r e sponses . Fol low-up s tud ie s , n o w in p r o ­gress , will be ab l e to m a k e those d i s t inc t ions .

W i t h t h e p r o s p e c t s of so m a n y i m p o r t a n t issues n e e d i n g to b e a d d r e s s e d , t he fu ture looks very b r i g h t for i n v e r t e b r a t e t r a n s p l a n t a t i o n i m m u n o l o g y . We have excel lent a n i m a l m o d e l s a t o u r d i sposa l , such as insec ts , w h i c h c a n b e c u l t u r e d in the l a b , t h u s avo id ing the v ic iss i tudes of s t u d y i n g a n i m a l s from the wi ld . T h e t echno logy t h a t h a s b e e n deve loped a t t he cell a n d m o l e c u l a r levels is n o w fully access ible for u se in s tud ie s o n i n v e r t e b r a t e s . T h u s , w e s t a n d po ised to ask s o m e very soph i s t i ca t ed q u e s t i o n s c o n c e r n i n g t h e evolu-

Page 319: Parasites and Pathogens of Insects. Parasites

13. The Response to Foreign Tissue Transplants in Insects 315

t ion of a d a p t i v e i m m u n i t y , w i t h t h e e x p e c t a t i o n of s o m e very exc i t ing a n d

r evea l ing resu l t s to c o m e .

Acknowledgments

The work described in this chapter that has emanated from our laboratory was supported by NSF research grants PCM 8316140 and DCB 8702382, N I H research grant G M 39398, and the University of Cincinnati Foundation Fund for Comparative Immunology.

References

Carton, Y. (1976). Isogenic, allogenic and xenogenic transplants in insect species. Transplantation 21:17-22 .

Carton, Y., and Bouletreau, M. (1985). Encapsulation ability of Drosophila melanogaster: A genetic analysis. Dev. Comp. Immunol. 9:211-219.

Christensen, Β. M., Forton, K. F., Lafond, Μ. M., and Grieve, R. B. (1987). Surface changes on Brugia pahangi microfilariae and their association with immune evasion in Aedes aegypti. J. Invertebr. Pathol. 49:14-18 .

Davies, D. H., and Siva-Jothy, Μ. T. (1991). Encapsulation in insects: Polydnaviruses and encapsulation-promoting factors. In "Immunology of Insects and Other Arthropods" (A. P. Gupta, ed.), pp. 119-132. CRC Press, Boca Raton, FL.

Duwel-Eby, L. E., Faulhaber, L. M., and Karp, R. D. (1991). Adaptive humoral immunity in the American cockroach. In "Immunology of Insects and Other Arthropods" (A. P. Gupta, ed.), pp. 385-402. CRC Press, Boca Raton, FL.

Edson, Κ. M., Vinson, S. B., Stoltz, D. B., and Summer, M. D. (1980). Virus in a parasitoid wasp: Suppression of the cellular immune response in the parasitoid's host. Science 2 1 1 : 5 8 2 -583.

Eppensteiner, J. M., and Karp, R. D. (1989). The effect of gamma irradiation on the xenograft response in the American cockroach. J. Insect Physiol. 35:81-86 .

George, J. F., Karp, R. D., and Rheins, R. A. (1984). Primary integumentary xenograft reac­tivity in the American cockroach, Periplaneta americana. Transplantation 37:478-484.

George, J. F., Howcroft, Τ. K., and Karp, R. D. (1987). Primary integumentary allograft reactivity in the American cockroach, Periplaneta americana. Transplantation 43:514-519.

Harju, Μ. Α., and Karp, R. D. (1993). J. Insect Physiol, (in press). Hartman, R. S., and Karp, R. D. (1989). Short-term immunologic memory in the allograft

response of the American cockroach, Periplaneta americana. Transplantation 47:920-922 . Hepburn, H. R. (1985). Structure of the integument. In "Comprehensive Insect Physiology,

Biochemistry and Pharmacology" (G. A. Kerkut and L. I. Gilbert, eds.), Vol. 3, pp. 1-58. Pergamon, New York.

Howcroft, Τ. K., and Karp, R. D. (1987). Demonstration of cell-mediated cytotoxicity to al­logeneic and xenogeneic tissue in the American cockroach, Periplaneta americana, using a combination in vivo/in vitro assay. Transplantation 44:129-135.

Jones, S. E., and Bell, W. J. (1982). Cell-mediated immune-type response of the American cockroach. Dev. Comp. Immunol. 6:35—42.

Karp, R. D., Manbeck, M. L. Barge, J. L. (1993). (in preparation). Lackie, A. M. (1979). Cellular recognition of foreignness in two insect species, the American

cockroach and the desert locust. Immunology 36:909-914. Lackie, A. M. (1983a). Effect of substratum wettability and charge on adhesion in vitro and

encapsulation in vivo by insect haemocytes. J. Cell Sci. 63:181-190.

Page 320: Parasites and Pathogens of Insects. Parasites

316 Richard D. Karp

Lackie, A. M. (1983b). Immunological recognition of cuticular transplants in insects. Dev. Comp. Immunol. 7:41-50.

Lackie, A. M., Tackle, G., and Tetley, L. (1985). Haemocyte encapsulation in the locust Schis-tocerca gregaria (Orthoptera) and in the cockroach Periplaneta americana (Dictyoptera). Cell Tissue Res. 240:343-351.

Plaut, M. (1987). Lymphocyte hormone receptors. Annu. Rev. Immunol. 5:621-669. Rizki, R. M., and Rizki, Τ. M. (1984). Selective destruction of a host blood cell type by a

parasitoid wasp. Proc. Natl. Acad. Sci. U.S.A. 81:6154-6158. Salt, G. (1963). Experimental studies in insect parasitism. XII . The reactions of six exop-

terygote insects to an alien parasite. J. Insect Physiol. 9:647-669. Salt, G. (1964). The ichneumonid parasite Nemeritis canescens (Gravenhorst) in relation to the wax

moth Galleria mellonella (L.). Trans. R. Entomol. Soc. London 116:1-14. Salt, G. (1965). Experimental studies on insect parasitism. XIII . The haemocytic reaction of a

caterpillar to eggs of its habitual parasite. Proc. R. Soc. London, Ser. Β 162:303-318. Scott, Μ. Τ (1971). Recognition of foreignness in invertebrates: Transplantation studies using

the American cockroach (Periplaneta americana). Transplantation 11:78-86. Strom, Τ. B., Carpenter, C. B., Cragoe, E.J.,Jr., Norris, S., Devlin, R., and Perper, R.J. (1977).

Suppression of in vivo and in vitro alloimmunity by prostaglandins. Transplant. Proc. 9 :1075-1079.

Tackle, G. B. (1988). Studies on the cellular immune responses of insects toward the insect pathogen Trypanosoma rangeli. J. Invertebr. Pathol. 51:64-72 .

Thomas, I. G., and Ratcliffe, N. A. (1982). Integumental grafting and immunorecognition in insects. Dev. Comp. Immunol. 6:643-654.

Page 321: Parasites and Pathogens of Insects. Parasites

Chapter 14

Regulation of Insect Hemolymph Phenoloxidases Manickam Sugumaran Department of Biology University of Massachusetts at Boston Harbor Campus Boston, Massachusetts

Michael R. Kanost Department of Biochemistry Kansas State University Manhattan, Kansas

I. Introduction

II. Prophenoloxidase Activation A. Prophenoloxidase B. Prophenoloxidase Activating Enzyme C. Prophenoloxidase Cascade D. Triggering of the Cascade E. Lipids as Modulators F. Compartmentalization G. Is the Prophenoloxidase System

a Recognition Mechanism?

III. Control Mechanisms of the Cascade A. Introduction B. Protease Inhibitors C. Prophenoloxidase Inhibitor D. Dopachrome Conversion Factor E. Quinone Isomerase

IV. Conclusion References

In sec t s d o n o t possess c o m p l i c a t e d i m m u n o g l o b u l i n s to tackle i n v a d i n g p a r a ­sites a n d o t h e r m i c r o o r g a n i s m s , b u t s e e m to have a w i d e s p e c t r u m of o t h e r defense m e c h a n i s m s . D u r i n g the defense reac t ion , t h e a t t a c k i n g foreign o b ­j e c t is often found e n c a p s u l a t e d a n d d a r k e n e d . T h e d a r k p i g m e n t is i n v a r i a ­bly a s s u m e d to b e m e l a n i n . T h e r e f o r e , m e l a n i n a n d the e n z y m e s t h a t a r e r e s p o n s i b l e for i ts syn thes i s , name ly , p h e n o l o x i d a s e s , a r e c o n s i d e r e d a s essen­t ial c o m p o n e n t s of t h e insec t ' s defense m e c h a n i s m . P h e n o l o x i d a s e u s u a l l y o c c u r s as a n inac t ive p r o e n z y m e in t h e h e m o l y m p h a n d is ac t iva t ed d u r i n g a n i m m u n e r e s p o n s e . S o m e a u t h o r s have even invoked p r o p h e n o l o x i d a s e as p a r t of t h e non-se l f r ecogn i t i on m e c h a n i s m s of insec t s . G i v e n s u c h a n i m p o r ­t a n t ro le in t h e insec t ' s defense s y s t e m , it is essen t ia l to u n d e r s t a n d t h e m o l e c u l a r m e c h a n i s m s of p h e n o l o x i d a s e ac t iva t ion , t h e fate of ac t i va t ed en­z y m e , a n d the cou r se of its r eac t ions .

U p o n r ecogn i t i on of fore ignness , a specific, as yet un iden t i f i ed factor in t h e h e m o l y m p h s e e m s to be ac t iva t ed , w h i c h in t u r n ac t iva tes a n inac t ive se r ine

Parasites and Pathogens of Insects Volume 1: Parasites 317

Copyright © 1993 by Academic Press, Inc. All rights of reproduction in any form reserved.

Page 322: Parasites and Pathogens of Insects. Parasites

318 Manickam Sugumaran and Michael R. Kanost

p r o t e a s e . T h i s se r ine p r o t e a s e ac t iva tes a n o t h e r se r ine p r o t e a s e t h a t serves as t he d i r ec t ac t iva to r of inac t ive p r o p h e n o l o x i d a s e b y c leaving a p e p t i d e of MT

= 5000 f rom it. T h e ac t iva t ion of p r o p h e n o l o x i d a s e c a n a lso b e ach ieved b y c u t i c u l a r p ro t ea se ( s ) a n d by a n a l t e r n a t e r o u t e invo lv ing p h o s p h o l i p i d s . T h e nega t ive con t ro l s eems to be exe r t ed by se r ine p r o t e a s e i nh ib i t o r s a n d o t h e r less c h a r a c t e r i z e d b iochemica l s . Ac t i va t ed p h e n o l o x i d a s e g e n e r a t e s p r i m a r i ­ly q u i n o n e s by ac t ing on d i p h e n o l i c s u b s t r a t e s found in t h e h e m o l y m p h . Q u i n o n e s , b e i n g h igh ly cy to toxic , c a n d i rec t ly kill t he foreign o r g a n i s m o r u n d e r g o p o l y m e r i z a t i o n to form p a r t of t he c a p s u l e . N e w l y d i scovered iso-m e r a s e s , namely , q u i n o n e i s o m e r a s e a n d d o p a c h r o m e t a u t o m e r a s e , s e e m to con t ro l the q u i n o n o i d react iv i ty by conve r t i ng q u i n o n e s to q u i n o n e m e t h i d e s a n d p rov ide t h e m e i the r for de toxi f ica t ion o r for o t h e r r eac t ions . Reac t i ons of q u i n o n e s a n d q u i n o n e m e t h i d e s g e n e r a t e m e l a n i n a n d / o r sc lero t in t h a t forms p a r t of t he capsu l e . T h e b i o c h e m i s t r y of these p rocesses is briefly d i scussed .

I. Introduction

In sec t s a n d o t h e r a r t h r o p o d s d o no t possess i m m u n o g l o b u l i n s to tackle in­v a d i n g p a r a s i t e s a n d o t h e r objec ts , yet t hey a r e a b l e to defend themse lves a g a i n s t foreign o r g a n i s m s by a va r i e ty of r eac t ions , s u c h as p h a g o c y t o s i s , e n c a p s u l a t i o n , n o d u l e fo rma t ion , a g g l u t i n a t i o n , a n d syn thes i s of a n t i b a c ­ter ia l p r o t e i n s ( W h i t c o m b et al., 1974; C o o m b e et al., 1984; G o t z a n d B o m a n , 1985; Ratcliffe et al., 1985; G o t z , 1986; C h r i s t e n s e n a n d N a p p i , 1988; G u p t a , 1988; Lack ie , 1988; B o m a n et al., 1991; S c h m i d t a n d T h e o p o l d , 1991). T h e c o m m o n defense reac t ion a g a i n s t p a r a s i t e s a n d o t h e r foreign objec ts t h a t a r e too l a rge to b e p h a g o c y t o s e d in t he insect h e m o c o e l is e n c a p s u l a t i o n by h e m o c y t e s . C e l l u l a r capsu le s t h a t a r e fo rmed by the h e m o c y t e s a r e often found d a r k e n e d a n d h a r d e n e d ( G u p t a , 1988). S imi l a r o b s e r v a t i o n s d u r i n g h u m o r a l e n c a p s u l a t i o n have a lso b e e n m a d e (Go tz , 1986). T h e c h e m i c a l n a t u r e of t he d a r k p i g m e n t w i th in t he c a p s u l e is yet to b e e s t ab l i shed , b u t i n v a r i a b l y r e sea r che r s a s s u m e t h a t th is s u b s t a n c e is m e l a n i n p r o d u c e d b y t h e p o l y m e r i z a t i o n of p h e n o l o x i d a s e - g e n e r a t e d q u i n o n e s ( G u p t a , 1988). T h e r e ­fore m e l a n i n a n d the e n z y m e t h a t is r e spons ib l e for its b iosyn thes i s , t h a t is , p h e n o l o x i d a s e , a r e cons ide red as i n t eg ra l p a r t s of t h e insec t ' s i m m u n e sys­t e m . In te res t ing ly , p h e n o l o x i d a s e s a r e p r e s e n t in b o t h cu t ic le a n d h e m o ­l y m p h a n d a r e k n o w n to p l ay a c ruc ia l role n o t on ly in m e l a n i z a t i o n , b u t a l so in sc le ro t iza t ion of insec t cut ic le ( S u g u m a r a n , 1988, 1991a) a n d w o u n d hea l ­ing (La i -Fook , 1966).

N u m e r o u s rev iew ar t ic les o n t h e role of p h e n o l o x i d a s e s in insec t i m m u n i t y have a p p e a r e d in t he l i t e r a tu re . T h e excel lent m o n o g r a p h b y G u p t a (1988)

Page 323: Parasites and Pathogens of Insects. Parasites

14. Regulation of Insect Hemolymph Phenoloxidases 319

s u m s u p t h e l i t e r a t u r e un t i l 1988, after w h i c h p e r i o d t h e r e a d e r s c a n refer to t h e a r t i c les by S u g u m a r a n (1990) a n d A s h i d a a n d Y a m a z a k i (1990) . B e c a u s e t h e sub jec t m a t t e r of th is book focuses o n insec ts , p i o n e e r i n g s tud i e s c a r r i e d o u t b y S o d e r h a l l a n d his assoc ia tes ( J o h a n s s o n a n d S o d e r h a l l , 1989) o n t h e p a r t i c i p a t i o n of p h e n o l o x i d a s e in c r u s t a c e a n i m m u n i t y a r e n o t r ev iewed h e r e .

II. Prophenoloxidase Activation

A. Prophenoloxidase

T h e r e a r e t h r e e k i n d s of p h e n o l o x i d a s e s : m o n o p h e n o l m o n o o x y g e n a s e , o -d ipheno lox idase , a n d jb -d iphenolox idase ( laccase) . M o n o p h e n o l m o n o o x y -g e n a s e s , s u c h as t y ros inase , a lso possess t h e o -d ipheno lox idase activity, b u t t h e o -d ipheno lox idase does n o t necessar i ly possess m o n o p h e n o l m o n o o x y ­g e n a s e activity. Final ly , laccases , w h i c h show pre fe rence for />-diphenols , c a n a lso r ead i ly a t t a c k t h e o-d iphenols . T h e r e f o r e , t hey possess o -d ipheno lox idase ac t iv i ty as well . W h i l e t e s t ing t h e p h e n o l o x i d a s e activity, if o -d iphenols s u c h as d o p a o r d o p a m i n e a r e used as s u b s t r a t e s , it is infer red t h a t t h e o-d i p h e n o l o x i d a s e act iv i ty of all t h r e e e n z y m e s will b e d e t e c t e d . S u c h a s says will n o t d i s t i n g u i s h t h e t h r e e different p h e n o l o x i d a s e act iv i t ies . B e c a u s e of these c o m p l i c a t i o n s , we will use on ly t he c o m m o n t e r m p h e n o l o x i d a s e t h r o u g h o u t this text .

P h e n o l o x i d a s e u sua l ly o c c u r s as a n inac t ive p r o e n z y m e form in t h e h e m o ­l y m p h of m o s t of t he insec ts t es ted . E v i d e n c e for t h e p r e s e n c e of p r o p h -eno lox idases in t h e h e m o l y m p h of Locusta migratona (Brehe l in et al., 1989), Tenebrio molitor ( H e y n e m a n , 1965), Bombyx mori ( A s h i d a , 1971), Antheraea per-nyi ( E v a n s , 1967), Manduca sexta (Aso et al., 1985), Hyalophora cecropia (An-d e r s s o n et al., 1989), Galleria mellonella (Pye , 1974), Sarcophaga barbarta ( H u g h e s , 1976), Calliphora vicina ( T h o m s o n a n d Sin, 1970), Musca domestica ( T s u k a m o t o et al., 1986), Drosophila melanogaster (Seybo ld et al., 1975), a n d Aedes aegypti ( A s h i d a et al., 1990) is well d o c u m e n t e d . P r o p h e n o l o x i d a s e s f rom B. mori ( A s h i d a , 1971), Calliphora ( P a u a n d Eag le s , 1975), M. domestica ( T s u k a m o t o et al., 1986), a n d T. molitor ( H e y n e m a n , 1965) h a v e b e e n h igh ly pur i f ied . I n sp i t e of i ts key ro le in insec t i m m u n i t y , c i r cu l a r sc le ro t i za t ion , a n d w o u n d hea l i ng , it is r a t h e r s u r p r i s i n g t h a t t h e s tud ie s o n th is e n z y m e a r e so l imi t ed . H o w e v e r , u n d e r s t a n d a b l y , t h e difficulties a s soc i a t ed w i t h t h e p u r i ­fication of th is p r o e n z y m e h a v e severely h a m p e r e d p r o g r e s s in th is l ine of r e s e a r c h . Bes ides , p r o b l e m s a r i s ing from s p o n t a n e o u s ac t iva t ion of t h e en ­z y m e , i ts a b s o r p t i o n to g lass a n d o t h e r surfaces i n c l u d i n g gels a n d o t h e r m a t e r i a l s u s e d for c h r o m a t o g r a p h y , r a p i d d e g r a d a t i o n , a n d e v e n t u a l i nac -

Page 324: Parasites and Pathogens of Insects. Parasites

3 2 0 Manickam Sugumaran and Michael R. Kanost

t iva t ion have d e t e r r e d severa l inves t iga to rs f rom u n d e r t a k i n g a d e t a i l e d s t u d y on th is e n z y m e . M u c h of t he de ta i l ed b i o c h e m i s t r y of p r o p h e n o l o x ­idase c o m e s from the m o n u m e n t a l work of A s h i d a a n d coworkers ( A s h i d a a n d Y a m a z a k i , 1990).

B. Prophenoloxidase Activating Enzyme

O h n i s h i (1954) first d e m o n s t r a t e d t h a t in Drosophila, a p r o t e i n factor cou ld ac t iva te p r o p h e n o l o x i d a s e activity. S u b s e q u e n t work by Schwe ige r a n d K a r l -son (1962) n o t on ly conf i rmed th is o b s e r v a t i o n b u t a lso p r o v i d e d ev idence t h a t t he ac t iva t ion of the p r o e n z y m e is ach ieved by l imi ted p ro teo lys i s . L a t e r , s imi la r resu l t s were r e p o r t e d in B. mori ( A s h i d a a n d D o h k e , 1980), D. melanogaster (Seybold et al., 1975), S. barbarta ( H u g h e s , 1976), S. bullata (Sau l a n d S u g u m a r a n , 1988), M. sexta (Aso et al., 1985; S a u l a n d S u g u m a r a n , 1987), a n d Blaberus craniifer ( L e o n a r d et al., 1985b) . W o r k i n g w i t h t he silk­w o r m B. mori, A s h i d a a n d assoc ia tes successfully pur i f ied t h e p r o p h e n o l o x ­idase from the h e m o l y m p h a n d d e m o n s t r a t e d t h a t t h e ac t iva t ion of p r o p h ­eno lox idase is ach ieved by p ro teo ly t i c c leavage of t h e p r o e n z y m e ( A s h i d a a n d D o h k e , 1980). T h e ac t iva t ing p r o t e a s e from t h e l a rva l cu t ic le of t he s a m e o r g a n i s m w a s i so la ted a n d c h a r a c t e r i z e d by D o h k e (1973) , a n d t h e p r e s e n c e of a s imi l a r e n z y m e in t he h e m o l y m p h h a s b e e n d e m o n s t r a t e d b y A s h i d a a n d Yosh ida (1988) . Avai labi l i ty of pur i f ied p r o e n z y m e a n d its a c t i va to r f rom the s a m e o r g a n i s m a i d e d the e s t a b l i s h m e n t of t he p ro t eo ly t i c ac t iva t ion m e c h a ­n i s m ( A s h i d a a n d D o h k e , 1980). Ac t iva t ion by the c u t i c u l a r p r o t e a s e severed a p e p t i d e of Mr = 5000 from the p r o e n z y m e , conf i rming u n e q u i v o c a l l y t he p a r t i c i p a t i o n of " l imi t ed p ro t eo ly s i s " as a key m e c h a n i s m s of p r o p h e n o l ­ox idase ac t iva t ion . I n m o s t o t h e r insec ts tes ted , th is m o d e ce r t a in ly s eems to o p e r a t e as ev idenced by the i nh ib i t i on of ac t iva t ion by se r ine p r o ­tease inac t iva to r s such as d i i sop ropy l p h o s p h o n o f l u o r i d a t e , jb-nitrophenyl-/?-g u a n i d o b e n z o a t e , o r pheny lme thy l su l fony l fluoride. A s h i d a ' s g r o u p a lso d e m o n s t r a t e d t he o c c u r r e n c e of this r eac t ion in t h e h e m o l y m p h ( A s h i d a a n d Yoshida , 1988). In te res t ing ly , t he p r o p h e n o l o x i d a s e ac t i va t i ng e n z y m e from the h e m o l y m p h itself s eems to be p r e s e n t as a p r o e n z y m e , t h e r e b y i n d i c a t i n g t he p r e s e n c e of a c a s c a d e of e n z y m e act ivi t ies a s soc ia ted w i t h p h e n o l o x i d a s e (Yoshida a n d A s h i d a , 1986).

C. Prophenoloxidase Cascade

A l t h o u g h they d i d no t define each act ivi ty specifically, Seybo ld et al. (1975) first r e p o r t e d t he p r e s e n c e of a c a s c a d e of e n z y m e act ivi t ies a s soc i a t ed w i t h p h e n o l o x i d a s e ac t iva t ion . Yoshida a n d A s h i d a (1986) o b s e r v e d t h e m i c r o b i a l ac t iva t ion of two ser ine p ro t ea se s p r io r to p r o p h e n o l o x i d a s e ac t iva t ion in t h e

Page 325: Parasites and Pathogens of Insects. Parasites

14. Regulation of Insect Hemolymph Phenoloxidases 321

s i l kworm h e m o l y m p h . O n e of t h e p r o t e a s e s w a s ident i f ied to be t h e p r o p h ­eno lox ida se ac t iva t ing e n z y m e , w h e r e a s t he o t h e r p r o t e a s e h y d r o l y z i n g b e n -zoy la rg in ine e thy l es te r w a s t e r m e d a b e n z o y l a r g i n i n e e thy l e s t e rase . I n t e r ­estingly, ac t iv i ty of b e n z o y l a r g i n i n e e thy l e s t e rase a p p e a r e d in t h e p l a s m a p r i o r to t h e a p p e a r a n c e of p r o p h e n o l o x i d a s e ac t i va t ing e n z y m e (or p h e n o l o x ­idase ac t iv i ty) . T h u s it s eems t h a t m i c r o b i a l p r o d u c t s t r igger even tua l l y in t h e o r d e r benzoy l a r g i n i n e e thy l e s t e rase , p r o p h e n o l o x i d a s e ac t i va t i ng en ­z y m e , a n d p h e n o l o x i d a s e (Fig . 1). T h e r e f o r e , it is fairly ce r t a in t h a t p r o p h ­e n o l o x i d a s e ac t iva t ion o c c u r s in a c a s c a d e of r eac t i ons . E v i d e n c e for t h e p r e s e n c e of a s imi l a r c a s c a d e in M. sexta (Sau l a n d S u g u m a r a n , 1987) a n d S. bullata (Sau l a n d S u g u m a r a n , 1988) h a s b e e n p r o v i d e d by S u g u m a r a n ' s

FOREIGN SUBSTANCES

ZYMOGEN ACTIVE E N Z Y M E & C a 2 + MOBILIZATION

/

PRO-BAEE BAEE Λ PRE-PPAE PPAE CUTICULAR PROTEASE

X PROPHENOLOXIDASE PHENOLOXIDASE Λ

DIPHENOL QUINONE

\ \

MELANIN CAPSULE

Figure Ί T h e prophenoloxidase cascade. LPS, peptidoglycan, β-l,3-glucans, a n d / o r other molecules present on foreign substances trigger the prophenoloxidase system of the host by a cascade of reactions. The less-defined initial reaction leads to mobiliza­tion of calcium and the activation of enzyme activity that triggers the pro-benzoyl arginine ethyl esterase (PRO-BAEE) to active enzyme. This serine protease in turn activates preprophenoloxidase activating enzyme (PRE-PPAE) to the active form. The active PPAE proteolytically activates prophenoloxidase. Prophenoloxidase can also be activated by the cuticular protease directly. Active phenoloxidase catalyzes the conversion of diphenols to quinones and provides them for melanin capsule forma­tion.

Page 326: Parasites and Pathogens of Insects. Parasites

3 2 2 Manickam Sugumaran and Michael R. Kanost

g r o u p . I n b o t h of these o r g a n i s m s , a t leas t o n e se r ine p r o t e a s e s eems to b e ac t iva t ed p r io r to t he ac t iva t ion of p r o p h e n o l o x i d a s e . A n d e r s s o n et al. (1989) have s h o w n the p r e s e n c e of two ac t iva to r p r o t e i n s in H. cecropia.

D. Triggering of the Cascade

A t th is p o i n t it is no t c lear how the first p r o t e a s e in t he s i l kworm t h a t s eems to be p r e s e n t in t he inac t ive p r o e n z y m e form is ac t iva ted b y m i c r o b i a l p r o d ­uc t s . B u t t he re is n o d o u b t t h a t p r o p h e n o l o x i d a s e is t r igge red b y different m i c r o b i a l p r o d u c t s . For such t r igger ing , d iva l en t c a l c i u m seems to b e essen­t ial ( L e o n a r d et al., 1985a; Yosh ida a n d A s h i d a , 1986; S a u l a n d S u g u m a r a n , 1987, 1988; A s h i d a a n d Yosh ida , 1988; Brehe l in et al, 1989; B r o o k m a n et al, 1989; A s h i d a a n d Y a m a z a k i , 1990; S u g u m a r a n , 1990). T h e r e f o r e , it is p r o b a ­ble t h a t s o m e c a l c i u m - d e p e n d e n t e n z y m e act iv i ty a p p e a r s u p o n i n t e r ac t i on of t he foreign objec ts w i t h t he insec t h e m o l y m p h c o m p o n e n t s . Severa l m i c r o ­bia l p r o d u c t s , s u c h as bac te r i a l , fungal , a n d yeas t cel l-wall c o m p o n e n t s , c a u s e p r o p h e n o l o x i d a s e ac t iva t ion in t h e h e m o l y m p h (see Fig . 1).

I t is well k n o w n a m o n g r e sea r che r s w o r k i n g in t he a r e a of insec t i m m u n i t y t h a t it is essent ia l to m a i n t a i n pyrogen-f ree cond i t i ons w h e n h a n d l i n g insec t b lood cells. Yet, it is s u r p r i s i n g to see severa l a u t h o r s r e p o r t i n g t h e fa i lure of l i popo lysaccha r ide ( L P S , a cel l-wall c o m p o n e n t of g r a m - n e g a t i v e bac t e r i a ) to ac t iva te p r o p h e n o l o x i d a s e . I n B. mori (Yoshida a n d A s h i d a , 1986), G. mellonella ( B r o o k m a n et al, 1989), Schistocerca gregaria ( D u l a r a y a n d Lack ie , 1985), a n d S. bullata (Sau l a n d S u g u m a r a n , 1988), for e x a m p l e , L P S does n o t s e e m to ac t iva te t he p r o p h e n o l o x i d a s e . However , in M. sexta (Sau l a n d S u g ­u m a r a n , 1987), r a p i d ac t iva t ion of p r o p h e n o l o x i d a s e b y L P S h a s b e e n re ­p o r t e d .

O n e of us p o i n t e d o u t t h a t L P S - m e d i a t e d p r o p h e n o l o x i d a s e ac t iva t ion is t r a n s i e n t in n a t u r e (Sau l a n d S u g u m a r a n , 1987) a n d o n e c a n easi ly miss t h e activity. A l t h o u g h it is no t c lear w h y th is p h e n o m e n o n o c c u r s , it h a s b e e n i n d e p e n d e n t l y obse rved in a n o t h e r insect as well (Brehe l in et al, 1989). S ince ac t iva ted p h e n o l o x i d a s e is very sticky, it c a n a d h e r e to foreign objec ts a n d o t h e r cell surfaces a n d g e n e r a t e cy to tox ic q u i n o n o i d c o m p o u n d s to kill t h e i n t r u d e r . S u c h toxic p r o d u c t s of this e n z y m e act iv i ty a r e a lso d a n g e r o u s for t h e hos t . T h e r e f o r e , it is likely t h a t t h e ac t iva ted p h e n o l o x i d a s e is shor t - l ived (Sau l a n d S u g u m a r a n , 1987), s imi la r to s o m e of t he c o m p l e m e n t p a t h w a y c o m p o n e n t s found in t he b lood of h i g h e r a n i m a l s . T h e r e f o r e , use of d i s con ­t i n u o u s a s says c a n c a u s e lack of de t ec t i on of p h e n o l o x i d a s e activity. I n a d d i ­t ion , o t h e r factors c a n a lso c a u s e m i s l e a d i n g resu l t s as exempl i f ied b y t h e s tud ie s in locus t s . Ini t ial ly, Ratcliffe's g r o u p ( B r o o k m a n et al, 1989) r e p o r t e d a lack of L P S ac t iva t ion in locus t s , w h e r e a s Brehe l in et al. (1989) d e m o n ­s t r a t e d t h a t L P S c a u s e d p r o p h e n o l o x i d a s e ac t iva t ion in t h e s a m e o r g a n i s m .

Page 327: Parasites and Pathogens of Insects. Parasites

14. Regulation of Insect Hemolymph Phenoloxidases 323

Since t h e l a t t e r w o r k e r s d i rec t ly col lec ted t he h e m o l y m p h w i t h o u t t h e use of a n y a n t i c o a g u l a n t s , w h e r e a s B r o o k m a n et al. (1989) u sed a n a n t i c o a g u l a t i o n buffer cons i s t ing of e t h y l e n e d i a m i n e t e t r a - a c e t a t e , c i t r a t e , a n d g lucose , it is likely t h a t s o m e of t h e c o m p o n e n t s of a n t i c o a g u l a n t buffer in te r fe red w i t h t h e ac t iva t ion t r igge r ing m e c h a n i s m s a n d i n h i b i t e d t he p r o p h e n o l o x i d a s e ac t iva­t ion . N e v e r t h e l e s s , u p o n re inves t iga t ion in t h e s a m e o r g a n i s m , Ratcliffe 's g r o u p d i d obse rve t h a t L P S c a u s e d p r o p h e n o l o x i d a s e ac t iva t ion in w h o l e b lood (Ratcliffe et al., 1991).

T h e L P S ac t iva t ion m u s t be m e d i a t e d b y s o m e sor t of a r ecogn i t i on m e c h ­a n i s m . Accord ing ly , a n L P S b i n d i n g p r o t e i n from t h e h e m o l y m p h of t h e A m e r i c a n cock roach h a s b e e n i so la ted by N a t o r i ' s g r o u p ( J o m o r i et al., 1990), b u t its r e l a t i o n s h i p w i t h t he p r o p h e n o l o x i d a s e c a s c a d e h a s n o t yet b e e n def ined. C o n s i d e r a b l y m o r e b i o c h e m i c a l work h a s b e e n d o n e o n t h e t r igge r ing of t he c a s c a d e by g r a m - p o s i t i v e bac t e r i a a n d yeas t ce l lu la r c o m p o ­n e n t s . S ince a de t a i l ed a c c o u n t of these resu l t s is p r e s e n t e d in t h e a r t i c le b y A s h i d a a n d Y a m a z a k i (1990) , on ly a s h o r t a c c o u n t is g iven h e r e . T h e t r igger­ing s u b s t a n c e from g r a m - p o s i t i v e b a c t e r i a s eems to b e p e p t i d o g l y c a n (Yoshida a n d A s h i d a , 1986; B r o o k m a n et al., 1989). A s l i t t le as a few n a n o ­g r a m s p e r mil l i l i ter of p e p t i d o g l y c a n c a n ac t iva te t h e p r o p h e n o l o x i d a s e cas ­c a d e very efficiently in t he s i l kworm h e m o l y m p h . A s h i d a ' s g r o u p a lso e s t a b ­l i shed t h a t t he β -1 ,3^1υχαη r e c e p t o r s a n d the p e p t i d o g l y c a n r e c e p t o r s for t r i gge r ing p r o p h e n o l o x i d a s e a r e p r e s e n t as s e p a r a t e en t i t ies in th is o r g a n i s m (Yoshida et al., 1986). T h e β - l , 3 -g lucan b i n d i n g p r o t e i n f rom B. craniifer ( S o d e r h a l l et al., 1988) a n d B. mori ( O c h i a i a n d A s h i d a , 1988) h a s b e e n pur i f ied a n d c h a r a c t e r i z e d , b u t t h e c h a r a c t e r i z a t i o n of a p e p t i d o g l y c a n b i n d ­ing p r o t e i n is ye t to be r e p o r t e d . Also n o t c lea r a t th is p o i n t is w h e t h e r L P S r e c e p t o r s a r e t h e s a m e as those for p e p t i d o g l y c a n o r p- l , 3 -g lucan r e c e p t o r s o r i n d e p e n d e n t r e cep to r s . O b v i o u s l y m u c h w o r k n e e d s to b e d o n e in th is a r e a .

B a s e d o n t h e foregoing d i scuss ion , a t en t a t i ve s c h e m e c o n t a i n i n g al l t h e c o m p o n e n t s of t he c a s c a d e c a n be dev i sed as s h o w n in F ig . 1. U p o n recogn i ­t ion of foreign ob jec t s , c e r t a in c o m p o n e n t s in t he h e m o l y m p h s e e m to b e ­c o m e ac t iva t ed , w h i c h in t u r n t r igger in success ion two se r ine p r o t e a s e s a n d p r o p h e n o l o x i d a s e . A c t i v a t e d p h e n o l o x i d a s e a t t acks i ts s u b s t r a t e a n d p r o ­d u c e s cy to tox ic q u i n o n e s to kill t h e i n t r u d e r . Al te rna t ive ly , t h e q u i n o n e s c a n p o l y m e r i z e a n d form t h e c a p s u l e . T h e con t ro l m e c h a n i s m s of th is c a s c a d e a r e d i scussed in Sec t ion I I I .

E. Lipids as Modulators

A c t i v a t i o n of insec t p r o p h e n o l o x i d a s e h a s b e e n extens ive ly r ev iewed b y B r u n e t (1980) . T w o types of ac t iva t ion p rocesses have b e e n c h a r a c t e r i z e d so

Page 328: Parasites and Pathogens of Insects. Parasites

3 2 4 Manickam Sugumaran and Michael R. Kanost

far. O n e is t he p r o t e a s e - m e d i a t e d ac t iva t ion e l a b o r a t e d in ear l i e r p a g e s . T h e second is t he s p o n t a n e o u s a n d s o m e t i m e s u n a c c o u n t a b l e ac t iva t ion b y p h y s i ­cal t e c h n i q u e s . As ea r ly as 1945, B o d i n e d e s c r i b e d the ac t iva t ion of l a t e n t p h e n o l o x i d a s e f rom t h e d i a p a u s i n g eggs of t h e g r a s s h o p p e r Melanoplus differ-entialis by surface-act ive r e a g e n t s , h e a t , a n d heavy m e t a l s . L a t e r F u n a t s u a n d I n a b a (1962) ou t l i ned the ac t iva t ion οϊ Musca p r o p h e n o l o x i d a s e by s o d i u m d o d e c y l sulfate , w h e r e a s H e y n e m a n a n d V e r c a u t e r e n (1964) d e m o n s t r a t e d t h e ac t iva t ion of l a t en t p h e n o l o x i d a s e f rom T. molitor b y s o d i u m o lea te . A m o n g the fat ty ac ids tes ted , o lea te w a s t he m o s t p o t e n t ac t iva to r of Tenebrio p h e n o l o x i d a s e ( H e y n e m a n a n d V e r c a u t e r e n , 1968). S o d i u m d o d e c y l sulfate as well as o lea te a lso c a u s e d the ac t iva t ion of Lucilia cuprina p r o e n z y m e ( H a c k m a n n a n d G o l d b e r g , 1967), b u t s u b s e q u e n t work by n u m e r o u s re ­s e a r c h e r s led to t he e s t a b l i s h m e n t of p r o t e a s e s as t he t r u e ac t iva to r s of p r o p h ­eno lox idase . As a resu l t , t he ear ly s tud ies on ac t iva t ion m e c h a n i s m s involv­ing phys i ca l t r e a t m e n t s w e r e comple t e ly i gno red for phys io log ica l p u r p o s e s . Howeve r , very recent ly, wh i l e e x a m i n i n g t h e p r o p e r t i e s of l a t e n t p r o p h ­eno lox idase f rom the left col le ter ia l g l a n d of Periplaneta americana, S u g u m a r a n a n d N e l l a i a p p a n (1990) found t h a t th is p r o e n z y m e is specifically ac t i va t ed by t r e a t m e n t w i th d e t e r g e n t s such as s o d i u m dodecy l sulfate be low the i r cr i t ica l mice l l a r c o n c e n t r a t i o n s . T h e y cou ld no t find a n y ev idence for a n e n d o g e n o u s p r o t e a s e ac t iva to r in th is sys t em. A t h o r o u g h s e a r c h led to t h e d iscovery t h a t low c o n c e n t r a t i o n s of p h o s p h o l i p i d s se rved as effective ac t iva­tors of n o t on ly cockroach p r o p h e n o l o x i d a s e , b u t a lso t h e p r o p h e n o l o x i d a s e from a va r i e ty of insec ts a n d c r u s t a c e a n s ( M . S u g u m a r a n a n d K . N e l l a i a p p a n , 1990, 1991; M . S u g u m a r a n , u n p u b l i s h e d resu l t s ) . A m o n g t h e p h o s p h o l i p i d s tes ted , lysolec i th in p roved to b e t he m o s t p o t e n t ac t iva to r of l obs t e r p r o p h ­eno lox idase ( S u g u m a r a n a n d N e l l a i a p p a n , 1991). I t a p p e a r s t h a t c h e m i c a l d e t e r g e n t s s u c h as s o d i u m dodecy l sulfate o r b io logica l d e t e r g e n t s s u c h as fat ty ac ids a n d p h o s p h o l i p i d s a t very low c o n c e n t r a t i o n s b i n d to t h e p r o p h ­eno lox idase a n d a l t e r its c o n f o r m a t i o n so as to a l low t h e e n z y m e to expose its act ive si te for its s u b s t r a t e s . S u c h accessibi l i ty is p e r h a p s b r o u g h t a b o u t by p ro t eo ly t i c e n z y m e s by sp l i t t ing off t he " i n h i b i t o r y p e p t i d e " r eg ion f rom t h e p r o e n z y m e . T h u s , i r respec t ive of w h a t t r e a t m e n t it is, p r o p h e n o l o x i d a s e ac t iva t ion m a y b e a t t a i n e d by c o n f o r m a t i o n a l c h a n g e s t h a t l e ad to t h e e x p o ­s u r e of t he act ive si te of t he e n z y m e .

Physiological ly , t he l ipid ac t iva t ion of p r o p h e n o l o x i d a s e h a s i m p o r t a n t c o n s e q u e n c e s . D u r i n g invas ion , m a n y r e sea r che r s have d e m o n s t r a t e d t h e p r e s e n c e of d a m a g e d h e m o c y t e s on o r a r o u n d the foreign ob jec t s . (Ratcliffe et al., 1985). C e l l u l a r d a m a g e c a n c a u s e t he re lease of p h o s p h o l i p a s e A 2 , w h i c h in t u r n l ibe ra te s lysolec i th in a n d free fat ty ac ids . T h e re l eased lyso lec i th in , w h i c h is o n e of t he m o s t p o t e n t b iological d e t e r g e n t s , c a n funct ion as a d i r ec t ac t iva to r of p h e n o l o x i d a s e , whi le t he free fat ty ac ids g e n e r a t e d c a n b e u s e d for t he syn thes i s e f a r a c h i d o n i c acid a n d e i cosano ids , w h i c h cou ld t r igger

Page 329: Parasites and Pathogens of Insects. Parasites

14. Regulation of Insect Hemolymph Phenoloxidases 3 2 5

fu r the r i m m u n e reac t ions as d e m o n s t r a t e d b y o t h e r s ( B l o m q u i s t et al., 1991 ; S t a n l e y - S a m u e l s o n et al., 1991).

F. Compartmentalization

Since p r o p h e n o l o x i d a s e cons t i t u t e s a n i m p o r t a n t c o m p o n e n t of t h e insec t ' s defense m e c h a n i s m , it is i m p o r t a n t to e x a m i n e its ce l lu la r loca l i za t ion . E a r ­l ier s t ud i e s b y E v a n s (1967) in G. mellonella a n d Pye (1974) in A. pernyi i n d i c a t e d t h e p r e s e n c e of t he p r o p h e n o l o x i d a s e in t h e p l a s m a fract ion of h e m o l y m p h . Subsequen t ly , A s h i d a (1981) , u s i n g c a n e s u g a r a s a s t ab i l i z ing a g e n t , r e p o r t e d t h e p r e s e n c e of this e n z y m e in t h e p l a s m a fract ion of B. mori. H o w e v e r , L e o n a r d et al. (1985b) q u e s t i o n e d t h e su i tab i l i ty of th is p r o c e d u r e a n d , u s i n g a n a n t i c o a g u l a t i o n buffer cons i s t ing of e t h y l e n e d i a m i n e t e t r a ­a c e t a t e , g lucose , a n d c i t r a t e to s e p a r a t e t h e h e m o c y t e s f rom t h e p l a s m a fract ion, c l a i m e d t h a t t he p r o p h e n o l o x i d a s e is p r e s e n t in t h e h e m o c y t e s a n d n o t in t h e p l a s m a fract ion of B. craniifer. B u t , I w a m a a n d A s h i d a (1986) , d u r i n g the i r s tud ie s on t he b iosyn thes i s of p r o p h e n o l o x i d a s e , d e m o n s t r a t e d t h a t o e n o c y t o i d s syn thes i zed this e n z y m e specifically a n d r e l eased it i n t o m e d i u m . H e n c e , it is m o s t likely t h a t p r o p h e n o l o x i d a s e is syn thes i zed b y oenocy to id s a n d sec re ted in to t he p l a s m a . Accord ing ly , u s i n g i m m u n o l o c a l -i za t ion , A s h i d a et al. (1988) conclus ive ly d e m o n s t r a t e d t h e p r e s e n c e of p r o p h e n o l o x i d a s e in t he p l a s m a u n d e r n o r m a l phys io log ica l c o n d i t i o n s . I n b o t h S. bullata a n d M. sexta, o n e of u s (Sau l a n d S u g u m a r a n , 1987, 1988; S a u l et al., 1987) d e m o n s t r a t e d t h a t t h e ma jo r i t y of p r o p h e n o l o x i d a s e is loca l ized in t he p l a s m a a n d n o t in t he cells. T h o u g h Ratcliffe 's g r o u p a s c e r t a i n e d t h e p r e s e n c e of t h e p r o p h e n o l o x i d a s e s y s t e m in t h e ce l lu la r f ract ion of locus t s ( B r o o k m a n et al., 1989), B rehe l in et al., (1989) d e m o n s t r a t e d i ts p r e s e n c e in b o t h t h e p l a s m a a n d ce l lu la r fract ions of t h e s a m e o r g a n i s m . T h e difference in t he se resu l t s is n o d o u b t d u e to t h e differences in e x p e r i m e n t a l c o n d i t i o n s e m p l o y e d b y t he se worke r s . A s s t a t e d ear l ier , Ratcliffe 's g r o u p in jec ted t h e e t h y l e n e d i a m i n e t e t r a - a c e t a t e , c i t r a t e , g lucose buffer i n to t h e o r g a n i s m s before co l lec t ing t he h e m o l y m p h , w h e r e a s Brehe l in ' s g r o u p d i rec t ly col lec ted t h e h e m o l y m p h for f rac t iona t ion s t ud i e s . I t a p p e a r s t h a t t h e a n t i c o a g u l a t i o n buffer in ter feres w i t h t h e ce l lu la r loca l i za t ion s tud i e s . T h i s as well as d i s c r e p ­anc ie s in L P S ac t iva t ion ce r t a in ly q u e s t i o n s t he w i s d o m of u s i n g a n t i ­c o a g u l a n t so lu t ions in t he s t u d y of t h e p r o p h e n o l o x i d a s e s y s t e m .

G. Is the Prophenoloxidase System a Recognition Mechanism?

T h e s p e c u l a t i o n t h a t p r o p h e n o l o x i d a s e sy s t ems cou ld serve as a r ecogn i t i on m e c h a n i s m of non-se l f m a t t e r in a n a t t r ac t i ve b u t u n s u b s t a n t i a t e d o n e ( S o d e r h a l l , 1982; Ratcliffe et al., 1984; L e o n a r d et al., 1985a) . T h e a s soc ia t ion

Page 330: Parasites and Pathogens of Insects. Parasites

3 2 6 Manickam Sugumaran and Michael R. Kanost

of p h e n o l o x i d a s e w i t h defense reac t ions of insects is well e s t ab l i shed , how­ever, t h e r e is h a r d l y a n y ev idence in t he l i t e r a tu r e to a t t r i b u t e a role for th is e n z y m e in non-se l f r ecogn i t ion . A l t h o u g h ac t iva t ion of t he p r o p h e n o l o x i d a s e sys t em in t he w a x m o t h G. mellonella by a m i c r o b i a l p r o d u c t e n h a n c e d t h e r ecogn i t ion of non-se l f m a t e r i a l (Ratcliffe et al., 1984; L e o n a r d et al., 1985a) , th is does no t serve as p roo f for its role in non-se l f r ecogn i t ion . As s t a t e d ear l ier , n o n e of t he m i c r o b i a l p r o d u c t s tes ted d i rec t ly ac t iva tes p r o p h e n o l o x ­idase ; r a t h e r they seem to b i n d to s o m e c o m p o n e n t s in p l a s m a (or o n t h e cell surface) a n d t r igger the p r o p h e n o l o x i d a s e c a s c a d e . T h e r e f o r e , if o n e accep t s t he p r e m i s e t h a t p r o p h e n o l o x i d a s e ac t iva t ion is ach ieved by a c a s c a d e of r eac t ions in t he insect ' s h e m o l y m p h , t h e n n a t u r a l l y t he role of p r o p h e n o l o x ­idase in r ecogn i t ion of non-se l f m a t t e r b e c o m e s q u e s t i o n a b l e . However , t h e r e is n o d o u b t t h a t p r o p h e n o l o x i d a s e ac t iva t ion is a c o n s e q u e n c e of non-se l f r ecogn i t ion . Accord ingly , Rizki a n d Rizki (1990) have successfully d e m o n ­s t r a t e d t h a t D. melanogaster l a rvae lacking h e m o l y m p h p h e n o l o x i d a s e act iv i ty cou ld read i ly e n c a p s u l a t e a foreign o r g a n i s m injected in to its b lood b u t cou ld n o t m e l a n i z e it. T h e r e f o r e , t he hypo thes i s t h a t p r o p h e n o l o x i d a s e serves as a m e c h a n i s m for r ecogn i t ion of fore ignness shou ld b e r e e v a l u a t e d .

III. Control Mechanisms of the Cascade

A. Introduction

C o - o c c u r r e n c e of p r o p h e n o l o x i d a s e , its s u b s t r a t e ( s ) , a n d ac t iva to r s in t he h e m o l y m p h w o u l d c a u s e u n d e s i r e d ac t iva t ion of p r o p h e n o l o x i d a s e a n d gen ­e r a t i o n of cy to tox ic q u i n o n e s . S u c h reac t ions a r e de l e t e r ious to t h e o r g a n i s m a n d h e n c e a p p r o p r i a t e con t ro l m e c h a n i s m s m u s t exist in t he o r g a n i s m s to avoid s u c h u n w a n t e d reac t ions . K e e p i n g the e n z y m e s in the i r inac t ive p r o ­e n z y m e forms, t i m e c o n s t r a i n t s on t he ac t iva ted c o m p o n e n t s , p r o t e c t i n g t h e s u b s t r a t e s f rom reac t i ng w i th the i r e n z y m e s , secre t ion of i nh ib i t o r s , a n d c o m p a r t m e n t a l i z a t i o n of different c o m p o n e n t s a r e a few of t h e w a y s to achieve these goa ls . Ava i lab le ev idence ind ica t e s t h a t all of t hese m e c h a n i s m s a r e effectively u sed in insec ts .

E v i d e n c e for t he p r e s e n c e of (a) p r o e n z y m e forms, (b) t i m e c o n s t r a i n t s o n p h e n o l o x i d a s e activity, a n d (c) c o m p a r t m e n t a l i z a t i o n h a s a l r e a d y b e e n p r e ­sen t ed . A m p l e e x a m p l e s can b e g iven for t he p r o t e c t i o n of s u b s t r a t e s . T h e ca techo l i c s u b s t r a t e s a r e s to red in t h e h e m o l y m p h as p h o s p h a t e , sulfa te , o r g lycos ide con juga tes t h a t d o n o t serve as s u b s t r a t e s for p h e n o l o x i d a s e ( K r a m e r a n d H o p k i n s , 1987). U p o n e n z y m a t i c d e b l o c k i n g of t h e p ro t ec t ive g r o u p s , free ca techo l s c a n be g e n e r a t e d a t des i r ed p laces . H y d r o l y t i c en­z y m e s s u c h as g lycos ides , p h o s p h a t a s e s , a n d sulfa tases a r e u sua l ly c o m p a r t -

Page 331: Parasites and Pathogens of Insects. Parasites

14. Regulation of Insect Hemolymph Phenoloxidases 3 2 7

m e n t a l i z e d in cells. D u r i n g invas ion by a foreign o r g a n i s m , ce l lu la r c o n t e n t s c a n b e d i s c h a r g e d to e n s u r e m i x i n g of these e n z y m e s w i t h the i r s u b s t r a t e s a n d t h e l i b e r a t e d free 0 - d i p h e n o l s c a n serve as s u b s t r a t e s for p h e n o l o x i d a s e . I n a d d i t i o n , i nh ib i t o r s s e e m to p l a y a c ruc ia l role in con t ro l l ing t h e c a s c a d e .

B. Protease Inhibitors

I t is a c o m m o n p rac t i c e to a d d h e a t - i n a c t i v a t e d h e m o l y m p h to insec t h e m o ­cyte c u l t u r e s to p r e v e n t d a r k e n i n g reac t ions ( W y a t t , 1956). B a s e d o n t h e e x t r e m e t h e r m a l s tab i l i ty of se r ine p r o t e a s e i nh ib i t o r s of Bovine P a n c r e a t i c T r y p s i n I n h i b i t o r ( B P T I ) c lass , a n d the l imi ted p ro teo ly t i c m o d e of ac t iva­t ion of p r o p h e n o l o x i d a s e , it is logical to expec t t he p a r t i c i p a t i o n of t h e r m o ­s t ab l e se r ine p r o t e a s e i nh ib i t o r s in con t ro l l i ng t he act iv i ty of p r o t e a s e s in ­volved in p r o p h e n o l o x i d a s e c a s c a d e . T h e r e f o r e , s tud ies w e r e u n d e r t a k e n to i so la te h e a t - s t a b l e p r o t e a s e i nh ib i t o r s f rom t h e h e m o l y m p h of M. sexta a n d S. bullata ( S u g u m a r a n et al., 1985; S a u l a n d S u g u m a r a n , 1986; R a m e s h et al., 1988). T h e s e a t t e m p t s led to t he i so la t ion of t h r e e B P T I t ype se r ine p r o t e a s e i n h i b i t o r s . T w o of these were i so la ted from M. sexta a n d t h e o t h e r w a s i so la ted f rom S. bullata. S u g u m a r a n et al. (1985) d e m o n s t r a t e d for t h e first t i m e d r a s ­t ic i n h i b i t i o n of p r o t e a s e - m e d i a t e d p r o p h e n o l o x i d a s e ac t iva t ion by al l t h r e e i n h i b i t o r s . I n M. sexta, o n e of these se r ine p r o t e a s e i nh ib i t o r s cou ld i nh ib i t t h e c u t i c u l a r p r o t e a s e - m e d i a t e d ac t iva t ion of p r o p h e n o l o x i d a s e , con f i rming t h e p r o p o s e d phys io log ica l role of th is i n h i b i t o r (Sau l a n d S u g u m a r a n , 1986). B rehe l i n et al. (1991) h a v e d e m o n s t r a t e d t h e p r e s e n c e of a se r ine p r o t e a s e i n h i b i t o r t h a t con t ro l s t h e p r o p h e n o l o x i d a s e ac t iva t ion in t he h e m o l y m p h of L. migratoria.

Manduca i n h i b i t o r A is a h o m o d i m e r w i t h a m o l e c u l a r w e i g h t of 14,000, w h e r e a s Manduca i n h i b i t o r Β is a m o n o m e r w i t h a m o l e c u l a r w e i g h t of 8000 . Sarcophaga i n h i b i t o r is m u c h s m a l l e r a n d closer to t h e m o l e c u l a r we igh t of B P T I . T h e p r i m a r y a m i n o acid s e q u e n c e s (pa r t i a l ) of these i n h i b i t o r s a r e s h o w n in F ig . 2. T h e act ive si te P I r e s idue for all t h r e e i n h i b i t o r s is a r g i n i n e as o p p o s e d to lys ine in B P T I ( R a m e s h et al., 1988; S u g u m a r a n , 1990). I n t e r ­est ingly, t h e ad jacen t r e s i due a t t h e act ive si te of Manduca i n h i b i t o r s a n d B P T I is a l a n i n e , w h e r e a s lys ine serves th is p u r p o s e in t h e Sarcophaga i nh ib i ­tor. T h r e e c h y m o t r y p s i n i nh ib i t o r s of t h e B P T I class h a v e b e e n i so la ted f rom B. mori a n d s e q u e n c e d (Sasak i , 1984, 1988). T h e s e i nh ib i t o r s h a v e p h e ­n y l a l a n i n e as t h e P I r e s idue . A role for these i nh ib i t o r s in r e g u l a t i o n of p r o p h e n o l o x i d a s e ac t iva t ion h a s n o t b e e n e s t ab l i shed .

Se r ine p r o t e a s e i n h i b i t o r s f rom t h e s e rp in g e n e supe r fami ly (Ca r r e l l a n d Boswel l , 1986) have b e e n ident i f ied a n d c h a r a c t e r i z e d in t w o l e p i d o p t e r a n insec t s , M. sexta a n d B. mori. Se rp in s a r e p r o t e i n s of Mr = 4 0 , 0 0 0 - 6 0 , 0 0 0 t h a t , in v e r t e b r a t e s , a p p e a r to func t ion p r i m a r i l y as r e g u l a t o r s of e n d o g e n o u s

Page 332: Parasites and Pathogens of Insects. Parasites

3 2 8 Manickam Sugumaran and Michael R. Kanost

Inhibitor 1 10 20

Manduca A A G L Υ Κ Ρ Ρ Ν Ν I Ε S Ε Ν Ε V Υ Τ G Ν Manduca Β Ε D Sarcophaga D V Κ S BPTI R Ρ D

21 30 40

Manduca A I C F L Ρ L Ε V G V C * R Α L F F R Υ G Υ

Manduca Β I C S L Ρ Ρ Ε V G Ρ C R Α G F L Κ # Α Υ Sarcophaga A C L Q Ρ Κ Ε V G Ρ C R Κ S D F V F F Υ BPTI F C L Ε Ρ Ρ Υ Τ G Ρ C Κ Α R I I R Υ F Υ

41 50 60

Manduca A D Ρ A I κ Α C Χ Ε F Μ Υ G G Χ Q - - - -Manduca Β Y S Ε L Ν Κ C Κ L F θ Υ G G C Q G Ν Ε Ν Sarcophaga Ν D A Τ Κ Α C Ε Ε F L Υ G G C R G Ν D Ν BPTI Ν A Κ A G L C Q Τ F V Υ G G C R Α Κ R Ν

61 70 80

Manduca A Manduca Β N F E T L Q A C X Q A Sarcophaga R F Ν Τ Κ Ε Ε c Ε Κ L C L BPTI Ν F Κ S Α Ε D C Μ R Τ C G G Α

# : F or Υ (position "38" of Manduca inhibitor Β ) @ : Τ or G (position "51" of Manduca inhibitor B )

Figure 2 Alignment of the protein sequences of Manduca protease inhibitors, Sarcoph­aga protease inhibitor, and Bovine Pancreatic Trypsin Inhibitor (BPTI) . T h e PI residue of the reactive site region is indicated by an asterisk.

se r ine p r o t e a s e s . For e x a m p l e , a n t i t h r o m b i n - I I I a n d C l - i n h i b i t o r f rom h u ­m a n p l a s m a a r e involved in r egu l a t i on of b lood c lo t t ing a n d c o m p l e m e n t ac t iva t ion , respectively. L ike p r o p h e n o l o x i d a s e ac t iva t ion , these a r e p a t h ­ways in w h i c h a c a s c a d e of se r ine p r o t e a s e s l eads to ac t iva t ion of a n e n z y m e t h r o u g h c leavage of a p r o e n z y m e .

Page 333: Parasites and Pathogens of Insects. Parasites

14. Regulation of Insect Hemolymph Phenoloxidases 3 2 9

A t ryps in i n h i b i t o r (Mr = 42 ,000) a n d a c h y m o t r y p s i n i n h i b i t o r (Mr = 43,000) f rom the s e rp in supe r fami ly have b e e n i so la ted f rom t h e h e m o l y m p h of B. mori (Sasak i a n d K o b a y a s h i , 1984; E g u c h i a n d S h o m o t o , 1985). T h e s e p r o t e i n s h a v e a reac t ive si te n e a r the i r C - t e r m i n a l e n d s , a t w h i c h they fo rm a c o m p l e x w i t h se r ine p r o t e a s e s . T h e c o m p l e x is s t ab l e in s o d i u m d o d e c y l sulfa te b u t n o t a t h i g h p H (Sasak i , 1985; Sasak i et al., 1987), p r o p e r t i e s in c o m m o n w i t h we l l - cha rac te r i zed h u m a n se rp ins . F o u r s e rp ins h a v e b e e n i so la ted f rom h e m o l y m p h of M. sexta ( K a n o s t , 1990a) . T w o of these p r o t e i n s a r e c h y m o t r y p s i n i nh ib i t o r s , o n e is a t r yps in inh ib i to r , a n d t h e o t h e r is a n e l a s t a se inh ib i to r , all of a p p r o x i m a t e l y Mr = 47 ,000 . A l t h o u g h these four p r o t e i n s a r e t h e m o s t a b u n d a n t s e rp ins p r e s e n t in M. sexta h e m o l y m p h , t w o -d i m e n s i o n a l gel e l ec t rophores i s a n d i m m u n o b l o t t i n g ident i f ied a p p r o x ­i m a t e l y t en p r o t e i n s of Mr = 4 5 , 0 0 0 - 4 8 , 0 0 0 t h a t r eac t w i t h a n t i b o d i e s to t h e e l a s t a se i n h i b i t o r ( K a n o s t , 1990b) .

c D N A clones for M. sexta e l a s tase i n h i b i t o r a n d the B. mori t r y p s i n i nh ib i ­to r h a v e b e e n i so la ted a n d s e q u e n c e d ( K a n o s t et al. , 1989; T a k a g i et al., 1990). T h e d e d u c e d p r o t e i n s e q u e n c e s a r e 5 6 % iden t i ca l w i t h each o t h e r (Fig . 3) a n d each insec t p r o t e i n is 2 5 - 3 0 % iden t i ca l w i t h v e r t e b r a t e s e rp in se­q u e n c e s . I n t h e reac t ive si te n e a r t h e C - t e r m i n u s , w h i c h d e t e r m i n e s t h e specificity of t h e i n h i b i t o r s , t he two insec t s e rp in s e q u e n c e s a r e q u i t e differ­en t . T h i s is cons i s t en t w i t h t he o b s e r v a t i o n t h a t in m a m m a l i a n s e rp in genes , t h e reg ion e n c o d i n g the reac t ive si te h a s d ive rged m u c h m o r e r a p i d l y t h a n t h e r e m a i n d e r of t h e gene , r e su l t i ng in a family of i nh ib i t o r s w i t h a fairly c o n s t a n t f r a m e w o r k b u t v a r i a b l e reac t ive sites r e su l t i ng in d ive r se func t ions (Hi l l a n d H a s t i e , 1987). T h e B. mori t r yps in i n h i b i t o r h a s a lys ine a t t h e P I r e s idue of t h e reac t ive si te , w h i c h d e t e r m i n e s its specificity for t r y p s i n , w h e r e ­as t h e M. sexta e l a s t a se i n h i b i t o r h a s a n a l a n i n e as t h e P I r e s idue , l e a d i n g to specificity for e l a s t a se i nh ib i t i on . A c c o r d i n g to a c o n v e n t i o n of n a m i n g ser­p i n s b a s e d o n the i r P I r e s i d u e (Ca r r e l l a n d Boswel l , 1986), these t w o p r o ­te ins m a y b e referred to as B. mori lysse rp in a n d M. sexta a l a s e r p i n .

S e r p i n s h a v e n o t yet b e e n i so la ted f rom n o n l e p i d o p t e r a n insec t s . H o w e v e r , h e m o l y m p h from insects in seven different o r d e r s c o n t a i n a b u n d a n t se r ine p r o t e a s e i n h i b i t o r ac t iv i ty a n d p r o t e i n s of Mr = 4 0 , 0 0 0 - 6 0 , 0 0 0 ( M . K a n o s t , u n p u b l i s h e d d a t a ) . P r e l i m i n a r y e x p e r i m e n t s a lso sugges t t h a t s e rp in s a r e p r e s e n t in h e m o l y m p h of D. melanogaster ( K a n o s t , 1990b) .

T h e h y p o t h e s i s t h a t s e rp ins func t ion as r e g u l a t o r s of p r o p h e n o l o x i d a s e ac t iva t ion is b a s e d o n mos t l y c i r c u m s t a n t i a l ev idence . L ike b l o o d c lo t t ing in v e r t e b r a t e s , p r o p h e n o l o x i d a s e ac t iva t ion in insec ts m u s t b e a r a p i d , local , a n d t r a n s i e n t r e s p o n s e t h a t does no t s p r e a d far f rom t h e o r ig ina l s i te . T h e fact t h a t insec t h e m o l y m p h c o n t a i n s se rp ins s imi l a r to t hose t h a t r e g u l a t e t h e se r ine p r o t e a s e s of ac t iva t ion c a s c a d e s in v e r t e b r a t e s p o i n t s t o w a r d t h e poss i ­bi l i ty of a c o m p a r a b l e ro le in t he p r o p h e n o l o x i d a s e c a s c a d e . I n s u p p o r t of

Page 334: Parasites and Pathogens of Insects. Parasites

Figur

e 3

Ali

gnm

ent o

f the

pro

tein

seq

uenc

es o

f B.

mor

i try

psin

inh

ibit

or a

nd M

. sex

ta e

last

ase

inhi

bito

r. T

he P

I re

sidu

e of

the

reac

tive

site

re

gion

is

indi

cate

d by

an

aste

risk

.

Bom

byx

1

Man

duca

1

Bom

byx

81

Man

duca

81

Bom

byx

161

Man

duca

16

1

Bom

byx

241

Man

duca

241

Bom

byx

320

Man

duca

321

80

80

160

160

240

240

319

320

Page 335: Parasites and Pathogens of Insects. Parasites

14. Regulation of Insect Hemolymph Phenoloxidases 331

th is s p e c u l a t i o n , in ject ion of a n t i b o d i e s a g a i n s t M. sexta a l a s e r p i n i n t o M. sexta l a rvae resu l t s in i n c r e a s e d p h e n o l o x i d a s e activity, sugges t i ng t h a t t h e a n t i b o d i e s d i s r u p t r e g u l a t i o n of t h e ac t iva t ion p a t h w a y ( K a n o s t , 1990b) . F u r t h e r e x p e r i m e n t s w i t h i so la ted c o m p o n e n t s of t h e p a t h w a y will b e r e ­q u i r e d to conf i rm the role of s e rp ins as r e g u l a t o r s of p r o p h e n o l o x i d a s e ac t iva ­t ion .

C. Prophenoloxidase Inhibitor

S u p p r e s s i o n of hos t p h e n o l o x i d a s e ac t iv i ty by i n v a d i n g p a r a s i t e s is a n a t t r a c ­t ive m e c h a n i s m for con t ro l of hos t defense r eac t ion exh ib i t ed by w a y of p r o p h e n o l o x i d a s e ac t iva t ion (Sal t , 1970).

S to l tz a n d C o o k (1983) d e m o n s t r a t e d t h e s u p p r e s s i o n of h o s t p h e n o l o x ­idase ac t iv i ty by h y m e n o p t e r a n p a r a s i t o i d s . T h e p a r a s i t o i d s i n t r o d u c e p o l y d n a v i r u s pa r t i c l e s i n t o t h e hos t t h a t a p p e a r to i nh ib i t p h e n o l o x i d a s e ac t iv i ty (Stol tz et al., 1984; B e c k a g e et al., 1990). T h i s resu l t c lear ly i n d i c a t e s t h a t t he p a r a s i t e s a r e e i the r a t t e m p t i n g to e v a d e or d i s r u p t t h e h o s t defense r eac t ion for the i r o w n su rv iva l . H a r d e n i n g of capsu l e s b y p h e n o l o x i d a s e r eac t ion p r o d u c t s c a n po ten t i a l ly l imi t t h e g r o w t h a n d d e v e l o p m e n t of t h e p a r a s i t e s a n d h e n c e p a r a s i t e s m i g h t h a v e a d a p t e d t h e i n h i b i t i o n of p r o p h ­eno lox idase ac t iva t ion as a s t r a t egy to c i r c u m v e n t this p r o b l e m . T h u s , in a h o s t - p a r a s i t e i n t e r ac t i on t h e i nh ib i t i on of p r o p h e n o l o x i d a s e ac t iv i ty p l ays a c ruc ia l ro le . T h e i nh ib i t i on , w h i c h cou ld o c c u r theore t i ca l ly a t different s t ages in t h e c a s c a d e , n e e d s to b e e x a m i n e d . T h e poss ib le p r e s e n c e of a p h e n o l o x i d a s e i n h i b i t o r in s u c h sys t ems is likely, b u t fu r the r s tud i e s a r e essen t ia l to e v a l u a t e this c o n t e n t i o n .

D. Dopachrome Conversion Factor

T y r o s i n e a n d its h y d r o x y l a t e d p r o d u c t , d o p a , serve as t h e p r e c u r s o r s for e u m e l a n i n b iosyn thes i s . E u m e l a n i n p i g m e n t s a r e wide ly d i s t r i b u t e d in t h e a n i m a l k i n g d o m as skin a n d h a i r p i g m e n t s . B e c a u s e of the i r free r a d i c a l n a t u r e , m e l a n i n s p r o t e c t a n i m a l s f rom d a m a g i n g so la r r a d i a t i o n ( P r o t a , 1988). A b n o r m a l i t i e s in m e l a n i n b iosyn thes i s a r e a s soc i a t ed w i t h vi t i l igo as well a s m e l a n o m a cance r . N a t u r a l l y , n u m e r o u s worke r s have d e v o t e d m u c h a t t e n t i o n to s t u d y the m e c h a n i s m of m e l a n i n b iosyn thes i s . T h e in i t ia l s t eps for m e l a n i n b iosyn thes i s w e r e e s t ab l i shed by the c lass ical w o r k of R a p e r a n d M a s o n a n d h e n c e it is ca l led t he R a p e r - M a s o n p a t h w a y ( M a s o n , 1955). T h e key r eac t ions of t h e R a p e r - M a s o n p a t h w a y a r e : (a) h y d r o x y l a t i o n of t y ros ine to d o p a , (b) o x i d a t i o n of d o p a to d o p a q u i n o n e , (c) i n t r a m o l e c u l a r cyc l iza t ion of d o p a q u i n o n e a n d s u b s e q u e n t g e n e r a t i o n of d o p a c h r o m e , (d) conve r s ion of d o p a c h r o m e to 5 ,6 -d ihydroxy indo le s , a n d (e) ox ida t ive p o l y m e r i z a t i o n of

Page 336: Parasites and Pathogens of Insects. Parasites

3 3 2 Manickam Sugumaran and Michael R. Kanost

5 ,6 -d ihydroxy indo le s . T h o u g h the first two reac t ions a r e ca t a lyzed b y u b i q ­u i tous ly p r e s e n t t y ros inase (a p h e n o l o x i d a s e ) , t h e res t of t h e r eac t ions a r e be l ieved to p r o c e e d nonenzymat i ca l ly , as c h e m i c a l o x i d a t i o n of d o p a cou ld g e n e r a t e m e l a n i n p i g m e n t s w i t h o u t t he need for a n y e n z y m e ( s ) . H o w e v e r , s tud ies d o n e in t he las t d e c a d e paved t h e w a y to t h e ident i f ica t ion of a s econd e n z y m e , namely , d o p a c h r o m e convers ion factor, as a n e w r e g u l a t o r of m e l a n o g e n e s i s (Pawelek et aL, 1980; L e o n a r d et al., 1988; A r o c a et al., 1989, 1991; A s o et al., 1989, 1990; Pawelek, 1990; S u g u m a r a n a n d S e m e n s i , 1991). D o p a c h r o m e convers ion factor f rom m a m m a l i a n sources ca ta lyzes t h e gener ­a t i on of 5 ,6 -d ihydroxy indo le -2 -ca rboxy l i c acid ( A r o c a et al., 1989, 1991; Pawelek, 1990), w h e r e a s t he e n z y m e i so la ted from insec ts s eems to p r o d u c e 5 ,6 -d ihyd roxy indo le from the s a m e s u b s t r a t e (Aso et al., 1990; S u g u m a r a n a n d S e m e n s i , 1991). R e c e n t inves t iga t ions on the m e c h a n i s m of th is conver ­sion revea l t h a t t he reac t ion p r o c e e d s t h r o u g h a q u i n o n e m e t h i d e i n t e r m e d i ­a t e ( S u g u m a r a n a n d Semens i , 1991; S u g u m a r a n , 1991b) . F i g u r e 4 shows t h e modif ied R a p e r - M a s o n p a t h w a y for t he b iosyn thes i s of m e l a n i n (Sug­u m a r a n , 1991b) . D o p a c h r o m e in t he a b s e n c e of m e t a l ions h a s a defini te life t i m e a t n e u t r a l p H . The re fo r e , p r e s e n c e of d o p a c h r o m e conver s ion factor in insec ts e n s u r e s t he faster g e n e r a t i o n of m e l a n i n p i g m e n t by r ead i ly g e n e r a t ­ing the m e l a n i n p r ecu r so r , 5 ,6 -d ihydroxy indo le .

E. Quinone Isomerase

H e m o l y m p h of insec t l a rvae c o n t a i n s n u m e r o u s ty ros ine a n d d o p a de r iva ­t ives, m a i n l y in s t o r age form for l a t e r use as c u t i c u l a r t a n n i n g p r e c u r s o r s ( K r a m e r a n d H o p k i n s , 1987). I n p a r t i c u l a r , de r iva t ives of JV-ace ty ldopamine a n d Τν - β - a l a n y l d o p a m i n e a r e wide ly found in insec t s . S ince p h e n o l o x i d a s e s a r e nonspeci f ic ( B r u n e t , 1980), t hey will a t t ack i n d i s c r i m i n a t e l y a n y of t he ca techo l i c c o m p o u n d s . N a t u r a l a b u n d a n c e of JV-ace ty ldopamine a n d Ν-β-a l a n y l d o p a m i n e in t he h e m o l y m p h m a k e s it likely t h a t these c o m p o u n d s will be ox id ized by p h e n o l o x i d a s e in pre fe rence to o t h e r s . T h e q u i n o n e s gener ­a t e d from these c o m p o u n d s d o n o t p o l y m e r i z e i n s t a n t a n e o u s l y u n d e r p h y s i ­ological cond i t i ons , b u t u n d e r g o slow t r a n s f o r m a t i o n s . As a resu l t , t hey dif­fuse slowly from t h e site of g e n e r a t i o n a n d c a n reac t w i t h th iols a n d o t h e r nuc leoph i l e s in t h e h e m o l y m p h . S u c h reac t ions c a n have de l e t e r ious effects no t on ly on t h e i n v a d i n g p a r a s i t e s b u t a lso on t h e hos t . To p r e v e n t d a m a g e to self t i ssue , insec ts m u s t have a m e a n s to deac t iva t e t he q u i n o n o i d mo lecu l e s . O n e s u c h m e c h a n i s m h a s b e e n d iscovered (Sau l a n d S u g u m a r a n , 1989a ,b , 1990). Q u i n o n e i s o m e r a s e (Sau l a n d S u g u m a r a n , 1990), a n e n z y m e exh ib i t ­ing w i d e s u b s t r a t e specificity t o w a r d its s u b s t r a t e s , 4 -a lky l -o -benzoqu inones , conve r t s t he long-l ived q u i n o n e s to shor t - l ived 2-hydroxy-jfr-quinone m e t h ­ides . Q u i n o n e m e t h i d e s , be ing h igh ly u n s t a b l e , r ead i ly a n d r a p i d l y u n d e r g o

Page 337: Parasites and Pathogens of Insects. Parasites

14. Regulation of Insect Hemolymph Phenoloxidases 3 3 3

s \

IMINOQUINONE QUINONE QUINONE METHIDE

MELANOCHROME —*- MELANIN Figure 4 Modified R a p e r - M a s o n pathway of melanogenesis. Tyrosinase catalyzes the oxidation of tyrosine to dopa and dopa to dopaquinone. The latter undergoes rapid intramolecular cyclization to form leucochrome. Oxidation of leucochrome generates dopachrome. Dopachrome conversion factor tautomerizes this compound to the quin-one methide, which can either lose carbon dioxide to form 5,6-dihydroxyindole (DHI) or simply isomerize to 5,6-dihydroxyindole-2-carboxylic acid (DHICA). Oxidation of these indoles to corresponding quinonoid species and their subsequent polymerization ensure the production of melanin via melanochrome.

M i c h a e l - 1 , 6 - a d d i t i o n reac t ions w i t h s u r r o u n d i n g nuc l eoph i l e s w i t h t h e r egen ­e r a t i o n of ca t echo l s . T h i s r eac t ion p l ays a c ruc ia l ro le in t h e sc le ro t i za t ion of insec t cu t ic le ( S u g u m a r a n , 1988, 1991a) . T h e role of q u i n o n e i s o m e r a s e w i t h r e spec t to c u t i c u l a r t a n n i n g is s u m m a r i z e d in F ig . 5.

Sc le ro t i za t ion he lps t he sof t -bodied insec t to p r o t e c t itself f rom t h e h a r s h e n v i r o n m e n t by c r e a t i n g a f o r m i d a b l e ba r r i e r . Func t iona l ly , th i s r eac t ion c a n b e u sed in insec t i m m u n i t y in two a d v a n t a g e o u s w a y s . W h e n g e n e r a t e d a t t h e

Page 338: Parasites and Pathogens of Insects. Parasites

3 3 4 Manickam Sugumaran and Michael R. Kanost

NADA

HO-

DEHYDRO NADA DEHYDRO NADA QUINONE

Η N Y

ο

HO

3

Υ

NADA QUINONE DEHYDRO NADA QUINONE METHIDE

NADA QUINONE METHIDE

c ^ ^

QUINONE METHIDE SCLEROTIZATION So ! c

i QUINONE TANNING

Figure 5 Mechanisms of cuticular tanning. Sclerotizing precursors such as 7V-acetyl-dopamine (NADA) are oxidized by phenoloxidases (1) to their corresponding quin­ones. These quinones participate in quinone tanning or serve as substrates for quinone isomerase (2). Quinone methides generated by the action of quinone isomerase partici­pate in quinone methide sclerotization or are converted into dehydro dopamine deriva­tives by quinone methide tautomerase (3). Further oxidation of dehydro NADA generates quinone and quinone methide derivatives that participate in sclerotiza­tion. These reactions are used widely to harden insect cuticle and can also be used during encapsulation reactions. C = Chemical reactions.

site of a foreign object , t he q u i n o n e m e t h i d e cou ld a t t a c h to t he i n t r u d e r ' s surface ( S u g u m a r a n , 1990). T h e ca t echo l a d d u c t s t h u s fo rmed cou ld serve as a b a s e for fu r the r r eac t ions i n c l u d i n g depos i t i on of m e l a n i n a n d sc le ro t in . Second , if t h e q u i n o n e m e t h i d e s a r e g e n e r a t e d a w a y from foreign ob jec t s , d u e to the i r i n h e r e n t reac t iv i ty w i t h wa te r , they c a n yield s ide -cha in h y d r o x y l a t e d ca techo l s t h a t a r e n o t as toxic as q u i n o n e s o r q u i n o n e m e t h i d e . T h e r e f o r e , t h e p r e s e n c e of q u i n o n e i s o m e r a s e in insec t h e m o l y m p h cou ld serve to detoxify t h e q u i n o n e s a n d to depos i t t he q u i n o n e m e t h i d e s o n foreign objec ts (Fig . 6) . Q u i n o n e i s o m e r a s e m i g h t a lso be used efficiently d u r i n g h o s t - p a r a s i t e in te r ­ac t ions . I f t he h o s t g e n e r a t e s a l k y l q u i n o n e s , t he p a r a s i t e s c a n a d a p t t h e s t r a t egy of u s i n g t h e q u i n o n e i s o m e r a s e to e i the r detoxify these q u i n o n e s o r u se t h e m to m a k e t h e c a p s u l e to p r o t e c t t hemse lves from fu r the r defensive r eac ­t ions of t h e hos t .

To pe r fo rm its task efficiently, it is a lso a d v a n t a g e o u s for t h e q u i n o n e i s o m e r a s e to c o m p l e x w i th p h e n o l o x i d a s e . E v i d e n c e for t h e ex i s t ence of a q u i n o n e i s o m e r a s e - p h e n o l o x i d a s e c o m p l e x comes from m o l e c u l a r sieve c h r o -

Page 339: Parasites and Pathogens of Insects. Parasites

14. Regulation of Insect Hemolymph Phenoloxidases 3 3 5

I I DEPOSITION ON

FOREIGN MATTER

Figure 6 Use of quinone methide in insect immunity. 4-Alkylquinones generated by the action of activated phenoloxidase (A) on catecholamine derivatives such as 7V-acetyldopamine (R = C H 3 ) or Λ^-β-alanyldopamine (R = C H 2 C H 2 N H 2 ) are con­verted by quinone isomerase (B) to quinone methides. Both quinones and quinone methides can be deposited on foreign objects to encapsulate them. Quinone isomerase in the hemolymph can also aid in destroying quinones, as the quinone methides formed react with water instantly to form nontoxic compounds.

m a t o g r a p h y (Sau l a n d S u g u m a r a n , 1989b) as well as i nh ib i t i on s tud i e s . T h e q u i n o n e i s o m e r a s e i so la ted from u n a c t i v a t e d h e m o l y m p h of S. bullata e lu tes w i t h a n a p p a r e n t MT of 80 ,000 , w h e r e a s t h e s a m e e n z y m e f rom ac t i va t ed h e m o l y m p h c o - c h r o m a t o g r a p h s w i t h p h e n o l o x i d a s e a t a h i g h e r m o l e c u l a r w e i g h t (Mr > 200 ,000) , i n d i c a t i n g poss ib le c o m p l e x f o r m a t i o n b e t w e e n these t w o p r o t e i n s . T h i s does n o t c o m e as a su rp r i s e b e c a u s e ac t iva t ed p h e n o l o x ­i d a s e is k n o w n to b e s t icky a n d b i n d s to g lass , S e p h a d e x gels , e tc . B u t w h a t is s u r p r i s i n g is t h e ab i l i ty of q u i n o n e i s o m e r a s e to con t ro l t h e ac t iv i ty of p h e ­n o l o x i d a s e . O n c e c o m p l e x e d , t h e p h e n o l o x i d a s e act ivi ty is i n h i b i t e d b y a s m u c h as 5 0 % b y q u i n o n e i s o m e r a s e (Fig . 7). T h u s , q u i n o n e i s o m e r a s e s e e m s to serve as a nega t ive con t ro l m e c h a n i s m for p h e n o l o x i d a s e as well .

IV. Conclusion

I n c o r p o r a t i o n of t hese con t ro l m e c h a n i s m s in to t he p r i m a r y p r o p h e n o l o x i d a s e c a s c a d e l eads to t h e overa l l s c h e m e of r eac t ions d e p i c t e d in F ig . 8. A c c o r d i n g to th is s c h e m e , u p o n e n t r y of foreign s u b s t a n c e s , r ecogn i t i on mo lecu le s (des ig­n a t e d ve ry b r o a d l y as z y m o g e n ) b i n d to t h e m a n d t r igger a va r i e ty of hos t -defense s y s t e m s i n c l u d i n g c a l c i u m m o b i l i z a t i o n . T h e b i o c h e m i c a l a s p e c t s of th is s t age a r e n o t ye t clarified in de ta i l , b u t s o m e of t h e a s p e c t s have b e e n

Page 340: Parasites and Pathogens of Insects. Parasites

3 3 6 Manickam Sugumaran and Michael R. Kanost

0.5 1.0 TIME (min)

Figure 7 Inhibition of phenoloxidase by quinone isomerase. A reaction mixture containing 1 mM JV-acetyldopamine and 10 μg of mushroom tyrosine in 1 ml of 0.1 Μ sodium phosphate buffer, p H 6.0, was incubated at 30°C and oxygen consumed during the reaction was continuously measured using a Clark type oxygen electrode (curve A). At the indicated time about 250 units of purified quinone isomerase from S. bullata was added (Ai). In curve B, quinone isomerase was present from the beginning of the reaction.

r ev iewed by S c h m i d t a n d T h e o p o l d (1991) . W h a t follows th is p roces s r e g a r d ­ing p r o p h e n o l o x i d a s e ac t iva t ion is fairly well e s t ab l i shed . T h e ac t iva t ion of p r o - b e n z o y l a r g i n i n e e thy l ester , p r e p r o p h e n o l o x i d a s e ac t iva t ing e n z y m e , a n d p r o p h e n o l o x i d a s e occu r s in s e q u e n c e . T h e ce l lu la r d a m a g e a n d c a l c i u m m o b i l i z a t i o n c a n ac t iva te p h o s p h o l i p a s e A 2 , w h i c h spl i ts off a r a c h i d o n i c acid from t h e ce l lu la r p h o s p h o l i p i d s . E i c o s a n o i d s p r o d u c e d from a r a c h i d o n i c acid t r igger fu r the r i m m u n e reac t ion , whi le l y o p h o s p h o l i p i d s a n d p h o s p h o l i p i d s fo rmed d u r i n g ce l lu la r d a m a g e a n d p h o s p h o l i p a s e ac t ion d i rec t ly ac t iva t e p r o p h e n o l o x i d a s e . P r o t e a s e i nh ib i t o r s p rov ide nega t ive con t ro l b y p r e v e n t i n g p r o p h e n o l o x i d a s e ac t iva t ion , w h e r e a s q u i n o n e i s o m e r a s e pa r t i a l l y con t ro l s p h e n o l o x i d a s e activity. Posit ive con t ro l for m e l a n i n a n d / o r sc le ro t in fo rma­t ion is p r o v i d e d by b o t h q u i n o n e i s o m e r a s e a n d d o p a c h r o m e conve r s ion factor. By un iden t i f i ed m e c h a n i s m ( s ) p a r a s i t e s a n d o t h e r p r e d a t o r s s e e m to i nh ib i t t he p r o p h e n o l o x i d a s e c a s c a d e (no t s h o w n in F ig . 8) .

T h i s s c h e m e r e p r e s e n t s on ly t h e con t ro l m e c h a n i s m s k n o w a t th is t i m e a n d h e n c e b y n o m e a n s c a n it b e cons ide red as c o m p l e t e . As a d d i t i o n a l r e s e a r c h is c o m p l e t e d , we a r e su re t h a t th is s c h e m e m i g h t b e c o m e m o r e c o m p l e x . A t this p o i n t we a lso like to c a u t i o n t he r e a d e r s r e g a r d i n g c e r t a i n

Page 341: Parasites and Pathogens of Insects. Parasites

14. Regulation of Insect Hemolymph Phenoloxidases 3 3 7

FOREIGN SUBSTANCES Λ ,N A(

Λ ZYMOGEN ACTIVE ENZYME & C a 2 + MOBILIZATION

PRO-BAEE BAEE PRO PLA 2

TRIGGER IMMUNE SYSTEM

\ EICOSANOIDS

" PLA2 ARACHIDONIC ACID

\ PHOSPHOLIPIDS

PRE-PPAE PPAE (& CUTICULAR PROTEASE)

LYSOPHOSPHOLIPIDS

PROTEASE INHIBITORS

PROPHENOLOXIDASE

QUINONE ISOMERASE

DIPHENOL

PHENOLOXIDASE

QUINONE

QUINONE ISOMERASE

DOPACHROME CONVERSION FACTOR •

MELANIN AND/OR SCLEROTIN

Figure 8 The prophenoloxidase cascade and its control mechanisms. Foreign sub­stances activate prophenoloxidase cascade as outlined in Fig. 1. Protease inhibitors inhibit serine proteases, thus preventing them from activating the prophenoloxidase. Cellular damage and calcium mobilization can also trigger the inactive pro-phospholipase A 2 (PRO PLA 2 ) to active P L A 2 . Lipids generated during cellular damage as well as P L A 2 action can directly bind to prophenoloxidase and activate'it. Quinone isomerase can control the activity of active phenoloxidase negatively. In addition, this enzyme can play a positive role by providing the quinone methides for sclerotin formation. Dopachrome conversion factor, by facilitating the production of dihydroxyindoles, participates positively in melanin capsule formation. Phenolox­idase inhibitor could constitute another control mechanism (not shown in figure). T h e reactions of quinones and quinone methides lead to the production of melanin a n d / o r sclerotin capsule.

c o m p l i c a t i o n s . A s p o i n t e d o u t in t h e I n t r o d u c t i o n , t h e r e a r e a t leas t t h r e e different p h e n o l o x i d a s e s k n o w n in va r ious sy s t ems . T h e s e e n z y m e s s e e m to serve t h r e e different func t ions in insec ts , namely , w o u n d h e a l i n g , c u t i c u l a r sc le ro t i za t ion , a n d i m m u n e r e s p o n s e . B e c a u s e of t h e p r o b l e m s in a s s ign ing a n y p a r t i c u l a r role for o n e o r m o r e of t h e p h e n o l o x i d a s e s , it is r a t h e r difficult

Page 342: Parasites and Pathogens of Insects. Parasites

3 3 8 Manickam Sugumaran and Michael R. Kanost

to say prec ise ly w h e t h e r o r n o t all t h e m e c h a n i s m s o u t l i n e d in F ig . 8 a r e

a p p l i c a b l e to all insec ts . I t is poss ib le t h a t on ly p a r t of t h e r eac t ions o p e r a t e

in o n e or m o r e insec t s . A s for fu ture d i r ec t ions , p rac t i ca l ly t h e w h o l e a r e a is

w i d e o p e n for a de t a i l ed s tudy. S ince p h e n o l o x i d a s e p a r t i c i p a t e s a s a key

c o m p o n e n t n o t on ly in insec t i m m u n i t y b u t a lso in sc le ro t iz ing m a c h i n e r y

a n d w o u n d - h e a l i n g m e c h a n i s m s , e x a m i n i n g t h e de t a i l ed b i o c h e m i s t r y of th i s

v i ta l e n z y m e s y s t e m a n d its con t ro l m e c h a n i s m s w a r r a n t s c o n s i d e r a b l e ef­

fort. S u c h s tud i e s m a y even tua l ly h a v e g r e a t c o m m e r c i a l a n d l ife-saving

p o t e n t i a l s if novel vec to r con t ro l m e a s u r e s a n d insec t ic ides c a n b e m a d e

b a s e d o n th is work .

References

Andersson, K., Sun, S. C , Boman, H. G., and Steiner, H. (1989). Purification of the proph­enoloxidase from Hyalophora cecropia and four proteins involved in its activation. Insect Biochem. 19:629-637.

Aroca, P., Garcia-Borron, J. C., Solano, R., and Lozano, J. A. (1989). Regulation of mammalian melanogenesis. I. Partial purification and characterization of a dopachrome converting fac­tor: Dopachrome tautomerase. Biochim. Biophys. Acta 1035:266-275.

Aroca, P., Solano, F., Garcia-Borron, J. C., and Lozano, J. A. (1991). Specificity of dopachrome tautomerase and inhibition by carboxylated indoles. Biochem. J. 277:393-397.

Ashida, M. (1971). Purification and characterization of prephenoloxidase from hemolymph of the silkworm Bombyx mori. Arch. Biochem. Biophys. 144:749-762.

Ashida, M. (1981). A cane sugar factor suppressing activation of prophenoloxidase in haemo­lymph of the silkworm, Bombyx mori. Insect Biochem. 11:57-65.

Ashida, M., and Dohke, K. (1980). Activation of prophenoloxidase by the activating enzyme of the silkworm, Bombyx mori. Insect Biochem. 10:37-47.

Ashida, M., and Yamazaki, Η. I. (1990). Biochemistry of the phenoloxidase system in insects with special reference to its activation. In "Molting and Metamorphosis" (E. Ohnishi and H. Ishizaki, eds.), pp. 239-265. Jpn. Sci. Soc. Press, Tokyo/Springer-Verlag, Berlin.

Ashida, M., and Yoshida, H. (1988). Limited proteolysis of prophenoloxidase during activation by microbial products in insect plasma and effect of phenoloxidase on electrophoretic mo­bility of plasma proteins. Insect Biochem. 18:11-19.

Ashida, M., Ochiai, M., and Niki, T. (1988). Immunolocalization of prophenoloxidase among hemocytes of the silkworm, Bombyx mori. Tissue Cell 20:599-610.

Ashida, M., Kinoshita, K., and Brey, P. T. (1990). Studies on prophenoloxidase activation in the mosquito, Aedes aegypti L. Eur. J. Biochem. 188:507-515.

Aso, Y , Kramer, K. J., Hopkins, T. L., and Lookhart, G. L. (1985). Characterization of haemo­lymph protyrosinase and a cuticular activator from Manduca sexta (L). Insect Biochem. 1 5 : 9 -17.

Aso, Y , Imamura, Y , and Yamasaki, N. (1989). Further studies on dopa quinone imine conver­sion factor from cuticles of Manduca sexta. Insect Biochem. 19:401-407.

Aso, Y , Nakashima, K., and Yamasaki, N. (1990). Changes in the activity of dopa quinone imine conversion factor during the development of Bombyx mori. Insect Biochem. 20:685-690.

Beckage, Ν. E., Metcalf, J. S., Nesbit, D. J., Schleifer, K. W., Zetlan, S. R., and deBuron, I. (1990). Host hemolymph monophenoloxidase activity in parasitized Manduca sexta larvae and evidence for inhibition by wasp polydnavirus. Insect Biochem. 20:285-295.

Page 343: Parasites and Pathogens of Insects. Parasites

14. Regulation of Insect Hemolymph Phenoloxidases 339

Blomquist, G. J., Borgeson, C. E., and Vundla, M. (1991). Polyunsaturated fatty acids and eicosanoids in insects. Insect Biochem. 21:99-106.

Bodine, J. H. (1945). Tyrosine and phenols. Action of diversely activated tyrosinase on mono-hydric and o-dihydric phenols. Proc. Soc. Exp. Biol. Med. 58:205-209.

Boman, H. G., Faye, I., Gudmundsson, G. H., Lee, J. Y., and Lidholm, D. A. (1991). Cell-free immunity in Cecropia. Eur. J. Biochem. 201 :23 -31 .

Brehelin, M., Drif, L., Buad, L., and Beomare, N. (1989). Insect hemolymph cooperation between humoral and cellular factors in Locusta migratoria. Insect Biochem. 19:301-307.

Brehelin, M., Boigegrain, R. Α., Drif, L., and Colleti-Previero, M. A. (1991). Purification of a protease inhibitor which controls prophenoloxidase activation in hemolymph of Locusta mi­gratoria (Insecta). Biochem. Biophys. Res. Commun. 179:841-846.

Brookman, J. L., Ratcliffe, Ν. Α., and Rowley, A. F. (1989). Studies on the activation of the prophenoloxidase system of insects by bacterial cell wall components. Insect Biochem. 19 :47 -57.

Brunet, P.GJ. (1980). The metabolism of the aromatic amino acids concerned in the crosslink-ing of insect cuticle. Insect Biochem. 10:467-500.

Carrell, R. W., and Boswell, D. R. (1986). Serpins: The superfamily of plasma serine proteinase inhibitors. In "Proteinase Inhibitors" (A. J. Barrett and G. Salvesen, eds.), pp. 403-420. Elsevier, New York.

Christensen, Β. M., and Nappi, A . J . (1988). Immune responses of arthropods. ISI Atlas Set.: Anim. Set., pp. 15-19.

Coombe, D. R., Ey, P. L., and Jenkin, C. R. (1984). Self and nonself recognition in invertebrates. Q. Rev. Biol. 59:231-255.

Dohke, K. (1973). Studies on prophenoloxidase-activating enzyme from cuticle of the silkworm Bombyx mori. Arch. Biochem. Biophys. 157:203-209.

Dularay, B., and Lackie, A. M. (1985). Haemocytic encapsulation and the prophenoloxidase activation pathway in the locust Schistocera gregaria Forsk. Insect Biochem. 15:827-834.

Eguchi, M., and Shomoto, K. (1985). Purification and properties of a chymotrypsin inhibitor from the silkworm haemolymph. Comp. Biochem. Physiol. Β 81B:301-307.

Evans, JJ.T. (1967). The activation of prophenoloxidase during melanization of the pupal blood of the Chinese oak silkmoth Antheraea pernyi. J. Insect Physiol. 13:1699-1711.

Funatsu, M., and Inaba, T. (1962). Studies on tyrosinase in house fly. I. Protyrosinase in the pupae of the house fly and its activation. Agric. Biol. Chem. 26:535-540.

Gotz, P. (1986). Mechanisms of encapsulation in dipteran hosts. Symp. Zool. Soc. London 56 :1 -19 . Gotz, P., and Boman, H. G. (1985). Insect immunity. In "Comprehensive Insect Physiology,

Biochemistry and Pharmacology" (G. A. Kerkut and L. I. Gilbert, eds.), Vol. 3, pp. 453-485. Pergamon, Oxford.

Gupta, A. P., ed. (1988). "Hemocytic and Humoral Immunity in Arthropods." Wiley, New York.

Hackmann, R. H., and Goldberg, M. (1967). The o-diphenoloxidase of fly larvae. J. Insect Physiol. 13:531-544.

Heyneman, R. A. (1965). Final purification of a latent phenoloxidase with mono- and diphenol-oxidase activity from Tenebrio molitor. Biochem. Biophys. Res. Commun. 21:162-169.

Heyneman, R. Α., and Vercauteren, R. E. (1964). Activation of the latent phenoloxidase of Tenebrio molitor. Enzymologia 28:85-88 .

Heyneman, R. Α., and Vercauteren, R. E. (1968). Evidence for a lipid activator of prophenolox­idase in Tenebrio molitor. J. Insect Physiol. 14:409-415.

Hill, R. E., and Hastie, N. D. (1987). Accelerated evolution in the reactive center regions of serine protease inhibitors. Nature (London) 326:96-99 .

Hughes, L. (1976). Haemolymphal activation of protyrosinase and the site of synthesis of

Page 344: Parasites and Pathogens of Insects. Parasites

3 4 0 Manickam Sugumaran and Michael R. Kanost

haemolymph protyrosinase in larvae of the fleshfly, Sarcophaga barbarta. J. Insect Physiol. 22:1005-1011.

Iwama, R., and Ashida, M. (1986). Biosynthesis of prophenoloxidase in hemocytes of larval hemolymph of the silkworm, Bombyx mori. Insect Biochem. 16:547-555.

Johansson, M. W., and Soderhall, K. (1989). Cellular immunity in crustaceans and the proph­enoloxidase system. Parasitol. Today 5:171-176.

Jomori, T., Kubo, T., and Natori, S. (1990). Purification and characterization of lipopolysac­charide binding protein form hemolymph of American cockroach Periplaneta americana. Eur. J. Biochem. 190:201-206.

Kanost, M. R. (1990a). Isolation and characterization of four serine proteinase inhibitors (ser-pins) from hemolymph οϊ Manduca sexta. Insect Biochem. 20:141-147.

Kanost, M. R. (1990b). Serine protease inhibitors from the serpin gene family in Manduca sexta and Drosophila melanogaster. In "Molecular Insect Science" (Η. H. Hagedorn, J. G. Hilderbrand, M. G. Kidwell, and J. H. Law, eds.), pp. 139-146. Plenum, New York.

Kanost, M. R., Prasad, S. V., and Wells, M. A. (1989). Primary structure of a member of the serpin superfamily of proteinase inhibitors from an insect, Manduca sexta. J. Biol. Chem. 264:965-972.

Kramer, K. J., and Hopkins, T. L. (1987). Tyrosine metabolism for insect cuticle tanning. Arch. Insect Biochem. Physiol. 6:279-301.

Lackie, A. M. (1988). Haemocyte behaviour. Adv. Insect Physiol. 21:85-178. Lai-Fook, J. (1966). The repair of wounds in the integument of insects. J. Insect Physiol. 12:195-

226. Leonard, C , Ratcliffe, Ν. Α., and Rowley, A. F. (1985a). The role of prophenoloxidase activa­

tion in non-self recognition and phagocytosis by insect blood cells. J. Insect Physiol. 3 1 : 7 8 9 -799.

Leonard, C , Soderhall, K., and Ratcliffe, N. A. (1985b). Studies of prophenoloxidase and protease activity οϊ Blaberus craniifer haemocytes. Insect. Biochem. 15:803-810.

Leonard, L. J., Townsend, D. W., and King, R. A. (1988). Function of dopachrome oxidoreduc-tase and metal ions in dopachrome conversion in the eumelanin pathway. Biochemistry 27:6156-6161.

Mason, H. S. (1955). The phenolase complex. Adv. Enzymol. 16:105-184. Ochiai, M., and Ashida, M. (1988). Purification of a β-l,3-glucan recognition protein in the

prophenoloxidase activating system from hemolymph of the silkworm, Bombyx mori. J. Biol. Chem. 263:12056-12062.

Ohnishi, E. (1954). Activation of tyrosinase in Drosophila virilis. Annot. Zool. Jpn. 27 :88 -93 . Pau, R. N., and Eagles, P.A.M. (1975). The isolation of an o-diphenoloxidase from third instar

larvae of the blowfly Calliphora erythrocephala. Biochem. f. 149:707-712. Pawelek, J. M. (1990). Dopachrome conversion factor functions as an isomerase. Biochem. Bio­

phys. Res. Commun. 166:1328-1333. Pawelek, J. M., Korner, Α., Bergstrom, Α., and Bologna, J. (1980). New regulators of melanin

biosynthesis and the autodestruction of melanoma cells. Nature (London) 286:617-619. Prota, G. (1988). Progress in the chemistry of melanins and related metabolites. Med. Res. Rev.

8:525-556. Pye, A. E. (1974). Microbial activation of prophenoloxidase from immune insect larvae. Nature

(London) 251:610-613. Ramesh, N., Sugumaran, M., and Mole, J. E. (1988). Purification and characterization of two

trypsin inhibitors from the hemolymph οϊ Manduca sexta larvae. J. Biol. Chem. 263 :11523-11527.

Ratcliffe, Ν. Α., Leonard, C , and Rowley, A. F. (1984). Prophenoloxidase activation: Non-self recognition and cell cooperation in insect immunity. Science 226:557-559.

Page 345: Parasites and Pathogens of Insects. Parasites

14. Regulation of Insect Hemolymph Phenoloxidases 341

Ratcliffe, Ν. Α., Rowley, A. F., Fitzgerald, S. W., and Rhodes, C. R (1985). Invertebrate immunity: Basic concepts and recent advances. Int. Rev. Cytol. 97:183-325.

Ratcliffe, Ν. Α., Brookman, J. L., and Rowley, A. F. (1991). Activation of the prophenoloxidase cascade and initiation of nodule formation in locusts by bacterial lipopolysaccharides. Dev. Comp. Immunol. 15:33-39.

Rizki, R. M., and Rizki, Τ. M. (1990). Encapsulation of parasitoid eggs in phenoloxidase deficient mutants of Drosophila melanogaster. J. Insect Physiol. 36:523-529.

Salt, G. (1970). "The Cellular Defense Reactions of Insects." Cambridge Univ. Press, Cam­bridge.

Sasaki, T. (1984). Amino acid sequence of a novel Kunitz-type chymotrypsin inhibitor from hemolymph of silkworm larvae, Bombyx mori. FEBS Lett. 168:227-230.

Sasaki, T. (1985). The reactive site of silkworm hemolymph antichymotrypsin is located at the COOH-terminal region of the molecule. Biochem. Biophys. Res. Commun. 132:320-326.

Sasaki, Τ (1988). Amino acid sequences of two basic chymotrypsin inhibitors from silkworm larval hemolymph. Hoppe-Seyler's Z. Physiol. Chem. 369:1235-1241.

Sasaki, T , and Kobayashi, K. (1984). Isolation of two novel proteinase inhibitors from hemo­lymph of silkworm larva, Bombyx mori. Comparison with human serum proteinase inhibitors. J. Biochem. (Tokyo) 95:1009-1017.

Sasaki, T , Kobayashi, K., and Ozeki, Τ (1987). Interaction of silkworm larval hemolymph antitrypsin and bovine trypsin. J. Biochem. (Tokyo) 102:433-441.

Saul, S. J., and Sugumaran, M. (1986). Protease inhibitor controls prophenoloxidase activation in Manduca sexta. FEBS Lett. 208:113-116.

Saul, S. J., and Sugumaran, M. (1987). Protease mediated prophenoloxidase activation in the hemolymph of the tobacco hornworm Manduca sexta. Arch. Insect Biochem. Physiol. 5 :1 -11 .

Saul, S. J., and Sugumaran, M. (1988). Prophenoloxidase activation in the hemolymph of Sarcophaga bullata larvae. Arch. Insect Biochem. Physiol. 7:91-103.

Saul, S. J., and Sugumaran, M. (1989a). o-Quinone:quinone methide isomerase—A novel en­zyme which prevents the destruction of self matter by phenoloxidase generated quinones during immune response in insects. FEBS Lett. 249:155-158.

Saul, S. J., and Sugumaran, M. (1989b). Characterization of quinone tautomerase activity in the hemolymph οϊ Sarcophaga bullata. Arch. Insect Biochem. Physiol. 12:157-172.

Saul, S. J., and Sugumaran, M. (1990). 4-Alkyl-o-quinone/2-hydroxy-/>-quinone methide iso­merase from the larval hemolymph οΐSarcophaga bullata. I. Purification and characterization of enzyme catalyzed reaction. J. Biol. Chem. 265:16992-16999.

Saul, S. J., Bin, L., and Sugumaran, M. (1987). The majority of prophenoloxidase in the hemolymph of Manduca sexta is present in the plasma and not in the hemocytes. Dev. Comp. Immunol. 11:479-485.

Schmidt, O., and Theopold, U. (1991). Immune defense and suppression in insects. BioEssays 13:343-346.

Schweiger, Α., and Karlson, P. (1962). Zum Tyrosinstoff wechsel der Insekten, X. Die Ak-tivierung der Praphenoloxydase und das Aktivator-enzym. Hoppe-Seyler's Z. Physiol. Chem. 329:210-221 .

Seybold, W. D. , Meltzer, P. S., and Mitchell, Η. K. (1975). Phenoloxidase activation in Drosophi­la: A cascade of reactions. Biochem. Genet. 13:85-108.

Soderhall, K. (1982). Prophenoloxidase activating system and melanization. A recognition mechanism of arthropods? A review. Dev. Comp. Immunol. 6:601-611.

Soderhall, K., Rogener, W., Soderhall, I., Newton, R. P., and Ratcliffe, N. A. (1988). The properties and purification of a Blaberus craniifer plasma protein which enhances the activa­tion of haemocyte prophenoloxidase by a B-l,3-glucan. Insect Biochem. 18:323-330.

Stanley-Samuelson, D. W., Jensen, E., Nickerson, K. W., Tiebel, K., Ogg, C. L., and Howard,

Page 346: Parasites and Pathogens of Insects. Parasites

3 4 2 Manickam Sugumaran and Michael R. Kanost

R. W. (1991). Insect immune response to bacterial infection is mediated by eicosanoids. Proc. Natl. Acad. Sci. U.S.A. 88:1064-1068.

Stoltz, D. B., and Cook, D. I. (1983). Inhibition of host phenoloxidase activity by parasitoid hymenoptera. Experientia 39:1022-1024.

Stoltz, D. B., Krell, P., Summers, M. D., and Vinson, S. B. (1984). Polydnaviridae—A proposed family of insect viruses with segmented, double-stranded, circular D N A genomes. Intervirol-0g>> 2 1 : 1 - 4 .

Sugumaran, M. (1988). Molecular mechanisms for cuticular sclerotization. Adv. Insect Physiol. 21:179-231.

Sugumaran, M. (1990). Prophenoloxidase activation and insect immunity. UCLA Symp. Mol. Cell. Biol. [N. Ser.] 121:47-62.

Sugumaran, M. (1991a). Molecular mechanisms of sclerotization. In "The Physiology of Insect Epidermis" (K. Binnington and A. Retnakaran, eds.), pp. 141-168. CSIRO Publications, Victoria.

Sugumaran, M. (1991b). Molecular mechanisms for mammalian melanogenesis—Comparison with insect cuticular sclerotization. FEBS Lett. 293:4-10 .

Sugumaran, M., and Nellaiappan, K. (1990). On the latency and nature of phenoloxidase present in the left colleterial gland of the cockroach Periplaneta americana. Arch. Insect. Biochem. Physiol. 15:165-181.

Sugumaran, M., and Nellaiappan, K. (1991). Lysolecithin—A potent activator of prophenolox­idase from the hemolymph of the lobster, Homarus americanas. Biochem. Biophys. Res. Commun. 176:1371-1376.

Sugumaran, M., and Semensi, V. (1991). Quinone methides as intermediates in eumelanin biosynthesis. J. Biol. Chem. 266:6073-6078.

Sugumaran, M., Saul, S. J., and Ramesh, N. (1985). Endogenous protease inhibitors prevent undesired activation of prophenolase in insect hemolymph. Biochem. Biophys. Res. Commun. 132:1124-1129.

Takagi, H., Narumi, H., Nakamura, K., and Sasaki, T. (1990). Amino acid sequence of silkworm (Bombyx mori) hemolymph antitrypsin deduced from its cDNA nucleotide sequences: Confir­mation of its homology with serpins. J. Biochem. (Tokyo) 108:372-378.

Thomson, J. Α., and Sin, Υ. T. (1970). The control of prophenoloxidase activation in larval haemolymph of Calliphora. J. Insect Physiol. 16:2063-2074.

Tsukamoto, T , Ishiguro, M., and Funatsu, M. (1986). Isolation of latent phenoloxidase from prepupae of the housefly, Musca domestica. Insect Biochem. 16:573—581.

Whitcomb, R. F., Shapiro, M., and Granados, R. R. (1974). Insect defense mechanisms against microorganisms and parasitoids. In "The Physiology of Insecta" (M. Rockstein, ed.), pp. 447-484. Academic Press, New York.

Wyatt, S. S. (1956). Culture in vitro of tissue from the silkworm, Bombyx mori. J. Gen. Physiol. 39:841-852.

Yoshida, H., and Ashida, M. (1986). Microbial activation of two serine enzymes and proph­enoloxidase in the plasma fraction of hemolymph of the silkworm Bombyx mori. Insect Biochem. 16:539-545.

Yoshida, H., Ochiai, M., and Ashida, M. (1986). B-1,3-Glucan receptor and peptidoglycan receptor are present as separate entities within insect prophenoloxidase activating system. Biochem. Biophys. Res. Commun. 141:1177-1184.

Page 347: Parasites and Pathogens of Insects. Parasites

Index to Volumes 1 and 2 Volume numbers are boldfaced, separated from the first page reference with a colon. Subsequent references to the same material are separated by commas.

Abundance endotoxins in bacter ium/nematode

complexes, 2:12 teratocytes, 1 :148-152

JV-Acetyl galactosamine, BT endotoxin receptor, 2:67

AcNPV, see Autographa californica nuclear polyhedrosis virus

Actin polymerization, in AcNPV cells during gene expression, 2:118

Activity levels changes in parasitized insects, 1:110—

111 host, effect on parasite dissemination,

1:112 Adaptat ion tolerance hypothesis, 1:138 Adenylate cyclase pool, role in host via­

bility, 1 :127-128 Adhesion

deuteromycete entomopathogens, 2:212-214

outer membrane protein role, 2:9-10 proteinaceous appendages role, 2:9-

10 Xenorhabdus to hemocytes, 2:8-10

Aedes aegypti hemolymph plasma protein expressed

during wound healing, 1:250 phenol oxidase activity during encap­

sulation, 1 :252-253 Plasmodium gallinaceum-'mfected, effects

on reproduction, 1 :88-89

Agglutinins, see also Lectins non-self recognition molecules,

1 :282-285 Τν '-β-Alanyldopamine, in A. aegypti he­

molymph plasma, 1:254 Allantonematid nematodes, effects on

bark beetle reproduction, 1:94 Allatostatins, 1:61 Allatotropins, 1:61 Allelochemicals, in host food, effect on

endoparasites, 1:68 Amino acid composition, after parasi­

tization, 1 :127-128 Amino acid sequence, cecropins, 2:28-

29 Amino acids, nutrient role for develop­

ing parasites, 1 :139-140 Amplification, in situ, polydnavirus,

1:172 Anacridium aegyptium, M. calloti infec­

tions, 1 :99-100 Androctonus australis Hector neurotoxin,

2:187-188 Andropin, structure and action, 2:30 Anopheles gambiae, strain susceptibility

differences, 1:257 Antibacterial peptides, origins, 2:43 Antibacterial proteins, induction, 2:6-7 Antibacterial response, humoral , blood

cell role, 1 :293-295 Antigens, hostlike, of parasites, 1:26 Antigen shedding, by parasites, 1:50

3 4 3

Page 348: Parasites and Pathogens of Insects. Parasites

3 4 4 Index to Volumes 1 and 2

Antihormones, effect on endoparasite development, 1:69

Antimicrobials, produced by symbiont bacteria, 2 :13-14

Aphidius ervi, development and growth, 1 : 6 -7

Appressoria, deuteromycete ento-mopathogens, 2 :216-218

Arylphorins parasitism effects, 1:44 posttranscriptional regulation, 1:44

Ascovirus cytopathology, 2:86 pathogenesis, 2 :85-89 tissue tropism, 2:84 transmission mode, 2:88

Assassin genes, in nonpermissive hosts, 1:40

Attacin G domain, 2 :33-34 structure and actions, 2 :32-34

Attraction, motility component, 2:3 Autographa californica nuclear polyhedro-

sis virus co-occlusion system, 2:189 cytopathic effects of in vitro infections,

2:114 entry

microfilaments, 2 :114-115 microtubules, 2:115

extracellular virus form, 2:113 gene expression, 2:184 genetic engineering, 2 :97-98 genome

new gene acquisition, transposon-related, 2 :172-173

nonessential regions, 2 :150-151 tolerance to size changes, 2:150 transposon gene disruptions,

2 :169-170 infection cycle, 2 :149-150 morphogenesis, 2 :119-120 polyhedra-derived form, 2:113 replication

nucleosomal structure during, 2 :117-118

pathways of entry, 2 :113-114 in vitro, 2:114, 183 in vivo, 2:182

transcription, nucleosomal structure during, 2 :117-118

Avirulence genes, in plant pathogens, 1 :29-30

Azadiractin, effect on endoparasite de­velopment, 1:68

Bacillus thuringiensis characterization, 2:56 crystal protein genes, classification,

2:57 Cyt toxins, mechanism of action,

2 :65-66 endotoxins

Cry toxin mechanism of action, 2 :62-65

Cyt toxin mechanism of action, 2 :65-66

domains affecting specificity, 2:73 δ-endotoxin, 2 :187-188 hydrophobic regions, 2:63 primary structure, 2 :56-58 proteolytic processing and activa­

tion, 2 :60-61 receptor characterization, 2 :66-67 resistance to, 2 : 69 -71 , 73 tertiary structure, 2 :58-60

Bacillus thuringiensis aizawai I C 1 , insec-ticidal crystal protein, 2:60

Bacteria, see also specific bacteria attachment to hemocytes, 2 :9-10 cell membrane lysis by cecropins,

2:27 cell wall, degradation by lysozymes,

2 :35-36 gram-positive, triggering of

prophenoloxidase cascade, 1:323 hydrophobicity, 2 : 8 -9 symbionts

independent killing of G. mellonella, 2:12

specificity, 2:17

Page 349: Parasites and Pathogens of Insects. Parasites

Index to Volumes 1 and 2 3 4 5

Baculovirus classification, 2:182 enhancin genes, cloning, 2 :140-141 entry, cytoskeleton involvement,

2 :115-116 genetic modification

alternative gene promoters, 2 :184-185

multiple expression vectors, 2 : 185 -186

very late gene promoters, 2 :184-185

genome as interspecies shuttle for lipidop-

teran elements, 2:174 mutagenesis, host transposon role,

2 :168-173 structure, 2:182 transposon-related new gene acqui­

sition, 2 :172-173 insecticides

genetic manipulation, 2 :181-182 host range, 2:180 persistence, 2:180, 186-188 production, 2:181 recombinant, 2 :186-191 speed of action, 2:181 target range, 2 :180-181

latent, potential of genetic transfer with recombinant virus insec­ticides, 2:189

Oryctes rhinoceros, 2:94 pathogenesis

granulosis virus, 2 :90-91 nuclear polyhedrosis virus, 2 :89-90

replication in vitro, 2:183 in vivo, 2:182

symbiotic interactions with host transposons, 2 :173-175

tissue tropism, 2:84 transposon insertions, virus proper­

ties compatible with, 2 :148-151 transposons, identification, 2 : 152-

154 uncoating, 2:116

Bark beetle, reproduction, al-lantonematid nematode effects, 1:94

BBMV, see Brush border membrane vesicles

Bee peptides, proline-rich, 2 :34-35 Behavior, see also specific types of behavior

activity level, 1:110-111 microhabitat preference, 1:108-110 reproductive, by castrated insects,

1:111 use of venoms, 1 :232-233

Behavioral fever, 1:114 Benzoylarginine ethyl esterase, 1:321 Bioassays

with H P L C for ecdysteroid quan­tification, 1:77

insect, enhancement with Trichoplusia ni GV enhancin, 2 :137-140

Biochemical pathways, wasp, venom studies, 1:232

Biological control classical agents, 2:92-93 inoculative agents, 2:92 strategies for viruses, 2 :92-93 venoms for, 1:239-240 viral insecticides, 2 :92-93

Bioluminescence, role in nematode/ bacterium symbiosis, 2 :14-15

Bionomics, host-parasi te , inferred from venoms, 1:228-230

Blood cells characterization, 1:275-280 classification, 1:275-279 hemopoietic tissue diversity, 1:278 manipulation techniques, 1:280-282 prohemocytes, 1:279 role in humoral antibacterial re­

sponse, 1:293-295 Body temperature, effect on host sur­

vival, 1:114 Braconids, larval parasites, effects on

host endocrine system, 1:709 Bracovirus, nucleocapsids, 1:197-198 Brugia malayi, A. aegypti strains refrac­

tory for, 1:260

Page 350: Parasites and Pathogens of Insects. Parasites

3 4 6 Index to Volumes 1 and 2

Brush border membrane vesicles, mid­gut

binding assays for endotoxin recep­tors, 2 :66-67

Cry toxin binding, 2 :62-63 BT, see Bacillus thuringiensis Buthus epeus, insectotoxin 1, 2 :187-188

Calcium effect on erythrocyte spontaneous

rosetting, 1:284, 288 in prophenoloxidase cascade, 1:322

Calyx fluid effects on host, 1 :75-76 nutrient level changes due to, 1:179 requirement for parasitization, 1:175

Campoletis sonorensis virus DNA

interspecific differences, 1:195 intraspecies differences, 1 : 1 9 3 -

195 nonequimolarity, 1:193 structure, 1 :192-196

gene expression, temporal pattern, 1:206

gene families characterization, 1 :201-205 significance, 1 :206-208

genome functional organization, 1 :199-201 intraspecific genomic complexity,

1 :198-199 packaging, 1 :196-198 structure, 1 :191-196

Carbohydrases, effect on Xenorhabdus adhesion to hemocytes, 2:8

Carbohydrates in bacterial surface modification sys­

tem, 2:7 metabolite levels in host tissues,

1 :127-128 storage alterations, 1:134—135 synthesis, Trichoplusia ni, 1:131

Carbon dioxide, at tractant to host in­sects, 2:3

Castration, host effects on parasite survival, 1:113 enhancement of parasite dissemina­

tion, 1:112 in insect-insect association, 1:98 reproductive behavior after, 1:111

Catecholamines, substrates for melano­tic encapsulation reactions, 1:255

Cecropia immunoresponsive factor binding to κΒ-like motifs, 2 :42-43 similarity to transcription factor

N F - K B , 2 :42-43 Cecropins

induction by endotoxin and β-15 3-glucan,

1:271 in response to nonpathogenic bac­

teria injection, 2 :6 -7 structure and action, 2 :27-30 synthesis and processing, 2:30

Cell adhesion molecule, hemolin sim­ilarity, 2 :38-39

Cell-cell communication, in immunity, 1 :290-293

Cell manipulation techniques, 1:280— 282

Cell rounding, AcNPV-related, 2 : 116-117

Cell-surface determinants, cell type identification, 1:277

Cell-to-cell cooperation, in immune re­activity, 1:271

Cellular immune response early and intermediate cellular stage,

1 :270-271 final humoral/cellular stage, 1:271 —

273 immediate stage, 1 :268-270 inductive stage, 1 :268-270 interrelationship with humoral im­

munity, 1 :293-295 mosquitos, 1 :248-249 to nematode entry, 2:6 protein synthesis stage, 1 :270-271

Cessation factors, secretion by hemo­cytes, 1:272

Page 351: Parasites and Pathogens of Insects. Parasites

Index to Volumes 1 and 2 3 4 7

Cestodes, host reproductive distur­bances caused by, 1 :96-98

CI factor, binding affinity to κΒ-like motifs, 2 :42-43

Chelonus egg-larval parasites, effects on host endocrine system, 1:70-71

Chemical resistance, comparison with viral resistance, 2 :205-206

Chitinase, requirement for, 2:221 Chitin synthesis inhibitors, effect on en­

doparasites, 1:69 Chymoelastase, 2 :220-221 Chymotrypsin inhibitors, prophenolox­

idase cascade, 1:329 C I F , see Cecropia immunoresponsive

factor Cloning, enhancin gene, 2 :140-141 Coccygomimus turionellae, development

and growth, 1:5—6 Coevolution, see also Evolution

adaptat ion tolerance hypothesis, 1:138

gene-for-gene, 1 :29-30 studies, wasp venoms for, 1 :233-

236 Coleoptericin, isolation, 2:34 Conformers

combined conformer-regulator strat­egy, 1:60

definition, 1:17, 60 Conidia, adhesion, 2 :212-214 Co-occlusion system, for AcNPV, 2:189 Corpora allata, effects of nematode in­

fections, 1 :95-96 Cotesia congregata

-Manduca sexta system metabolic alterations, 1:131-132 parasitism characteristics, 1:31—33 polydnavirus induction of

parasitism-specific proteins, 1 :75-76

parasitism of sphingid hosts, 1:38 Coumarins , availability to endo­

parasites, 1:68 Crab , parasitism-specific proteins,

1:49

Cry toxins binding characteristics to BBMV,

2:70 mechanism of action, 2 :62-65 primary structure, 2 :56-58 tertiary structure, 2 :56-58

CsV, see Campoletis sonorensis virus Cuticle, penetration by deuteromycete

fungal pathogens adhesion events, 2 :212-214 cuticle-degrading enzymes, 2 :219-

221 major components, schematic, 2:213 prepenetration growth, 2 :214-216 structural adaptations for penetra­

tion, 2 :216-219 Cuticle-degrading enzymes

characterization, 2 :219-221 regulation, 2 :219-221

Cuticle tanning, 1:333-334 Cytokines, dual roles in mammals ,

1:27 Cytopathology, major insect viruses,

2:86 Cytoplasmic polyhedrosis virus

cytopathology, 2:86 pathogenesis, 2 :91-92 tissue tropism, 2:84 virulence, 2:95

Cytoskeleton interactions with viral particles

entry into cell, 2 :105-107 nucleocapsid transport, 2:107 particle binding, 2:105 uncoating, 2 :107-108

role in favoring viral over host syn­thesis, 2:118

Cytoskeleton/nuclear matrix in AcNPV transcription and replica­

tion, 2 :117-119 stages of baculovirus replication asso­

ciated with, 2 :115-120 Cyt toxins

mechanism of action, 2 :65-66 structure and biological activity,

2:58

Page 352: Parasites and Pathogens of Insects. Parasites

3 4 8 Index to Volumes 1 and 2

Defense response, melanization role, 1:176

Defensins, structure and actions, 2 : 30 -34

Deletion mutants , pathogenicity im­provement with, 2:98

Designer genes, parasite, 1:29 Deuteromycete fungal pathogens, see

Fungal pathogens Development

event timing, venoms as probes for, 1 :230-231

host alteration effects on parasite nutri­

tion, 1:136 teratocyte effects, 1 :158-160

parasite, see Parasite development regulation, polydnavirus-related,

1 :176-179 Developmental strategies, definition,

1:2 Dexamethasone, effect on xenograft re­

jection, 1:313 Diapause, parasite, 1 :9 -10 Diflubenzuron, effect on endoparasite

development, 1:69 Diphenol oxidase, H P L C - E C D , 1:252 Diptericin

G domain, 2 :33-34 gene expression, 2:33 structure and actions, 2 :32-34

Dissemination, parasite, enhancement by behavioral alterations, 1:111 — 112

Diuretic hormone, in baculovirus insec­ticide system, 2:186

Diurnal behavior, nocturnal insect hosts, 1:110

DNA baculovirus, transposon-associated al­

terations, 2 :168-170 Campoletis sonorensis virus

interspecific differences, 1:195 intraspecies variations, 1 :193-195

Heliothis exiguae virus, 1:196 linear and circular forms in para­

sitoid tissue, 1:171

polydnavirus genetic colonization of host, 1 : 1 7 2 -

173 multiple covalently closed circular

form, 1:192 persistence in host cells, 1:50 superhelical and relaxed circular

forms, 1:192 Dopachrome, role in mosquito immune

response, 1:252 Dopachrome conversion factor, 1 : 3 3 1 -

332 Dopamine, in A . aegypti hemolymph

plasma, 1:254 Drosophila melanogaster

cecropin levels, 2:28 genomic transposon sequences, 2:151 neuroglian, similarity to hemolin,

2 :38-39 Duplication, viral genes, 1 :216-217

Ecdysone, functions, 1:61 Ecdysone 20-monooxygenase, parasit­

ism effects, 1:47 Ecdysteroids

host, effects of parasitoids, 1 :72-73 larval parasite effects, 1:70 metabolism, 1:63 parasite levels relative to host levels,

1 :64-66 production, 1:61 quantification methods, 1:77 quantification with RIA with

chromatography, 1:77 structures, 1:62

Eclosin hormone, 1:61 Efficacy, viral insecticides, 2:82, 96 Egg-larval parasites, effects on host en­

docrine system, 1 :70-71 Egg production

cestode infection effects, 1:97 nematode infection effects, 1:96

Egg viability cestode infection effects, 1:97 definition, 1:91

Page 353: Parasites and Pathogens of Insects. Parasites

Index to Volumes 1 and 2 3 4 9

Eicosinoids, effects on xenograft rejec­tion, 1:313

Elastase inhibitors, prophenoloxidase cascade, 1:329

Elevation-seeking behavior effects on parasite dissemination,

1:112 in parasitized insects, 1:108-109

Enantiostasis definition, 1:139 in metabolic regulation, 1 :139-140

Encapsulation catecholamine substrates, 1:255 enzymes in, 1 :251-255 hemolymph plasma protein expressed

during wound healing (A. aegyp­ti), 1:250

melanotic, see Melanotic encapsula­tion

parasitized larvae, inhibition by ter­atocytes, 1:156

plasma hemagglutinin function, 1:251

response to foreign objects, 1 :306-308

steinernematids, 2 :5 -6 variables affecting, 1 :307-308

Encapsulation-promoting factor, role in immunity, 1:291-295

Endocrine system host

effect on endoparasites, 1 :66-69 effects of endoparasites, 1 :70-74 involvement with microsporidia-

larval insect hosts, 1:91 parasite interactions, 1:99

immune system control by, 1 :279-280

limitations in studies of, 1:77 Endoparasit ic insects, reproduction dis­

turbances caused by, 1 :98-100 Endotoxins

Bacillus thuringiensis binding, 2:62 Cry toxin mechanism of action,

2 :62-65

Cyt toxin mechanism of action, 2 :65-66

hydrophobic regions, 2:63 ion regulation, 2 :67-69 membrane interaction, 2:62 primary structure, 2 :56-58 proteolytic processing and activa­

tion, 2 :60-61 tertiary structure, 2 :58-60

induction of cecropin, 1:271 Energy charge ratio, for viability in vivo,

1:127 Enhancin

gene cloning, 2 :140-141 Pseudaletia unipuncta

binding to midgut epithelium, 2:130

enhancement of viral infections in vitro, 2 :131-133

localization and mode of action, 2 :129-130

nucleotide sequence, 2 :138-139 synergistic activity, 2 :129-130

Trichoplusia ni GV effect on peritropic membranes,

2 :133-137 enhancement of insect bioassays,

2 :137-140 nucleotide sequence, 2 : 138 -

139 Entomopoxvirus

cytopathology, 2:86 pathogenesis, 2:91 tissue tropism, 2:84

Enzyme-linked immunosorbent assay, for parasitized insects in host in­sect population, 1:421

Enzymes cuticle-degrading

characterization, 2 :219-221 regulation, 2 :221-222

host hemolymph, parasitism effects, 1:28

insect-specific, in baculovirus insec­ticide system, 2 :186-187

secretion by teratocytes, 1 :156-158

Page 354: Parasites and Pathogens of Insects. Parasites

3 5 0 Index to Volumes 1 and 2

Ephedrus californicus, development and growth, 1:7

Epithelium, midgut, see Midgut epithelium

Evolution, see also Coevolution polydnavirus, 1 :215-221 studies, use of venoms, 1 :233-236

Extracellular form, nuclear polyhedrosis virus, 2:113, 149

Extraembryonic tissue, persistence in host, 1:153

Fat body glycogen levels in parasitized

H. virescens, 1:127 production of early proteins, 1:38 protein turnover, nematode effects,

1:95 Fatty acids, levels in lipid fractions after

parasitization, 1 :129-130 Fecundity

microsporidia effects, 1:91 nematode infection effects, 1:96

Few-polyhedra mutants , transposon-related, 2 :152-153

Foraging sites, parasitism effects, 1:110 Fructose bisphosphatase

in H. exiguae-mfectza Trichoplusia ni, 1:130

inhibitory response in parasitized lar­vae, 1:133

Fungal pathogens, insect cuticle inva­sion

adhesion events, 2 :212-214 cuticle-degrading enzymes, 2:219—

221 prepenetration growth, 2 :214-216 structural adaptations for penetra­

tion, 2 :216-219

Galleria mellonella granular cells and plasmocytes,

cell—cell communication, 1:290— 292

immune reactive hemocytes, separa­tion in vitro, 1 :281-282

plasmatocyte depletion factor, 1:272 Gamma radiation, inhibition of graft

rejection, 1 :312-313 Gas chromatography-mass spectrome­

try, for ecdysteroid quantification, 1:77

G domains, diptericin, attacin, and sar-coendotoxin I I , 2 :33-34

Gene expression AcNPV, 2:184 Campoletis sonorensis virus, 1:206 diptericin, 2:33 host, parasitism effects, 1:43 transposon effects, 2 :170-172

Gene-for-gene coevolution, 1 :29-30 Genes

avirulence, in plant pathogens, 1 : 2 9 -30

Campoletis sonorensis virus characterization, 1 :201-205 significance, 1 :206-208

cyt, structure and biological activity, 2:58

designer, of parasites, 1:29 enhancin, cloning, 2 :140-141 env, T E D resemblance, 2 :158-161 gag, T E D resemblance, 2 :158-161 host, regulation factors, 1:51 pol, T E D resemblance, 2 :158-161 polydnavirus

divergence, 1 :215-218 sequencing, 1:203

viral divergence, 1:216 duplication, 1 :216-217

Genetically engineered viruses, 2 :97-98 Genetically manipulated organisms

legislative procedure concerning planned release, 2 :191-193

risk assessment, 2 :188-190 Genetic analyses

intraspecific, polydnavirus DNA as genetic marker, 1 :213-214

S.frugiperda resistance to NPV, 2:204

Page 355: Parasites and Pathogens of Insects. Parasites

Index to Volumes 1 and 2 351

Genetic engineering baculovirus

alternative gene promoters, 2:185 insecticides, 2 :181-182 multiple expression vectors, 2 : 185 -

186 risk assessment, 2 :188-190 very late gene promoters, 2 :184-

185 legislative procedure concerning

planned release, 2 :191-193 potential modifications for improved

insect control, 2 :98-99 Genetic linkage maps, A. aegypti, 1 : 2 5 8 -

259 Genetic mosaics, polydnavirus genome,

1 :180-182 Gene transfer, to exploit genes encoding

parasitism-specific proteins, 1:42 Germination, deuteromycete ento-

mopathogens, 2 :214-215 β-15 3-Glucan, induction of cecropin,

1:271 1-Glucose, 1 3 C-labeled, incorporation

into storage metabolites by para­sitized M. sexta, 1:132

Glycogen deposition by M. sexta parasitized by

C. congregata, 1 :131-132 fat body, in H. exiguae-inkctea Tri­

choplusia ni, 1:130 levels in host fat body, 1:128 storage during parasite—host interac­

tion, 1:135 Glycosidated residues, role in pa ras i t e -

host interaction, 1:37 Graft rejection, inhibition by gamma

radiation, 1 :312-313 eicosinoid effects, 1:313

Gram-positive bacteria, triggering of prophenoloxidase cascade, 1:323

Granulosis virus cytopathology, 2:86 Harrisina brillians, 2:94 as inoculative agent, 2:94 pathogenesis, 2 :90-91

Trichoplusia ni, enhancin effect on peritropic membranes,

2 :133-137 enhancement of insect bioassays,

2 :137-140 gene cloning, 2 :140-141 nucleotide sequence, 2 :138-139

uncoating, 2:116 as viral insecticide, 2 :95-97

Growth host

alteration effects on parasite nutri­tion, 1:136

teratocyte effects, 1 :158-160 parasite, host altered metabolism ef­

fects, 1:135 teratocytes, 1 :148-152

Growth factors, dual roles in mammals , 1:27

Harrisina brillians granulosis virus, 2:94 Heliothis exiguae virus, DNA, 1:196 Heliothis virescens, BT resistance, 2:71 Hemagglutinin, plasma, in melanotic

encapsulation, 1:251 Hemocoel, nematode entry, 2 : 4 -5 Hemocytes

cell-cell communication of Galleria granular cells and plasmocytes, 1 :290-292

granular, multifunctional role, 1 : 2 8 7 -288

immune reactive, separation in vitro, 1 :281-282

induction of humoral antibacterial proteins, 1 :294-295

killing mechanisms, 1:273 monoclonal antibodies against, 1:277 mosquito, role in immune response,

1 :248-249 phagocytosis, laminarin effects,

1 :286-287 polypeptide synthesis, 1:249 production of early proteins, 1:38 prohemocytes, 1:279

Page 356: Parasites and Pathogens of Insects. Parasites

3 5 2 Index to Volumes 1 and 2

role in final wound healing, 1:272 secretion of recruiting and cessation

factors, 1:272 surface protein changes, 1:249 synonyms for, 1:276 types in immune reactivity, 1 :268-270 Xenorhabdus adhesion, carbohydrase

effects, 2:8 Hemolin

function in immune recognition, 1:295

similarity to Drosophila neuroglian, 2 :38-39

structure and actions, 2 :37-39 Hemolymph

agglutinins, 1 :282-285 host, nutrients, 1 :68-69 insect

nematodes in, 2 :5 -7 Xenorhabdus spp. in, 2:7—10

juvenile hormone esterase, inhibition by teratocytes, 1 :157-158

phenoloxidase, inhibition by ter­atocytes, 1 :156-157

plasma, opsonic factors, 1:251 plasma protein expressed during

wound healing, 1:250 protein composition after parasitiza­

tion, 1 :41-42, 128 serpin levels, 1:46 transfer experiments, 1 :293-294,

297 trehalose

in H. exiguae-mkctza Trichoplusia ni, 1:130

levels after parasitization, 1 : 128 -129

as parasite nutrient, 1:134 Hemopoietic tissues, diversity in in­

sects, 1:278 HeV, see Hyposoter exiguae virus High-performance liquid chromatogra­

phy with electrochemical detection

diphenol oxidase activity, 1:252 monophenol oxidase activity, 1:253

tyrosine, dopamine, and Ν-β-Alanyldopamine detection, 1:254

with RIA for ecdysteroid quantifica­tion, 1:77

Hormones, see also specific hormones host, direct effect on parasite devel­

opment, 1 :67-68 insect development-related, 1 :61-64 insect-specific, in baculovirus insec­

ticide system, 2 :186-187 role in metabolic alterations, 1 : 132 -

133 Host conversion, to nutrients for nema­

todes, 2 :12-13 Host death, premature, 2 :233-238 Host finding, by nematodes, 2 : 2 -4 Host -paras i to id-pa thogen interactions

beneficial parasitism effect on host suscepti­

bility, 2 :251-253 parasitoids vectors, 2 :253-259

deleterious direct infection of parasitoids,

2 :242-248 host ovipositionally unattractive,

2 :239-240 hosts altered nutritionally or physi­

ologically, 2 :240-241 parasitoid death, pathogen toxin-

related, 2 :238-239 preclusion of parasitoid persis­

tence, 2 :248-251 premature death of host, 2 : 2 3 3 -

238 Host quality, definition, 1:1:1:2 Host range, baculovirus insecticides,

2:180 Host regulation paradigm, 1:29, 136—

139 Host response, manipulation by para­

sites, 1:26 Host suicide, 1:113 Host suitability

definition, 1:2 endocrine effects on endoparasites,

1 :66-69

Page 357: Parasites and Pathogens of Insects. Parasites

Index to Volumes 1 and 2 3 5 3

H P L C , see High-performance liquid chromatography

Humoral immune response antibacterial, blood cell role, 1 : 2 9 3 -

295 interrelationship with cellular immu­

nity, 1 :293-295 in mosquitos, 1 :249-251 to nematode entry, 2:6 origins of, 2:43

Hydrophobicity, bacterial, 2 : 8 -9 Hydrophobic regions, BT endotoxins,

2:63 Hymenolepis diminuta infections

Tenebrio molitor, 1:97 Tribolium castaneum, 1:97

Hypoproteinemia, host, factors affect­ing, 1:45

Hyposoter exiguae development and growth, 1 : 7 - 8 infections, Trichoplusia ni, 1:128, 130-

131 intraspecific genomic complexity,

1 :198-199

Ichnoviruses, nucleocapsids, 1:197 Idiobionts

developmental strategies, 1 :12-16 egg parasites, 1 : 4 - 5 host-exploitation strategy, 1 : 3 - 4 pupal parasites, 1 : 5 - 6

Immune proteins attacins, 2 :32-34 cecropins and related peptides, 2 : 2 7 -

30 defensins, 2 :30-34 definition, 2:27 diptericins, 2 :32-34 genes

C I F binding to κΒ-like motif, 2 :40-42

κΒ-like motif, 2 :40-42 sequence elements, 2 :40-42

hemolin, 2 :37-39 lysozymes, 2 :35-36

overview of source, size, and func­tion, 2:26

P4, see Hemolin proline-rich bee peptides, 2 :34-35

Immune response cell-cell communication, 1 :290-293 cellular, see Cellular immune re­

sponse humoral , see Humoral immune re­

sponse immunologic memory, 1 :311-312 mosquitos

biochemical aspects, 1 :251-255 cellular aspects, 1 :248-249 humoral aspects, 1 :249-251 non-self recognition, 1 :247-248

nonclonal form of recognition, 2:44 venoms as probes for, 1:230

Immunorecognition, prevention by inte­gral membrane proteins of parasite surfaces, 1:50

Immunosuppression polydnavirus-initiated, 1 :136-137,

173-176 by teratocytes, 1 :155-156

Inoculative agents baculoviruses for, 2:94 for biological control, 2:92

Insecticidal crystal protein (B. thuringiensis aizawai IC1), 2:60

Insecticides, baculovirus genetic manipulation, 2 :181-182 host range, 2:180 persistence, 2:180 production, 2:181 recombinant, 2 :186-188 speed of action, 2:181 target range, 2 :180-181

Insecticyanin, blood levels, parasitism effects, 1:46

Insertion elements gene disruptions caused by, 2:169-170 Spodoptera frugiperda

IFP1.6, 2 :167-168 IFP2.2, 2:168 plaque isolate E, 2 :167-168

Page 358: Parasites and Pathogens of Insects. Parasites

3 5 4 Index to Volumes 1 and 2

Trichoplusia ni IFP2, 2 :164-166 T F P 3 , 2 :166-167

Insertion mutants , baculovirus, 2:152 Integrated pest management programs,

use of viruses in, 2 :96-97 Integration, polydnavirus, 1 :208-215 Intermediate filaments, viral assembly

on, 2 :110-111 Interspecies transfer, transposons,

2 :173-174 Ion channels

activation after BT endotoxin expo­sure, 2:65

regulation by BT endotoxins, 2 :67-69 Iridovirus

cytopathology, 2:86 pathogenesis, 2 :83-85 tissue tropism, 2:84

Juvadecene, effect on endoparasite de­velopment, 1:68

Juvenile hormone, 1:61 distribution, 1:63 functions, 1 :62-63 host, effects of parasitoids, 1 :72-73 link with serosal membrane /

teratocytes, 1 :74-75 metabolism, 1:63 parasite levels relative to host levels,

1 :64-66 quantification, 1 :78-79 structures, 1:62

Juvenile hormone esterase expression in recombinant

baculovirus, 2:187 host, effects of parasitoids, 1 :72-73 inhibition by teratocytes, 1 :157-158 larval parasite effects, 1:70 parasitism effects, 1:47

Juvenile hormone esterase suppressive factor, 1 :47-48

KB-like motif cecropia immunoresponsive factor

binding, 2 :42-43

structure, 2 :40-42 Koinobionts

aphid wasps, 1 : 6 -7 developmental strategies, 1 :12-16 host-exploitation strategy, 1 : 3 - 4 Hyposoter exiguae, 1 : 7 - 8 Microplitis species, 1:8

Laminarin effect on hemocyte phagocytosis,

1 :286-287 induction of cecropin, 1:271

Larval parasites, effects on host endo­crine system, 1:70

Lectins, see also Agglutinins binding, cell type identification,

1:277 effect on erythrocyte spontaneous

rosetting, 1:284, 288 interactions with prophenoloxidase

system, 1 :288-289 plasma factor, 1:288 structure and actions, 2 :36-37

Legislative procedures, for planned re­lease of engineered viruses, 2 : 1 9 1 -193

Ligand-blot analyses, BT endotoxin re­ceptors, 2 :66-67

Light reactions, parasitized insects, 1:108, 110

Lipids activation of prophenoloxidase cas­

cade, 1 :323-325 metabolite changes after parasitiza­

tion, 1 :129-130 transport, lipoprotein-mediated,

1:130 Lipophorin, blood levels, parasitism ef­

fects, 1:46 Lipopolysaccaride-binding protein, 2:37 Lipopolysaccharide-mediated proph­

enoloxidase activation, 1 :322-323 Lymphocytic choriomeningitis virus, se­

lective effects, 1:50 Lysolecithin, activation of prophenolox­

idase, 1:324

Page 359: Parasites and Pathogens of Insects. Parasites

Index to Volumes 1 and 2 3 5 5

Lysozyme role in insect antibacterial response,

2:7 structure and actions, 2 :35-36

Magainins, structure and action, 2:30 Makisterone A, 1 :61-62 Malamoeba locustae, effects on desert lo­

cust oocyte development, 1:89 Mammals , parasitism-induced protein

alterations, 1:48 Manduca sexta

C. congregata infections, metabolic al­terations induced by, 1:131-132

early and late proteins, 1 :31-33 ecdysteroids, 1 :61-62 hemolymph proteins, 1:46

Melanin biosynthesis dopachrome conversion factor, 1:332 R a p e r - M a s o n pathway, 1:331-332

Melanization mechanisms, 1:248 role in insect defense responses,

1:176 venom role in, 1:230

Melanotic encapsulation, see also Encap­sulation

catecholamine substrates, 1:255 enzymes in, 1 :251-255 hemolymph plasma protein expressed

during wound healing (A aegyp­ti), 1:250

plasma hemagglutinin function, 1:251

Membrane permeabilization by cecropins, 2:28 by defensins, 2:31

Memory, immunologic, 1:311—312 Mermis nigrescens infections, Schistocerca

gregaria, 1:95 Mermithid infections, effects on host re­

production, 1:95 Metabolic regulation, enantiostasis,

1 :139-140 Metabolism, host, redirection by para­

sites, 1 :136-139

Metabolites, alteration in host tissues amino acids, 1:128-129 carbohydrates, 1:127-128 lipids, 1:129-130 M. sexta parasitized by C. congregata,

1:131-132 nutritional significance to parasites,

1:134-136 proteins, 1:128-129 Τ ni parasitized by H. exiguae, 1 :130-

131 Metacemyia calloti infections, Anacridium

aegyptium, 1:99-100 Metamorphosis

hormonal changes during, 1:63 host, alteration effects on parasite nu­

trition, 1:136 precocious initiation, parasite-

induced, 1:71 Microbial agents, enhancement, 2:128—

129 Microbial insecticides

insect pathogens for, 2:82 virus efficacy, 2:82

Microfilaments in entry of AcNPV, 2:115 viral assembly and release, 2 : 1 1 1 -

112 Microhabitat

effect on parasite survival, 1 :112-113

preference in parasitized insects, 1:108-110

Microplitis species, development and growth, 1:8

Microsporidia effects on host population dynamics,

1 :92-93 horizontal transmission between

hosts, 1:92 host infections, parasitoids suscepti­

ble to, 2 :246-247 infections, effect on host reproduc­

tion, 1 :89-93 as microbial control agents, 1:93 transovarial transmission, 1:92 transovum transmission, 1:92

Page 360: Parasites and Pathogens of Insects. Parasites

3 5 6 Index to Volumes 1 and 2

vertical transmission to succeeding generations, 1:92

Microtubules in entry of AcNPV, 2 :115-116 viral assembly on, 2:111

Midgut epithelium BBMVs, Cry toxin binding, 2 :62-63 binding of En-Pu, 2:130 BT endotoxin receptors, 2 :66-67 loss of ion regulation, 2 :67-69 viral replication in, 2 :94-95

Mimicry, host defenses, 1:26 Molecular markers, for genes affecting

A . aegypti susceptibility, 1 :258-259 Molecular sieve chromatography, quin­

one isomerase-phenoloxidase com­plexes, 1 :334-335

Molt, juvenile hormone effects, 1 : 6 2 -63

Monoclonal antibodies, cell type deter­mination with, 1:277

Monophenol oxidase, H P L C - E C D , 1:253

Morphogenesis AcNPV, 2 :119-120 Campoletis sonorensis virus, 1:191

Morphology, teratocytes, 1 :148-152 Mosquito, see also Aedes aegypti

immune response biochemical aspects, 1 :251-255 cellular aspects, 1 :248-249 humoral aspects, 1 :249-251 non-self recognition, 1 :247-248

susceptibility/refractoriness to Plas­modium and nematode infections, 1 :255-260

Motility, attraction component, 2:3 Mutagenesis, baculovirus genome, host

transposon role, 2 :168-173

Nematode/bac ter ium-hos t complexes antimicrobial production, 2:13—14 bioluminescence role, 2 :14-15 host conversion to nutrients, 2 :12-13 phase variations, 2 :15-16

pheromones, 2:16—17 physiological and biochemical asso­

ciations, 2 :5-12 Nematodes

damage scales, 1 :93-94 effects on fat body protein turnover,

1:95 entry into host

behavioral barriers, 2 :4 -5 physical barriers, 2:4

host finding, 2 : 2 -4 host reproductive disturbances

caused by, 1 :93-96 in insect hemolymph, 2 :5 -7 nutrient deprivation caused by, 1:95 pathogenic in absence of Xenorhabdus

symbiont, 2 :11-12 Nervous system, venoms as probes for

physiology, 1:230 Neuroglian, Drosophila, similarity to he­

molin, 2 :38-39 Nicotine, in host food, effect on endo­

parasites, 1:68 Nitrogen, metabolites after parasitiza­

tion, 1:128 Nomenclature, blood cells, 1:275—

276 Nonclonal recognition, 2:44 Nonoccluded viruses, 2:83 Non-self recognition

apparent presence of two immune recognition systems, 1:288

evasion by nematodes, 2:6 mosquitos, 1 :247-248 prophenoloxidase cascade role,

1 :325-326 recognition factors, 1 :282-289

Nosema spp., infections, effect on host reproduction, 1 :89-91

Nuclear matrix AcNPV association during transcrip­

tion, replication, and assembly, 2:117

viral assembly on, 2 :109-110 in viral replication and transcription,

2 :108-109

Page 361: Parasites and Pathogens of Insects. Parasites

Index to Volumes 1 and 2 3 5 7

Nuclear polyhedrosis virus Autographa californica, see Autographa

californica nuclear polyhedrosis virus

biological control with, 2:93—94 cytopathology, 2:86 entry, microtubule involvement,

2:115 extracellular form, role in virus trans­

mission, 2:149 pathogenesis, 2:89—90 polyhedral form, role in virus trans­

mission, 2:149 S. frugiperda resistance, case history,

2 :201-205 tobacco hookworm host, 1 :34-37 uncoating, 2:116 as viral insecticide, 2 :95-97 virulence, 2:95

Nucleocapsids bracoviruses, 1 :197-198 ichnoviruses, 1:197 transport, 2:107

Nucleosomes, AcNPV, structure, 2 :117-118

Nutrients changes due to calyx fluid/poly-

dnavirus, 1:179 conversion of host by nematodes,

2 :12-13 deprivation, nematode-induced, 1:95 host alterations, 2 :240-241

Nutrition, parasite effects of altered host metabolite lev­

els, 1:135 host growth patterns, 1:136

Nutritional physiology, host, syncrony with parasite development, 1:133

Nutritional status, host, effect on endo-parasite development, 1 :67-68

Oenocytoids, prophenoloxidase synthe­sis, 1:325

Oleate, activation of phenoloxidase, 1:324

Oocyte development, in Metacemyia calloti-'mkctea Anacridium aegyptium, 1 :99-100

Opius concolor-C. capitata parasi te-host system, 1:67

Opius melleus-R. pomonella parasi te-host system, 1:67

Opius tyroni-C. capitata parasi te-host system, 1:67

Opsonic factors, in hemolymph plasma, 1:251

Oryctes rhinoceros baculovirus, 2:94 Outer membrane proteins, role in adhe­

sion, 2 :9-10 Oviposition

parasitism effects, 1:110 unattractive, 2 :239-240

Parasite development host altered metabolism effects, 1:135 host ecology-related

arrestment, 1:10 diapause, 1 :9 -10 temperature requirements, 1:9

host nutrition effects, 1 :10-11 host starvation, 1:12 superparasitism, 1 :11-12

idiobionts, 1 : 4 - 6 koinobionts, 1 : 6 - 8 strategies, models of, 1 :12-16

Parasitism benefits to host

behavioral fever, 1:114 kin survival, 1 :113-114

benefits to parasites dissemination, 1 :111-112 survival, 1 :112-113

mediating effects on host physiology, 1:133

specific proteins, 1 :27-28 Parasitoids

death, pathogen toxin-related, 2 : 238-239

definition, 1:60 direct infection, 2 :242-248

Page 362: Parasites and Pathogens of Insects. Parasites

3 5 8 Index to Volumes Ί and 2

effects on host development and en­docrinology, 1 :72-73

hostlike antigens, 1:26 persistence, preclusion, 2 :248-251 susceptible to host microsporidia in­

fections, 2 :246-247 unable to complete development

due to host death, 2:234 due to nondigestible spore accu­

mulation, 2:241 as vectors of pathogens, 2 :253-259

Pathogen vectors, parasitoids as, 2 : 253 -259

Peptidoglycan, triggering of prophenol­oxidase cascade, 1:323

Periplaneta americana graft rejection, 1:311

eicosinoid effects, 1:313 inhibition by gamma radiation,

1 :312-313 transplantation reactivity, 1 :309-311

Peritropic membranes, Trichoplusia ni GV enhancin effects, 2 :133-137

Permeabilization, membrane by cecropins, 2:28 by defensins, 2:31

Persistence baculovirus insecticides, 2:180 parasitoid, preclusion of, 2 :248-251 recombinant baculoviruses, 2:189 teratocytes, 1 :148-152

pH, alkaline, for BT endotoxins, 2:60 Phagocytosis

cell types responsible for, 1 :270-271 by hemocytes, laminarin effects,

1 :286-287 Pharmacology, venom probes of hetero­

logous systems, 1 :238-239 Phase-contrast studies, blood cells,

1:277 Phase variation, Xenorhabdus spp., 2 : 1 5 -

16 Phenoloxidase

biochemical pathways, 1:254 hemolymph activity, inhibition by

teratocytes, 1 :156-157

host, parasitism effects, 1 :46-47 role in mosquito immune response,

1 :251-252 substrates, 1:254

Pheromones, produced by nematodes, 2 :16-17

Physiology, host adaptation tolerance hypothesis,

1:138 adjustment versus regulation, 1:139—

140 alterations, 2 :240-241 polydnavirus-related changes, 1:174 redirection by parasites, 1 :136-139 venoms as probes of, 1 :230-231

Phytoecdysteroids, effect on endo­parasite development, 1:68

Phytohormones, effect on endoparasite development, 1:68

Pimpla turionellae, development and growth, 1 : 5 - 6

Plaque isolate Ε insertion element, 2 :167-168

Plasmatocyte depletion factor, 1:272 Plasmocytes, phagocytosis by, 1 : 270 -

271 Plasmids, pAcUW2B expression vector,

2 :185-186 Plasmodium gallinaceum

A. aegypti infections, effects on repro­duction, 1 :88-89

A. aegypti susceptibility, genes affect­ing, 1:257

Polydnavirus amplification in situ, 1:172 in biological systems, 1 :190-191 developmental regulation, 1 :176-179 DNA

as genetic markers for intraspecific genetic analyses, 1 :213-214

multiple covalently closed circular form, 1:192

DNA persistence in host cells, 1:50 effects on prothoracic gland, 1 : 177 -

178 family group, 1 :167-169

Page 363: Parasites and Pathogens of Insects. Parasites

Index to Volumes 1 and 2 3 5 9

gene divergence, 1 :215-218 gene products, functional roles,

1 :182-183 gene sequencing, 1:203 genetic colonization of host, 1:172-173 gene transcripts in host insects, 1:31 genome

functional organization, 1:199-201 genetic mosaic nature, 1 :180-182 packaging, 1 :196-198 segmentation, 1 :183-184 structure, 1 :191-196

immunosuppression, 1:136-137, 173 -176

induction of parasitism-specific pro­teins in host, 1 :75-76

integration, 1 :208-215 modulatory roles in target insects,

1:50 nutrient level changes due to, 1:179 origin, 1:220-221 replication, 1 :169-172, 208-215

developmental regulation, 1:215 strategy, 1:214

role in metabolic alterations, 1:132 species differences, 1:192 species specificity, 1 :218-220 teratocyte-polydnavirus interactions,

1:160 transmission, 1 :170-172, 208-215

Polyhedra-derived form, nuclear poly-hedrosis virus, 2:113, 149

Polypeptides, associated with A . aegypti strains refractory for B. malayi, 1:260

Polypeptide synthesis, in activated he­mocytes, 1:249

Population dynamics, host cestode infection effects, 1:97 microsporidia transmission mode ef­

fects, 1 :92-93 Pores, t ransmembrane, BT endotoxin-

related, 2:62, 66, 68 Postlarval protein, isolation, 2:37 Posttranscriptional regulation,

arylphorins, 1:44

Potassium permeability, BT toxin-related increases, 2:68

Precocene, effect on endoparasite devel­opment, 1:68

Premature death, host, 2 :233-238 Prohemocytes, development, 1:279 Proline-rich bee peptides, 2:34—35 Promoters, for genetic modification of

baculoviruses, 2 :184-185 Prophenoloxidase

compartmentalization, 1:325 occurrence, 1:319-320 synthesis, 1:325 types, 1:319

Prophenoloxidase activation enzyme, characterization, 1:320

Prophenoloxidase cascade characterization, 1:320-322 control mechanisms

dopachrome conversion factor, 1:331-332

general, 1:326-327 prophenoloxidase inhibitor, 1:331 protease inhibitors, 1:327-331 quinone isomerase, 1 :332-335

lipopolysaccharide-mediated, 1 :322-323

non-self recognition molecule, 1:285— 289

role in non-self recognition, 1:325-326 triggering, 1:322-323

Prophenoloxidase complex interaction with lectins, 1:288-289 role in early immune reactivity, 1:270

Protease inhibitors, prophenoloxidase cascade, 1:327-331

Proteases, in bacterial surface modifica­tion system, 2:7

Proteinaceous appendages, role in ad­hesion, 2 :9-10

Proteins, see also specific proteins antibacterial

induction by hemocytes, 1:294—295 induction by injection of non­

pathogenic bacteria, 2 :6 -7 origins, 2:43

Page 364: Parasites and Pathogens of Insects. Parasites

3 6 0 Index to Volumes 1 and 2

early, 1 : 31 -33 , 38-41 endogenous in host, parasitism-

induced modifications, 1 :28-29 late, 1 :31-33 molecular biology, use of venoms,

1:238 parasitism-induced

polydnavirus gene transcripts, 1:31 roles of, 1:37

parasitism-specific, 1 :27-28 Protein synthesis

host, 1 :28-29 parasitism effects, 1:43

in immune reactivity, 1:271 Protein turnover, fat body, nematode

effects, 1:95 Proteolysis, limited, 1:320 Proteolytic processing, BT endo-

endotoxins, 2 :60-61 Prothoracic gland, polydnavirus effects,

1 :177-178 Prothoracicotropic hormones, 1:61

host, effects of parasitoids, 1 :72-73 release during metamorphosis, 1:63

Pseudaletia unipuncta, enhancin binding to midgut epithelium, 2:130 gene cloning, 2 :140-141 enhancement of viral infections

in vitro, 2 :131-133 localization and mode of action,

2 :129-130 nucleotide sequence, 2:138—139 synergistic activity, 2 :129-130

Pyemotes tritici TxP-1 neurotoxin, 2 :187-188

Quinone isomerase, complexation with phenoloxidase complex, 1 :332-335

Radioimmunoassay, with H P L C for ec­dysteroid quantification, 1:77

Radiommetry, monophenol oxidase in A . aegypti hemolymph plasma, 1:252

Rape r -Mason pathway, 1 :331-332 Recognition

nonclonal form, 2:44 non-self, see Non-self resognition steps for deuteromycete en-

tomopathogens before cuticle penetration, 2 :215-216

Recombinant insecticides baculovirus, 2 :186-188

effects, 2 :186-188 prospects for, 2 :190-191

potential for genetic transfer with latent baculoviruses, 2:189

Recruiting factors, secretion by hemo­cytes, 1:272

Refractoriness, A . aegypti strains, 1:260

Regulators combined conformer-regulator strat­

egy, 1:60 definition, 1:17, 60

Replication, viral, see Viral replication Reproduction, disturbances

cestode-related, 1 :96-98 endoparasitic insect-related, 1 : 9 8 -

100 microsporidia-related, 1 :89-93 nematode-related, 1 :93-96

Reproductive behavior, castrated in­sects, 1:111

Resistance, viral, see Viral resistance Respiration, parasite, induction of

metabolic changes in host, 1:134 Restriction fragment length poly­

morphism markers, genes affecting A . aegypti susceptibility, 1 : 2 5 8 -259

Retrotransposons, see also Transposons characterization, 2:151 transposable element-D

characterization, 2:153, 156 gene functions, 2 :158-161 genomic structure and organiza­

tion, 2 :156-158 mechanism of transposition,

2 :161-163

Page 365: Parasites and Pathogens of Insects. Parasites

Index to Volumes Ί and 2 361

transposable element-D (TED), char­acterization, 2:153, 156

Retroviruses, C-type, assembly, 2:112 R H 5849, effect on endoparasite devel­

opment, 1:69 Risk assessment, with genetically ma­

nipulated organisms, 2 :188-190 Royalisin, isolation, 2:31 Rutin, in host food, effect on endo­

parasites, 1:68

Salivary glands, role in mosquito sus­ceptibility/ refractoriness, 1:260

Sapecin, structure and actions, 2 :30-31 Sarcophaga, immune proteins, 2 :36-37 Sarcotoxin I I , G domain, 2 :33-34 Scanning electron microscopy, terato­

cyte ultrastructure, 1 :151-152 Schistosomin, factors affecting, 1:48—49 Secretory enzymes, teratocyte, 1 : 156 -

158 Segmentation, polydnavirus genome,

1 :183-184 Serine protease inhibitors, prophenol­

oxidase cascade, 1 :327-329 Serosal membrane

substances secreted by, 1:74—75 types, 1:146

Serpins functions in prophenoloxidase activa­

tion, 1 :329-331 hemolymph levels, 1:46

Sodium dodecyl sulfate, activation of prophenoloxidase, 1:324

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis, polypeptides of A . aegypti strains refractory for B. malayi, 1:260

Southern blot analyses enhancin, 2:141 H e V and CsV intraspecific genomic

complexity, 1 :198-199 Species differences

encapsulation response, 1:307 polydnaviruses, 1:192

Species specificity bacterial symbionts, 2:17 BT endotoxin domains, 2:73 polydnavirus, 1 :218-220

Spodoptera frugiperda insertion elements

IFP1.6, 2 :167-168 IFP2.2, 2:168 plaque isolate E, 2 :167-168

viral susceptibility, case history, 2 :201-205

Spores deuteromycete entomopathogens, ad­

hesion, 2 :212-214 nondigestible, accumulation, 2:241

Starvation, host, 1:12 Superparasitism, 1 :11-12 , 60 Surface proteins, changes in activated

hemocytes, 1:249 Survival

host kin, parasitism benefits, 1 : 1 1 3 -114

parasite effects of host behavioral alter­

ations, 1 :112-113 host regulation paradigm, 1 : 136 -

139 Susceptibility

A . aegypti, 1 :258-260 A . gambiae, 1 :258-259 host

to nematodes, 2 : 4 -5 parasitism effects, 2 :251-253

Tachyplesins, structure and actions, 2:32

Target range, baculovirus insecticides, 2 :180-181

Taxonomic studies, use of venom for, 1 :236-238

T E D , see Transposable element-D Telenomus heliothidis, enzyme secretion by

teratocytes, 1 :156-157 Temperature

body, parasitism effects, 1:114

Page 366: Parasites and Pathogens of Insects. Parasites

3 6 2 Index to Volumes 1 and 2

elevated, effects on host survival, 1:115 parasite mortality, 1:115

preference changes in parasitized in­sects, 1:110

requirements for parasites develop­ment, 1 :9

Teratocytes abundance, 1 :148-152 distribution, 1 :147-148 effect on

host growth and development, 1 :158-160

juvenile hormone system, 1:75 growth, 1 :148-152 during host life stages, 1:152 immunosuppressive functions, 1 : 1 5 5 -

156 morphology, 1 :148-152 origins, 1 :146-147 persistence, 1 :148-152 polydnavirus—teratocyte interactions,

1:160 secretory functions, 1 :156-158 substances secreted by, 1:74—

75 trophic functions, 1 :153-155 ultrastructure, 1 :151-152 venom interactions, 1:160

Tissue tropisms, major virus types, 2:84

Toxins, see also specific toxins insect-specific, in baculovirus insec­

ticide system, 2 :187-188 pathogen-produced, parasitoid death

due to, 2 :238-239 Xenorhabdus spp., 2 :10-12

Transcription factor NF-κΒ, similarity to C I F , 2 :44-45

Transcription, viral, see Viral transcrip­tion

Transmembrane pores, BT endotoxin-related, 2:62, 66, 68

Transmembrane potential, deu-teromycete entomopathogens, 2:218

Transmission germline, insect viruses, 1 :209-213 per os

insect viruses, 1 :208-209 iridoviruses, 2:85

polydnavirus, 1 :170-172, 208-215 transovarial

insect viruses, 1 :208-209 microsporidia, 1:92

transovum, microsporidia, 1:92 Transmission electron microscopy, ter­

atocytes ultrastructure, 1 :151-152 Transplantation

foreign tissue, 1 :308-311 reactivity in Periplaneta americana,

1 :309-311 Transposable element-D

characterization, 2:153, 156 gene functions, 2 :158-161 genomic structure and organization,

2 :156-158 mechanism of transposition, 2:161 -163

Transposons, see also Retro transposons baculovirus-associated, 2:152-154 classes and properties, 2 :151-152 host

insertion into baculoviruses, 2 : 148-151

role in baculovirus genome muta­genesis, 2 :168-173

symbiotic interactions with baculoviruses, 2 :173-175

Trehalose, hemolymph levels in H. exiguae-'mfected Trichoplusia ni,

1:130 in host tissues, 1 :127-128 as parasite nutrient, 1:134

Trichogramma species, development and growth, 1 : 4 - 5

Trichoplusia ni carbohydrate synthesis alterations,

1:131 endocrine parameters in parasitized

and nonparasitized larvae, 1:71 — 74

gluconeogenic activity, 1:133

Page 367: Parasites and Pathogens of Insects. Parasites

Index to Volumes 1 and 2 3 6 3

Hyposoter exiguae-'mfected, 1:128 metabolic alterations, 1:130-131

Trichoplusia ni GV, enhancin effect on peritropic membranes,

2 :133-137 enhancement of insect bioassays,

2 :137-140 gene cloning, 2 :140-141 nucleotide sequence, 2 :138-139

Trophic functions, teratocytes, 1 :153-155

Tropism, tissue, major virus types, 2:84 Trypsin inhibitors, prophenoloxidase

cascade, 1:329 Two-dimensional gel electrophoresis,

polypeptides of A. aegypti strains refractory for B. malayi, 1:260

Tyrosine, in A. aegypti hemolymph plas­ma, 1:254

Ubiquit in, in AcNPV-infected cells af­ter viral replication, 2:119

Uncoating baculoviruses, 2:116 viral particles, 2 :107-108

Vaccinia virus, assembly, 2:112 Vectors

ascoviruses, 2:88 expression, for genetic modification of

baculovirus, 2 :185-186 pathogens, parasitoids as, 2 :253-259

Venom for behavioral studies, 1 :232-233 for biochemical pathway studies,

1:232 in biological control, 1 :239-240 as classroom tools, 1:240-241 in evolution studies, 1 :233-236 for hos t -paras i te bionomics, 1 :228-

230 for molecular biology studies, 1:238 as probes for heterologous systems,

1 :238-239

as probes of normal host physiology, 1:230-231

proteins, as model systems, 1:238 in taxonomic studies, 1:236—238 teratocyte—venom interactions, 1:160

Venom gland, secretions biological role, 1:176 requirement for parasitization,

1:175-176 synergism with viruses, 1:76

Viability energy charge ratio indicator, 1:127 parasi te-host complexes, 1:126-127

Viral assembly AcNPV, association with nuclear ma­

trix during, 2:117 on cytoskeletal filaments, 2 :110-112

intermediate filaments, 2 :110-111 microfilaments, 2 :111-112 microtubules, 2:111

on nuclear matrix, 2 :109-110 Viral insecticides, 2 :92-93

efficacy, 2:96 granulosis viruses, 2 :95-97 integrated pest management pro­

grams, 2 :96-97 nuclear polyhedrosis viruses, 2:95—97

Viral particles binding, 2:105 cell activation by, 2:105 entry into cells, 2 :105-107 nucleocapsid transport, 2:107 uncoating, 2 :107-108

Viral replication AcNPV

association with nuclear matrix during, 2:117

nucleosomal structure during, 2 :117-118

in vitro, 2:114, 183 in vivo, 2:182

Campoletis sonorensis virus, 1:191 on intermediate filaments, 2 :110-111 in midgut epithelium, 2 :94-95 nuclear matrix role, 2 :108-109 polydnavirus, 1 :169-172, 208-215

Page 368: Parasites and Pathogens of Insects. Parasites

3 6 4 Index to Volumes 1 and 2

developmental regulation, 1:215 strategy, 1:214

Viral resistance, insect to BT endotoxins, 2 :69-71 , 73 comparison with chemical resistance,

2 :205-206 cross-resistance, 2:203, 205 evidence for, 2 :198-201 in field population, 2:200 inheritance mechanisms, 2 :200-201 multiple resistance, 2:203, 206 reversion, 2 :202-203 S. frugiperda viral susceptibility, case

history, 2 :201-205 Viral transcription

AcNPV association with nuclear matrix

during, 2:117 nucleosomal structure during,

2 :117-118 nuclear matrix role, 2 :108-109 transposon effects, 2 :170-172

Virogenic stroma, development, 2:114 Virulence

cytoplasmic polyhedrosis virus, 2:95 genes in plant pathogens, 1 :29-30 nuclear polyhedrosis virus, 2:95

Viruses, see also specific viruses genetically engineered, 2:97—98 nonoccluded, 2:83 occluded, 2:83 pathogenesis

ascoviruses, 2 :85-89 iridoviruses, 2 :83-85

synergism with venom gland secre­tions, 1:76

tissue tropisms, 2:84

Viruslike particles proteins, mimicry by, 2:38 role in metabolic alterations, 1:132

Vitellogenesis cestode-induced disturbance, 1 :97-98 in Metacemyia calloti-infected An-

acridium aegyptium, 1:99—100

Wasp biochemical pathways, 1:232 venom, see Venom

Western blot analyses, enhancin, 2:141 Western slot blots, for parasitized in­

sects in host insect population, 1:421

Wound factors, role in immunity, 1:291 Wound healing

completion, 1:272 plasma protein expressed during,

1:250

Xenografts, rejection, eicosinoid effects, 1:313

Xenorhabdus spp. antimicrobial production, 2 :13-14 endotoxins, 2 :10-12 in insect hemolymph, 2:7—10 mutants , hydrophobicity and nega­

tive charge, 2:8 phase variations, 2 :15-16 symbiont specificity, 2:17

Yeast cellular components, in proph­enoloxidase cascade, 1:323