Paolo Zanardi (USC) Lorenzo Campos Venuti (ISI) Obergugl, Austria June 2010 Long time dynamics of a...

23
Paolo Zanardi (USC) Lorenzo Campos Venuti (ISI) Obergugl, Austria June 2010 ng time dynamics of a quantum quen

Transcript of Paolo Zanardi (USC) Lorenzo Campos Venuti (ISI) Obergugl, Austria June 2010 Long time dynamics of a...

Page 1: Paolo Zanardi (USC) Lorenzo Campos Venuti (ISI) Obergugl, Austria June 2010 Long time dynamics of a quantum quench.

Paolo Zanardi (USC)

Lorenzo Campos Venuti (ISI)

Obergugl, Austria June 2010

Long time dynamics of a quantum quenchLong time dynamics of a quantum quench

Page 2: Paolo Zanardi (USC) Lorenzo Campos Venuti (ISI) Obergugl, Austria June 2010 Long time dynamics of a quantum quench.

•Unitary Evolution ==>no non-trivial fixed points for t=∞ I.e., no strong (norm) convergence

Hey wait a sec: Equilibration of a finite closed quantumsystem?!? What are you talking about dude???

•Finite size ==>Point spectrum ==>A(t)=measurable quantity is a quasi-periodic function ==> no t=∞ limit (quasi-returns/revivals) ==> not even weak op convergence€

limt →∞ U(t) | Ψ⟩=| Ψ⟩∞ ⇒ | Ψ⟩=| Ψ⟩∞

A(t) = D Ap exp(iωp t)⇒ ∀ε > 0∃T(ε,D) /p=1

∑ | A(T) − A(0) |≤ ε

Unitary equilibrations will have to be a different kind of convergence….Unitary equilibrations will have to be a different kind of convergence….

Unitary Equilibration??

Page 3: Paolo Zanardi (USC) Lorenzo Campos Venuti (ISI) Obergugl, Austria June 2010 Long time dynamics of a quantum quench.

L(t) =|⟨Ψ | exp(−iHt) | Ψ⟩ |2

L(t) =|⟨Ψ | exp(−iHt) | Ψ⟩ |2

Loschmidt Echo:Loschmidt Echo:

= pn pm exp[−it(En − Em )]n,m

H = En | n⟩⟨n |n

Spectral resolution Probability distribution(s)

Different Time-Scales & Characteristic quantities

•Relaxation Time (to get to a small value by dephasing and oscillate around it)

•Revivals Time (signal strikes back due to re-phasing)

Q1: how all these depend on H, , and system size?Q1: how all these depend on H, , and system size?

| Ψ⟩

Q2: how the global statistical features of L(t) depend on H, and system size N?Q2: how the global statistical features of L(t) depend on H, and system size N?

| Ψ⟩

pn :=|⟨Ψ | n⟩ |2

=Tr[| Ψ⟩⟨Ψ | e−iHt | Ψ⟩⟨Ψ | e iHt ] = ⟨ρΨ (t)⟩Ψ

Page 4: Paolo Zanardi (USC) Lorenzo Campos Venuti (ISI) Obergugl, Austria June 2010 Long time dynamics of a quantum quench.

Typical Time Pattern of L(t)

Transverse Ising (N=100)

Page 5: Paolo Zanardi (USC) Lorenzo Campos Venuti (ISI) Obergugl, Austria June 2010 Long time dynamics of a quantum quench.

P(y = L(t)) = limT →∞

1

Tδ(y − L(t)) =

0

T

∫ ⟨δ(L − L(t))⟩t

P(y = L(t)) = limT →∞

1

Tδ(y − L(t)) =

0

T

∫ ⟨δ(L − L(t))⟩t

For a given initial state L-echo is a RV over the time line [0,∞) with Prob Meas

A ⊂[0,∞)

μ∞(A) := limT →∞

1

Tχ A (t)dt

0

T

∫ Characteristic function of

Probability distribution of L-echo

Goal: study P(y) to extract global information about theEquilibration process Goal: study P(y) to extract global information about theEquilibration process

χA

1 Moments of P(y)

κn := y nP(y)dy = limT →∞∫ 1

TLk (t)dt

0

T

Each moment is a RV over the unit sphere (Haar measure) of initial states

Page 6: Paolo Zanardi (USC) Lorenzo Campos Venuti (ISI) Obergugl, Austria June 2010 Long time dynamics of a quantum quench.

Mean:

Long time average of L(t) is the purity of the time-averagedensity matrix (or 1 -Linear Entropy)

Question: How about the other moments e.g., variance andinitial state dependence? Are there “typical” values?Question: How about the other moments e.g., variance andinitial state dependence? Are there “typical” values?

κ1 = limT →∞

1

T⟨ρΨ,ρΨ,(t)⟩dt

0

T

∫ = ⟨ρΨ,Π nρΨ,Π m⟩m,n

∑ limT →∞

1

Te−i(En −Em )tdt

0

T

= ⟨ρΨ,Π nρΨ,Π n⟩=n

∑ ⟨ρΨ,D1(ρΨ,)⟩= ⟨D1(ρΨ ),D1(ρΨ,)⟩= TrD1(ρΨ )2

limT →∞

1

Te−iHtρΨe iHtdt

0

T

∫ = Π nρΨ,Π n =: D1(n

∑ ρΨ )

limT →∞

1

Te−iHtρΨe iHtdt

0

T

∫ = Π nρΨ,Π n =: D1(n

∑ ρΨ )

Remark

D1Is a projection on the algebra of the fixed pointsOf the (Heisenberg) time-evolution generated by H

Remark dephased state min purity given the constraints I.e., constant of motion

Page 7: Paolo Zanardi (USC) Lorenzo Campos Venuti (ISI) Obergugl, Austria June 2010 Long time dynamics of a quantum quench.

Dn (X) = limT →∞

1

T(e−iHt )⊗n X

0

T

∫ (e iHt )⊗n Dephasing CP-map of the n-copies Hamiltonian, S is a swap in

κn (ψ ) = Tr[Dn⊗2(S) |ψ⟩⟨ψ |⊗2n ]

κn (ψ ) = Tr[Dn⊗2(S) |ψ⟩⟨ψ |⊗2n ]

κn (ψ )ψ

=Tr[Dn

⊗2(S)P2n+ ]

Tr(P2n+ )

P2n+ = Projection on the totally symm ss of

Hilb⊗2n

(Hilb⊗n )⊗2

|κ n (ψ ) −κ n (φ) |≤|| Dn⊗2(S) ||∞ |||ψ⟩⟨ψ |⊗2n − | φ⟩⟨φ |⊗2n ||1≤ 4n |||ψ −⟩ | φ⟩ ||

All L(t) moments are Lipschitz functions on the unit sphere of Hilb ==> Levi’s Lemma implies exp (in d) concentration around

Remark We assumed NO DEGENERACY, in general bounded above by

κn (ψ )ψ

κ1(ψ )ψ

=Tr[D1

⊗2(S)(1+ S)]

d(d +1)=

2

d +1

κ1(ψ )ψ

=Tr[D1

⊗2(S)(1+ S)]

d(d +1)=

2

d +1

d=dim(Hilb)==> exp (in N) small =(positivity)=> exp (in N) state-space concentration of around

κn (ψ )ψ

2 Moments of P(y)

κ1(ψ )ψ

κn (ψ )

Remark

κn (ψ )ψ

≈d >>n d−2n Tr[Dn⊗2(S)σ ]

σ ∈S2n

κ1(ψ )ψ

=1+ d j (d j /d∑ )2

d +1

Page 8: Paolo Zanardi (USC) Lorenzo Campos Venuti (ISI) Obergugl, Austria June 2010 Long time dynamics of a quantum quench.

σ 2(L) := κ 2 −κ12 = pi

2 p j2

i≠ j

∑ = κ12 − tr(ρ eq

4 ) ≤ κ12

σ 2(L) := κ 2 −κ12 = pi

2 p j2

i≠ j

∑ = κ12 − tr(ρ eq

4 ) ≤ κ12

μ∞{t / | L(t) − ⟨L(t)⟩t |≥ Mσ } ≤ M−2

Chebyshev’s inequality

goes to zero with N system size ==> M can diverge While ==>Flucts of L(t) are exponentially rare in time …..! goes to zero with N system size ==> M can diverge While ==>Flucts of L(t) are exponentially rare in time …..!

κ1(ψ ) = ⟨L(t)⟩t€

σ(L)

∀ε,δ > 0,∃N | N ≥ N ⇒ μ∞{t / | Lψ NN (t) −κ1,N (ψ N )

ψ N |≥ ε} ≤ δ

∀ψ N ∈ SN ⊂HilbN & μ H (SN ) ≥1− exp(−cN)

∀ε,δ > 0,∃N | N ≥ N ⇒ μ∞{t / | Lψ NN (t) −κ1,N (ψ N )

ψ N |≥ ε} ≤ δ

∀ψ N ∈ SN ⊂HilbN & μ H (SN ) ≥1− exp(−cN)

In the overwhelming majority of time instants L(t) is exponentially close to the “equilibrium value” €

Mσ → 0

Remark: non-resonance assumed

This what we (morally) got :

c = c(ε,δ) > 0

Page 9: Paolo Zanardi (USC) Lorenzo Campos Venuti (ISI) Obergugl, Austria June 2010 Long time dynamics of a quantum quench.

Q: Can we do better? E.g., exp in d concentration?

A: yes we can!

t →α := (E1t,...,Ed t)∈ T d →| pneiα n∑ |2

HP: energies rationally independent ==> motion on the d-torus ergodic==>Temporal averages=phase-space averages

| L(α ) − L(β ) |≤ 2 pn | e iα n − e iβ n |≤∑ pn |α n − β n |=: 4πD(α ,β )∑

L is Lipschitz on the d-torus with metric D ==> known measure concentration phenomenon!

μ∞{t / | LN (t) − ⟨LN (t)⟩t |≥ ε} = Pr{α ∈ T d / | L(α ) − ⟨L⟩α |≥ ε} ≤ exp(−cε 2

pn4∑)

μ∞{t / | LN (t) − ⟨LN (t)⟩t |≥ ε} = Pr{α ∈ T d / | L(α ) − ⟨L⟩α |≥ ε} ≤ exp(−cε 2

pn4∑)

c = (128π 2)−1

c = (128π 2)−1

Remark The rate of meas-conc is the inv of purity of the dephasedStates I.e., mean of L==> Typically order d=epx(N), as promised…

Page 10: Paolo Zanardi (USC) Lorenzo Campos Venuti (ISI) Obergugl, Austria June 2010 Long time dynamics of a quantum quench.

Far from typicality: Small Quenches

H0 | Ψ0⟩= E0 | Ψ0⟩

H = H0 + V

||V ||= o(ε)

H0 | Ψ0⟩= E0 | Ψ0⟩

H = H0 + V

||V ||= o(ε)

Ground State of an initial HamiltonianQuench-Ham= init-Ham + perturbation

pn =|⟨ΨQuenchn | Ψ0⟩ |2 Distribution on the eigenbasis of

p0 ≈1− χ F = o(1)

Slin =1− Tr[D1(ρΨ0)2] =1− ⟨L(t)⟩t =1− pn

2 ≈1− p02 ≈ 2χ F

n

The linear entropy of the dephased state for a small quenchIs given by the fidelity susceptibility: a well-known object!The linear entropy of the dephased state for a small quenchIs given by the fidelity susceptibility: a well-known object!

=measures how initial state fails to be a quenched Hamiltonian Eigenstate. For H(quench) close to H(0) we expect it to be small….

Slin :=1−κ 1

H = H0 + V

pn≠0 ≈|⟨Ψ0 |V | Ψn⟩ |2

(En − E0)2= o(ε 2)GS Fidelity: leading term!

Remark:

σ 2(L) ≈ p0(1− p0) ≈ χ F

σ 2(L) ≈ p0(1− p0) ≈ χ F

Page 11: Paolo Zanardi (USC) Lorenzo Campos Venuti (ISI) Obergugl, Austria June 2010 Long time dynamics of a quantum quench.

χF =|⟨Ψ0 |V | Ψn⟩ |2

(E0 − En )2n≠0

∑ ≤1

Δ2(⟨V 2⟩− ⟨V⟩2) :=

1

Δ2X

χF =|⟨Ψ0 |V | Ψn⟩ |2

(E0 − En )2n≠0

∑ ≤1

Δ2(⟨V 2⟩− ⟨V⟩2) :=

1

Δ2X

V := V j∑Δ := minn (En − E0)

Local operator (trans inv)

Spectral gap

0)(lim >Δ∞→ LL ∞<−∞→ )(lim LXL d

L (Hastings 06)

limL →∞ L−d χ F < ∞Gapped system

For gapped systems 1-LE mean scales at most extensivelyFor gapped systems 1-LE mean scales at most extensively

Superextensive scaling implies gaplessnessSuperextensive scaling implies gaplessness

Small Quenches: The Role of Criticality

Page 12: Paolo Zanardi (USC) Lorenzo Campos Venuti (ISI) Obergugl, Austria June 2010 Long time dynamics of a quantum quench.

V → dd xV (x)∫

Small Quenches: FS Critical scaling

Continuum limit

Scaling transformations

x →αx;τ →α ζ τ

V →α −ΔV

χFSing /Ld →| λ − λ c |νΔQ Proximity of the critical point

χFSing /Ld → L−ΔQ At the critical points

ΔQ := 2Δ − 2ζ − d

ΔQ := 2Δ − 2ζ − d

Scal dim of FS: the smaller the faster the orthogonalization rateSuper-extensivity 2/)( dd −+≤Δ ζ

νλλξ −−= || c

Criticality it is not sufficient, one needs enough relevance….

Page 13: Paolo Zanardi (USC) Lorenzo Campos Venuti (ISI) Obergugl, Austria June 2010 Long time dynamics of a quantum quench.

THE XY Model

)2

1

2

1(),( 11

1

zi

yi

yi

xi

xi

i

LH λσσσγσσγγλ +−

++

= ++=∑ )

2

1

2

1(),( 11

1

zi

yi

yi

xi

xi

i

LH λσσσγσσγγλ +−

++

= ++=∑

=anysotropy parameter, =external magnetic fieldγ λ

QCPs:

0=γ

1±=λ

XX line III-order QPT

Ferro/para-magnetic II order QPT

Jordan-Wigner mapping H Free-Fermion system: EXACTLY SOLVABLE!

L

k

L

kk

πγλπ 2sin)

2(cos 222 +−=Λ

Quasi-particle spectrum: zeroes in the TDL in all the QCPs Gaplessness of the many-body spectrum

Page 14: Paolo Zanardi (USC) Lorenzo Campos Venuti (ISI) Obergugl, Austria June 2010 Long time dynamics of a quantum quench.

L(t) = (1− sin2(2α k )sin2(Λk2 t))

k

L(t) = (1− sin2(2α k )sin2(Λk2 t))

k

α k = θk (λ1) −θk (λ 2)H.T Quan et al, Phys. Rev. Lett. 96, 140604 (2006)

Ising in transverse field:

cosθν (λ ) =cos

2πk

L− λ

Λν

γ=1

γ=1

Large size limit (TDL)==> spec(H) quasi-continuous ==> Large t limits exist (R-L Lemma) =time averages

L(t) = e−Ls( t )

s(t) =1

2πln[(1− sin2(2α k )sin2(Λk

2 t))]dk∫ t →∞ ⏐ → ⏐ ⏐ s(∞) − Am | t |−3 / 2 cos(Emt + 3π /4) + (m ↔ M)

s(∞) = −1

πln[(1− | cos(α k ) | /2)]dk∫

Inverting limits I.e., 1st t-average, 2nd TDL

⟨L(t)⟩t = e−Lg(λ1 ,λ2 )

g = −1

2πln[(1− sin2(α k ) /2)]dk∫

•g and s are qualitatively the same but when we consider different phases

(m=band min, M=band max

Page 15: Paolo Zanardi (USC) Lorenzo Campos Venuti (ISI) Obergugl, Austria June 2010 Long time dynamics of a quantum quench.

κ1 = Π k[1−α k /2],

N =100

var(L) = Π k[1−α k +3

8α 2

k ] − Π k[1−α k +1

4α 2

k ]

N =100

First Two Moments

α k := sin2(θk (h1) −θk (h1)

2)

Page 16: Paolo Zanardi (USC) Lorenzo Campos Venuti (ISI) Obergugl, Austria June 2010 Long time dynamics of a quantum quench.

P(L=y) Different Regimes

• Large ==>L for (moderately) large (quasi) exponential

δh

δh• Small and close to criticality a) Exponentialb) Quasi critical I.e., universal “Batman Hood”

δh• Small and off critical a) Exponential b) Otherwise Gaussian

L >>|δh |−2

L >>|δh |−1

L <<| h(i) −1 |∝ξ

κn ≤ n!(κ1)n ⇒ eλ ⟨L ⟩ ≤ χ (λ ) := ⟨eλL⟩≤

1

1− λ ⟨L⟩

Page 17: Paolo Zanardi (USC) Lorenzo Campos Venuti (ISI) Obergugl, Austria June 2010 Long time dynamics of a quantum quench.

L=20,30,40,60,120

h(1)=0.2, h(2)=0.6

L=10,20,30,40

h(1)=0.9, h(2)=1.2

Approaching exp for large sizes

P(y = L) ≈ θ(y)exp(−y /⟨L⟩)

⟨L⟩

P(y = L) ≈ θ(y)exp(−y /⟨L⟩)

⟨L⟩

κn ≤ n!(κ1)n ⇒ eλ ⟨L ⟩ ≤ χ (λ ) := ⟨eλL⟩≤

1

1− λ ⟨L⟩

Page 18: Paolo Zanardi (USC) Lorenzo Campos Venuti (ISI) Obergugl, Austria June 2010 Long time dynamics of a quantum quench.

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Thanks for the attention!Thanks for the attention!

Page 19: Paolo Zanardi (USC) Lorenzo Campos Venuti (ISI) Obergugl, Austria June 2010 Long time dynamics of a quantum quench.

Summary & ConclusionsSummary & Conclusions

•Unitary equilibrations: measure convergence/concentration

•Moments of Probability distribution of LE (large time)

•Transverse Ising chain: mean, variance, regimes for P(L)

•Universal content of the short-time behaviorof L(t) and criticality

Phys. Rev. A 81,022113 (2010)Phys. Rev. A 81,022113 (2010) Phys. Rev. A 81, 032113 (2010)Phys. Rev. A 81, 032113 (2010)

Page 20: Paolo Zanardi (USC) Lorenzo Campos Venuti (ISI) Obergugl, Austria June 2010 Long time dynamics of a quantum quench.

Short-time behavior

L(t) =|⟨e−iHt⟩ |2= exp2(−t)2n

(2n)!⟨H 2n⟩c

n=1

Square of a characteristic function --> cumulant expansion

H sum of N local operator in the TDL N-> ∞ one expects CLT to hold I.e.,

Y :=H − ⟨H⟩

⟨H 2⟩c

TDL ⏐ → ⏐ P(Y )∝ exp(−Y 2 /2)⇒ L(t) ≈ e−t 2 ⟨H 2 ⟩c

exp(−TR2⟨H 2⟩c ) = L ⇒ TR :=

−lnL

⟨H 2⟩c

exp(−TR2⟨H 2⟩c ) = L ⇒ TR :=

−lnL

⟨H 2⟩c

Relaxation time

TR = O(1)

TR = O(Lζ )∝ξ ζ

TR = O(1)

TR = O(Lζ )∝ξ ζ

Off critical (or large quench)

Critical (& small quench)

⟨Y n⟩c =AnN

d + BnNn(d −Δ )

(A2Nd + B2N

2(d −Δ ))n / 2N →∞ ⏐ → ⏐ ⏐

Δ > d /2•0 for

Bn /B2n / 2

for

Δ < d /2

Gaussian Non Gaussian

(universal)

Δ =d /2 Non Gaussian & non universal)

Page 21: Paolo Zanardi (USC) Lorenzo Campos Venuti (ISI) Obergugl, Austria June 2010 Long time dynamics of a quantum quench.

L=18, h(1)=0.3, h(2)=1.4 L=20, h(1)=0.1, h(2)=0.11

L=40, h(1)=0.99, h(2)=1.1

L(t) = κ1 + c(Λk )cos(tΛk )k

+ n-body spectrum contributions

Different regimes depend on how manyfrequencies have a non-negligible weight

c(ω) :=α k

2|ω= Λ k

Page 22: Paolo Zanardi (USC) Lorenzo Campos Venuti (ISI) Obergugl, Austria June 2010 Long time dynamics of a quantum quench.

L=20, h(1)=0.1, h(2)=0.11

L=40, h(1)=0.99, h(2)=1.1

With just two frequencies

L(t) = Acos(ω1t) + Bcos(ω2t)L=20, h(1)=0.1, h(2)=0.11

Page 23: Paolo Zanardi (USC) Lorenzo Campos Venuti (ISI) Obergugl, Austria June 2010 Long time dynamics of a quantum quench.

More generally (Strong non resonance)

κn ≤ n!(κ1)n ⇒ eλ ⟨L ⟩ ≤ χ (λ ) := ⟨eλL⟩≤

1

1− λ ⟨L⟩

Therefore implies

κ1 = ⟨L⟩→ 0

χ(λ ) →1 ⇔ P(y = L) →δ(y)

⟨L⟩

κn = Tr S(ρψ⊗n ⊗Dn (ρψ

⊗n ))[ ]

κn = Tr S(ρψ⊗n ⊗Dn (ρψ

⊗n ))[ ]€

P(y = L) ≈ θ(y)exp(−y /⟨L⟩)

⟨L⟩

P(y = L) ≈ θ(y)exp(−y /⟨L⟩)

⟨L⟩

is a dephasing super-operator of the n-copies Hamiltonian

S is a “swap” between 1st and 2nd n-copies

Protocol:

1) Prepare 2n copies of I.e.,

ρψ

ρ1 := ρψ⊗n ⊗ ρψ

⊗n

2) Dephase 2nd n-copies I.e.,

ρ2 := (Id ⊗D)(ρ in )

3) Measure S

κn = Tr(Sρ 3)

For small

Higher Moments: direct operational meaning !

Dn