Paper

186
การคาดการณราคาหุนระยะสั้นโดยวิธีการผสมผสานทําซ้ําตัวกรองความชัน การปรับตัวเขาหา และ การปรับตัวการเรียนรูนิวรอลฟซซี นายตอง ศรีคชา วิทยานิพนธนี้เปนสวนหนึ่งของการศึกษาตามหลักสูตร ปรัชญาดุษฎีบัณฑิต สาขาวิชาเทคโนโลยีสารสนเทศ ภาควิชาเทคโนโลยีสารสนเทศ บัณฑิตวิทยาลัย สถาบันเทคโนโลยีพระจอมเกลาพระนครเหนือ ปการศึกษา 2550 ลิขสิทธิ์ของสถาบันเทคโนโลยีพระจอมเกลาพระนครเหนือ

description

Paper

Transcript of Paper

  • 2550

  • : :

    : : . : 2550

    SVR (Support Vector Regression) ANFIS (Adaptive Neuro-fuzzy Inference System)

    SVR (Global Optimization) OCB (Output Component Base)

    ANFIS OII (Output-Input-Iteration)

    NFSV (Neuro-Fuzzy with Support Vector Guideline System) OCB OII

    ( 177 ) :

  • Name : Mr.Tong Srikhacha Thesis Title : Short-Term Prediction in Stock Price Using Hybrid Optimized

    Recursive Slope Filtering, Adaptive Moving Approach and Neurofuzzy Adaptive Learning

    Major Field : Information Technology King Mongkut's Institute of Technology North Bangkok Thesis Advisor : Assistant Professor Dr.Phayung Meesad Academic Year : 2007

    Abstract The objective of this research focuses on developing an intelligent stock

    prediction based on historical data. The proposed system is applied by combining advantages of the principle of support vector regression (SVR) and adaptive neuro-fuzzy inference system (ANFIS).

    The SVR is based global optimization of data classification. This method is benefit to apply in approximate prediction. However, it may provide poor output in case of inappropriate input offset. To reduce this effect, this research develops the output component base model (OCB).

    The ANFIS is a type of fuzzy that can quickly adaptively learn, based on appropriate fuzzy rule defining. Because of its local optimized design, it may result in the surface oscillation output. To reduce this effect, this research develops output-input-iteration model (OII).

    The Neuro-Fuzzy with Support Vector guideline system (NFSV) is synergistically combined these two techniques with stock rule filtering and suitable input reforming. In this research, NFSV model provides good stock prediction especially in lowest and opening price.

    (Total 177 pages)

    Keywords : Stock Prediction, Neuro-Fuzzy, Support Vector, Out Component Base,

    Output-Input-Iteration

    Advisor

  • . ()

  • 1 1

    1.1 1 1.2 2 1.3 2 1.4 2 1.5 3 1.6 4

    2 5 2.1 5 2.2 7 2.3 12

    2.3.1 12 2.3.2 13 2.3.3 13 2.3.4 AMA 14 2.3.5 15

    2.4 17 2.4.1 18 2.4.2 SVR 26

    2.5 ANFIS 29 2.5.1 31 2.5.2 ANFIS 32 2.5.3 ANFIS 34

  • ()

    2.6 43 2.6.1 AMA 43 2.6.2 SVR 46 2.6.3 ANFIS 54

    2.7 60 3 61

    3.1 61 3.2 62 3.3 62 3.4 63 3.5 65

    4 67 4.1 67

    4.1.1 67 4.1.2 70

    4.2 72 4.3 73

    4.3.1 OCB 73 4.3.2 OII 80

    4.4 NFSV 84 4.4.1 86 4.4.2

    92 4.4.3 96 4.4.4 97 4.4.5 101 4.4.6 105

    4.5 NFSV 113

  • ()

    5 115 5.1 115

    5.1.1 AMA 115 5.1.2 SVR OCB 121 5.1.3 ANFIS OII 126

    5.2 1 134 5.2.1 134 5.2.2 (5-11) 136 5.2.3 140

    5.3 NFSV 144 5.4 155

    6 157 6.1 157 6.2 ANFIS 157 6.3 NFSV 158 6.4 158 6.5 159

    163 169

    170 177

  • 4-1 9 69 5-1 AMA 120 5-2 AMA 1 2 121 5-3 5-8 123 5-4 5-9 124 5-5 Ustat SET 133 5-6 Ustat 5-16 5-19 139 5-7 SET TMB IRP 139 5-8 Ustat 5-21 143 5-9 143 5-10 143 5-11 NFSV 10 145 5-12 NFSV OCB 146 5-13 NFSV OCB 147 5-14 IRP 149 -1 170

  • 2-1 13 2-2 14 2-3 15 2-4 17 2-5 18 2-6 19 2-7 H1 H2 20 2-8 20 2-9 21 2-10 SVR 27 2-11 28 2-12 SVR 29 2-13 30 2-14 31 2-15 ANFIS 32 2-16 37 2-17 38 2-18 39 2-19 40 2-20 ANFIS 40 2-21 AMA 1 44 2-22 AMA 2 45 2-23 45 2-24 SVR C 47 2-25 C 48 2-26 48 2-27 u v 49

  • ()

    2-28 SVR 50 2-29 SVR 50 2-30 SVR 51 2-31 52 2-32 SVR y = - sin(t) x = sin(t) 52 2-33 y = - sin(t) x = sin(t) 52 2-34 x 2-32 53 2-35 SVR y = cos(t) x = sin(t) 53 2-36 x 2-35 53 2-37 y = cos(t) x = sin(t) 54 2-38 ANFIS 55 2-39 radii = 0.07 56 2-40 57 2-41 radii 58 4-1 9 68 4-2 4 SET KEST 69 4-3 OCB 76 4-4 SVR( ) 76 4-5 SUB( ) 77 4-6 SUB( ) 78 4-7 WIN( ) 79 4-8 SVR OCB 80 4-9 NFSV 84 4-10 SET Index of Thailand 87 4-11 88 4-12 89 4-13 89

  • ()

    4-14 NFSV 90 4-15 Tj (4-23) 94 4-16 NFSV 97 4-17 98 4-18 radii 100 4-19 NFSV 102 4-20 106 4-21 107 4-22 105 4-23 108 4-24 109 5-1 AMA 116 5-2 10 AMA 117 5-3 117 5-4 AMA 1 118 5-5 AMA 2 118 5-6 AMA 1 2 119 5-7 AMA 1 2 119 5-8 SVR OCB SET (5-1)

    REC 123 5-9 SVR OCB SET (5-2)

    REC 124 5-10 SET (5-2)

    m=1.5 125 5-11 SVR OCB Mackey Glass time series 126 5-12 126 5-13 ANFIS OII 130

  • ()

    5-14 MF Rule SET 131 5-15 RB MF Rules 133 5-16 1 135 5-17 SET m 137 5-18 TMB m 138 5-19 IRP m 138 5-20 (4-5) (4-7) m 140 5-21 8 Ustat 141 5-22 IRP 148 5-23 REC IRP 148 5-24 IRP 149 5-25 BRG IRP 150 5-26 NFSV IRP 151 5-27 NFSV IRP 152 5-28 NFSV SET 153 5-29 NFSV SET 154 -1 REC 172 -2 BRG 173 -3 BRG 171

  • 1

    1.1

    [1] [2]

    (Neural Network) Yao [3] DNN Kung [4] SML Hellstrm [5] (Rank Measurement) (Mutual Funds) Hellstrm

  • 2

    1.2

    (Neuro-Fuzzy) (Support Vector)

    1.3

    Nave Exponential Smoothing

    1.4

    Adaptive Learning Adaptive Moving Approach

    (Movement) (Trends) (Season)

    Exponential Smoothing (Moving Average) (Time Series)

    Nave Model

    Neuro-Fuzzy (Neural Network) (Fuzzy Logic) - (If-Then)

    Recursive Slope Filtering

    Support Vector (Classification) (Minimized Empirical Error) (Maximized Margin)

  • 3

    1.5

    (Support Vector) (Neuro-Fuzzy) (Experimental Research)

    1.5.1

    (Support Vector Regression) (Neuro-Fuzzy System)

    (Batch Processing)

    1.5.2 10

    2 1 SET index 5 BBL (Bangkok Bank

    Public Co.) KTB (Krung Thai Bank Public) SCB (The Siam Commercial Bank) TISCO (Tisco Bank Public Co., Ltd.) TMB (TMB Bank Public Co., Ltd.) 4 IRP (Indorama Polymers Public) PTTCH (PTT Chemical Public) TPC (Thai Plastic And Chemical) VNT (Vinythai Public Co., Ltd.)

    3 2549 28 2550 3 2549 28 2549 1 2549 28 2550 2 (Recursive Slope Filtering)

    1.5.3 2

    Nave

  • 4

    1.6

  • 2

    3

    AMA (Adaptive Moving Approach) [29] SVR (Support Vector Regression) [30, 31, 32] ANFIS (Adaptive Neuro-Fuzzy Inference System) [24, 25]

    AMA (Movement) (Trends) (Season) SVR ANFIS 2.3 2.4 2.5 3 4

    2.1

    30 [6] (Movement) (Trends) (Season)

    (Exponential Smoothing) [7] (Double Exponential Smoothing) [8] (Non-Stationary) [9]

  • 6

    ARIMA model (Autoregressive Integrated Moving Average) Box Jenkins ..1970 [10] [11] [6], [8], [12] (Markov Model) [11]

    (Adaptive Approach) ARIMA [13]

    Bayes [14]

    (Genetic Algorithm) [15]

    (Genetic Algorithm) (Random Walk Time Series) [16, 17, 18] (Correlation) [19] (Clustering) [20] [21, 22] (Cosine Radial Function)

    (Neural Network) (Fuzzy)

  • 7

    [8] [23] ANFIS (Adaptive Neuro-Fuzzy Inference System) [24, 25]

    ANFIS (Adaptive Neuro-Fuzzy Inference System) (Cosine Distance) [17], [26, 27, 28] (Adaptive Learning Approach) (Noise Optimization )

    AMA ANFIS SVR

    2.2

    2.1 Parametric Non-Parametric Model ARIMA [13]

  • 8

    Bayes [14]

    (Stock) (Common Stock) (Preferred Stock) (Debenture) (Convertible Debenture) (Warrant) (Short-Term Warrant) (Derivative Warrant) (Unit Trust)

    80% [60]

    P SCB-P, TISCO -P

    (Par Value) 10-12% [61]

  • 9

    2 (Fundamental Analysis) (Technical Analysis)

    (Fundamental Analysis)

    (Technical Analysis)

    3 (SET Index) SET50 Index SET100 Index (Industry Group Index) (Sectoral Index) (Price) (P/E Ratio) (Dividend Value) (Volume) (Value)

    (SET Index) SET Index ( 1 ) 30 2518

  • 10

    SET Index SET50 Index SET 100 Index 50 100 16 2538 (SET50) 30 2548 (SET100) SET50 Index SET100 Index 6 ( )

    (Industry Group Index) (Sectoral Index) 8 25

    (Price ) -

  • 11

    GDP (Gross Domestic Product) GDP

    (Fundamental Analysis) (Technical Analysis) MA (Moving Average) MACD (Moving Average Convergence Divergence) Bollinger Bands ADX (Directional Movement Index) RSI (Relative Strength Index)

    (Exponential Smoothing) (Fuzzy) (Support Vector)

    AMA ANFIS SVR 3 4

  • 12

    2.3 (Adaptive Moving Approach) AMA

    3

    (Re-Testing) AMA 4 (Movement) (Trend) AMA

    2.3.1 (Movement) (Smoothing)

    ARRSES (Adaptive Response Rate Single Exponential Smoothing) [37] ARRSES (2-1)

    ttt FYF )1()ARR(

    1 +=+ (2-1) tF

    tY )ARR( 1+tF 10 (2-1)

    1 Nave 0

  • 13

    2.3.2 (Trend)

    2-1 (Period) (2-2)

    2-1

    ( ) ( ) 11 1 += tttt GSSG (2-2)

    ( )1 tt SS 1tG

    2.3.3 (Season) 5

    - (Seasonal Factor) - (Seasonal Value) - AMA (Adaptive Moving Approach) - -

    2.3.3.1 tt SD / (2-3)

    ( ) ( ) N,1/ tttt CSDC ++= (2-3)

    tt SD /

    N,tC tC (Last

  • 14

    Period Seasonal Factor) N 1N >

    2.3.3.2 2-2

    2-2

    tS (Seasonal Value)

    N,tC tD (Actual Value) (2-4) (2-5)

    ttt DSC N, (2-4)

    ( ) ( ) ( )11, 1/ ++= ttNttt GSCDS (2-5) tG (One-Period Trend Estimate)

    2.3.4 AMA (Adaptive Moving Approach) (2-2) (2-5) (2-6)

    ( ) N,1)AMA( 1 ++ += tttt CGSF (2-6)

    N (Auto Correlation Function: ACF) AMA N 4 N,tC

  • 15

    2 1 (Type-I) 2 (Type-II) (2-7) (2-8)

    Type I: ( ) 1N1N,1 SDN1

    =+ = iittt CCC (2-7)

    Type II: ( ) ( ) 1N1N1N1N,1 SD

    =+++ += iittttt CCCCC (2-8)

    SD (Standard Deviation)

    1 2 SD

    2.3.5 AMA

    2 AMA

    2.3.5.1 2-3

    2-3

    (2-9) (2-13)

    ( ) 11 += ttt AEA (2-9)

    ( ) 11 += ttt MEM (2-10)

    1

    1

    =t

    tt M

    A (2-11)

  • 16

    ( )( )ttttt E +=+ 1sgn1 (2-12)

    ( )( )ttttt E +=+ 1sgn21

    1 (2-13)

    tA (Smoothing Error) tM (Absolute Smoothing Error) ttt FDE = 1,,0 10

  • 17

    SVR

    2.4 (Support Vector Regression)

    SVR (Pattern) (Historical Space: H-Space) (Target Space: T-Space) 2-4

    2-4

    (Over Fitting) SVR

    gene (2-14) 2-5

    estappgen eee += (2-14)

    1h 2h jhTarget space

    jhhh

  • 18

    2-5

    este (Estimate

    Error) appe (Approximate Error)

    SVR

    2.4.1 (Minimized Empirical Error

    or Risk) (Maximized Margin)

    SVR SRM (Structure Risk Minimization) ERM (Empirical Risk Minimization)

    )(xG (Unknown Function) [ ]lT III ,...,, 21=x l y (Family Function) (2-15) n

    ( ) ( ) ( ){ } lnn yxyxyx ,,...,,,, 2211 (2-15)

    y 3

    (Binary Classification) (Scalar Regression) (Multiclass Classification) 1 3

    gene

    appe

    este

    h space

    Target space

  • 19

    (Image Recognition) OCR 2 (Prediction Application)

    (2-16) w (Weighting) ( ) x )(G (2-16) ( ) w

    ( )= xwx iiwf ),( (2-16)

    SRM (Feature-Space or High Dimension Space) (2-17) 2-6

    bf += xwwx T),( (2-17)

    b (Bias) T (Matrix Transpose)

    2-6

    y (2-17) )(xG

    )(xF

    G plane F plane

  • 20

    )(xF w b y 1 2 -1 +1 (2-17) (2-18) (2-19)

    1;1

    1;1

    =+

    +=++

    iiT

    iiT

    yb

    yb

    xw

    xw (2-18)

    ( ) iby iTi + ;01xw (2-19)

    2 b w 2-7 (Margin) (Hyperplane) H1 H2

    2-7 H1 H2

    2-8 n ( )npppp xxx ,,...,, 21=x

    2-8

    M

    2D

    1D

    12

    1x 2x

    1H Margin

    w

    2H

    Origin

    wb

    F plane

  • 21

    1x 2x 1=+ by jTj xw ( ) 0,, =bd wx

    D (2-20) 1 2 (2-21) (2-22)

    222

    21

    2211

    ...

    ...

    n

    npnppp

    www

    bxwxwxwbD

    +++

    ++++=

    +=

    w

    wx (2-20)

    ( )wxxw

    x

    T

    1

    1

    1

    11cos ==

    D (2-21)

    ( )wxxw 2

    T

    22cos = (2-22)

    w2

    21 == DDM (2-23)

    (Soft Margin) i (Slack Variable) li ,...,1= (2-24) 2-9

    1;1

    1;1

    =++

    +=++

    iiiT

    iiiT

    yb

    yb

    xw

    xw (2-24)

    ii ;0

    2-9

    F plane

    *

    F Margin

    w

    *

    *

    0

  • 22

    w ),( wxF (Mapping Function) 2 (Quadratic Function) ( -insensitivity)

    (2-25) z (2-17) bT += zwwxF ),(1 (2-25)

    (2-17)

    +

    ==

    1

    11

    dp

    di

    idCq ( )!!

    !knk

    nC nk = p (Order Polynomial)

    d

    [ ]1,,...,,,...,,...,,,...,)( 11212211 dddjid xxxxxxxxxx =xF (2-25)

    Vapnik [33] (2-26) SVR

    ( )( ) bpn

    i

    ++= =1

    2 ),( 1xx-wxFT* (2-26)

    *, ii Largrange Multiplier Pairs 1F 2F

    1F q 2F 12 +n bii ,,

    *

    w R SRM 2 (2-27)

    ( )[ ]

    +=

    =

    l

    iii fyLCR

    1

    2 ,21 wxw (2-27)

    (Margin) (Empirical Error) L (Loss Function) [ ] [ ]2=L C y

    ( )f

  • 23

    C R

    w (Linear Algebra) (2-28)

    [ ]wEVVyV T +=T (2-28)

    V (Square Error) [ ]qn E (Diagonal Matrix) C/1 y (Dependent Variable Column Vector) [ ]1n

    (2-29) 2-9

    ( )( )

    ( ) ,0, {

    =

    wx,wx,wx

    fyifotherwisefyfy

    (2-29) y ( -

    Tube) C *, (Approximate Value) w (2-27) (2-30)

    ++=

    ==

    l

    i

    l

    i

    CR1

    *

    1

    2* 2

    1,, ww (2-30)

    (Lagrangian)

    (Primal Objective Function) (Dual Sets) (Constrained Optimization) (2-31)

    ( )

    [ ]

    [ ] ( )

    ==

    ===

    ++++

    ++

    ++

    =

    l

    iiiii

    l

    iiii

    l

    iiii

    l

    ii

    l

    ii

    p

    yb

    by

    bL

    1

    **

    1

    1

    **

    1

    *

    1

    ***

    21

    ,,,,,,

    i

    i2

    xw,

    xw,Cw

    w

    (2-31)

  • 24

    ( ) ( ) 0, ** (Lagrangian Multiplier Pairs) ixw,

    iT xw

    (Derivative) (2-31) bw ( )* 0 (2-32) (2-33)

    ( )=

    ==l

    iiib L

    1

    * 0 (2-32)

    ( )=

    ==l

    iiiiw xwL

    1

    * 0 (2-33)

    0(*)(*)

    (*)==

    CL (2-34)

    (Dual Optimization

    Problem Solving) (Dual Space Karush-Kuhn-Tucker) (Minimize Regression) (2-32) (2-34) (2-31) (2-35)

    ( ) ( ) ( )

    ( )( ) jil

    jijiii

    i

    l

    iii

    l

    iiid

    xx

    yL

    ,21

    1,

    **

    1

    *

    1

    **

    =

    ==

    +++=

    , (2-35)

    ==

    =l

    ii

    l

    ii

    11

    * Cii *,0 li ,..,1=

    (2-35) (2-36) (Quadratic Optimization Problem)

    ( ) TTd QL c+= 21 (2-36)

    =

    HHHH

    Q Hessian [ ]1+= xxH T * =

    [ ]NNT yyyyyy +++= ,...,,,,...,, 2121c

  • 25

    (2-35) (*) (2-36) ( )

    =

    =l

    iiii xw

    1

    * (2-37)

    ( ) ( ) bxxxf iii += ,* (2-37) (2-17) (2-38)

    (Nonlinear Kernel Function) (2-39) (Gaussian Radial Basis Function)

    ( ) bf T += xzw (2-38)

    ( )

    = 2

    2

    2exp,

    i

    i

    xxxxk (2-39)

    ( )z

    (2-40) SVR

    ( ) ( ) bfz +== iT xx,kwwx, (2-40) (2-38) (Optimized Weighting)

    (2-41)

    w *T ==o (2-41) b

    (Dual Variable) 0 (2-42) (2-43)

    ( )( ) 0,

    0,** =++

    =+++

    bxwy

    bxwy

    iiii

    iiii

    (2-42)

  • 26

    ( ) 0(*)(*) = iiC (2-43) 2 (Elbow

    -Tube) C=(*) 0(*) = (2-44) (2-45)

    Cifbxwy iiiii ++ iiii ifbxwy (2-45)

    b (2-46) (2-47)

    ( )( )

    =

    =

    l

    iio yl

    b1

    1ixx,kw (2-46)

    ( ) ( ){ } += i kkiiikk xxkyaverageb * (2-47)

    ( )*sgn iik =

    SVR 2 2.4.2

    2.4.2 SVR 2.4.2.1

    SVR (Weighting) trnX [ ]ln, n (Training Records) l

    C () (Support Vector: SV)

  • 27

    SVR 2-10 (Mapped Vector) (Dot Product) -

    (Kernel Function) Polynomial Function Gaussian Radial Basic Function Exponential Radial Basic Function Multi-Layer Perception Function Spline Function B-Spline Function

    2-10 SVR

    () u v l

    (Euclidean Product) (Gaussian Radial Basic Function) (2-48)

    ( )( )

    22, vu

    evuk

    = (2-48)

    1

    SV

    ( . )trnX

    trnX1 trnX2

    trnXn

    1u

    ( . )2u

    ( . )nu

    1v

    2v

    nv

    )(

    )(

    )(

    )(

    )(

    )(

    Mapped vector

    Dot product

    Weight Output

    2

    n

  • 28

    u v 2-11 (.)

    u v i iu iv

    iju ijv

    2-11

    (SV) trnX SVR SVR

    2.4.2.2 SVR

    trnX 2-12

    tstX trnX iv

  • 29

    2-12 SVR

    u v

    (Euclidean Distance) tstX

    ANFIS

    2.5 ANFIS (Adaptive Neuro-Fuzzy Inference System)

    ANFIS ANFIS

    (Crisp Logic) - (if-then) (Fuzzy Logic)

    4 (Close) (High) (Low) (Open) 2-13

    1 ( . )

    ( . )2u

    ( . )nu

    1v

    )(

    )(

    )(

    )(

    Mapped vector

    Dot product

    Weight Output

    2

    n

    trnX trnX1

    trnX2

    trnXn

    tstX tstX

  • 30

    4 - R 1 2 3

    2-13

    2-13 (Back Propagation)

    (Mandani Fuzzy)

    (Sugeno Fuzzy)

    C

    H

    L

    O

    Rule 1:

    Rule 2:

    Rule (R-1):

    Rule R:

    Up

    Down to Up

    Down

    Up to Down

    Input Rule Output Trend

    C H

    O L

    O H

    C L

    C: Close H: High L: Low O: Open

  • 31

    (Output Membership Function)

    ANFIS 2.5.1 ANFIS 2.5.2 2.5.3 ANFIS

    2.5.1 (Sugeno Fuzzy) (TS: Takagi-Sugeno Fuzzy)

    2-14 2 (Dimension) (Input MF) (Rule Weight Firing Strength) (2-49)

    2-14

    =

    == n

    ii

    n

    iii

    out

    w

    ZwY

    1

    1 (2-49)

    n w (Gaussian Function)

    1x

    2x

    Input MF

    cbxaxz ++= 21

    w Rule Weight

    ANDInput MF

    Output MF

  • 32

    (Output MF) 2 (Zero Order) 0== ba (First Order) cbxaxz ++= 21 ANFIS ANFIS

    2.5.2 ANFIS

    5 2-15 (2-49) ANFIS (2-50)

    (2-55)

    2-15 ANFIS

    1x

    2x

    Input MF

    cbxaxz ++= 21

    wRule Weight

    AND

    Input MF

    Output MF

    A1

    Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

    A2

    B1

    B2

    N1 11

    N2 22

    N3 33

    N4 44

    =

    == n

    ii

    n

    iii

    out

    w

    ZwY

    1

    1

    1x 2x

    2x

    1x

    w

  • 33

    1 x n (2-50) 2-15 n 2

    [ ]= ,,,2,1 ,,,,, ni xxxx LLx (2-50)

    ni 1 2 (Fuzzification Layer)

    (2-51)

    22)(

    ,,

    ,,

    ji

    cjii

    x

    ey ji

    = (2-51)

    ( ) 2 ni 1 R1 j n R c (Subtractive Clustering Function) 2.5.3.1.

    3 (Fuzzy Rule Layer) 2 (2-52) w (Ru) 3

    ( ))(,1)Ru(

    jiijyy

    n

    == (2-52)

    4 (Normalization Layer) (2-53)

    ( ) 4

    =

    = R

    1

    )Ru(

    )Ru()(

    jj

    jj

    y

    yy (2-53)

    5 (Defuzzification Layer) (2-54)

  • 34

    ( )

    +=

    =+

    n

    nji

    iijjj kxkyy1

    )1,,)()Df(

    (, (2-54)

    (Df) 5 k (Moore-Penrose Pseudo Inverse of a Matrix) 2.5.3.1. k ( )[ ]1R + n

    6 (Summation Neuron) ANFIS (2-55) (2-49)

    { }( ) ==R

    )Df()TS(,,,TSj

    jyyckx (2-55)

    { }( ) ,,,TS ckx x { },,ck

    TS ANFIS 4

    (2-50) (2-55) ANFIS [ ] nxi :, [ ]R:)(, ny ji [ ]R1:)Ru( jy [ ]R1:)( jy

    [ ]R1:)Df( jy [ ]R:, nc ji [ ]R:, nji [ ])1(R:, + nk rj ANFIS

    2.5.3 ANFIS 2

    2.5.3.1

    )

    2 (Un-Supervised Learning) (Supervised Learning)

  • 35

    (Weighting) (Hidden Node) (Black-Box Model) (White-Box Model) - (If-Then Rules)

    (Data Clustering)

    2-15 2 (Logic Part Fuzzy Antecedent Part) (Mathematic Part Fuzzy Consequent Part)

    - If Input1 = x and Input2 = y Then z = ax+by+c a b c (Output Membership Function or Output MF) Input1 Input2 (Input Membership Function or Input MF)

    3 (Grid Partitioning) (Tree Partitioning) (Scatter Partitioning)

  • 36

    (Domain) km m k (Input Dimension)

    2 (Hard-Clustering) (Soft-Clustering) - (K-Means) (FCM) (Mountain) (Subtractive Clustering)

    - - (Hard C-means Clustering) (Euclidean Distance Function Minimize Cost Function) - (Fuzzy C-Means Clustering) - (Degree of Membership) (Overlapped Grouping) - (Clustering Centers)

    (Mountain) (Subtractive Clustering) (Data Point Density

  • 37

    Center)

    (Highest Density Value) (2-56)

    =

    =

    n

    ji

    jxixeP1

    2

    (2-56)

    2/4 ar= (2-57)

    n x ar

    ar (2-57) 2-16

    2-16 (2-56)

    1 (2-58)

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    -5

    -4.4

    -3.8

    -3.2

    -2.6 -2

    -1.4

    -0.8

    -0.2 0.4 1

    1.6

    2.2

    2.8

    3.4 4

    4.6

    8/ar=

  • 38

    2*

    * kxix

    ePPP kii

    (2-58)

    *kP *kx (Potential Value) x 2/4 br= Chiu [34] ab rr 25.1=

    ar

    2-17 0.3 0.8 yx = (Noise) 1% 15

    ar = 0.5 2 0.26 0.78 ar ar 1

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

    Train data Center

    2-17 2

    2 x 2 c (2-59) (2-60)

    *kk xc = (2-59)

  • 39

    125.188 == kkk rr (2-60) 2-18

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    0

    0.05 0.1

    0.15 0.2

    0.25 0.3

    0.35

    0.41

    0.45 0.5

    0.55 0.6

    0.65 0.7

    0.75 0.8

    0.85 0.9

    0.95 1

    Input-MF1 Input-MF2 data center

    2-18

    (Output-MF Consequent Parameters) k (2-54) (2-55) (2-61) (2-63)

    ( ) ( )n YXYA += (2-61)

    ( )outYB = (2-62)

    B\AZK == (2-63)

    ( ) )TS(y=outY ( ) )(y=nY ( )Y (2-55) (2-53) (2-52) X

    k (2-63) 2-19 ( )Dfy )TS(y

    2-15 (2-52) k ANFIS

  • 40

    2-20

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    0

    0.06

    0.12

    0.18

    0.24 0.3

    0.36

    0.43

    0.48

    0.54 0.6

    0.66

    0.72

    0.78

    0.84 0.9

    0.97

    Output-MF1 Output-MF2 data center Fout

    2-19

    2-20 ANFIS

    ar k

    1 1

    A1

    X1

    X2

    Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

    A2

    B1

    B2

    N1 11

    N2 22

    X1 X2

  • 41

    ANFIS

    ) ANFIS

    2

    (Forward Learning) (Backward Learning) (Least-Squares Estimation) (Gradient Descent Method)

    (2-64) (2-55) (2-54)

    ( ) ( ) ( )

    += +

    R

    1,,,)TS(

    j ijiijj

    n

    nkxkyy

    (2-64)

    n R ( )jy j k

    (2-64) (2-65) A ( )[ ]1RP + n K ( )[ ]11R +n P

    AK=)TS(y (2-65)

    ( )( ) ( )( ) ( )( )( )( ) ( )( ) ( )( )

    ( )( ) ( )( ) ( )( )

    =

    1,,,,,1,,,,1,,,,

    1,,,,,1,,,,1,,,,1,,,,,1,,,,1,,,,

    P,P,1RP,P,12P,P,2P,11

    2,2,1R2,2,122,2,22,11

    1,1,1R1,1,121,1,21,11

    nnn

    nnn

    nnn

    xxyxxyxxxy

    xxyxxyxxxyxxyxxyxxxy

    LLLL

    MMM

    LLLL

    LLLL

    A (2-66)

    ( ) ( ) ( )[ ]= +++ 1,R1,R1,21,21,12,11,1 ,,,,,,,,,, nnn kkkkkkk LLLLK (2-67)

  • 42

    (Moore-Penrose Pseudo Inverse) k (Minimum of Square Error) (2-68)

    ( ) yAAAK TT 1=new (2-68)

    y k c

    (Backward Learning) (Square Error) (2-69)

    ( )22

    2)TS(2 yyeE

    == (2-69) (Gradient Descent Method)

    (Derivative Chain Rule) (2-70) (2-72)

    ( )( )

    csty

    yu

    uu

    ufu

    fuy

    ye

    eEcstEcst

    i

    i

    i

    i

    ii

    ii

    =

    =

    (2-70)

    ( ) ( )

    ( ) ( ) ( )32

    )TS(

    )TS(

    1

    11

    cxuufyy

    yy

    uufyy

    iii

    iii

    =

    = (2-71)

    ( ) ( ) ( )2)TS( 1 cxuufyyc iii

    = (2-72)

    (Learning Rate) cst c (2-71) (2-72) [ ]( ) ( )( )

    =++=

    n

    rniirrii kxkf

    11,,,

    y=

    (2-53) y= (2-51) x c (2-73) (2-74)

    (2-71) (2-72) E

  • 43

    cccnew = (2-73)

    =new (2-74) ANFIS 2

    k c k c

    c (2-73) (2-74)

    ANFIS

    2.5.3.2 ANFIS

    (2-55) { },,ck x

    (2-55) { },,ck

    3 AMA SVR ANFIS 2.6

    2.6

    4

    2.6.1 AMA AMA

    ,,

  • 44

    2

    2.6.1.1 AMA ,,

    {219, 216, 218, 185, 154, 147, 124, 93, 127, 148, 161, 198, 236, 239, 221, 194, 161, 131, 110, 101, 131, 157, 189, 217} 1 2 2-21 2-22 1 3 2-21() (2-12) (2-13) 2-21() 2-21() 2-21()

    2-21 AMA 1 1 2-21() 2-21() ( = 0.1

    = 0.1 = 0.1 = 0.1) N2 2-21() ( = 0.99 = 1 =0.381 = 0.89)

    2 N,1+tC 2-22() () 2-22()

    30

    80

    130

    180

    230

    280

    330

    380

    430

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

    Dt Ft

    30

    80

    130

    180

    230

    280

    330

    380

    430

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

    Dt Ft

    30

    80

    130

    180

    230

    280

    330

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

    Dt Ft

    () ()

    ()

  • 45

    2-22() () ( = 0.1 = 0.1 = 0.1 =0.1) 2-22() ( = 0.97 = 0.89 = 0.312 = 0.89)

    2-22 AMA 2

    2.6.1.2 AMA )10sin()3sin( xxxy = 1 2 2-23() ()

    2-23() ( = 0.19 = 0.59 = 0.219 = 0.9) 2-23() ( = 0.9 = 0.9 = 0.9 = 0.9)

    2-23

    30

    80

    130

    180

    230

    280

    330

    380

    430

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

    Dt Ft

    30

    80

    130

    180

    230

    280

    330

    380

    430

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

    Dt Ft

    30

    80

    130

    180

    230

    280

    330

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

    Dt Ft

    () ()

    ()

    -25

    -20

    -15

    -10

    -5

    0

    5

    10

    15

    20

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

    Dt Ft

    -100-80-60-40-20

    020406080

    100

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

    Dt Ft

    () ()

  • 46

    AMA 1 2 N2 2 1 1 1

    2.6.2 SVR SVR

    (Global Approximation)

    C SVR 4

    2.6.2.1 C

    C SVR (2-31) (2-32) C (Optimizing) C xey = 2-24

    2-24 svrout (Ub) (Lb) SV Ub Lb

  • 47

    C minmax yy C

    2-24 SVR C svrout

    (Linear Regression)

    2-25 (Gaussian Radial Basis Function) C

    C Ub Lb SVR SV

    SVR with linear kernel,C=0, e=2

    -50

    510

    1520

    2530

    3540

    1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

    actual valuesvr outSVUbLb

    SVR with linear kernel,C=100, e=2

    -50

    510

    1520

    2530

    3540

    1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

    actual valuesvr outSVUbLb

    SVR with linear kernel,C=100, e>(ymax-ymin)/2

    -50

    510

    1520

    2530

    3540

    1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

    actual valuesvr outSVUbLb

    SVR with linear kernel,C=100, e

  • 48

    2-25 C 2-26

    2-26

    SVR with non-linear kernel,C=0, e=2, sigma=1

    -505

    10152025

    303540

    1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

    actual valuesvr outSVUbLb

    SVR with non-linear kernel,C=100, e=2, sigma=1

    -505

    10152025

    303540

    1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

    actual valuesvr outSVUbLb

    SVR with non-linear kernel,C=100, e>(ymax-ymin)/2, sigma=1

    -505

    10152025

    303540

    1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

    actual valuesvr outSVUbLb

    SVR with non-linear kernel,C=100, e

  • 49

    2-25() 1 SV

    2.6.2.2 u v

    trnX tstX ( ji trnXatstX = ) a jtrnX itstX

    jtrnX itstX 2-27 vu = vu tstX

    2-27 u v

    u or v

    k(u,

    v)

    u or v

    k(u,

    v)

    Actual valuePredict value

    vu = vu

  • 50

    SVR SVR

    2.6.2.3 SV SV (Sinc Function) ( )

    xxy

    sin

    = (Sine

    Function) 2-28 2-29 C = 100 = 0.1 = 1

    2-28 SVR

    2-29 SVR

  • 51

    SVR SV Ub Lb 2-29 2-30 SVR

    2-30 SVR

    2.6.2.4 ( )xy cos= 2-30

    x y C = 100 = 0.1 = 1

    2-31 x y (Quadratic Programming Problem) SV ( SV 2-29 )

    )sin(ty = )sin(tx = SVR x y 2-32 2-33

    )sin(ty = x y 2-34 x

  • 52

    y 2-33

    2-31 2-32 SVR )sin(ty = )sin(tx =

    2-33 )sin();sin( txty ==

  • 53

    2-34 SVR

    )sin();cos( txty == SVR 2-35 2-36

    2-34 x 2-32

    2-35 SVR )sin();cos( txty ==

    2-36 x 2-35

  • 54

    2-37

    2-37 )sin();cos( txty == C

    SV

    SVR

    2.6.3 ANFIS AMA SVR

    6

    - (Output Surface Oscillation) - - - (Over Fitting) - -

  • 55

    2.6.3.1

    =

    =5.0;9.05.0;0

    XX

    Y

    radii ANFIS 2-38

    radii ( ar )

    2-38 ANFIS radii

    ANFIS

    2-39 2-38 radii = 0.07 (Defuzzification)

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    0.3

    0.33

    0.36

    0.39

    0.42

    0.45

    0.48

    0.51

    0.54

    0.57 0.6

    0.63

    0.66

    0.69

    Train data radii=0.07 radii=0.1 radii=0.5

  • 56

    2-39 radii = 0.07

    2.6.3.2

    ANFIS

    X = Y 0 1 x = 0.5 y = 0.2 0.9 = 0.0002 radii 2-40 x = 0.5 ANFIS x

    radii radii 1

    radii 1 ANFIS x radii x = 0.5

    Defuzzify Output

    -2

    -1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    2

    2.5

    0

    0.06

    0.12

    0.18

    0.24 0.3

    0.36

    0.42

    0.48

    0.54 0.6

    0.66

    0.72

    0.78

    0.84 0.9

    0.96

  • 57

    (0.5 0.9) x (2-43)

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.80.

    3

    0.34

    0.38

    0.42

    0.46 0.5

    0.54

    0.58

    0.62

    0.66 0.7

    Yradii=0.1radii=0.5radii=0.9

    2-40

    2.6.3.3

    SVR 2.5.2.4 )sin();cos( txty == ( )yx, x 2-36 ANFIS

    ANFIS y ANFIS radii 2-41 radii = 0.28 0.15 0.1 10 19 31 30 50 86

    SVR ANFIS

  • 58

    -1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    1

    0.97

    0.91

    0.81

    0.68

    0.56

    0.49

    0.33 0.2

    0.12 -0.1

    -0.3

    -0.4

    -0.6

    -0.8

    -0.9 -1 -1

    Y radii=0.28 radii=0.15 radii=0.1

    2-41 radii

    2.6.3.4 (Overfitting)

    2.6.3.5 ANFIS 2

  • 59

    (Optimized Linear Equation Problem)

    (Gradient Descent Method) 2 c (2-60) (2-61)

    c c (2-62) (2-63) (2-60) (2-61)

    radii radii radii ANFIS 4.4.4

    2.6.3.6 ANFIS

    2

    c

  • 60

    ANFIS

    2.7

    AMA

    SVR C SVR (Global Approximation)

    ANFIS ANFIS

    4

  • 3

    (Neuro-Fuzzy) (Support Vector) (Experimental Research)

    1. (Requirement Analysis) 2. (Data Preparation) 3. (Research Tool Development) 4. 5.

    3.1 (Requirement Analysis)

    (Fuzzy) [23]

    (Minimized Empirical Error or Risk) (Maximized Margin)

  • 62

    (Global Optimizing)

    (Neuro-Fuzzy) (Support Vector)

    3.2 (Data Preparation)

    10 2 1 SET index

    5 BBL(BANGKOK BANK PUBLIC CO.) KTB (KRUNG THAI BANK PUBLIC) SCB (THE SIAM COMMERCIAL BANK) TISCO (TISCO BANK PUBLIC CO.,LTD.) TMB (TMB BANK PUBLIC CO.,LTD.)

    4 IRP (INDORAMA POLYMERS PUBLIC) PTTCH (PTT CHEMICAL PUBLIC) TPC (THAI PLASTIC AND CHEMICAL) VNT (VINYTHAI PUBLIC CO.,LTD.)

    3 2549 28 2550 3 2549 28 2549 1 2549 28 2550

    3.3 (Research Tool Development)

    NFSV (Neuro-Fuzzy with Support Vector Guideline System) (Neuro-Fuzzy) (Support Vector)

  • 63

    Nave AMA (Adaptive Moving Approach)

    3 mse (Mean Square Error) [37] (U-Theil Ustat) [37] REC (Regression Error Characteristic) [42] [43]

    Mse [37]

    Ustat [37]

    REC [42] [43] (Error Absolute Deviation) (Cumulative Accuracy) 1 REC

    3.4 NFSV

    NFSV 2 NFSV

    3.4.1

    (Exponential Smoothing) (Fuzzy) (Support Vector) 3 NFSV

    AMA Exponential Smoothing NFSV

  • 64

    AMA 2 1 2 ( 2.3) NFSV mse Ustat 5.1.1

    SVR (Support Vector Regression) [30, 31, 32] OCB (Output Component Based SVR) [35] NFSV mse Ustat REC 5.1.2

    ANFIS (Adaptive Neuro-Fuzzy Inference System) [24, 25] OII (Output-Input-Iteration) [36] ANFIS OII (MF Rule /Training Data) 5.1.3

    1 Ustat

    MF Rule/ Training Data NFSV

    3.4.2 NFSV NFSV

    NFSV

    NFSV Nave (Exponential Smoothing)

  • 65

    5.1.3.1 3 2549 28 2549 1 2549 28 2550 7

    Ustat NFSV 4 ( )

    AMA Ustat 1 Nave 1 Naive

    5

    3.5 mse Ustat REC

    NFSV AMA ANFIS OCB OII SVR 3.3

    mse Ustat REC

    Ustat 1 Nave 1 Ustat 1

  • 4

    3 2

    2

    5 4.1 4.2 4.3 4.4 4.5

    4.1

    4 (Close: C) (High: H) (Low: L) (Open: O)

    2 4

    4.1.1

    4-1 2543 2549 9 SET (Stock Exchange of Thailand) TPI (Thai Petrochemical Industrial) PLE (Power Line Engineering) ITD (Italian-Thai Development) KEST (Kim Eng Securities) BNT (BNT

  • 68

    Entertainment Public) TPC (Thai Plastic and Chemical) EWC (Eastern Wire Public Co.Ltd.)

    EMC (EMC Public Co.Ltd.)

    4-1 9

    5

    %C(t) %H(t) %L(t) %O(t) 4-1

    4-1 (Average: x ) (Standard Deviation: SD) SET Index 1% 0.7%

    SET TPI PLE

    ITD KEST BNT

    TPC EWC EMC

  • 69

    4-1 9 %C(t) %H(t) %L(t) %O(t)

    SET x 0.048362 0.948878 -0.69075 0.175048 SD 1.740028 1.379424 1.420962 1.117595

    TPI x 0.115644 3.481582 -2.17867 0.607003 SD 4.928221 4.153348 3.55573 2.153243

    PLE x 0.117569 2.215106 -1.69384 0.253207 SD 3.418022 2.849696 2.350122 1.351423

    ITD x 0.099832 2.681577 -1.81365 0.455979 SD 3.855195 3.285184 2.669347 1.668103

    KEST x 0.000853 2.088855 -1.73778 0.177172 SD 3.239453 2.497072 2.11172 1.353322

    BNT x -0.00391 3.520825 -2.2776 0.570123 SD 5.365825 4.628118 3.832043 2.21521

    TPC x 0.128701 1.298008 -0.93925 0.040053 SD 3.293238 3.227688 2.831525 2.528116

    EWC x 3.186381 6.557956 -0.91674 2.70946 SD 68.51091 71.38972 56.89548 67.7972

    EMC x 2.810785 6.303126 -0.17303 2.90933 SD 71.0059 89.89276 66.76759 83.66099

    4-2() 4 SET Index 4-2() KEST

    4-2 4 SET KEST

    0

    100

    200

    300

    400

    500

    -21 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 29

    %C distribution(SET index)

    0

    100

    200

    300

    400

    500

    600

    700

    800

    -21 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 30

    %H distribution(SET index)

    0

    100

    200

    300

    400

    500

    600

    700

    800

    -22 -10 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 28

    %L distribution(SET index)

    0

    200

    400

    600

    800

    1000

    1200

    -22 -7 -6 -4 -3 -2 -1 0 1 2 3 4 30

    %O distribution(SET index)

    ()

  • 70

    4-2 4 SET KEST ()

    4-1 4-2 5

    4.1.2

    (Open: O) (Close: C) (High: H) (Low: L) (Volume) (Value)

    0

    20

    40

    60

    80

    100

    120

    -10 -8 -6 -4 -2 0 2 4 6 8 10

    %C distribution(KEST)

    020

    406080

    100

    120140160

    -4 -2 0 2 4 6 8 10 12

    %H distribution(KEST)

    0

    20

    40

    60

    80

    100

    120

    -13

    -12

    -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2

    %L distribution(KEST)

    0

    50

    100

    150

    200

    250

    300

    -11 -9 -6 -5 -4 -3 -2 -1 0 1 2 3 4

    %O distribution(KEST)

    ()

  • 71

    {C H L O}

    (P Plane) (4-1)

    { } { } == ;,,,,,, VolValOLHCDX xin P (4-1)

    (4-2)

    ( ) += ;,,, *OLHCGYout P (4-2)

    ( )G NFSV (Neuro-Fuzzy with Support Vector Guideline System) ( 4.4) P (4-2) { }OLHC ,,, ( )G { }OLHC ,,, (4-2) (4-3)

    { } { } { } { }( ) += ;,,,,,,, ** OLHCout OLHCGY P (4-3)

    P

    ( )G (Inconsistence) inX

    outY ( )G P

    (Present Value Transform) (4-4)

  • 72

    ( ) +=

    =;,,, *

    0itititit

    k

    ioutOLHCGY Q (4-4)

    k

    Q

    4.4

    4.2 2 3 AMA SVR ANFIS

    2 3

    AMA AMA

    SVR (Global Approximation)

    ANFIS (Subtractive Clustering)

  • 73

    SVR

    SVR ANFIS AMA

    4.3

    SVR ANFIS 2 OCB (Output Component Based SVR) [35] OII (Output-Input-Iteration) [36]

    SVR ANFIS

    4.3.1 OCB (Output Component Based SVR) jtrnX itstX

    SVR

    ( ) ( ) ( ){ }nn YtrnXYtrnXYtrnXtrn ,,,...,,, 2211= ( C ) tstX SVR SVR

    SVR SV

  • 74

    SVR OCB (Output Component Base - SVR)

    OCB (Algorithm) OCB OCB 2 (Training Mode) (Testing Mode)

    OCB SVR 2.4.2.1 3

    1. C C (2-27) (2-31) (2-31) 2-9 (2-39)

    2. Weighting Vector trnX (Lagrangian) (Quadratic Optimization Problem)

    3. C trnX SVR OCB

    OCB 10 1. STP = 0 2. P L (tstX) 1

    L

    =

    =jiSTPjitstX

    P jji ::,1

    ,

    3. SVR P L 3 SVR SVR

    4. 3 =

    1

    1

    L

    ii

  • 75

    5. STP = STP + 0.1 6. 2 5 STP < 1.0 7. 4

    8. STP 7 9. STP 8 STP

    4 0 cubic spline interpolation

    10. 1 =1

    1

    L

    ii 8 SVR

    tstX OCB

    4-3 SVR() -SVR STP() (Stepping Function) SUB() SPL() (Cubic Spline Function) GSE

    4-3 OCB

    I1 I2

    IL

    Y

    I1 I2

    IL

    trnX

    tstX I1 I2

    IL

    I1 I2

    IL I1 I2 I3

    IL

    SVR( ) STP( )

    1

    2

    3

    L

    0 ( - ) 1,2

    0 ( - ) 1,3

    0 ( - ) 1,L

    0 ( - ) 2,3

    0 ( - ) L-1,L

    L-1

    WIN

    SUB( ) SPL( ) (1)

    (2)

    =

    1

    1

    L

    i

    i

    SVR( ) trnX

    tstX

  • 76

    itrnX jtstX { }lIII ,...,, 21 l n

    (Spline) 0

    SVR - SVR (4-5)

    bvtstXtrnXkSVR ii += )( (4-5)

    =

    =jijitstX

    vtstX ji :1..0:

    (4-6)

    * = b ( )k b 0 L l Lji

  • 77

    SUB() (4-7) 4-5

    jik SVRSVRSUB = (4-7)

    ( )

    >+

    ==

    =

    1

    11:

    1:L

    mimLij

    iijk SUB()

    =

    1

    1

    L

    ii

    4-4 l 4 6 4-5

    4-5 SUB( )

    4-6 itrnX jtstX

    (4-6) (Cubic Spline Interpolation Function) (x, y) (Knots)

    STP( )

    SUB

    ( )

  • 78

    x = SUB() y x = 0 4-5 4-6

    4-6 SUB( )

    =

    1

    1

    L

    ii

    WIN( ) 4-7 4-6

    OCB SVR SVR 4-7

    SPL() SVR() OCB

    WIN( ) 4-7 (4-8)

    ( )( )

    =

    trnX,minarg tstXSVRiSUBabsi

    SPLWIN (4-8)

    STP( )

    SUB

    ( )

  • 79

    arg i SUB( ) SVR( )

    4-7 WIN( )

    OCB

    SVR trnX OCB PTT

    2 trnX 4/1/48 30/6/48 65 2 tstX 3/7/49 22/8/49 34 { }openlowhighclose ,,, max = 259.2

    C = 100 = 0.001 = 1 trnX 4-8 2 mse (Mean Square Error) Ustat (U-Theil) [37] (-1) (-2)

    4-8 SVR [mse, ustat] = [0.013792, 8.3036] OCB [mse, ustat] = [0.000296, 1.0507] SVR

    trnX

    0

    ( - )

    0

    ( - )

    0

    ( - )

    SPL( ) (1)

    (2)

    =

    1

    1

    L

    ii

    Selector

    tstX

    Min. Idx

    WIN( )

    Y

    SVR( )

  • 80

    OCB

    4-8 SVR OCB

    OCB SVR

    OCB SVR SVR

    4.3.2 OII (Output Input Iteration) OII

    OII OII OII 2 (Training Mode) (Testing Mode)

    OII ANFIS 2.5.3.1 8

    1. ar (2-57) 2-16 8/ar=

    day

    Nor

    mal

    ized

    out

    put

  • 81

    2. Potential Value iP (2-58) (Subtractive Clustering)

    3. 2 P trnX 4. P 3 c

    Fuzzification Layer (2-51) 5. (Output-MF Consequent

    Parameters) k (2-68) (Least-Squares Estimation) (Moore-Penros Pseudo Inverse)

    6. (2-72) e 7. c (2-51) (Input-

    MF) (Gradient Descent Method) (Derivative Chain Rule) (2-72)

    8. 5 7 e 9. c k

    ANFIS OII OII 9

    1. STP = [0..1] inc = 0.1 n STP

    2. [ ]

    =

    ==

    = j

    n

    jj

    jnii STPjiSTP

    jitstXP ,1

    1,1

    ,11 ,:

    :

    tstX 3. ANFIS P n

    9 OII OII

    4. 3 STP n 5. STP 4

  • 82

    6. STP 5 inc = inc / 0.1

    7. e 8. 2 6 inc > e 9. OII 5

    OII (4-9) (4-17) (4-9) x n

    [ ] ni xxxx ,,, 21, L= (4-9)

    ni 1

    OII ANFIS (4-10) (4-11)

    [ ] yxxxx nn

    ii,,,, 211, L== (4-10)

    OII

    (Sugeno Fuzzy: TS) (4-11)

    ( )( )

    ( )

    =

    n

    i

    nn

    n

    n

    VVxx

    VxVxVxxV

    x

    )stp()stp(21

    2)stp(

    2)stp(

    21

    1)stp(

    12)stp(

    1

    )f(,

    ,,,,

    ,,,,,,,,

    L

    MLM

    L

    L

    (4-11)

    )f(x )stp(V )inc(V (4-14)

    0)low( =V 1)hgh( =V 1.0)stp( =V { },,ck ANFIS (TS) (4-12) (4-14)

    )stp()out()dif(

    iii VVV = (4-12)

  • 83

    { }( ) ,,,TS )f( ,)out( ckxV ii = (4-13)

    )inc()stp()stp(1 VVV rr +=+ (4-14)

    ni 1 n n

    VVV)low()hgh(

    )inc( =

    )hgh()stp()low( VVV

    )low(V )hgh(V (4-15) (4-16)

    ( ))inc()low( -OIInew VV = (4-15)

    ( ))inc()hgh( OIInew VV += (4-16)

    OII

    (4-17) )dif(V )dif(V

    - 2 (4-16) (4-17)

    { }( )

    ( ) ( )

    +

    ==

    otherwiseVV

    VVV

    c,k,x,Y

    iViV

    iVii

    ;

    00;

    recurOII)(

    arg

    )(

    arg

    )dif()dif()(

    minarg

    out

    stp

    0)dif(max

    stp

    0)dif(min2

    1

    stp)dif(

    (4-17)

    out recur (recursive) OII() OII

    )dif(V OII )dif(V

  • 84

    OCB OII

    4.4 NFSV (Neuro-Fuzzy with Support Vector Guideline System)

    NFSV ANFIS SVR

    ANFIS SVR

    4-9 NFSV 2 (Training Mode) (Testing Mode)

    4-9 NFSV

    Training data

    Reform & Normalization

    Data jittering

    SVR & OCB learning

    ANFIS & OII learning

    Training Mode

    Parameters

    Testing Mode

    Testing data

    Reform & Normalization

    SVR & OCB Predicting

    Reform & Normalization

    ANFIS & OII Predicting

    Stock rules Filtering Not pass

    Pass

    Predicted Output

    Parameters

    ANFIS & OII Re-learning

  • 85

    SVR OCB ANFIS OII (Jittering) ANFIS OII

    SVR OCB ANFIS OII

    NFSV

    ANFIS OII

    4-9 NFSV 6

    1. (unit value) 2. SVR OCB 2.4.2.1

    SVR 3. widowing size = 4 4. 3 3 Jittering

    1 5. 4 ANFIS OII

    3 6.

  • 86

    10 1. 2. SVR OCB 3. 2 4. Windowing Size = 4

    3 5. 4 6. ANFIS OII

    3 3 7. 6 Stock

    Rules 8. 7

    ANFIS OII

    9.

    10. 7 NFSV

    NFSV

    NFSV 6

    - - - - - - 4.4.1 (Long Term)

  • 87

    SET Index of Thailand .. 2545 2549 4-10

    4-10 SET Index of Thailand 4-10() 5 300

    700 ACF (Autocorrelation Function) 4-10() 360 1 (Gaussian White Noise) 19 2549

    SET Index

    0100200300400500600700800900

    2/1/

    2545

    5/4/

    2545

    17/7

    /254

    5

    21/1

    0/25

    45

    29/1

    /254

    6

    9/5/

    2546

    15/8

    /254

    6

    18/1

    1/25

    46

    24/2

    /254

    7

    7/6/

    2547

    10/9

    /254

    7

    16/1

    2/25

    47

    23/3

    /254

    8

    5/7/

    2548

    7/10

    /254

    8

    13/1

    /254

    9

    24/4

    /254

    9

    2/8/

    2549

    7/11

    /254

    9()

    () ()

  • 88

    721 622 5

    (Space Shifting Method)

    (H-Space) (T-Space) 4-11

    4-11 4-12 H1

    P1 T1

    H-space

    T-space

    Time System learning

  • 89

    4-12

    4-13() 4-13()

    4-13

    Time T-space H-space Time T-space

    System learning

    H-space

    () ()

    H1

    T-space

    Time

    System learning

    P1

    T1

  • 90

    (Backward Adaptation Control) (Forward Prediction Control) 2

    4-14 3 (Pre-Data & Control Part) (Forward Prediction Part) (Backward Adaptation Control Part) NFSV

    4-14 NFSV 2 (Pre-

    Data) (Selector)

  • 91

    U&A (Unify and Data Arrangement) OCB U&A OCB

    3 G-OII (Global Output-Input-Iteration) FC(Forward Control) UPL (Upper-Prediction-Lower)

    G-OII ANFIS ANFIS

    G-OII G-OII FC G-OII (Stock Rule)

    UPL UPL

    (Backward Adaptation Control Part) 3 GLC (Global-Local Condition Control) SFR (Slope-Filter for Retraining) ANFIS

    GLC 2 GC (Global Control) LC (Local Control) G-OII OII

  • 92

    GC LC

    GC OII OCB LC

    SFR GLCC SFR

    4.4.2

    (4-18) k C H L O k

    { } { } { } { }{ }kttOkttLkttHkttCX ===== :1);(,:1);(,:1);(,:1);( (4-18)

  • 93

    (4-19) m

    { } { } { } { }{ }mttOmttLmttHmttCY :1);1(,:1);1(,:1);1(,:1);1( =+=+=+=+= (4-19)

    (4-19) (4-20)

    { })1( += tCY (4-20)

    (4-18) (4-20) (4-21)

    { } 10;,,

    == DXXD

    1)-C(taY

    1)-C(taYu (4-21)

    a D (4-22)

    ( )

    ( )

    =

    myxxx

    yxxxD

    k

    k

    ,,,,

    ,,,,

    421

    1421

    L

    MLM

    L

    (4-22)

    (4-3) (4-4) (Loose Recursive Slope Filtering) (4-23)

    [ ] [ ]

    >

    >

    >

    =)(Asc

    11;recur

    421

    ymr

    syx

    syx

    syx

    DT

    jr

    kj

    rj

    r

    j

    L (4-23)

  • 94

    s ( )yAsc (Ascended Ordering)

    jrecur j

    (4-23) C H L O k y s ( s )

    s

    D j ( )uYAsc (4-23) 1+js 1+j

    jT D Y D 4-15

    4-15 jT (4-23)

  • 95

    X Y (4-24) (4-26) (4-27)

    ( )= =

    =m m

    srr s

    ddm

    a1 1

    cosi1 (4-24)

    ( )( )sss

    DDDDDD

    dddrr

    rrssr

    == 1)(icos (4-25)

    m d (4-25)

    ( )( )1(max) ++= mvab (4-26)

    ( )( )1(min) += mvab (4-27)

    ( )rsdSDv = msr ,,2,1, L=

    (4-28)

    (max)(min);' bbDD rrr = (4-28)

    =

    =m

    rsrs

    d1

    (4-29)

    (4-29) r r (min)b (max)b

  • 96

    (Forced Data Jittering) T

    (4-22) T 1 (4-30)

    m,

    r== ir DD (4-30)

    T,,2,1 L=r T

    ANFIS

    4.4.3 NFSV 4-14

    3 4-16

    NFSV 4 4 4-16

    (Jittering) N (Network) N

  • 97

    1

    4-16 NFSV

    T (Node)

    NFSV N T R R

    ANFIS SVR { }ck ,, ANFIS { } ,,C SVR 4-16

    4.4.4 (Pre-Data & Control Part)

    Network 1 NNode 1 TRule 1 R

    Fuzzy ]R[ = n ]R[ = nc

    )]1(R[ += nk

    (C)(H)

    (L)(O)

    SVR parameters ,,C

  • 98

    4-17 (Testing Mode) trn { }ck ,, tst 3 trn tst (4-31) (4-32)

    { }1OCB)( 1333,31u(Z)t ,,,...,,,...,,,...,,...,,trn ++= ttttttttttt ZCOOLLHHCCC (4-31)

    { }Null,,,...,,,...,,,...,,...,,tst OCB)( 1333,31u(Z)t += tttttttttt COOLLHHCCC (4-32)

    Z { }OLHC ,,,

    4-17

    ( )CN,s t

    { }( )C1,i

    U&A

    ( )( )( )RHistst ( )Ctst t

    OCB

    ( )R(tst) t ( )Htst t( )Ltst t ( )Otst t

    ( )OCB1tst +t

    ( )Ctst t

    trn

    ( )Ctrn

    ( )C1,s t

    { }( )C1,,, ick

    { }( )CN,',, ick { }( )CN,i

    (O)

    (L)

    ( )Otrn

    ( )Otst t

    { } )C(,, ck

    { } )O(,, ck

    { }( )HN:1

    { }( )LN:1

    { }( )ON:1

    (H)

    (C)

    Selector

    ( )Otrn

    ( )Ltst t

    ttst

    To G-OII, LC, and SFR unit

    ( )Htst t

    { }c,k,

  • 99

    { }OLHC ,,, 3 OCB ( 4.3.1)

    (4-31) (4-32) 1+tZ tst Null

    N { }OLHC ,,, T l l T N (4-33) (4-34)

    [ ] [ ] [ ]

    [ ] [ ]

    [ ] [ ] [ ]

    =

    )Z(N,T

    )Z(,T

    )Z(1,T

    )Z(N,

    )Z(1,

    )Z(N,1

    )Z(,1

    )Z(1,1

    )(

    lj

    ll

    il

    il

    lj

    ll

    Z

    LL

    M

    M

    M

    LLL

    M

    M

    M

    LL

    trn (4-33)

    [ ]

    { }

    { }

    { }jittttttttttt

    lttttttttttt

    ttttttttttt

    jil

    mZCOOLLHHCCC

    ZCOOLLHHCCC

    ZCOOLLHHCCC

    ,1OCB)(1333,31u

    1OCB)(1333,31u

    11OCB)(1333,31u

    )Z(,

    ,,,...,,,...,,,...,,...,,

    ,,,...,,,...,,,...,,...,,

    ,,,...,,,...,,,...,,...,,

    =

    ++

    ++

    ++

    (4-34)

    u ( u ) T,2,1 L=i N,2,1 L=j N T R

  • 100

    trn ( 4.4.2)

    [ ] )Z(, jil

    (Subtractive Clustering) radii 30% l 4-18 rule/lmax radii radii 30%

    4-18 radii NFSV { },,ck

    (4-35) (4-36) trn

    { }{ } { }

    { } { }

    =)Z()Z(

    1,T

    )Z(N,1

    )Z(1,1

    )(

    N,TL

    MMM

    LZc,k, (4-35)

    { }

    )(

    ,

    )(R,

    )(1,

    )(R,1

    )(1,1

    )(R,

    )(1,

    )(R,1

    )(1,1

    )(R,1

    )(1,1

    )(R,

    )(1,

    )(R,1

    )(1,1

    )(,

    ' Z

    ji

    Zn

    Zn

    ZZ

    Zn

    Zn

    ZZ

    Zn

    Zn

    Zn

    Zn

    ZZ

    Zji cc

    cc

    kk

    kk

    kk

    =

    ++

    K

    MKM

    L

    K

    MKM

    L

    K

    K

    MKM

    L

    (4-36)

    radii

    errorRule/ lmax

  • 101

    selector (4-37) tst l [ ] )Z(, ji

    l

    l trn { },,ck i j tst

    [ ]

    = )Z(,

    (Z)t

    )(, ,tstcosimin; ji

    li

    Zjt iS (4-37)

    T1 )(, ZjtS )cosi( (4-25) x s y x y

    trn

    G-OII (Global Output-Input Iteration) LC (Local Control)

    4.4.5 (Forward Prediction Part) 3 G-OII

    FC UPL 4-19 U&A Selector

    G-OII FC UPL UPL

  • 102

    2 ( )Ztst t { }( )Z, ji OII G-OII OII N G-OII 4 N (4-38)

    4-19 NFSV

    { }),( 1,( 1),( 1),( 1),( 1)( ,,, jPtjPtjPtjPtjPt OLHCZY +++++ ==GOII (4-38)

    Z 4 { }OLHC ,,, P 1+t N,,2,1 L=j N

    OII (4-38) (4-39) OII 2 ( )Ztst t { }( )Z, ji OII 4.3.2

    { }( ))Z(,(Z)),( 1 ,tstOII jitiPtZ =+ (4-39)

    N

    (Local Minimized)

    { }( )ZN,'i

    OII

    OII

    ( )P,11Z +t

    ( )NP,1Z +t

    { }( )Z1,i

    ( )Ztst t G-OII

    ( ),1*P1Z +t

    ( )q,*P1Z +t

    ( )RC t

    FC UPL

    ( )P1Z +t

    ( )UP1Z +t

    ( )LW1Z +t

    { }( )Z, ji

    From U&A and Selector unit

    Prediction output

  • 103

    OII FC (Forward Control) 4-19

    (4-40)

    )R()R(),P( 1 tt

    jt CCZ + (4-40)

    R )R(max )1( tC+= )R(min )1( tC= %30 )R(tC

    (4-40) (4-40) (4-41) FC

    =

    =+

    1

    ),Z(),Z(1

    )( tsttstSD2t

    njt

    jt

    Zj (4-41)

    (4-41)

    ),Z( 1tst jt+ ),Z(tst jt FC (4-42)

    = +++ rjjZZZZ

    Zjt

    jtj

    tr

    t ;min;

    )()R(),P(1),P(

    1),P(

    1

    * (4-42)

    qr ,,2,1 L= N,,2,1 L=j N

  • 104

    -

    FC (4-43) (4-44)

    ),P(

    1)UP(

    1*

    max rtrt ZZ ++ = (4-43)

    ),P(

    1)LW(

    1*

    min rtrt ZZ ++ = (4-44)

    UP LW qr 1

    (4-45) (4-46)

    ++ =s

    st

    rtr ZZ

    ),P(1

    ),P(1

    ** (4-45)

    ( )( )

    ( )

    ==

    =

    ++

    ++

    ++

    +

    +

    )LW(1

    )LW(1

    )UP(1

    )UP(1

    )UP(1

    )LW(1

    dx

    MODEdx,

    1

    )P(1

    spl;spl;

    spl,;,,spl;

    *

    tt

    tt

    ttji

    ri

    iP

    t

    t

    ZZZZ

    ZZxxyxZ

    Zs

    (4-46)

    qsr ,1 spl idid,P

    1

    *

    += tZy

    ( )unq=x ( )idxid = =xx Z { }OLHC ,,, idx q )idx(1

    (4-46) r ),P( 1

    * rtZ +

    rrtZ + ),P( 1*

    (MODE) ),P( 1* r

    tZ + r r

  • 105

    r ),P( 1

    * rtZ +

    ),P( 1* r

    tZ +

    ),P( 1* r

    tZ + r (4-46)

    NFSV 4-14 (4-31) (4-46) 4-20 4-21

    4.4.6 (Backward Adaptation Control Part)

    [38] [39]

    (Temporal) 3 (S) (D) (R) 4-22

    4-22

    T

    Time

    S

    D

    R

    S

    D

    R

  • 106

    4-20

    { }( )CN,'i

    ( )CN,s t

    { }( )C1,i

    U&A

    ( )( )( )RHistst ( )Ctst t

    OCB

    ( )R(tst) t ( )Htst t ( )Ltst t ( )Otst t

    ( )OCB1tst +t

    OII

    OII

    ( )P,11C +t

    ( )NP,1C +t

    { }( )C1,i

    ( )Otst t

    ( )Ctst t

    trn

    { }c,k,

    ( )Ctrn

    ( )C1,s t

    { }( )C1,,, ick

    { }( )CN,',, ick { }( )CN,i

    (O)

    (L)

    ( )Otrn

    ( )Otst t

    { } )C(,, ck

    { } )O(,, ck

    { }( )HN:1

    { }( )LN:1

    { }( )ON:1

    (H)

    (C)

    Selector

    ( )Ctst t

    (C)

    G-OII

    ( ),1*P1C +t

    ( )q,*P1C +t

    ( )RC t

    ( ),1*P1+tO

    ( )q,*P1O +t

    ( )RO t

    FC

    ( )( )( )RHistst

    ( )P1C +t

    ( )UP1C +t

    ( )LW1C +t

    UPL

    (O)

    (O)

    (L)

    (H)

    (C)

    ( )P1H +t

    ( )UP1H +t

    ( )LW1H +t

    ( )P1L +t

    ( )UP1L +t

    ( )LW1L +t

    ( )P1O +t

    ( )UP1O +t

    ( )LW1O +t

    ( )N:P,11O +t

    ( )Otrn

    ( )Ltst t

    ttst

    ( )Htst t

    106

  • 107

    4-21

    ( )P,11C +t

    ( )P,11H +t

    ( )P,11L +t

    ( )P,11O +t

    ( )R1C +t

    ( )R1H +t

    ( )R1L +t

    ( )R1O +t

    ( )NP,1H +t

    ( )NP,1L +t

    ( )NP,1O +t

    ( )NP,1C +t

    (1)

    ( )C1mk

    (N )

    ( )H1mk ( )L1mk ( )O1mk

    ( )CNmk ( )HNmk ( )LNmk ( )ONmk

    GC

    ttst

    (C)tst t

    ( )C1mk

    ( )R1C +t

    ( )C1mk'

    ( )CNmk

    ( )R1C +t

    ( )CNmk'

    (C)

    (H)

    (L)

    (O)

    LC

    (1)

    ANFIS ( )C1trn

    ( )CNtrn

    SFR Retrain

    (1)

    (N )

    ( )Ctst t

    ( )C1,trn'i

    { }( )C1,i

    (N)

    ANFIS

    ( )Ctst t

    ( )CN,'trn'i

    { }( )CN,'i

    (C)

    (H)

    (L)

    (O)

    ( )C1mk' ( )C

    1,trn"i

    { }( )C1,'i

    ( )CNmk'

    (C)

    ( )CN,'trn"i

    { }( )CN,''i

    G-OII

    Stock pricing sources

    (H)tst t (L)tst t (O)tst t

    U&A

    Selector

    (C)tst t

    (C)tst t

    ( )C1mk'

    ( )CNmk'

    ttst

    trn(H)

    (L)

    (O)

    107

  • 108

    (T) (S) (D) (R) (4-47)

    )()()()(1 SRDRSRDSDD t == + UIUIUII (4-47)

    4-23 S D R (Exactly Believed) (Hesitated) S D

    4-23 S R

    (Believed) D R (Self-Believed) D R (Confused Decision) R (Not Believed)

    (R)eal occur

    Hesitated

    Exactly Believed

    Self-Believed Believed

    Not Believed

    Confused Decision

    Confused Decision

    (D)ecision(S)uggestion

  • 109

    S (Upper Bound) (Lower Bound) 4-24 D S (Prediction) (Actual Value) R

    (Not Believed) (Confused Decision Areas)

    (Exactly Believed Area) (Believed Area) (Offset)

    4-24 NFSV

    day

    value

  • 110

    ),( 1 jPtZ + (4-38) G-OII )R( 1+tZ 2 GC (Global Control) LC (Local Control) G-OII LC G-OII 4-21

    GC 4 G-OII (4-48) (4-51)

    (4-48)

    (4-48) (4-51) (4-49) (4-50) 4

    ( ) ( )

    >>=

    ++++

    ++++

    otherwiseHLOL

    CLHL

    tj

    ttj

    t

    tj

    ttj

    t

    j

    ;0)1(

    ;1mk )R(

    1),P(

    1)R(

    1),P(

    1

    )R(1

    ),P(1

    )R(1

    ),P(1

    )L( (4-50)

    ( ) ( )

    >

  • 112

    )(,ZjtSr = (4-37) T1 r { } )Z( , jr (4-36) Selector (Z)tst't (4-54) (4-32) Null R)( 1+tZ OII

    { }R)( 1OCB)( 1333,31u(Z)t ,,,...,,,...,,,...,,...,,tst' ++= ttttttttttt ZCOOLLHHCCC (4-54)

    LC 2

    GC OCB OII OCB OII GC

    OCB ( )> ++ )R( 1)( 1OCB tZt Z ( )

  • 113

    r 1 )( ,trn Zjr )(tst Zt

    l (Z)ttst [ ] )Z(, ji

    l

    l )( ,trn' Zjr { } )( ,Zjr r j Z (4-56) (4-57)

    { } { }( )

    [ ]

    [ ]

    =

    =

    =

    =

    =

    )Z(,

    (Z)t

    )(,

    )()Z(,

    )(,

    )(,

    1Z)(,

    )(,

    1Z)(,

    ,tstcosimin

    tst

    ;,trn'ANFIS'

    trntrn')('

    )('

    mk

    mk

    jili

    Zjt

    Ztjr

    l

    Zjr

    Zjr

    Zjr

    Zjr

    Zjr

    l

    Srj

    j

    (4-55)

    { } { } )( ,)( , 'new ZjrZjr = (4-56)

    )(,

    )(, trn'trnnew

    Zjr

    Zjr = (4-57)

    4.5 NFSV

    NFSV OII OCB ANFIS SVR

    OCB SVR OII OCB OII

  • 114

    ANFIS SVR NFSV

    NFSV

    NFSV SVR ANFIS OII OCB U&A

    NFSV

    NFSV

    (Wavelet) OCB

    NFSV 5

  • 5

    NFSV

    NFSV 2 NFSV

    5.1

    3 3 NFSV

    AMA 5.1.1

    SVR OCB 5.1.2

    OII ANFIS OII ANFIS 5.1.3

    5.1.1 AMA AMA 2.3.4 2.6.1

    AMA NFSV

  • 116

    5.1.1.1

    5.1.1.1 AMA 7

    10 4 4 2548 24 5-1 5-2

    3 (Trend) (Season)

    2 Linear: Up-Down { 2 18 ; 1 8 1.5 3 ; 9 24x xy x x + == = KK { 3 1 ; 1 141 56 ; 15 24x xy x x+ == + = KK Linear: down-up

    3 Season: Up-Down 1 {219, 216, 218, 185, 154, 147, 124, 93, 127, 148, 161, 198, 236, 239, 221, 194, 161, 131, 110, 101, 131, 157, 189, 217} Season: Up-Down 2

    )2sin()sin( xxy += Season: Diverting )10sin()3sin( xxxy =

    5-1 AMA

    2 Season: up trends {362, 385, 432, 341, 382, 409, 498, 387, 473, 513, 582, 474, 544, 582, 681, 557, 628, 707, 773, 592, 627, 725, 854, 661}. Season: Down Trends Season: Up Trends

  • 117

    5-2 10 AMA

    5.1.1.2 AMA Linear-Down-Up AMA

    (Adaptive Approach) 5-3 1.01.01.0 === 1.0= 5-3()

    5-3()

    5-3

    () ()

  • 118

    89.0= 71.0= 42.0= 79.0= 5-4

    5-4 AMA 1 5-5 AMA 2

    64.0= 1= 61.0= 6.0= AMA 1

    5-5 AMA 2 5-6() () tC NtC ,1+ tG tS

    (2-2) (2-7) AMA 1 2 5-6() 5-6() (2-7) (2-8) tC 2 Ft tC (2-8)

  • 119

    tS tG 1 2

    5-6 AMA 1 2 5-7 Up-Down 1

    1 2 AMA 1 2

    5-7 AMA 1 2

    ( ) ( ) NtCtStDtC ,1/ +=

    () ()

    () ()

  • 120

    5.1.1.3 AMA AMA 5.1.1.1

    5-1 5-2

    5-2 AMA 1 2 diverting AMA 1 1

    (Moving and Smoothing Method) AMA 1 2 1 Ft 2

    5-1 AMA

  • 121

    5-2 AMA 1 2

    2 SD( )

    (2-8) AMA 1

    NFSV 5.3 5.1.2 SVR OCB SVR OCB

    OCB 4.3.1 NFSV Mackey Glass Time Series [40, 41]

    5.1.2.1 SVR OCB

    2 k 1.3

  • 122

    m (5-1) (5-2)

    { }kiikiikiikiiii

    i OOLLHHCCCCX

    = ,,,,,,,,,,,,3.11

    1 LLLL (5-1)

    { }iiiiii OLHCVVX

    X ,,,1

    maxmax

    == (5-2)

    i k { }OLHC ,,, )max(max datatrainmV =

    SET 5.1.3.1 5-8 5-9 5-3 5-4

    5-11 REC [42, 43] SET (5-1) SVR OCB k = 2 3 4 SVR OCB SVR SVR OCB 5-9 (5-2) m = 1 1.5 2 SVR OCB m = 1.5 m = 1 m = 2 OCB SVR

    5-8 5-9 5-3 5-4 AOC (Area Over the Curve) [42, 43] mse (Mean Square Error) Ustat (U-Theil) [37] OCB (5-1) (5-2) (5-2) m = 1.5 OCB AOC SVR mse Ustat mse Ustat AOC SVR OCB 5-10

  • 123

    k = 2 k = 3 k = 4 C

    LOSE

    HIG

    H

    LO

    W

    OPE

    N

    5-8 SVR OCB SET (5-1)

    REC

    5.3 5-8 k = 2 k = 3 k = 4

    AOC mse Ustat AOC mse Ustat AOC mse Ustat OCB 18.85 805.79 2.1728 24.926 1339.1 2.8353 73.778 7178.6 6.3501 CLOSE SVR 60.475 3885.3 4.6621 71.904 5498.2 5.526 99.66 10424 7.5863 OCB 28.442 1309 5.5979 45.263 2885.6 8.2594 57.048 4125.7 9.8859 HIGH SVR 87.036 7740.3 13.43 99.612 10146 15.312 85.359 7467.2 13.218 OCB 45.304 3836.4 3.9617 102.34 14053 7.7381 104.89 14085 7.8079 LOW SVR 117.1 14099 7.7667 136.88 19378 9.0858 179.5 33183 11.873 OCB 22.37 1361.5 3.139 55.117 5334.3 6.289 80.859 9053.8 8.0815 OPEN SVR 131.72 17610 11.158 159.48 25940 13.484 163.38 27204 13.788

  • 124

    m = 1 m = 1.5 m = 2

    CLO

    SE

    HIG

    H

    LO

    W

    OPE

    N

    5-9 SVR OCB SET (5-2)

    REC

    5.4 5-9 m = 1 m = 1.5 m = 2

    AOC Mse Ustat AOC mse Ustat AOC mse Ustat OCB 6.9814 201.3 1.0726 7.0351 192.72 1.0316 9.1284 270.19 1.2314 CLOSE SVR 96.866 10262 7.4141 8.3139 212.71 1.0909 30.402 1108 2.4964 OCB 6.9684 121.17 1.6936 4.1187 34.657 0.92479 7.1824 111.28 1.6637 HIGH SVR 66.199 4867.5 10.486 4.2087 35.13 0.93236 17.738 353.51 2.9357 OCB 6.4242 319.68 1.2348 6.2609 240.46 0.99964 10.023 354.58 1.2269 LOW SVR 77.028 6583.5 5.2009 6.2978 234.27 0.98806 26.407 935.91 2.0194 OCB 4.8411 80.656 0.766 3.0462 19.148 0.38773 6.0688 53.367 0.63246 OPEN SVR 70.286 5602.3 6.1781 3.382 22.075 0.41637 32.381 1084.9 2.8207

  • 125

    5-10 SET (5-2) m=1.5

    (Classification)

    SVR OCB (5-9) NFSV

    5.1.2.2 Mackey Glass Time Series OCB

    Mackey Glass Time Series [40] 1 (5-2) OCB (4-7) 0 OCB (5-1) (5-2) k = 1 5-11

  • 126

    SVR OCB

    5-11 SVR OCB Mackey Glass time series

    Mackey Glass Time Series OCB

    5.1.3 ANFIS OII NFSV ANFIS OII

    SVR OCB OCB 5.1.2

    ANFIS OII NFSV SVR OCB

    5.1.3.1

  • 127

    5.1.3.1 10

    2 1 SET index 5 BBL(BANGKOK BANK

    PUBLIC CO.) KTB (KRUNG THAI BANK PUBLIC) SCB (THE SIAM COMMERCIAL

    BANK) TISCO (TISCO BANK PUBLIC CO.,LTD.) TMB (TMB BANK PUBLIC CO.,LTD.)

    4 IRP (INDORAMA POLYMERS PUBLIC) PTTCH (PTT CHEMICAL PUBLIC) TPC (THAI PLASTIC AND

    CHEMICAL) VNT (VINYTHAI PUBLIC CO.,LTD.) 3

    2549 28 2550 3 2549 28 2549 1 2549 28 2550 5-12

    NFSV 19 2549 SET 108.41 730.55 622.14

    SET NFSV 5-12

  • 128

    5-12

    () SET () BBL

    () KTB () SCB

    () TISCO () TMB

    () IRP () PTTCH

  • 129

    5-12 ()

    5.1.3.2 ANFIS OII (5-1) (5-2) (5-2)

    2.6.3 (5-1) k = 3 OII (4-10) k (5-1)

    ANFIS OII 2.5.3.1 radii

    SET NFSV 4.4.2

    5.1.3.3 ANFIS OII 4 (C) (H)

    (L) (O) )(SY )(RY )(IY (5-3)

    () TPC () VNT

  • 130

    ==

    =

    n

    ji ii

    jjiRI

    RS

    YY

    YY

    nYinYout

    1,1

    ,

    )(

    )(1/ )()(

    )()(

    2 (5-3)

    i Step Value 0 1 n i

    0)( SiY Y ( ) (S) (Step Output) (R) (Real Actual Value) (I) (Input)

    )(IY SVR OCB OII (5-3) 0 OII 1 )(IY 1 OII

    (5-3) 0 1 SVR OCB 0

    ANFIS OII SET 4.4.2 {C H L O} (MF Rule/Train data ) 5-13

    5-13 ANFIS OII

  • 131

    0.4 0.5 NFSV 5-13 ANFIS (L) MF Rule/Train Data = 0.4 0.5

    4 3 MF Rule/Train Data = 0.1 0.5 1.0 5-14

    MF rule/Train data 0.1 0.5 1.0

    CLOS

    E

    HIGH

    LOW

    OPEN

    5-14 MF Rule SET

  • 132

    MF Rule/Train Data = 0.1 OII ANFIS )(SY )(IY NFSV 1.0

    MF Rule/Train Data = 0.5 )(IY OII ANFIS (L) ANFIS ANFIS_L 5-13 ANFIS 4.2.3

    MF Rule/Train Data = 1.0 (2-64) (Forward Learning) 1 )(IY 0

    NFSV 4.4.1

    Rank Benefit (RB) (5-4)

    ==

    =n

    ijjiCn

    RB1,1

    ,21 (5-4)

    1, =jiC 0)(, >SjiY

    5-15 MF Rule RB ANFIS OII OII

  • 133

    5-15 RB MF Rules Ustat

    (Train Data) SET Ustat 5-5 5-5 Ustat SET

    Ustat 1+tC 1+tH 1+tL 1+tO

    tC 1 1.1384 1.0451 0.37128tH 1.2363 1 1.6387 0.81268tL 1.2809 1.9664 1 0.95467tO 1.3349 1.6367 1.4809 11tC 1.381 1.6604 1.533 1.09841tH 1.547 1.5219 1.9524 1.26091tL 1.6008 2.2565 1.4159 1.32881tO 1.6848 1.9985 1.8258 1.36622tC 1.6729 2.0135 1.8154 1.38452tH 1.8256 1.9531 2.1792 1.54072tL 1.8206 2.5407 1.7401 1.61092tO 1.9035 2.3948 2.0761 1.6793tC 1.8662 2.4591 2.0687 1.64823tH 2.0781 2.4596 2.4769 1.83063tL 2.0195 2.9566 2.0152 1.83763tO 2.1492 2.8291 2.3979 1.9389

  • 134

    Ustat {C H L O} 1 3 {C H L O}

    Ct Ht Lt Ot Ustat 1 Ct+1 Ht+1 Lt+1 Ot+1 Nave 5-5 1 1+tO tC

    5.2 1

    5.1 1 OCB OII SVR ANFIS

    1 NFSV 5.2.1 5.2.2 5.2.3 5.3 NFSV

    5.2.1 1

    NFSV

    2 SVR OCB ANFIS OII 6

    - S-ANFIS - S-OII - O-ANFIS - O-OII - M-ANFIS

  • 135

    - M-OII S- SVR O- OCB M- SVR OCB 1 ANFIS OII 5-16

    2 OII ANFIS OII ANFIS (5-5) (5-10)

    5-16 1

    { }iiiii OLHCX ,,,= (5-5)

    { }kiikiikiikiiii

    i OOLLHHCCCCX

    = ,,,,,,,,,,,,3.11

    1 LLLL (5-6)

    { }iiiiii OLHCVVX

    X ,,,1

    maxmax

    == (5-7)

    { })()(,, ,, STPjINijiji YYYX = (5-8)

    ==

    =jiYXjiX

    Y STPiji

    jiji ;

    ;)(

    ,

    ,, (5-9)

    X 'X

    ''X '''XSV

    ANFIS

    ANFIS

    STP

    (-)

    SUB

    =0 PD

    Output

    Input

    OII

  • 136

    { }

    =typeMfor;,

    typeSfor;typeSfor;

    )()(

    )(

    )(

    )(

    OUTi

    OUTi

    OUTi

    OUTi

    INi

    OCBSVROCBSVR

    Y (5-10)

    ki L1= j iX k Vmax )(INY )(OUTSVR S-type )(OUTOCB O-type 2 M-type )( STPY step value 0 1

    SUB( ) 0 (4-17) Hybrid Secant False Position Method [44]

    NFSV 5.1.3.1 TMB IRP 2 5-12() ()

    iX (5-7) (5-11)

    iTRN

    TST

    i XXXX

    )(

    )(

    new = (5-11)

    )(TSTX )(TRNX max value (5-7) (5-2)

    2 (SV) (5-11)

    5.2.2 (5-11) SET

    m (5-2) (5-11) 5-17 5-19 Ustat 5-6

  • 137

    (5-11) SET TMB IRP

    SET TMB SVR OCB SVR OCB

    () m = 1 () m = 1

    () m = 1.4 () m = 1.4 5-17 SET m IRP

    SVR OCB

    5-7

  • 138

    () m = 1 () m = 1

    () m = 1.4 () m = 1.4 5-18 TMB m

    () m = 1 () m = 1 5-19 IRP m

  • 139

    () m = 1.4 () m = 1.4 5-19 IRP m ()

    5-6 Ustat 5-16 5-19 m = 1 m = 1.4

    Adjust Non adj. Adjust Non adj. SET OCB 1.0726 3.0182 0.92832 1.3629

    SVR 7.4141 15.667 0.95906 1.6933TMB OCB 1.1381 2.6266 1.7056 1.4741

    SVR 1.5554 26.276 4.6818 13.742IRP OCB 3.1131 1.0648 3.6244 1.072

    SVR 34.1 1.2669 10.003 1.4912

    5-7 SET TMB IRP Train data (1) Test data (2) (2)/(1)

    SET Average 742.5482 696.9454 Max. 764.01 746.16 0.976636 Min. 723.86 616.75

    TMB Average 4.5985 2.761382 Max. 5.2 3.38 0.65 Min. 4.18 1.88

    IRP Average 5.033833 6.902439 Max. 5.9 7.75 1.313559 Min. 4.7 5.3

    5-6 5-7 SET m = 1.4

    1 TMB m

  • 140

    1 1.4 0.65 IRP m Vmax (5-12)

    )max(max datatestmV = (5-12)

    (5-12) m = 1.4 OCB

    Ustat SET TMB IRP 0.91844 1.1728 1.0999 SVR SUB (4-5) (4-7) 5-20 IRP 5-20() m = 1.4 5.20() m = 0.7 SUB

    () m () m 5-20 (4-5) (4-7) m

    5.2.3

    5-16 Vmax (5-12) 10 5.1.3.1 Ustat m

    ANFIS 3 (2-51) 0 2 ANFIS 0

  • 141

    2

    10 7 BBL KTB SCB TISCO TMB PTTCH TPC 3 IRP VNT SET 2

    4 5-21 Ustat 5-8 m

    Average strenght of CLOSE price

    01

    2345

    67

    1 1.3 1.5 1.7 1.9

    m

    Ust

    at

    OCBSVRM-ANFISM-OIIS-ANFISS-OIIO-ANFISO-OII

    ()

    Average strenght of HIGH price

    012345678

    1 1.3 1.5 1.7 1.9

    m

    Usta

    t

    OCBSVRM-ANFISM-OIIS-ANFISS-OIIO-ANFISO-OII

    ()

    5-21 8 Ustat

  • 142

    Average strenght of LOW price

    00.5

    11.5

    22.5

    33.5

    44.5

    1 1.3 1.5 1.7 1.9

    m

    Ust

    at

    OCBSVRM-ANFISM-OIIS-ANFISS-OIIO-ANFISO-OII

    ()

    Average strenght of OPEN price

    0

    0.5

    1

    1.5

    2

    2.5

    3

    1 1.3 1.5 1.7 1.9

    m

    Usta

    t

    OCBSVRM-ANFISM-OIIS-ANFISS-OIIO-ANFISO-OII

    ()

    5-21 8 Ustat () 4 O-ANFIS O-OII

    SVR OCB S-OII M-OII S-OII S- ANFIS

    5-21() () SVR m 1.3 .15 m O-ANFIS O-OII

    5-8 5.1.3.3

  • 143

    5-8 Ustat 5-21

    Ustat 5-9 5-10

    5-9

    5-10

    O-ANFIS O-OII

    NFSV 2

    Close High Low Open OCB 1.6957286 1.3047186 1.3648831 0.889202SVR 3.0542323 3.101438 2.2707357 1.463072

    M-ANFIS 1.9417851 1.8966506 1.3232843 0.9515437M-OII 1.5969669 1.7116994 1.1578751 0.9218371

    S-ANFIS 1.6289334 1.8016637 1.1843634 0.8720937S-OII 1.5210286 1.7731654 1.1262434 0.857188

    O-ANFIS 1.1401269 1.0747871 0.9746497 0.7409369O-OII 1.1577966 1.0789766 0.9819391 0.7604249

    Close High Low Open OCB 1.428169 2.495662 1.380369 0.723853SVR 3.230373 3.840028 2.324361 1.84349

    M-ANFIS 2.148549 5.059182 1.511466 1.552062M-OII 1.941701 4.768675 1.465669 1.363345

    S-ANFIS 4.887607 7.763607 3.542371 3.424673S-OII 5.576233 7.354653 3.560603 3.348343

    O-ANFIS 4.600853 7.743513 3.487098 3.276581O-OII 5.03744 7.751627 3.498818 3.279216

    Close High Low Open OCB 1.428169 2.495662 1.380369 0.723853SVR 3.230373 3.840028 2.324361 1.84349

    M-ANFIS 1.919342 2.448329 1.340526 1.000922M-OII 1.630134 1.946448 1.217802 0.774169

    S-ANFIS 1.669655 2.659717 1.181798 0.900395S-OII 1.612979 1.952613 1.208223 0.813836

    O-ANFIS 1.219062 1.40326 1.090052 0.720306O-OII 1.242133 1.407927 1.105905 0.71858

  • 144

    5.3 NFSV NFSV 3

    5 4-17 60

    1 NFSV 1,920 640

    - 2 (Combined Mode: O-ANFIS O-OII) - 2 (Testing Mode: Adaptive Non-Adaptive Learning) - 2 (Input Expanding: Expanded Non-Expanded) - 4 (Prediction Dimension: Close High Low Open) - 2 (Event Filtering: Filtered Non-Filtered) - 10 5.1.3.1 NFSV OCB

    ANFIS OII

    4 ANFIS OII (5-1) OCB (5-2) m (5-12) 19 2549 5.1.3.1 19 20

  • 145

    4

    OCB m = 1.45 (Input Offset) 10 4 IRP PTTCH TMB VNT OCB SVR OCB 3 10 OCB OCB 5-11 5-13

    3

    5-11 NFSV 10

    Ustat NFSV type

    Input expansion Mode Filtering CLOSE HIGH LOW OPEN

    non 1.124 1.182 0.905 0.651 non filter 1.059 0.988 0.849 0.504 non 1.122 1.183 0.896 0.665

    Non adapt

    filter 1.063 0.98 0.842 0.515 non 1.038 1.089081 0.878619 0.656976 non filter 0.966 0.880991 0.81978 0.487524 non 1.054 1.091477 0.884077 0.664484

    O-ANFIS

    expand adapt

    filter 0.992 0.888284 0.822688 0.50163 non 1.137 1.193482 0.893658 0.655953 non filter 1.079 0.986057 0.83481 0.501861 non 1.119 1.209303 0.881012 0.665776

    Non adapt

    filter 1.076 1.002403 0.817728 0.515392 non 1.064 1.122794 0.899685 0.672924 non filter 0.998 0.909507 0.858424 0.519339 non 1.027 1.136806 0.868289 0.652106

    O-OII

    expand adapt

    filter 0.962 0.919665 0.808547 0.495949 non 4.311 4.849 3.074 2.053 non filter 4.784 4.717 3.949 2.004 non 2.763 5.34 1.766 1.365

    SVR

    expand filter 2.96 5.117 2.208 1.281 non 2.101 2.169 1.351 0.963 non filter 2.257 1.992 1.561 0.867 non 1.532 3.094 1.043 0.922

    OCB

    expand filter 1.538 2.943 1.129 0.812 non 1 1 0.994 0.999 AMA filter 0.906 0.906 0.897 0.907

  • 146

    O-ANFIS O-OII SVR OCB O-ANFIS O-OII SVR OCB

    NFSV O-OII

    AMA NFSV NFSV OCB FC UPL NFSV ( 5.4.5)

    5-12 NFSV OCB

    Ustat NFSV type

    Input expansion

    Mode Filtering CLOSE HIGH LOW OPEN

    Non 1.037 1.092 0.887 0.66 non

    Filter 0.933 0.825 0.777 0.466 Non 1.045 1.112 0.88 0.671

    Non adapt

    Filter 0.948 0.831 0.774 0.474 Non 1.001 1.05 0.864 0.66

    non Filter 0.902 0.772 0.756 0.445 Non 1.009 1.036 0.871 0.662

    O-ANFIS

    expand adapt

    Filter 0.929 0.768 0.76 0.454 Non 1.046 1.119 0.886 0.664

    non Filter 0.941 0.832 0.783 0.467 Non 1.034 1.125 0.866 0.667

    Non adapt

    Filter 0.96 0.847 0.755 0.473 Non 1.001 1.074 0.871 0.671

    non Filter 0.908 0.781 0.776 0.483 Non 0.975 1.067 0.86 0.659

    O-OII

    expand adapt

    Filter 0.886 0.775 0.76 0.46 Non 1.091 1.261 1.219 1.071

    non Filter 1.141 1.11 1.498 0.969 Non 1.183 1.735 1.058 0.972

    SVR

    expand Filter 1.173 1.555 1.195 0.854 Non 1.032 1.336 1.152 0.784

    non Filter 1.019 1.16 1.349 0.653 Non 1.179 1.138 0.976 0.773

    OCB

    expand Filter 1.122 0.992 1.008 0.637 Non 1 0.993 0.998 1

    AMA

    Filter 0.872 0.867 0.877 0.924

    2 IRP SET

  • 147

    NFSV O-OII 5-22 IRP 4 REC 5-23

    5-13 NFSV OCB

    Ustat NFSV type

    Input expansion

    Mode Filtering CLOSE HIGH LOW OPEN

    non 1.253 1.316 0.931 0.637 non

    filter 1.248 1.233 0.956 0.561 non 1.236 1.291 0.92 0.655

    Non adapt

    filter 1.234 1.204 0.944 0.578 non 1.095 1.147 0.901 0.653

    non filter 1.061 1.044 0.915 0.551 non 1.12 1.175 0.904 0.668

    O-ANFIS

    expand adapt

    filter 1.086 1.069 0.917 0.574 non 1.273 1.305 0.905 0.645

    non filter 1.287 1.218 0.912 0.555 non 1.248 1.336 0.904 0.663

    Non adapt

    filter 1.25 1.235 0.912 0.579 non 1.158 1.196 0.943 0.676

    non filter 1.132 1.103 0.983 0.574 non 1.105 1.241 0.881 0.642

    O-OII

    expand adapt

    filter 1.077 1.136 0.881 0.549 non 9.14 10.23 5.856 3.526

    non filter 10.25 10.13 7.627 3.555 non 5.132 10.75 2.829 1.953

    SVR

    expand filter 5.642 10.46 3.726 1.92 non 3.706 3.419 1.648 1.232

    non filter 4.114 3.239 1.879 1.187 non 2.061 6.026 1.143 1.146

    OCB

    expand filter 2.163 5.869 1.31 1.074 non 1 0.995 1 1

    AMA

    filter 0.957 0.942 0.953 0.967 5-23 NFSV OCB

    SVR AOC 4 IRP

    SVR OCB SVR NFSV

    5-24 SVR OCB

  • 148

    SVR NFSV 5-23 OCB SVR

    5-22 IRP

    5-23 REC IRP

  • 149

    5-14 NFSV SVR OCB AMA AMA NFSV 5-11 5-13

    5-24 IRP

    5-14 IRP CLOSE HIGH LOW OPEN

    NFSV AOC mse AOC mse AOC mse AOC Mse Non 0.099 0.02 0.172 0.044 0.084 0.0127 0.058 0.006

    Adapt 0.096 0.019 0.195 0.056 0.07 0.0118 0.042 0.004SVR 1.023 1.205 1.748 3.65 0.33 0.1317 0.12 0.021OCB 0.201 0.144 0.83 1.73 0.099 0.0264 0.078 0.014AMA 0.066 0.011 0.078 0.014 0.079 0.0179 0.084 0.017

    NFSV

  • 150

    AOC = 0.172 mse = 0.044 AOC = 0.195 mse = 0.056 NFSV BRG (Benefit Retrain Graph)

    BRG 5-25 9 BRG 3 3 G-OII NFSV ( 5.4.5)

    5-25 BRG IRP

    BRG BRT 0.70909 0.70732 0.78761 1 2 3 BRT (Stem) NFSV

  • 151

    BRG 2 3 BRT 0.80357 0.80735

    IRP G-OII GC FC 4 5-26 5-27 NFSV

    5-26 NFSV IRP

    () ()

    () ()

  • 152

    G-OII 5-26() () 5-27() () G-OII 5-27

    5-27 NFSV IRP 5-26() 5-27()

    G-OII 5-27() 5-26() 5-27()

    () ()

    () ()

  • 153

    GC FC G-OII UPL GC & FC Filter 5-26 5-27 G-OII UPL GC FC

    SET 5-28 5-29

    5-28 NFSV SET

    () ()

    () ()

  • 154

    5-29 NFSV SET NFSV

    G-OII SET 19 2549

    SET 108.41 730.55 622.14 NFSV 5-28 5-29

    NFSV

    () ()

    () ()

  • 155

    5.4

    AMA 1 2 1 2 AMA 1 NFSV

    SVR OCB SVR SVR OCB

    SVR OCB OCB SVR OCB

    ANFIS OII 0 1 NFSV 04 0.5

    SVR OCB ANFIS OII 6 O-ANFIS O-OII

  • 156

    SVR OCB NFSV

    NFSV 3 5 4 60

    O-ANFIS O-OII 10 1,920 640

    Nave (Exponential Smoothing) AMA Ustat 1 Nave 1 Nave 5-11 5-13

    AMA AMA NFSV Nave NFSV OCB FC UPL

    NFSV O-OII

  • 6

    SVR

    ANFIS NFSV

    6.1 SVR

    SVR

    OCB SVR SVR OCB SVR

    6.2 ANFIS

    ANFIS

    OII ANFIS

  • 158

    6.3 NFSV SVR ANFIS

    OCB OCB

    NFSV O-OII

    AMA NFSV Nave NFSV OCB FC UPL

    6.4

    OCB OII SVR ANFIS OCB SVR NFSV OCB OII OCB OCB NFSV NFSV

  • 159

    NFSV 5-28 5-29

    6.5

    NFSV

    OCB OCB

    NFSV ANFIS (Genetic Algorithm) [45, 46]

    (Multi-Level Laws) [47] (Long-Memory Effects) (Short-Term Effects)

  • 160

    (Wavelet) [48]

    2 [49, 50] ANFIS

    2

    [51]

    NFSV

    [52] (Lower Upper Bound) [53]

  • 161

    (Reverse Strategy) [54]

    (Negative Serial Correlation) [55] [56] [57, 58]

    [59]

  • 1. Hellstrm, T. "A Test Bench and Development Tools for Trading Algorithms."

    EUFIT-98. Aachen. Germany. 1998.

    2. U. Corts, et al. Artificial Intelligence and Environmental Decision Support

    Systems. Applied Intelligence 13. Kluwer Academic Publishers. 2000 :

    77 91.

    3. Yao, J. T. Knowledge Based Descriptive Neural Networks. Rough Sets, Fuzzy

    Sets, Data Mining, and Granular Computing, 9th International Conference,

    RSFDGrC 2003.

    4. Kung, S. W. "Exploiting Equity Momentum with Symbolic Machine Learning."

    Dissertation. University of Oxford. 1998.

    5. Hellstrm, T. "Predicting a rank measure for stock returns." Theory of Stochastic

    Processes. Vol.6 (22). no.3-4. 2000. : 64-83.

    6. Harrison, H. C. and Qizhong, G. "An intelligent business forecasting system."

    The 1993 ACM conference on Computer science. March 1993.

    7. Clay, G. R. and Grange, F. "Evaluating Forecasting Algorithms and Stocking

    Level Strategies using Discrete-Event Simulation." The 1997 Winter

    Simulation Conference. 1997.

    8. Wu, S. and Lu, R. "Combining artificial neural networks and statistics for stock-

    market forecasting." ACM conference on Computer science. March 1993.

    9. Kaltio, S. "Interactive analysis of time series." The seventh international

    conference on APL. June 1975.

    10. Pankratz, A. Forecasting with Univariate Box-Jenkins Models: Concepts and

    Cases. New York. John Wiley & Sons. 1983.

    11. Tran, N. and Reed, D. A. "ARIMA time series modeling and forecasting for

    adaptive I/O perfecting." The 15th international conference on

    Supercomputing. June 2001.

    12. Robinson, L. "Exploring time series analysis using APL" ACM SIGAPL APL

    Quote Quad. Volume 27 Issue 3. March 1997.

  • 164

    13. Meesad, P. and Srikhacha, T. "Universal Data Forecasting with an Adaptive

    Approach and Seasonal Technique." International Conference on

    Computational Intelligence for Modellling, Control and Automation. 2006.

    14. Carlin, B. P. and Louis, T. A. Bayes and Empirical Bayes Methods for Data

    Analysis. Chapman&Hall Publishing. 128-135.

    15. Holland, J. H. Genetic algorithms. Scientific American. 267. July 1992 :

    44-50.

    16. Ferreira, T. A. E., et al. "A new evolutionary method for time series forecasting."

    The 2005 conference on Genetic and evolutionary computation GECCO '05.

    2005.

    17. Skabar, A. and Cloete, I. Neural networks, financial trading and the efficient

    markets hypothesis. Proceedings of the twenty-fifth Australasian

    conference on Computer science. 4. 2002.

    18. Zhou, Q. and Purvis, M. A market-based rule learning system. Proceedings of

    the second workshop on Australasian information security, Data Mining and

    Web Intelligence, and Software Internationalisation. 32. 2004.

    19. Kwon, Y. K., et al. Stock Prediction Based on Financial Correlation. The 2005

    Conference on Genetic and Evolution Computation GECCO05. 2005.

    20. Adam Blazejewski, A. and Coggins, R. Application of self-organizing maps to

    clustering of high-frequency financial data. Proceedings of the second

    workshop on Australasian information security, Data Mining and Web

    Intelligence, and Software Internationalisation. 32. 2004.

    21. Kumar, M., et al. "Clustering seasonality patterns in the presence of errors" The

    eighth ACM SIGKDD international conference on Knowledge discovery and

    data mining. July 2002.

    22. Lin, J., et al. Clustering of streaming time series is meaningless. Proceedings

    of the 8th ACM SIGMOD workshop on Research issues in data mining and

    knowledge discovery. 2003.

    23. Negnevitsky, M. Artificial Intelligence: a Guide to Intelligent System. First

    edition. Edinburgh Gate. Addison Wesley. 2002 : 315-316.

  • 165

    24. Jang, J. S. R., "ANFIS: Adaptive-Network-based Fuzzy Inference Systems."

    IEEE Transactions on Systems, Man, and Cybernetics. 23. May 1993 :

    665-685.

    25. Negnevitsky, M.,