Parameterization for Curve Interpolation Michael S. Floater and Tatiana Surazhsky Topics in...

27
Parameterization for Curve Interpolation Michael S. Floater and Tatiana Surazhsky Topics in Multivariate Approximation and Interpolation Speaker: CAI Hong- jie Date: Oct. 1 1, 2007

Transcript of Parameterization for Curve Interpolation Michael S. Floater and Tatiana Surazhsky Topics in...

Parameterization for Curve Interpolation

Michael S. Floater and Tatiana Surazhsky

Topics in Multivariate Approximation and Interpolation

Speaker: CAI Hong-jie

Date: Oct. 11, 2007

The First Author

Michael S. Floater

• Main Posts Professor of the University of Oslo

Editor of the journal Computer Aided Geometric Design

Research Geometric modeling Numerical analysis

Approximation theory

The Second Author

Tatiana Surazhsky

• Post 3D Researcher of Samsung Electronics,

Samsung Telecom Research Israel

• Research Geometric modeling

Computer graphics

Outline

• Background

• Metric for approximation error

• Approximation order Cubic polynomial Cubic spline higher degree polynomial

• Hermite interpolation

Background

• Concept: Parameterization for interpolation Given

points P0,P1,…,Pn in Rk, k= 2 or 3 To find

t0<t1<…<tn and parametric curve P(t)

such that P(ti)=Pi, i=0,…,n.

P0

Pn-1

PnP1

Background

• Selection of parametric curve Polynomial curve Spline curve

• Selection of knot vector

To determine di:=ti+1-ti, i=0,1,…,n-1.

Choices for di

• Uniform di = 1

• Chordal di = |Pi+1-Pi| J. H. Ahlberg, E. N. Nilson, and J. L. Walsh The theory of splines and their applications, 1967 M. P. Epstein On the influence of parametrization in parametric interpolation, 1976

• Centripetal di = |Pi+1-Pi|1/2 E. T. Y. Lee Choosing nodes in parametric curve interpolation, 1989

• Affine invariant T. A. Foley and G. M. Nielson Knot selection for parametric spline interpolation, 1989

Comparison of Four Choices

Original Curve: thin black

Spline Curves: thick gray

Comparison of Three Choices

-1 0 1 2 3 4 5 6 7

-1

-0.5

0

0.5

1

1.5

Original curve: blue uniform: green

Chordal: black centripetal: magenta

Comparison of Three Choices

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-1.5

-1

-0.5

0

0.5

1

1.5

Original curve: blue uniform: green

Chordal: black centripetal: magenta

Metric for Approximation Error

• Hausdorff distance Let A,B be point sets in Rk (k=2,3), define

where ||·||E is Euclidean distance, then Hausdorff distance between A and B is

( , ) max{min }E

d

b Ba A

A B a b

( , ) max{ ( , ), ( , )}.Hd d dA B A B B A

Metric for Approximation Error• Illustration for Hausdorff distance

d(A,B)=1

d(B,A)=3

dH(A,B)=3

• Application of Hausdorff distance

Image matching

Hausdorff distance for curves• Definition P0,P1,…,Pn sampled from parametric curve f:[a,

b]→ Rk, Pi= f(si), a≤s0<s1<…< sn≤b. Interpolate Pi by P(t):[t0,tn]→ Rk, then the distance between them is

000

00

[ , ] [ ]( | , | ) max max min | ( ) ( ) |,

max min | ( ) ( ) |

n 0 nnn

nn

H s s t ,t s s st t t

t t ts s s

d s t

s t

f P f P

f P

Metric for Approximation Error

• Parametric distance

where Ф: [t0,tn] →[s0,sn] is strictly increasing, C1 functions such that Ф(t0)=s0, Ф(tn)=sn.

T. Lyche and K. MØrken, A metric for parametric approximation, Curves and Surfaces, 1994

0[ , ] [ ]( | , | ) infn 0 nP s s t ,td

f P f P

Approximation Order

• Why not distances Hard to calculate Even bounds are difficult to achieve

• Approximation order instead

where h= Length(f| [s0,sn] )= sn-s0.

Larger approximation order m, better interpolation

0[ , ] [ ]( | , | ) ( ), 0n 0 n

mP s s t ,td O h h f P

Cubic Polynomial Interpolation

• Theorem

Given f∈C4[a,b], samples a≤s0<s1<s2<s3 ≤b, let t0=0, ti+1- ti= |f(si+1) - f(si)|(i=0,1,2), and P(t):[t0,t3] → Rk be cubic polynomial such that

P(ti)=f(si), i=0,1,2,3.

Then dP(f|[s0,s3], P)= O(h4), h →0, where h=s3-s0.

Cubic Polynomial Interpolation

• Lemma 1 If f∈C2[a,b], then

Tip for proof: let u=(si+si+1)/2, then

1

3 ''1 1 1

10 ( ) | ( ) ( ) | ( ) max | ( ) | .

12 i ii i i i i i

s s ss s s s s s s

f f f

1

1 1 1

1

( ) ( ) '( )( ) / 2 ( ) ''( ) ,

( ) ( ) '( )( ) / 2 ( ) ''( ) .

i

i

s

i i i iu

u

i i i is

s u u s s s t t dt

s u u s s t s t dt

f f f f

f f f f

Cubic Polynomial Interpolation

• Lemma 2

If Ф:[t0, t3] →R cubic polynomial such that Ф(ti)=si, i = 0,1,2,3, then

Tip for proof: Newton interpolation formula

4( ).O h

f P

3

0 1 2 30( )[ , , , , ]( )iit t t t t t t

f P f

Extension to Cubic Spline• Theorem

Given f∈C4[a,b], samples a≤s0<…<sn ≤b, let t0=0, ti

+1- ti= |f(si+1) - f(si)|, 0 ≤ i<n, and σ(t):[t0,tn] → Rk be the cubic spline curve such that

   Then dP(f|[s0,sn], σ)= O(h4), h →0, where

( ) ( ), 0,1,..., ,

'( ) '( ), 0, .i i

i i

t s i n

t s i n

f

f

10max( ).i i

i nh s s

Parameterization Improvement for higher degree

• Case: polynomial degree n=2,3 Uniform O(h2) Chordal O(hn+1)

• Case: polynomial degree n= 4,5 Uniform O(h2) Chordal O(h4) Improvement O(hn+1)

di=Length(chordal cubic polynomial between Pi,Pi+1)

Hermite Interpolation

• Cubic two-pointGiven f∈C4[a,b], t1- t0= |f(s1) - f(s0)|, and let P(t):[t0,

t1] → Rk be cubic polynomial such that

Then dP(f|[s0,s1], P)= O(h4), as h →0.

( ) ( )( ) ( ), 0,1, 0,1.l li it s i l P f

Hermite Interpolation

• Quintic two-point

Given f∈C6[a,b], let u0, u1 be chordal parametric knot vector, and t0, t1 be improved knot vector, P(t):[t0,t1] → Rk be quintic polynomial such that

Then dP(f|[s0,s1], P)= O(h6), as h →0.

( ) ( )( ) ( ), 0,1, 0,1,2.l li it s i l P f

Numerical Examples

Original curve

Numerical Examples

Comparison with Cubic Spline

(a) Samples from a glass cup

(b) Chordal C2 cubic spline curve

(c) Improved C2 quintic Hermite spline curve

Reference

• M.S. Floater ,T. Surazhsky. Parameterization for curve interpolation. Topics in Multivariate Approximation and Interpolation, 2007.

• M.S. Floater. Arc Length Estimation and The Convergence of Polynomial Curve Interpolation. Numerical Mathematics, to appear.

• T. Surazhsky, V. Surazhsky. Sampling Planar Curves Using Curvature-Based Shape Analysis. Mathematica

l Methods for Curves and Surfaces, Tromsø 2004. • 李庆杨,王能超,易大义 . 数值分析,第 4版, 2003.

Thanks!

Q&A