Parametric Density Estimation using Gaussian Mixture Models

79

description

Based on tutorials by Jeff A. Bilmes and by Ludwig SchwardtSlides by Pardis Noorzad

Transcript of Parametric Density Estimation using Gaussian Mixture Models

Page 1: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using

Gaussian Mixture Models

An Application of the EM Algorithm

Based on tutorials by Je� A. Bilmes and by Ludwig Schwardt

Amirkabir University of Technology � Bahman 12, 1389

Page 2: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Outline

1 Introduction

2 Density Estimation

3 Gaussian Mixture Model

4 Some Results

5 Other Applications of EM

Page 3: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Outline

1 Introduction

2 Density Estimation

3 Gaussian Mixture Model

4 Some Results

5 Other Applications of EM

Page 4: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Outline

1 Introduction

2 Density Estimation

3 Gaussian Mixture Model

4 Some Results

5 Other Applications of EM

Page 5: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Outline

1 Introduction

2 Density Estimation

3 Gaussian Mixture Model

4 Some Results

5 Other Applications of EM

Page 6: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Outline

1 Introduction

2 Density Estimation

3 Gaussian Mixture Model

4 Some Results

5 Other Applications of EM

Page 7: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Introduction

Outline

1 Introduction

2 Density Estimation

3 Gaussian Mixture Model

4 Some Results

5 Other Applications of EM

Page 8: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Introduction

What does EM do?

iterative maximization of the likelihood function

when data has missing values or

when maximization of the likelihood is di�cult

data augmentation

X is incomplete data

Z = (X;Y) is the complete data set

Page 9: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Introduction

What does EM do?

iterative maximization of the likelihood function

when data has missing values or

when maximization of the likelihood is di�cult

data augmentation

X is incomplete data

Z = (X;Y) is the complete data set

Page 10: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Introduction

What does EM do?

iterative maximization of the likelihood function

when data has missing values or

when maximization of the likelihood is di�cult

data augmentation

X is incomplete data

Z = (X;Y) is the complete data set

Page 11: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Introduction

What does EM do?

iterative maximization of the likelihood function

when data has missing values or

when maximization of the likelihood is di�cult

data augmentation

X is incomplete data

Z = (X;Y) is the complete data set

Page 12: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Introduction

What does EM do?

iterative maximization of the likelihood function

when data has missing values or

when maximization of the likelihood is di�cult

data augmentation

X is incomplete data

Z = (X;Y) is the complete data set

Page 13: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Introduction

What does EM do?

iterative maximization of the likelihood function

when data has missing values or

when maximization of the likelihood is di�cult

data augmentation

X is incomplete data

Z = (X;Y) is the complete data set

Page 14: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Introduction

What does EM do?

iterative maximization of the likelihood function

when data has missing values or

when maximization of the likelihood is di�cult

data augmentation

X is incomplete data

Z = (X;Y) is the complete data set

Page 15: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Introduction

EM and MLE

maximum likelihood estimation

estimates density parameters

=) EM app: parametric density estimation

when density is a mixture of Gaussians

Page 16: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Introduction

EM and MLE

maximum likelihood estimation

estimates density parameters

=) EM app: parametric density estimation

when density is a mixture of Gaussians

Page 17: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Introduction

EM and MLE

maximum likelihood estimation

estimates density parameters

=) EM app: parametric density estimation

when density is a mixture of Gaussians

Page 18: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Introduction

EM and MLE

maximum likelihood estimation

estimates density parameters

=) EM app: parametric density estimation

when density is a mixture of Gaussians

Page 19: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Introduction

EM and MLE

maximum likelihood estimation

estimates density parameters

=) EM app: parametric density estimation

when density is a mixture of Gaussians

Page 20: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Density Estimation

Outline

1 Introduction

2 Density Estimation

3 Gaussian Mixture Model

4 Some Results

5 Other Applications of EM

Page 21: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Density Estimation

The density estimation problem

De�nition

Our parametric density estimation problem:

X = fxigNi=1, xi 2 RD

f(xijΘ), i.i.d. assumption

f(xijΘ) =PK

k=1 �kp(xij�k)

K components (given)

Θ = (�1; : : : ; �K ; �1; : : : ; �K)

Page 22: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Density Estimation

The density estimation problem

De�nition

Our parametric density estimation problem:

X = fxigNi=1, xi 2 RD

f(xijΘ), i.i.d. assumption

f(xijΘ) =PK

k=1 �kp(xij�k)

K components (given)

Θ = (�1; : : : ; �K ; �1; : : : ; �K)

Page 23: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Density Estimation

The density estimation problem

De�nition

Our parametric density estimation problem:

X = fxigNi=1, xi 2 RD

f(xijΘ), i.i.d. assumption

f(xijΘ) =PK

k=1 �kp(xij�k)

K components (given)

Θ = (�1; : : : ; �K ; �1; : : : ; �K)

Page 24: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Density Estimation

The density estimation problem

De�nition

Our parametric density estimation problem:

X = fxigNi=1, xi 2 RD

f(xijΘ), i.i.d. assumption

f(xijΘ) =PK

k=1 �kp(xij�k)

K components (given)

Θ = (�1; : : : ; �K ; �1; : : : ; �K)

Page 25: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Density Estimation

The density estimation problem

De�nition

Our parametric density estimation problem:

X = fxigNi=1, xi 2 RD

f(xijΘ), i.i.d. assumption

f(xijΘ) =PK

k=1 �kp(xij�k)

K components (given)

Θ = (�1; : : : ; �K ; �1; : : : ; �K)

Page 26: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Density Estimation

The density estimation problem

De�nition

Our parametric density estimation problem:

X = fxigNi=1, xi 2 RD

f(xijΘ), i.i.d. assumption

f(xijΘ) =PK

k=1 �kp(xij�k)

K components (given)

Θ = (�1; : : : ; �K ; �1; : : : ; �K)

Page 27: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Density Estimation

Constraint on mixing probabilities �iSum to unity

ZRD

p(xij�k)dxi = 1

1 =

ZRD

f(xijΘ)dxi

=

ZRD

KXk=1

�kp(xij�k)dxi

=KXk=1

�k:

Page 28: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Density Estimation

Constraint on mixing probabilities �iSum to unity

ZRD

p(xij�k)dxi = 1

1 =

ZRD

f(xijΘ)dxi

=

ZRD

KXk=1

�kp(xij�k)dxi

=KXk=1

�k:

Page 29: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Density Estimation

The maximum likelihood problem

De�nition

Our MLE problem:

p(XjΘ) =QNi=1 p(xijΘ) = L(ΘjX)

Θ� = argmaxΘ L(ΘjX)

the log-likelihood: log(L(ΘjX))

log(L(ΘjX)) =PN

i=1 log�PK

k=1 �kp(xi; �k)�

di�cult to optimize b/c it contains log of sum

Page 30: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Density Estimation

The maximum likelihood problem

De�nition

Our MLE problem:

p(XjΘ) =QNi=1 p(xijΘ) = L(ΘjX)

Θ� = argmaxΘ L(ΘjX)

the log-likelihood: log(L(ΘjX))

log(L(ΘjX)) =PN

i=1 log�PK

k=1 �kp(xi; �k)�

di�cult to optimize b/c it contains log of sum

Page 31: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Density Estimation

The maximum likelihood problem

De�nition

Our MLE problem:

p(XjΘ) =QNi=1 p(xijΘ) = L(ΘjX)

Θ� = argmaxΘ L(ΘjX)

the log-likelihood: log(L(ΘjX))

log(L(ΘjX)) =PN

i=1 log�PK

k=1 �kp(xi; �k)�

di�cult to optimize b/c it contains log of sum

Page 32: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Density Estimation

The maximum likelihood problem

De�nition

Our MLE problem:

p(XjΘ) =QNi=1 p(xijΘ) = L(ΘjX)

Θ� = argmaxΘ L(ΘjX)

the log-likelihood: log(L(ΘjX))

log(L(ΘjX)) =PN

i=1 log�PK

k=1 �kp(xi; �k)�

di�cult to optimize b/c it contains log of sum

Page 33: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Density Estimation

The maximum likelihood problem

De�nition

Our MLE problem:

p(XjΘ) =QNi=1 p(xijΘ) = L(ΘjX)

Θ� = argmaxΘ L(ΘjX)

the log-likelihood: log(L(ΘjX))

log(L(ΘjX)) =PN

i=1 log�PK

k=1 �kp(xi; �k)�

di�cult to optimize b/c it contains log of sum

Page 34: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Density Estimation

The maximum likelihood problem

De�nition

Our MLE problem:

p(XjΘ) =QNi=1 p(xijΘ) = L(ΘjX)

Θ� = argmaxΘ L(ΘjX)

the log-likelihood: log(L(ΘjX))

log(L(ΘjX)) =PN

i=1 log�PK

k=1 �kp(xi; �k)�

di�cult to optimize b/c it contains log of sum

Page 35: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Density Estimation

The EM formulation

De�nition

Our EM problem:

Z = (X;Y)

L(ΘjZ) = L(ΘjX;Y) = p(X;YjΘ)

yi 2 1 : : :K

yi = k if the ith sample was generated by the kth component

Y is a random vector

log(L(ΘjX;Y)) =PN

i=1 log(�yip(xij�yi))

Page 36: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Density Estimation

The EM formulation

De�nition

Our EM problem:

Z = (X;Y)

L(ΘjZ) = L(ΘjX;Y) = p(X;YjΘ)

yi 2 1 : : :K

yi = k if the ith sample was generated by the kth component

Y is a random vector

log(L(ΘjX;Y)) =PN

i=1 log(�yip(xij�yi))

Page 37: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Density Estimation

The EM formulation

De�nition

Our EM problem:

Z = (X;Y)

L(ΘjZ) = L(ΘjX;Y) = p(X;YjΘ)

yi 2 1 : : :K

yi = k if the ith sample was generated by the kth component

Y is a random vector

log(L(ΘjX;Y)) =PN

i=1 log(�yip(xij�yi))

Page 38: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Density Estimation

The EM formulation

De�nition

Our EM problem:

Z = (X;Y)

L(ΘjZ) = L(ΘjX;Y) = p(X;YjΘ)

yi 2 1 : : :K

yi = k if the ith sample was generated by the kth component

Y is a random vector

log(L(ΘjX;Y)) =PN

i=1 log(�yip(xij�yi))

Page 39: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Density Estimation

The EM formulation

De�nition

Our EM problem:

Z = (X;Y)

L(ΘjZ) = L(ΘjX;Y) = p(X;YjΘ)

yi 2 1 : : :K

yi = k if the ith sample was generated by the kth component

Y is a random vector

log(L(ΘjX;Y)) =PN

i=1 log(�yip(xij�yi))

Page 40: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Density Estimation

The EM formulation

De�nition

Our EM problem:

Z = (X;Y)

L(ΘjZ) = L(ΘjX;Y) = p(X;YjΘ)

yi 2 1 : : :K

yi = k if the ith sample was generated by the kth component

Y is a random vector

log(L(ΘjX;Y)) =PN

i=1 log(�yip(xij�yi))

Page 41: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Density Estimation

The EM formulation

De�nition

Our EM problem:

Z = (X;Y)

L(ΘjZ) = L(ΘjX;Y) = p(X;YjΘ)

yi 2 1 : : :K

yi = k if the ith sample was generated by the kth component

Y is a random vector

log(L(ΘjX;Y)) =PN

i=1 log(�yip(xij�yi))

Page 42: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Density Estimation

The EM formulationContinued

De�nition

The E- and M-steps with the auxiliary function Q:

E-step: Q(Θ;Θ(i�1)) = E[log(p(X;YjΘ))jX;Θ(i�1)]

M-step: Θ(i) = argmaxΘQ(Θ;Θ(i�1))

Page 43: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Density Estimation

The EM formulationContinued

De�nition

The E- and M-steps with the auxiliary function Q:

E-step: Q(Θ;Θ(i�1)) = E[log(p(X;YjΘ))jX;Θ(i�1)]

M-step: Θ(i) = argmaxΘQ(Θ;Θ(i�1))

Page 44: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Density Estimation

The EM formulationContinued

De�nition

The E- and M-steps with the auxiliary function Q:

E-step: Q(Θ;Θ(i�1)) = E[log(p(X;YjΘ))jX;Θ(i�1)]

M-step: Θ(i) = argmaxΘQ(Θ;Θ(i�1))

Page 45: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Density Estimation

The EM formulationThe Q function

Q(Θ;Θ(t)) = E[log(p(X;YjΘ))jX;Θ(t)]

=KXk=1

NXi=1

log(�kp(xij�k))p(kjxi;Θ(t))

=KXk=1

NXi=1

log(�k)p(kjxi;Θ(t))

+KXk=1

NXi=1

log(p(xij�k))p(kjxi;Θ(t))

Page 46: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Density Estimation

The EM formulationSolving for �k

We use the Lagrange multiplier to enforceP

k �k = 1.

@

@�k[Xk

Xi

log(�k)p(kjxi;Θ(t)) + �(Xk

�k � 1)] = 0

Xi

1

�kp(kjxi;Θ(t)) + � = 0

Summing both sides over k, we get � = �N .

�k =1

N

Xi

p(kjxi;Θ(t)):

Page 47: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Density Estimation

The EM formulationSolving for �k

We use the Lagrange multiplier to enforceP

k �k = 1.

@

@�k[Xk

Xi

log(�k)p(kjxi;Θ(t)) + �(Xk

�k � 1)] = 0

Xi

1

�kp(kjxi;Θ(t)) + � = 0

Summing both sides over k, we get � = �N .

�k =1

N

Xi

p(kjxi;Θ(t)):

Page 48: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Density Estimation

The EM formulationSolving for �k

We use the Lagrange multiplier to enforceP

k �k = 1.

@

@�k[Xk

Xi

log(�k)p(kjxi;Θ(t)) + �(Xk

�k � 1)] = 0

Xi

1

�kp(kjxi;Θ(t)) + � = 0

Summing both sides over k, we get � = �N .

�k =1

N

Xi

p(kjxi;Θ(t)):

Page 49: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Density Estimation

The EM formulationSolving for �k

We use the Lagrange multiplier to enforceP

k �k = 1.

@

@�k[Xk

Xi

log(�k)p(kjxi;Θ(t)) + �(Xk

�k � 1)] = 0

Xi

1

�kp(kjxi;Θ(t)) + � = 0

Summing both sides over k, we get � = �N .

�k =1

N

Xi

p(kjxi;Θ(t)):

Page 50: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Density Estimation

The EM formulationSolving for �k

We use the Lagrange multiplier to enforceP

k �k = 1.

@

@�k[Xk

Xi

log(�k)p(kjxi;Θ(t)) + �(Xk

�k � 1)] = 0

Xi

1

�kp(kjxi;Θ(t)) + � = 0

Summing both sides over k, we get � = �N .

�k =1

N

Xi

p(kjxi;Θ(t)):

Page 51: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Gaussian Mixture Model

Outline

1 Introduction

2 Density Estimation

3 Gaussian Mixture Model

4 Some Results

5 Other Applications of EM

Page 52: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Gaussian Mixture Model

GMMSolving for mk and Σk

Gaussian components

p(xijxk;Σk) = (2�)�D

2 jΣkj�

12 exp(�1

2(xi �mk)T�1

k (xi �mk))

mk =

Pi xip(kjxi;Θ

(t))Pi p(kjxi;Θ(t))

Σk =p(kjxi;Θ(t))(xi � mk)(xi � mk)

T

p(kjxi;Θ(t))

Page 53: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Gaussian Mixture Model

GMMSolving for mk and Σk

Gaussian components

p(xijxk;Σk) = (2�)�D

2 jΣkj�

12 exp(�1

2(xi �mk)T�1

k (xi �mk))

mk =

Pi xip(kjxi;Θ

(t))Pi p(kjxi;Θ(t))

Σk =p(kjxi;Θ(t))(xi � mk)(xi � mk)

T

p(kjxi;Θ(t))

Page 54: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Gaussian Mixture Model

Choice of ΣkFull covariance

Fits data best, but costly in high-dimensional space.

Figure: full covariance

Page 55: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Gaussian Mixture Model

Choice of ΣkDiagonal covariance

A tradeo� between cost and quality.

Figure: diagonal covariance

Page 56: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Gaussian Mixture Model

Choice of ΣkSpherical covariance, Σk = �2

kI

Needs many components to cover data.

Figure: spherical covariance

Decision should be based on the size of training data set

so that all parameters may be tuned

Page 57: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Gaussian Mixture Model

Choice of ΣkSpherical covariance, Σk = �2

kI

Needs many components to cover data.

Figure: spherical covariance

Decision should be based on the size of training data set

so that all parameters may be tuned

Page 58: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Gaussian Mixture Model

Choice of ΣkSpherical covariance, Σk = �2

kI

Needs many components to cover data.

Figure: spherical covariance

Decision should be based on the size of training data set

so that all parameters may be tuned

Page 59: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Some Results

Outline

1 Introduction

2 Density Estimation

3 Gaussian Mixture Model

4 Some Results

5 Other Applications of EM

Page 60: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Some Results

Data

data generated from a mixture of three bivariate Gaussians

Page 61: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Some Results

PDFs

estimated pdf contours (after 43 iterations)

Page 62: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Some Results

Clusters

xi assigned to the cluster k corresponding to the highest p(kjxi;Θ)

Page 63: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Other Applications of EM

Outline

1 Introduction

2 Density Estimation

3 Gaussian Mixture Model

4 Some Results

5 Other Applications of EM

Page 64: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Other Applications of EM

A problem with missing dataLife-testing experiment

lifetime of light bulbs follows an exponential distribution with

mean �

two separate experiments

N bulbs tested until failed

failure times recorded as x1; : : : ; xN

M bulbs tested

failure times not recorded

only number of bulbs r, that failed at time t

missing data are failure times u1; : : : ; uM

Page 65: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Other Applications of EM

A problem with missing dataLife-testing experiment

lifetime of light bulbs follows an exponential distribution with

mean �

two separate experiments

N bulbs tested until failed

failure times recorded as x1; : : : ; xN

M bulbs tested

failure times not recorded

only number of bulbs r, that failed at time t

missing data are failure times u1; : : : ; uM

Page 66: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Other Applications of EM

A problem with missing dataLife-testing experiment

lifetime of light bulbs follows an exponential distribution with

mean �

two separate experiments

N bulbs tested until failed

failure times recorded as x1; : : : ; xN

M bulbs tested

failure times not recorded

only number of bulbs r, that failed at time t

missing data are failure times u1; : : : ; uM

Page 67: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Other Applications of EM

A problem with missing dataLife-testing experiment

lifetime of light bulbs follows an exponential distribution with

mean �

two separate experiments

N bulbs tested until failed

failure times recorded as x1; : : : ; xN

M bulbs tested

failure times not recorded

only number of bulbs r, that failed at time t

missing data are failure times u1; : : : ; uM

Page 68: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Other Applications of EM

A problem with missing dataLife-testing experiment

lifetime of light bulbs follows an exponential distribution with

mean �

two separate experiments

N bulbs tested until failed

failure times recorded as x1; : : : ; xN

M bulbs tested

failure times not recorded

only number of bulbs r, that failed at time t

missing data are failure times u1; : : : ; uM

Page 69: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Other Applications of EM

A problem with missing dataLife-testing experiment

lifetime of light bulbs follows an exponential distribution with

mean �

two separate experiments

N bulbs tested until failed

failure times recorded as x1; : : : ; xN

M bulbs tested

failure times not recorded

only number of bulbs r, that failed at time t

missing data are failure times u1; : : : ; uM

Page 70: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Other Applications of EM

A problem with missing dataLife-testing experiment

lifetime of light bulbs follows an exponential distribution with

mean �

two separate experiments

N bulbs tested until failed

failure times recorded as x1; : : : ; xN

M bulbs tested

failure times not recorded

only number of bulbs r, that failed at time t

missing data are failure times u1; : : : ; uM

Page 71: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Other Applications of EM

A problem with missing dataLife-testing experiment

lifetime of light bulbs follows an exponential distribution with

mean �

two separate experiments

N bulbs tested until failed

failure times recorded as x1; : : : ; xN

M bulbs tested

failure times not recorded

only number of bulbs r, that failed at time t

missing data are failure times u1; : : : ; uM

Page 72: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Other Applications of EM

A problem with missing dataLife-testing experiment

lifetime of light bulbs follows an exponential distribution with

mean �

two separate experiments

N bulbs tested until failed

failure times recorded as x1; : : : ; xN

M bulbs tested

failure times not recorded

only number of bulbs r, that failed at time t

missing data are failure times u1; : : : ; uM

Page 73: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Other Applications of EM

EM formulationLife-testing experiment

log(L(�jx; u)) = �N(log � + �x=�)�PM

i (log � + ui=�)

expected value for bulb still burning: t+ �

one that burned out: � � te�t=�(k)

1�e�t=�(k)= � � th(k)

E-step:Q(�; �(k)) = �(N +M) log �

�1

�(N �x+ (M � r)(t+ �(k)) + r(�(k) � th(k)))

M-step: 1N+M (N �x+ (M � r)(t+ �(k)) + r(�(k) � th(k)))

Page 74: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Other Applications of EM

EM formulationLife-testing experiment

log(L(�jx; u)) = �N(log � + �x=�)�PM

i (log � + ui=�)

expected value for bulb still burning: t+ �

one that burned out: � � te�t=�(k)

1�e�t=�(k)= � � th(k)

E-step:Q(�; �(k)) = �(N +M) log �

�1

�(N �x+ (M � r)(t+ �(k)) + r(�(k) � th(k)))

M-step: 1N+M (N �x+ (M � r)(t+ �(k)) + r(�(k) � th(k)))

Page 75: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Other Applications of EM

EM formulationLife-testing experiment

log(L(�jx; u)) = �N(log � + �x=�)�PM

i (log � + ui=�)

expected value for bulb still burning: t+ �

one that burned out: � � te�t=�(k)

1�e�t=�(k)= � � th(k)

E-step:Q(�; �(k)) = �(N +M) log �

�1

�(N �x+ (M � r)(t+ �(k)) + r(�(k) � th(k)))

M-step: 1N+M (N �x+ (M � r)(t+ �(k)) + r(�(k) � th(k)))

Page 76: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Other Applications of EM

EM formulationLife-testing experiment

log(L(�jx; u)) = �N(log � + �x=�)�PM

i (log � + ui=�)

expected value for bulb still burning: t+ �

one that burned out: � � te�t=�(k)

1�e�t=�(k)= � � th(k)

E-step:Q(�; �(k)) = �(N +M) log �

�1

�(N �x+ (M � r)(t+ �(k)) + r(�(k) � th(k)))

M-step: 1N+M (N �x+ (M � r)(t+ �(k)) + r(�(k) � th(k)))

Page 77: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Other Applications of EM

EM formulationLife-testing experiment

log(L(�jx; u)) = �N(log � + �x=�)�PM

i (log � + ui=�)

expected value for bulb still burning: t+ �

one that burned out: � � te�t=�(k)

1�e�t=�(k)= � � th(k)

E-step:Q(�; �(k)) = �(N +M) log �

�1

�(N �x+ (M � r)(t+ �(k)) + r(�(k) � th(k)))

M-step: 1N+M (N �x+ (M � r)(t+ �(k)) + r(�(k) � th(k)))

Page 78: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Other Applications of EM

EM formulationLife-testing experiment

log(L(�jx; u)) = �N(log � + �x=�)�PM

i (log � + ui=�)

expected value for bulb still burning: t+ �

one that burned out: � � te�t=�(k)

1�e�t=�(k)= � � th(k)

E-step:Q(�; �(k)) = �(N +M) log �

�1

�(N �x+ (M � r)(t+ �(k)) + r(�(k) � th(k)))

M-step: 1N+M (N �x+ (M � r)(t+ �(k)) + r(�(k) � th(k)))

Page 79: Parametric Density Estimation using Gaussian Mixture Models

Parametric Density Estimation using Gaussian Mixture Models

Thank you for your attention. Any questions?