Parameter Estimation in Stochastic Differential Equations by Continuous Optimization

39
Gerhard-Wilhelm Weber * Nüket Erbil, Ceren Can, Vefa Gafarova, Azer Kerimov Institute of Applied Mathematics Middle East Technical University, Ankara, Turkey Pakize Taylan Dept. Mathematics, Dicle University, Diyarbakır, Turkey Parameter Estimation in Stochastic Differential Equations by Continuous Optimization * Faculty of Economics, Management and Law, University of Siegen, Germany Center for Research on Optimization and Control, University of Aveiro, Portugal Universiti Teknologi Malaysia, Skudai, Malaysia 5th International Summer School Achievements and Applications of Contemporary Informatics, Mathematics and Physics National University of Technology of the Ukraine Kiev, Ukraine, August 3-15, 2010

description

AACIMP 2010 Summer School lecture by Gerhard Wilhelm Weber. "Applied Mathematics" stream. "Modern Operational Research and Its Mathematical Methods with a Focus on Financial Mathematics" course. Part 8.More info at http://summerschool.ssa.org.ua

Transcript of Parameter Estimation in Stochastic Differential Equations by Continuous Optimization

Page 1: Parameter Estimation in Stochastic Differential Equations by Continuous Optimization

Gerhard-Wilhelm Weber *

Nüket Erbil, Ceren Can, Vefa Gafarova, Azer Kerimov

Institute of Applied Mathematics Middle East Technical University, Ankara, Turkey

Pakize Taylan Dept. Mathematics, Dicle University, Diyarbakır, Turkey

Parameter Estimation in

Stochastic Differential Equations

by Continuous Optimization

* Faculty of Economics, Management and Law, University of Siegen, GermanyCenter for Research on Optimization and Control, University of Aveiro, Portugal

Universiti Teknologi Malaysia, Skudai, Malaysia

5th International Summer School

Achievements and Applications of Contemporary Informatics,

Mathematics and Physics

National University of Technology of the Ukraine

Kiev, Ukraine, August 3-15, 2010

Page 2: Parameter Estimation in Stochastic Differential Equations by Continuous Optimization

• Stochastic Differential Equations

• Parameter Estimation

• Various Statistical Models

• C-MARS

• Accuracy vs. Stability

• Tikhonov Regularization

• Conic Quadratic Programming

• Nonlinear Regression

• Portfolio Optimization

• Outlook and Conclusion

Outline

Page 4: Parameter Estimation in Stochastic Differential Equations by Continuous Optimization

drift and diffusion term

Wiener process

( , ) ( , )t t t tdX a X t dt b X t dW

(0, ) ( [0, ])tW N t t T

Stochastic Differential Equations

Page 5: Parameter Estimation in Stochastic Differential Equations by Continuous Optimization

drift and diffusion term

Wiener process

( , ) ( , )t t t tdX a X t dt b X t dW

(0, ) ( [0, ])tW N t t T

Stochastic Differential Equations

Ex.: price, wealth, interest rate, volatility

processes

Page 6: Parameter Estimation in Stochastic Differential Equations by Continuous Optimization

Input vector and output variable Y ;

linear regression :

which minimizes

1 2, ,...,T

mX X X X

1 0

1

( ,..., ) ,m

m j j

j

Y E Y X X X

0 1, ,...,T

m

2

1

:N

T

i i

i

RSS y x

1ˆ ,T TX X X y

12ˆCov( ) Tβ X X

Regression

Page 7: Parameter Estimation in Stochastic Differential Equations by Continuous Optimization

are estimated by a smoothing on a single coordinate.

Standard convention .

• Backfitting algorithm (Gauss-Seidel)

it “cycles” and iterates.

0ˆ ,i i kj

j

ik

k

r y f x

jf

: 0j ijE f x

Generalized Additive Models

1 2 0

1

, ,...,i i i i m ij j

m

j

E x fx x xY

Page 8: Parameter Estimation in Stochastic Differential Equations by Continuous Optimization

• Given data

• penalized residual sum of squares

• New estimation methods for additive model with CQP :

2

2''

0 0

1 1 1

( , ,..., ) : ( ) ( )

bN m m

1 m i j ij j j j

i j j a

PRSS f f y f x f t dtjμ

0.j

( , ) ( = 1,2,..., ),i iy x i N

Generalized Additive Models

Page 9: Parameter Estimation in Stochastic Differential Equations by Continuous Optimization

splines:

By discretizing, we get

0, ,

2

2

0

1 1

2''

min

subject to ( ) , 0,

( ) ( 1,2,..., ),

t β f

N m

i j ij

i= j

j j j j

t

y β f x t t

f t dt M j m

1

( ) ( ).jd

j j

j l l

l

f x h x

0, ,

2 2

0 2

2

0 2

min

subject to ( , ) , 0,

( , ) ( 1,..., ).

t β f

j j

t

W t t

V M j m

Generalized Additive Models

Page 10: Parameter Estimation in Stochastic Differential Equations by Continuous Optimization

splines:

By discretizing, we get

0, ,

2

2

0

1 1

2''

min

subject to ( ) , 0,

( ) ( 1,2,..., ),

t β f

N m

i j ij

i= j

j j j j

t

y β f x t t

f t dt M j m

1

( ) ( ).jd

j j

j l l

l

f x h x

0, ,

2 2

0 2

2

0 2

min

subject to ( , ) , 0,

( , ) ( 1,..., ).

t β f

j j

t

W t t

V M j m

Generalized Additive Models

Page 11: Parameter Estimation in Stochastic Differential Equations by Continuous Optimization

MARS

x

y

+( , )=[ ( )]c x x( , )=[ ( )]-c x x

x

y

+( , )=[ ( )]c x x( , )=[ ( )]-c x x r egression w ith

Page 12: Parameter Estimation in Stochastic Differential Equations by Continuous Optimization

Tradeoff between both accuracy and complexity.

1 2

1 2

1 2 1 2

( ) : | 1, 2,...,

: ( , ,..., )

( , )

: , , 0,1

Km

m

j m

m T

m m m

V m j K

t t tt =

where

1 2

, ( ) : ( )m m m m

r s m m r sD t tt t

max

1 2

222 2

,

1 1 1, ( )( , )

: ( ) ( )MN

m m

i i m r s m

i m r sr s V m

PRSS y f D dmx t tμ

C-MARS

Page 13: Parameter Estimation in Stochastic Differential Equations by Continuous Optimization

Tikhonov regularization:

2 2

22( )PRSS y d L

Conic quadratic programming:

,

2

2

subject to

min ,

( ) ,

tt

td y

ML

2L

2( )y d

C-MARS

Page 14: Parameter Estimation in Stochastic Differential Equations by Continuous Optimization

drift and diffusion term

Wiener process

( , ) ( , )t t t tdX a X t dt b X t dW

(0, ) ( [0, ])tW N t t T

Stochastic Differential Equations Revisited

Ex.: price, wealth, interest rate, volatility,

processes

Page 15: Parameter Estimation in Stochastic Differential Equations by Continuous Optimization

drift and diffusion term

Wiener process

( , ) ( , )t t t tdX a X t dt b X t dW

(0, ) ( [0, ])tW N t t T

bioinformatics, biotechnology

(fermentation, population dynamics)

Universiti Teknologi Malaysia

Ex.:

Stochastic Differential Equations Revisited

Page 16: Parameter Estimation in Stochastic Differential Equations by Continuous Optimization

drift and diffusion term

Wiener process

( , ) ( , )t t t tdX a X t dt b X t dW

(0, ) ( [0, ])tW N t t T

Stochastic Differential Equations Revisited

Ex.: price, wealth, interest rate, volatility,

processes

Page 17: Parameter Estimation in Stochastic Differential Equations by Continuous Optimization

Milstein Scheme :

and, based on our finitely many data:

2

1 1 1 1 1

1ˆ ˆ ˆ ˆ ˆ( , )( ) ( , )( ) ( )( , ) ( ) ( )2

j j j j j j j j j j j j j j j jX X a X t t t b X t W W b b X t W W t t

2( )( , ) ( , ) 1 2( )( , ) 1 .

j j

j j j j j j j

j j

W WX a X t b X t b b X t

h h

Stochastic Differential Equations

Page 18: Parameter Estimation in Stochastic Differential Equations by Continuous Optimization

• step length

• (independent),

1 :j j j jh t t t

1

1

, if 1,2,..., 1

:

, if

j

j j

j

N N

N

X Xj N

hX

X Xj N

h

jW Var( )j jW t

21( , ) ( , ) ( )( , ) 1

2

j

j j j j j j j j

j

ZX a X t b X t b b X t Z

h

(0, ),tW N t

, (0,1)j j j jW Z t Z N

Stochastic Differential Equations

Page 19: Parameter Estimation in Stochastic Differential Equations by Continuous Optimization

• More simple form:

where

• Our problem:

is a vector which comprises a subset of all the parameters.

2

: ( , ) , : ( , ),

: , : 1 2 1 .

j j j j j j

j j j j j

G a X t H b X t

c Z h d Z

y

( ) ,j j j j j j jX G H c H H d

2

21

min ( ( ) )N

j j j j j j jy

j

X G H c H H d

Stochastic Differential Equations

Page 20: Parameter Estimation in Stochastic Differential Equations by Continuous Optimization

where

• k th order base spline : a polynomial of degree k − 1, with knots, say

2 2

0 , 0 ,

1 1 1

2 2

0 , 0 ,

1 1 1

2 2

0 , 0 ,

1 1 1

( , ) ( ) ( )

( , ) ( ) ( )

( , ) ( ) ( )

gp

hr

fs

d

l l

j j j p j p p p j p

p p l

dm m

j j j j j r j r r r j r

r r m

dn n

j j j j j s j s s s j s

s s n

G a X t f U B U

H c b X t c g U C U

F d b b X t d h U D U

,1 ,2, : , ;j j j j jU U U X t

,kB ,x

1

,1

, , 1 1, 1

1 1

1,( )

0, otherwise

( ) ( ) ( )k

k k k

k k

x x xB x

x x x xB x B x B x

x x x x

Stochastic Differential Equations

Page 21: Parameter Estimation in Stochastic Differential Equations by Continuous Optimization

• penalized sum of squares PRRS

• (smoothing parameters),

• large values of yield smoother curves,

smaller ones allow more fluctuation

2

1

22 2 2

0 , 0 , 0 ,

1 1 1 1 1 1 1

( ) ( ) ( )

h fgp sr

N

j j j j j j

j

d ddNl l m m n n

j p p j p r r j r s s j s

j p l r m s n

X G H c F d

X B U C U D U

22 2

1 1

2 22 2

1 1

( , , ) : ( )

( ) ( )

N

j j j j j j p p p p

j p

r r r r s s s s

r s

PRSS f g h X G H c F d f U dU

g U dU h U dU

, , 0p r s

, ,p r s

( , , )

b

a

p r s

Stochastic Differential Equations

Page 22: Parameter Estimation in Stochastic Differential Equations by Continuous Optimization

• Then,

• Furthermore,

1 2

0 1 2

1 2

0 1 2

1 2

0 1 2

,

, , , , ,..., ( 1,2),

, , , , ,..., ( 1

, ,

, 2),

, , , , ,..., ( 1,2).

gp

hr

fs

TT dT T

p p p p

TTdT T

r r r r

TTdT T

s

T T

s

T

s s

T

p

r

s

22

21

.N

j j

j

X A X A 1 2

1 2

, ,...,

, ,...,

TT T T

N

T

N

A A A A

X X X X

12 2

1,

1

21

1 1

( ) ( ) ( )

( ) .

gp

b N

p p p p jp j p jp

ja

dNl l

p p jP j

j l

f U dU f U U U

B U u

Stochastic Differential Equations

Page 23: Parameter Estimation in Stochastic Differential Equations by Continuous Optimization

• If

where

2 2 22 2 2 2

2 2 22 1 1 1

( , , ) B C D

p p p r r r s s s

p r s

PRSS f g h X A A A A

2: :p r s

222

22

( , , ) ,PRSS f g h X A L

, , .T

T T T

1

2

1

2

1

2

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0: ,

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

B

B

C

C

D

D

A

A

AL

A

A

A

Stochastic Differential Equations

Page 24: Parameter Estimation in Stochastic Differential Equations by Continuous Optimization

22

22

min X A Lμ Tikhonov regularization

,

2

2

subject to

min ,

,

tt

A X t

L M

Stochastic Differential Equations

Conic quadratic programming

Interior Point Methods

Page 25: Parameter Estimation in Stochastic Differential Equations by Continuous Optimization

Stochastic Differential Equations

,

6( 1)6( 1)

1 6( 1) 1

min

0subject to : ,

1 0 0

00: ,

0 0

,

t

N

T

m

NN

T

m

N N

t

tA X

t

M

L L

L

1 1 2 2 2

1 2 1 1 2: ( , ,..., ) | ...N T N

N N+ NL x x x x x x x xR

6( 1) 1

1 6( 1) 2

6( 1)

1 2

1

1 2

max ( ,0) 0 ,

10 1 0 0subject to ,

00 0

, N

T T

N

T T

N N

T Tmm m

N

X M

A

L L

Ldual problem

primal problem

Page 26: Parameter Estimation in Stochastic Differential Equations by Continuous Optimization

is a primal dual optimal solution if and only if 1 2( , , , , , )t

6( 1)6( 1)

6( 1)

1 2

1 2

1 6( 1) 1

1 2

1 6( 1) 1

0: ,

1 0 0

00:

0 0

10 1 0 0

00 0

0, 0

,

, .

N

T

m

NN

T

m

T T

N N

T Tmm m

T T

N N

N N

tA X

t

M

A

L L

L L

L

L

Stochastic Differential Equations

Page 27: Parameter Estimation in Stochastic Differential Equations by Continuous Optimization

Stochastic Differential Equations

Ex.:

nonlinear regression

, , , ,t t t t t tdX t X Z dt t X Z dW .

( ) + ,T T

t t t t t t t t tdV V dt cr dr t V dWμ σ

,t t t t td R r dt rr dWτα

Page 28: Parameter Estimation in Stochastic Differential Equations by Continuous Optimization

min ( ) ( ) ( )

Tf F F

1( ) : ( ),..., ( )T

NF f f

2

,

1

2

1

min

:

N

j j

j

N

j

j

f d g x

f

Nonlinear Regression

Page 29: Parameter Estimation in Stochastic Differential Equations by Continuous Optimization

• Gauss-Newton method :

• Levenberg-Marquardt method :

( ) ( ) ( ) ( )T qF F F F

( ) ( ) I ( ) ( )T

p qF F F F

0

1 :k k kq

Nonlinear Regression

Page 30: Parameter Estimation in Stochastic Differential Equations by Continuous Optimization

,

2

2

min ,

subject to ( ) ( ) I ( ) ( ) , 0,

|| ||

t

T

p

qt

F F F F

qL

q t t

M

Nonlinear Regression

interior point methods

alternative solution

conic quadratic programming

Page 31: Parameter Estimation in Stochastic Differential Equations by Continuous Optimization

max utility ! or

min costs !

martingale method:

Optimization Problem

Representation Problem

or stochastic control

Portfolio Optimization

Page 32: Parameter Estimation in Stochastic Differential Equations by Continuous Optimization

max utility ! or

min costs !

martingale method:

Optimization Problem

Representation Problem

or stochastic control

Parameter Estimation

Portfolio Optimization

Page 33: Parameter Estimation in Stochastic Differential Equations by Continuous Optimization

max utility ! or

min costs !

martingale method:

Optimization Problem

Representation Problem

or stochastic control

Parameter Estimation

Portfolio Optimization

Page 34: Parameter Estimation in Stochastic Differential Equations by Continuous Optimization

max utility ! or

min costs !

martingale method:

Optimization Problem

Representation Problem

or stochastic control

Parameter Estimation

Portfolio Optimization

Page 35: Parameter Estimation in Stochastic Differential Equations by Continuous Optimization

Aster, A., Borchers, B., and Thurber, C., Parameter Estimation and Inverse Problems, Academic Press, 2004.

Boyd, S., and Vandenberghe, L., Convex Optimization, Cambridge University Press, 2004.

Buja, A., Hastie, T., and Tibshirani, R., Linear smoothers and additive models, The Ann. Stat. 17, 2 (1989)

453-510.

Fox, J., Nonparametric regression, Appendix to an R and S-Plus Companion to Applied Regression,

Sage Publications, 2002.

Friedman, J.H., Multivariate adaptive regression splines, Annals of Statistics 19, 1 (1991) 1-141.

Friedman, J.H., and Stuetzle, W., Projection pursuit regression, J. Amer. Statist Assoc. 76 (1981) 817-823.

Hastie, T., and Tibshirani, R., Generalized additive models, Statist. Science 1, 3 (1986) 297-310.

Hastie, T., and Tibshirani, R., Generalized additive models: some applications, J. Amer. Statist. Assoc.

82, 398 (1987) 371-386.

Hastie, T., Tibshirani, R., and Friedman, J.H., The Element of Statistical Learning, Springer, 2001.

Hastie, T.J., and Tibshirani, R.J., Generalized Additive Models, New York, Chapman and Hall, 1990.

Kloeden, P.E, Platen, E., and Schurz, H., Numerical Solution of SDE Through Computer Experiments,

Springer Verlag, New York, 1994.

Korn, R., and Korn, E., Options Pricing and Portfolio Optimization: Modern Methods of Financial Mathematics,

Oxford University Press, 2001.

Nash, G., and Sofer, A., Linear and Nonlinear Programming, McGraw-Hill, New York, 1996.

Nemirovski, A., Lectures on modern convex optimization, Israel Institute of Technology (2002).

References

Page 36: Parameter Estimation in Stochastic Differential Equations by Continuous Optimization

Nemirovski, A., Modern Convex Optimization, lecture notes, Israel Institute of Technology (2005).

Nesterov, Y.E , and Nemirovskii, A.S., Interior Point Methods in Convex Programming, SIAM, 1993.

Önalan, Ö., Martingale measures for NIG Lévy processes with applications to mathematical finance,

presentation in: Advanced Mathematical Methods for Finance, Side, Antalya, Turkey, April 26-29, 2006.

Taylan, P., Weber G.-W., and Kropat, E., Approximation of stochastic differential equations by additive

models using splines and conic programming, International Journal of Computing Anticipatory Systems 21

(2008) 341-352.

Taylan, P., Weber, G.-W., and A. Beck, New approaches to regression by generalized additive models

and continuous optimization for modern applications in finance, science and techology, in the special issue

in honour of Prof. Dr. Alexander Rubinov, of Optimization 56, 5-6 (2007) 1-24.

Taylan, P., Weber, G.-W., and Yerlikaya, F., A new approach to multivariate adaptive regression spline

by using Tikhonov regularization and continuous optimization, to appear in TOP, Selected Papers at the

Occasion of 20th EURO Mini Conference (Neringa, Lithuania, May 20-23, 2008) 317- 322.

Seydel, R., Tools for Computational Finance, Springer, Universitext, 2004.

Stone, C.J., Additive regression and other nonparametric models, Annals of Statistics 13, 2 (1985) 689-705.

Weber, G.-W., Taylan, P., Akteke-Öztürk, B., and Uğur, Ö., Mathematical and data mining contributions

dynamics and optimization of gene-environment networks, in the special issue Organization in Matter

from Quarks to Proteins of Electronic Journal of Theoretical Physics.

Weber, G.-W., Taylan, P., Yıldırak, K., and Görgülü, Z.K., Financial regression and organization, to appear

in the Special Issue on Optimization in Finance, of DCDIS-B (Dynamics of Continuous, Discrete and

Impulsive Systems (Series B)).

References

Page 37: Parameter Estimation in Stochastic Differential Equations by Continuous Optimization

I1

a b

(3a)

I1 I2 I3 I4

a bI5 I6 I7 I8

(3b)

I2 I4I3 I5 I6I1

a b

(3c)

a b

.

.

.. ...... ......

. .......

..

: ( ) ( )j j j j jInd = d D v V

Generalized Additive Models

Appendix

Page 38: Parameter Estimation in Stochastic Differential Equations by Continuous Optimization

cluster

cluster

robust optimization

C-MARS

Appendix

Page 39: Parameter Estimation in Stochastic Differential Equations by Continuous Optimization

,

2

2

min ,

subject to ( ) ( ) I ( ) ( ) , 0,

|| ||

t

T

p

qt

F F F F

qL

q t t

M

Nonlinear Regression

alternative solution

2

1min ( ) := ( ) + ( ) ( ) + ( ) ( )

2

subject to

T T T

q

Q q f q F F q F F q

q

trust region

Appendix