PACl Improvement of the Effectiveness of Drinking Water ...

7
319 HWAHAK KONGHAK Vol. 41, No. 3, June, 2003, pp. 319-325 PACl 608-737 3 599-1 (2002 10 11 , 2003 3 5 ) Improvement of the Effectiveness of Drinking Water Treatment Using a Mixture of Polyamine and PACl Seung Woo Han , Chul Woo Lee and Lim Seok Kang Department of Environmental Engineering, Pukyong National University, 599-1 Daeyeon3-dong, Nam-gu, Busan 608-739, Korea Received 11 November 2002; accepted 5 March 2003) PACA PACl(Al 2 O 3 16.5%) 2 0.5 mg/L(as polymer) , PACA . , . PACA alum PACl jar test pilot plant , PACA 60% alum PACl PACA . Abstract - In order to reduce the amount of alum and PACl coagulant and to improve the coagulation efficiency in water treatment process, an organic polymer and a polymeric inorganic coagulant were blended, which was named PACA(polyalu- minum chloride amine) and their mixture was applied to treat drinking water. For the blended PACA, polyamine polymer as the organic polymer was injected into the PACl(as Al 2 O 3 16.5%) 50% diluted with water in which the maximum amount of poly- meric Al(III) species was contained. Also, from the result of coagulation tests to determine the optimum combination of the polyamine content with PACl, 0.5 mg/L of polyamine blended into PACl was found to be optimum. The blended PACA was stable during storing period, as indicating negligible aging effect. To compare the coagulation efficiency of PACA with alum and PACl coagulants, both jar test and pilot plant test were performed. The experimental results showed that the PACA coag- ulant was very effective for the removals of turbidity, organic matters, and algae. In addition, when comparing the optimum dosage of PACA coagulant with alum and PACl, the dosage of PACA coagulant was reduced by 60% for comparable coagu- lation efficiency. Key words: Coagulant, Polyamine, Alum, PACI (Polyaluminum Chloride), Mixture 1. 3 . . , . [1, 2]. [3]. , To whom correspondence should be addressed. E-mail: [email protected]

Transcript of PACl Improvement of the Effectiveness of Drinking Water ...

HWAHAK KONGHAK Vol. 41, No. 3, June, 2003, pp. 319-325

����� PACl ���� � � ������ ��

���†�������

����� �����608-737 � �� � 3� 599-1

(2002� 10� 11� ��, 2003� 3� 5� ��)

Improvement of the Effectiveness of Drinking Water Treatment Using a Mixture of Polyamine and PACl

Seung Woo Han†, Chul Woo Lee and Lim Seok Kang

Department of Environmental Engineering, Pukyong National University, 599-1 Daeyeon3-dong, Nam-gu, Busan 608-739, Korea�Received 11 November 2002; accepted 5 March 2003)

� �

���� ����� � � �� ����� ���� ��� ��� �� ���� PACA� �� � ! �"#$

%&'()� *+ ,- ./� PACl(Al2O3 16.5%)� 20 12� 34 5�678 �"#�� 0.5 mg/L(as polymer)�

9:;<� = >? @ /AB �C�4* *+ D�;<EF, ��G �H PACA� IJAK� LM N$� OPQ C

� RSRT UVW. 5�678 /A$ �"# �� 9:� 4 X � � YD� Z[;<� =, \] ^_ >? @

/AB �C`a� bc� /�� YP� RSdc 9:� � LM /TJ� @ Y�eH ���� fO� Ag � b� 3

-h ijGW. ��G PACAk alum @ PACl� �� jar test lm @ pilot plant� - � lm n4, PACA� YD�

bc � op�Q 60%�? ��E!? alum @ PACl �� jqE! � ;<� = IW PACA� � ;<� =*

/�� >? @ /AB �C��� RSdrW.

Abstract − In order to reduce the amount of alum and PACl coagulant and to improve the coagulation efficiency in water

treatment process, an organic polymer and a polymeric inorganic coagulant were blended, which was named PACA(polyalu-

minum chloride amine) and their mixture was applied to treat drinking water. For the blended PACA, polyamine polymer as the

organic polymer was injected into the PACl(as Al2O3 16.5%) 50% diluted with water in which the maximum amount of poly-

meric Al(III) species was contained. Also, from the result of coagulation tests to determine the optimum combination of the

polyamine content with PACl, 0.5 mg/L of polyamine blended into PACl was found to be optimum. The blended PACA was

stable during storing period, as indicating negligible aging effect. To compare the coagulation efficiency of PACA with alum

and PACl coagulants, both jar test and pilot plant test were performed. The experimental results showed that the PACA coag-

ulant was very effective for the removals of turbidity, organic matters, and algae. In addition, when comparing the optimum

dosage of PACA coagulant with alum and PACl, the dosage of PACA coagulant was reduced by 60% for comparable coagu-

lation efficiency.

Key words: Coagulant, Polyamine, Alum, PACI (Polyaluminum Chloride), Mixture

1. � �

�� ��� ��� �� �� ���� ��� ����

���� ���� 3� � !" #�� $� %&'(. '� )

* &+,-&�. /01 23' 456� $� ��&+,7 �

8�� 9:6� $;< => �?6@;� AB �CD� �?�

��&+,E2� 01 F;G,� HI @J9 =' K�6� $(.

LM NO, �P QP RI STU &-&�. V�7 FW�� 8X

B�P 3YZ FCB�� 01 +,� [\]�� '^@;; #

_��. ��+,� 01 `�a K�� ��&+, E2� 9:�

@Jb' $@ c(.

&+,-& LM NO-&�.� �5Z� 0d.� CY� HI

e�� fg6@ c([1, 2]. hij NO-&�.� k^lmn NOo

7 P( p3_� )* q�k^lm� �1 rdZ' oC6� $(

[3]. s1 k^lmn NOo� p3I �� �&�� )* p

3a' t*;u, v Q�� �1 wx]�� V�� K�1 yz�

� k^lmn NOo<� p3�� [P]� &+,[\ {C�

†To whom correspondence should be addressed.E-mail: [email protected]

319

320 ����������

@|} ~(. hi�� � �� K�� 01 �� FCB� �

V�� 01 +,[\� �' 5��� )* �y`�.� &+,

-&�.� +,[\ ��C r�� 2000� 8� FCZ ��XN

Oo(�,���)� p3� 0�� �x1 �� $(. '� RI FCZ

��XNOo� p3I &+,� $@. NOP �� �fx�u,

W�6� �i;� � �w $�, �i; �Z' K��� Q�

�= �;� $([4, 5]. s1 CY� k^lmn �CNOo� �8

x 4a�(<1.0 mg/L) FCZ��XNOo7 NO��o�. �

� �8�� p3_� )� k^lmn �CNOo� p3a �w

$@ q�k^lm� 0d rdZ �o� � $([6]. �;< �S

 ; � &��.� FCZ ��XNOo� p3' ¡� ¢� %&

'u, s1 FCZ ��XNOo7 p3� yz� $@. £�¤¥ �

�8¦§ Q� ¨�9 xE �8��© �� ª�]� 23P C«

' 456� @Jb' $(.

)*. ¬ e��.� NO-&�.� +,[\ K0x�C r�

� k^lmn �CNOo� FCZ ��XNOo(�,��)7 '31

­®NOo7 o��� &+,� ]3��X �¯(. '� RI k^

lmn �CNOo� FCZ ��XNOo(�,��)� ­®NOo7

p3_� )* NO[\ �x° �P-& Q ±²+,-&� 9�

�x�u s1 NOo� P(p3� )� q�k^lm� 01 r

dZ �w $ ³'* ��~(.

2. �� � �

2-1. PACA(polyaluminum chloride amine)� ��

2-1-1. PACA� �´

PACA o�7 r1 �´�. µ£ k^lmn �CNOo�� PACl

(16.5% as Al2O3) p3�¯(. s1 FCZ ��XNOo� l¶�

NSF(national sanitary foundation)�. &+,3�� p3��7 ·I

l¶ Ciba Specialty Chemicalsp� �,��� FCZ ��XNOo7

p3�¯(. PACA� o�� p3~ �,��� FCZ��X� '¸

ZI �'¸Z ¹� $�u, º3C� −NH2� ��'�, p3~ �

,��� FCZ��X� 01 LZ Table 1� j»¼½(.

2-1-2. PACA� o��"

PACA NOo o�7 r1 %¾�"�� ¼¿Z À� F, Á*Â¥

7 '31 2L 3a� batch ÃÄ� ÅNC7 oº�¯(. h,� NO

o o�� $@. ¸�� w&�} F;6�Æ �`� X� ¸��Ç

�"� E"~ mantle� ÅNC7 �&�¯�u, `�� ÈÅ3 ÉÊ

7 E"�� ÅNC ¼` B�� Ë� ­®' 6�Æ �¯(. PACA o

�7 r1 ÈŲ�� 180-300 rpm F;�� ­®' Ì '^@;�

Æ �¯�u, ÈÅ 45 xÍI 2xÍ�� �¯�u, ¸�� 25oC��

F;�¯(. 'P RI PACA NOo o��"� �Î]� �Z�7

Fig. 1� j»¼½(.

2-1-3. PACA� LZ�Ï

o�~ PACA� 01 LZ �ÏI +,o� CDP ÐÑ � Òx

CD� �d �,�?k^lmP �,��� �Ï ÓÔ� )* %x�

¯(. s1 o�6@f PACA� 0d 30wÍ £�_� )� aging� :

� GÕ�¯(. h,� PACA� �Z� '^� $� Al2O3, pH, �

,��� �Ï Ö�� PACA LZ ×Ø�¯(.

2-2. ����

2-2-1. 0 �

o�~ PACA� 01 ]3 rd p3~ 0��� �Ù?�

]I Ú4� `Ûx 4S H�;� �7 p3�¯(. 0�

� 01 �ÜÝÞ LZI Table 2� R�u e�CÍ(2002� 4�-

7�)� 4�� �ß 2È] ß&~ �� � j»¼� $½(.

V�� yz �V�� )� Ù?� à~ �� �r]�� áâã

�8�� %¾�¯�u, ��� yz� $@.� �ÇC� ?7

FW�� &�ä7 w��� å��7 àO�� %¾� æ51 Chl-a ç

�� �Ç�� NO%¾ %x�¯(. s1 pilot test� yz�� �(

���è� �é1 �7 p3�C r�� �zê± �� V�� ë

yz� �7 à�� %¾ �¯(.

2-2-2. Jar-test

NOo� 01 NO�è �ì�C r�� jar tester7 '3�¯�u,

NO%¾�.� NOo� o�~ PACA NOo� � &��. �í

]�� p36� $� alum(8% as Al2O3), PACl(10% as Al2O3)7 '

3�� %¾ g�¯(.

NO%¾� p3~ jar tester� Phipps & Birdp ³�� paddle(two-

blade)� ¥C� 2.5 Wî7.5L cm'u ÈŲ�7 �Ç� $� �"

'(. p3~ jar� 2L� p�à jar7 p3�¯�u, ÈŲ�� �²

­? 250 rpm(G=550 sec−1 at 20oC), ˲­? 30 rpm(G=22 sec−1 at

20oC)'u, ÈÅxÍI �� 1�P 30��� F;�¯�, Èű ��

xÍI 1xÍ�� �¯(. ��± !�T 10 cm;=� à�7 Ö

�� à1 (ï ��Ï %x�¯�u, ��ÏI standard

methods[7]� w¬� x¾Ô, ð� B �-&x¾Ô� D�¯�

u ��Ï r1 ÜÝÞ p3CC7 Table 3� j»¼½(.

Table 1. Characteristics of polyamine polymers used in this study

ItemConcentration

A50HV-P A50LV-P A50 B50

Total solids (wt%) 50.7 49.6 49.3 49.9pH 5.7 6.1 6.7 6.4Viscosity (kgf·s/m2 at 25oC) 0.611 0.023 0.084 0.014Polyamine (%) 35.9 35.2 35.7 35.6

Fig. 1. Experimental apparatus for the preparation of PACA coagulant.

Table 2. Characteristics of raw water

Parameters Concentration

Temperature (oC) 21-24pH 7.1-7.8Turbidity (NTU) 2.8-62UV254 (cm−1) 0.056-0.065TOC (mg/L) 2.5-3.2Chl-a (µg/L) 85-90

���� �41� �3� 2003� 6�

�� � PACl ������ ��� ������ �� 321

2-2-3. Pilot test

¬ e��. p3~ pilot plant� �²­?-˲­?-�� ñ�� �

Z6½�u 1w +,aI 1 m3/day� ÐÉ7 �f E2� e²U 9

�� )� NOo� +,[\ 2È��X �¯(. Pilot plant�. p

3~ �� `Ûx 4S H�;� �7 '3�¯�u, %¾0

NOo(alum, PACl, PACA)ò 1�� �ß� pilot test7 %x�� N

O LZ 2È�¯(. à~ �� 300L 3a� £�¤¥� £��

� 8XZ B�� �� Ó;�C rd e² ÈÅ Ö�� �� ó

Q?7 '^�Æ �¯(. � F8I 450 mL/min�� &a ¦§7 '

3�� �²­?�� F86½�u, 'ô NOo� �x� peristaltic ¦

§7 '3�� &a �8�¯(. ¬ %¾� p3~ pilot plant� �Î

�Z�� Fig. 2� R(. e²U pilot plant�.� �²­?; 3aI

0.675 L'u, Î�xÍI 90 sec, ÈÅ��(G)� 195 sec−1� �¯(. h

,� ˲­?;� �Î7 3õ��. � ÅN�� F[3aI 6.75 L,

1 ;ò Î�xÍI 15 min�� �Î Î�xÍI 45 min' 6} �¯(.

s1 ˲­?;� � ÅN�� 01 ÈÅ��(G)� 30, 20, 10 sec−1�

=öU�� 9��¯(. � ÅN�� ÅN�7 e÷�� GI ¼y

1.6 cm �¥ø G '3�¯(.

3. � � �

3-1. PACA� ��

3-1-1. k^lmn �CNOo� ]3

PACA7 o��C r1 �´�.� k^lmn NOo �ùI NO

o¼� _F6@ $� ��XZ k^lm� _Fa &�� )ú�u,

��XZ B�� _F&�� 01 LZ �ÏI û?®o� ÅNü� C

ý1 Ferron �ÏÔ '3�¯([8-10]. '� k^lmn NOo� �

�XZ k^lm� _F&�� )* h NOLZ' t*f(� e�÷

P[2]� )* �CZ ��X B�P FCZ ��X B�' R' YS_

��. NO� [P� z�(� þõ6C ôÿ'([6, 11-12].

Fig. 3I PACA7 o��C r1 �´�. �ù�C r�� k^lm

n �CNOo� ��� )� k^lm �� ��7 j»� h���,

alum� yz monomeric Al(III)�I 98%, precipitate Al(III)�I 2%�

j»��u, PACl 10%� monomeric Al(III)�I 20%, polymeric Al(III)

�I 20%, precipitate Al(III)�I 60%� j»�(. s1 PACl 16.5%

� monomeric Al(III)�I 15%, polymeric Al(III)�I 25%, precipitate

Al(III)�I 60%� j»��u, PACl(as Al2O3 16.5%)7 � � �Ï1

³I monomeric Al(III)�I 17%, polymeric Al(III)�I 28%, precipitate

Al(III)�I 55%� 2� �� )* monomericP polymeric Al(III)�

' (4 K��¯(. )*. PACA� o� � p3� í�Z �J�

� PACl(as Al2O3 16.5%)7 � � �Ï1 ³ �´� p3�� ³'

��ê 1 ³�� þõ~(.

3-1-2. ]& ­® 2\� �ù

PACA NOo� o�� �,���� FCZ ��XNOo� ���

)� �2%¾ ÷P FCZ��XNOo�. A50LV-P� k^lmn N

Oo�� 2� �Ï~ PACl(16.5% as Al2O3) NOo7 w& 2\� ­

®, o��� �]� ­®2\ �ì��X �¯(. PACA7 o��C

r1 ­®2\I PACl NOo õ�� jar test1 %¾÷P7 0�

30 mg/L� PACl� �,��� ��XNOo7 0.3, 0.5, 0.7 � 1.0 mg/

L� _F��Æ ­®�¯(. o�~ PACA� 24xÍ �Z1 ± NO[

\ x¾ %x�¯(.

Fig. 4� k^lmn NOo� FCZ��XNOo� �] ­®2\

÷&��, �,��� ­®2\' (� PACA NOo� �8a� )

Table 3. Analytical methods and instruments

Item Unit Analytical method and instruments

pH - pH-Meter (ORION, model 420A)Turbidity NTU Turbidity-Meter (HACH, 2100P)TOC mg/L Combustion/non-dispersive infrared gas analysis method

(TOC analyzer, Model TOC-5000A, SHIMADZU)UV254 cm−1 UV-Spectrophotometer(UV-1201,SHIMADZU)Chl-a µg/L Standard methods (1998, 20th Ed.)

Fig. 2. Schematics of pilot plant consisted of rapid mixing, flocculation, and sedimentation basin.

Fig. 3. Distribution of Al(III) species for hydrolysis products of eachcoagulant [A: alum, B: PACl(10%), C: PACl(16.5%), D: PACl(16.5%/2X).

HWAHAK KONGHAK Vol. 41, No. 3, June, 2003

322 ����������

� V�o¡\ j»� ³'(. Fig. 4� j»� �� R' V�o¡\

!�.� �CNOo õ�( ��XNOo� R' �81 ³' 0Î

� jI V�o¡\ j»¼� $�u, �8a K�� )� V� o¡�

2�1 ÷P7 j»¼½(. hij 20 mg/L '� NOo7 �8�¯

ô 1.0 mg/L� FCZ��XNOo7 �81 yz P�1 �'¸ZNO

o Z��� �1 ����� �1 V�o¡\' �ÑM ö4�¯(.

Fig. 5� Fig. 4� �w1 %¾ �è��. UV254 o¡\ j»� ³

'(. %¾÷P �,�� _a' K�_� )* FCB o¡\I K�

�(� 0.7 mg/L '� �,��8a�.� FCB�� Sß&' F

W�� NO[\' ö4�¯(. )*. ��XNOo� ­®2\'

0.5 mg/L� yz� �� �I FCB NO[P7 j»¼½(. s1 N

Oo �8a� K�� )* FCB� o¡\� �Å]�� w&�} K

�_ j»¼½(. '� )* PACA� o�� )� ��XNOo� �

]­®2\I 0.5 mg/L� ÷&�¯(.

3-1-3. Aging� :�

PACA(16.5% as Al2O3)7 2� �Ï1 Al(III)n �CNOo� �,�

�� FCZ �,�� A50LV-P7 '3�� o�~ PACA� 01 �G

CÍ� )� NOo¼� Z�Ù?� 01 �Ï Ö�� aging :�

����((Fig. 6). Aging� )� Z�Ù? %¾I PACA NOo ¼�

. �� '^� $� Al2O3 _a, �,�� _a � pH Ù?7 Öd

�GCÍ �ß� Z�Ù?7 �Ï�¯(. Fig. 6� j»� �� R' �

GCÍ 30w �ß NOo¼� Z�Ù?� w&�} F;6� ³�� j

»j �GCÍ� )� NOo� ß&Z ��� $½(.

3-2. ���

3-2-1. PACA� NOLZ

�. �ì~ PACA� �]­® �è� )* o�~ PACA� 01 N

OLZ %¾ Ö�� ]&� NOo �8a �ì��X �¯(. Fig. 7

I o�~ PACA NOo� ]& �8a �ì�C r�� NOo �

8a� )� V�� pH� Ù?7 j»� ³'(. V�� yz NOo

�8a 10 mg/L ; V�o¡ [\' K��( 10 mg/L '� �8

a�.� V�o¡ [\� >'� ¡� ¢� ³�� j»��u NO

o �8a 10 mg/L &��. 90%'� z1 V�o¡[\ j»

¼½(. s1 NOo �8a� )� pH� Ù?�.� 10 mg/L� NO

o �8�. 6.8 &�� pH7 j»¼ NOo �8� )� pH £��

� 0.9 &�� j»�(.

Fig. 8I NOo �8a� )� FCB o¡\ UV254� TOC� j

»� ³��, UV254� yz 10 mg/L� �8a�.� 60%'� o¡

\ j»¼½�u, TOC� yz 50%'� o¡\ j»¼½(. )

*. o�~ PACA NOo� 10 mg/L� ]I �8a�.� V�� F

CB� o¡\ !�. z1 NOLZ j»¼@ ]&� �8a

10 mg/L� �ì� $½(.

3-2-2. Polymer ­® � �g� )� NOLZ

FCZ ��XNOo� p3I �CNOo� �� �8�� �gÓ

ÔP � �;7 l, ­®�� p3�� ­®ÓÔ' $��, '�� �

gP ­®� � ÓÔ� )� NOLZ 2È�¯(. wÅ]�� �'

¸Z FCZ ��XNOo� �CNOo �8� ��± s� �x�

�8�� p36� ³�� kJ� $�u, ï'¸Z� yz�.� �²

­?±� �8 d© [P]'*� kJ� $([6]. s1 +, ��

�. �CNOo� FCZ ��XNOo7 �� �8� yz�� '�

Fig. 4. Removal of turbidity as a function of coagulant dosage.

Fig. 5. Removal of UV254 as a function of coagulant dosage.

Fig. 6. Changes in the properties of PACA due to aging time (day).

Fig. 7. Changes in turbidity and pH under various PACA dosages.

���� �41� �3� 2003� 6�

�� � PACl ������ ��� ������ �� 323

NOo� 01 ��� �8E2� 5��� )* ª�]� xE� E

" � 9�� )� ÿo=' $(. hi�� �8ÓÔ� )� NO[\

� :�' ¢(! ­®ÓÔ '3�� ³' E2� )� yo] `�

� ÇöP 9:� )� í'Z Q F;G,� $@ F,� ³�� þõ

~(. )*. k^lmn �CNOo� �,��� FCZ ��XNO

o7 l, ­®�� p31 yz� � NOo7 �� �x� �

81 �g p31 yz� $@. V�� 01 %¾÷P7 Fig. 9� j

»¼½(. Fig. 9� j»� �� R' ­®P �g� p3� )� V�

o¡ [\I .� 2�1 V�o¡7 j»¼½(. s1 FCB o¡�

01 ÷P� Fig. 10� yz� $@.� ­®P �gp3� )* FC

B o¡ [\' ¡� Fp�} j»�(. )*. ­®~ NOo� p3

' F;G, � yo]� !P [P]� &+,� 9: '�

$ ³�� þõ~(.

3-2-3. PACA� Al(III)n �CNOo�� NOLZ 2È

CY� &-&�. M p36� $� alumP PACl NOo� ]

& �8a �ì�C r1 �2%¾�. alum� yz 45 mg/L, PACl

� yz 30 mg/L� �&~ NOo �8aP PACA NOo� �]�8

a� 10 mg/L7 '3�� alum, PACl � PACA� 01 NOLZ

Ú 2È�¯(.

Fig. 11I �ì~ � NOo� �8a '3�� %¾� p3~ N

Oo� )� V� � FCB o¡[\ j»� ³'(. Fig. 11� j»

� �� R' V�� yz� $@. 3�; NOo � 90% '� V

� o¡\ j»¼½(. FCB� yz� $@.� ��X� _F�

� $� PACA� PACl� yz� $@ alum� yz �( (4 jI F

CB o¡[\ j»¼½(. '� RI %¾÷P �w1 V� � FC

B� o¡[\ öß� ô PACA� yz� $@ PACl �(� 60%,

alum �(� 70% '� NOo Çö[P� j»j yoZ � F;G

, !� $@ PACA NOo� �( z1 ³�� þõ~(.

3-3. Pilot test �� �� � �

o�~ PACA NOo� NO[\ !�7 rd e²U +,(�²­?

-˲­?-��;)� �Z ;" pilot plant7 Ö�� PACA� alum �

PACl .� 2È�¯(. ' ô p3~ NOo �8aI �. �ì~

NOo �8a��. PACA� yz 10 mg/L, PACl 30 mg/L h,� alum

I 45 mg/L� �� V�Ù? � FCB�� )� NOoÞ� [\�Ï

%x�¯(. Pilot plant� 9�CÍI � NOo� )* 1��� 9

��¯�u, V�Ù?� )� %¾I 10w ÍÑ�� V� FWB��

áâã p3�� à1 �� #��� V�7 K�x° NO[\

GÕ�¯(.

Fig. 12� V�Ù?� )� NOoÞ V�o¡[\ j»� ³��

. £V�(3NTU)� yz�� PACA NOo� alumP PACl� 2d (

4 ëI V� o¡[\ j»¼½�u, 10 NTU � 60 NTU� �V�

�.� PACA� PACl' 2�1 V�o¡[\� alum� 2d (4 ë

I V� o¡[\ j»¼½(. q��� V�� $r� PACA� y

z 0.4-1.15 NTU7 j»¼½�u, PACl� yz�.� 0.5-1.2 NTU ̄ �

Fig. 8. Changes in UV254 and TOC under various PACA dosages.

Fig. 9. Removal of turbidity vs. coagulant dosing method.

Fig. 10. Removal of UV254 vs. coagulant dosing method.

Fig. 11. Removal of turbidity and UV254 for various coagulants.

HWAHAK KONGHAK Vol. 41, No. 3, June, 2003

324 ����������

u, alumI 0.6-2.6 NTU�. PACA� p3� $@. q��� V��

(4 z1 ³�� j»�(. PACA� yz alum � PACl� yz �

( ]I �8a�.� z1 V�o¡[\ j»¼� ³I PACA¼

� _F6@ $� ��X� k^lm�� �1 z1 ���?%�P

�,���� ��X B�� �1 �Ⱥ3� �1 NO[\' z�

} º3�C ôÿ'* þõ~(.

%o �V� F8� )� NOo� [\!�7 r�� %o �V�

7 à�� %x1 NO%¾ ÷P7 Fig. 13� j»¼½(. à1 �

� V�� 54 NTU'½�u, áâã #��� p31 �V�%¾

�èP �w�} ��� NOo� 01 24xÍ�ß V�� o¡\ �

q�V�7 ����(.

q� V�� $r� 3�; NOo É� 1 NTU '�7 F;�¯�u,

�� [\' z1 NOo� PACA� j»��u, (ïI PAClP alum

ñ�� j»�(. LM PACA NOo� alum � PACl� 2d ]I N

Oo �8a��� z1 V� o¡\ j»¼@ &+,� $@ [

P]� +,o� p3 �%�,* þõ~(.

Fig. 14� Fig. 15� Fig. 12�.� NOo ��� )� V�o¡[\

%¾�.� �w1 %¾�è�� NOo ��Þ UV254 o¡[\P TOC

o¡[\ j»� ³'(. %¾CÍ � �� UV254� 0.057-

0.061 cm−1'� TOC� 2.7-3.0 mg/L'½(. µ£ Fig. 14� NOo�

��� )� UV254 o¡[\ j»� ³�� %¾� p3~ 3�� N

Oo É� 50-60%� UV254 o¡[\ j»¼½�u, TOC� yz�

40-53%� o¡[\ j»¼½(. FCB� o¡[\ !�.�

PACA� yz� $@ alumP PACl� 2d 2��¡j (4 jI FC

B o¡[\ j»¼½(. '� V�� yz�.� R' PACA¼� _

F6@ $� �CZ ��X B�� �1 z1 ���? %�P �,

Fig. 12. Changes in turbidity during pilot plant run (alum: 45 mg/L, PACl:30 mg/L, PACA: 10 mg/L).

Fig. 13. Changes in turbidity during pilot plant run for high turbid rawwater (alum: 45 mg/L, PACl: 30 mg/L, PACA: 10 mg/L).

Fig. 14. Changes in UV254 during pilot plant run (alum: 45 mg/L, PACl:30 mg/L, PACA: 10 mg/L).

Fig. 15. Changes in TOC during pilot plant run (alum: 45 mg/L, PACl:30 mg/L, PACA: 10 mg/L).

Fig. 16. Change in Chl-a for pilot plant run time (alum: 45 mg/L, PACl:30 mg/L, PACA: 10 mg/L).

���� �41� �3� 2003� 6�

�� � PACl ������ ��� ������ �� 325

ter-

t

ic

l

i-

etic

in

y-

n

9).

-

s-

s in

of

on

S.,

-

-

e

���� ��X B�� �1 �Ⱥ3� �1 NO[\' z�} º

3�C ôÿ'* þõ~(.

�� �� 0W��� �d &��.� e� &� '( �

�� �1 &�ä7 )� $�u, '7 +,�C r�� NOo �8

a� K�� Û?o �8 K�x�� $(. )*. ¬ e��.�

‘��0W� y�’ D� Chl-a ç�� 86-87µg/L� å��� _F~

�7 '3�� � NOo� )� pilot test7 %x�¯(. Fig. 16�

pilot plant 9�� )� ��o¡ %¾÷P �� �i %¾� ÷P� *

+�;� alum NOo� 2d PAClP PACA NOo� ��o¡ !

�.� z1 ³�� j»�(.

4. �

&+,�.� NOo � Çö�� &+, [\� K07 w�

��X ¬ e�7 g1 ÷P (ïP RI ÷, �ì� $½(.

(1) �C%Z� +,o� PACA� o� �´� k^lmn �CN

Oo� 01 k^lm�� �Ï÷P PACl(Al2O3 16.5%)7 2� �Ï1

yz�. ��XZ Al(III)� 28%� �� H' _F�� $½(. )

*. '7 PACA o� �´� p3�� ³' +,o� o�� )�

yo]� '= - < �.* p3� !�.� yo]� F;� �%

1 ³�� þõ~(.

(2) PACA� o�� )� Al(III) �CNOo� �,��� ��XN

Oo� ­®2\ %¾� $@. 0.5 mg/L(as polymer)� ­®�¯ ô

V� � FCB o¡[P� z�¯�u, o�~ NOo� PACA� �

GCÍ� )� �Z� :�I ¡� j»j; /�(.

(3) �,��� FCZ ��X NOo� ­®p3P �3p3� yz,

É� V� � FCB o¡ !� $@. Fp1 y� j»¼@ ­®

p3� )� F;G, � yo]� &+, 9: C� $ ³'

* þõ~(.

(4) o�~ PACA� alum � PACl� NOLZ %¾÷P, PACA� y

z NOo �8aI 60%&� Çö��� alum � PACl NOo�( (

4 jI V� � FCB o¡[\ j»¼½(.

(5) e²U pilot test7 Ö1 NOLZ 2È�.� PACA� yz�

alum � PACl�( 60% &�� �8a��� (4 jI V�� FCB

� �� o¡[P7 j»¼½(.

� �

' 0ÿI 20021�� `y01È W�C2� ;�� ��� e�6

½3.(.

����

1. Kang, L. S., Han, S. W. and Jung, C. W., “Synthesis and Charac

ization of Polymeric Inorganic Coagulants for Water Treatmen,”

Korean J. Chem. Eng., 18(6), 965-970(2001).

2. Han, S. W., “Production and Application of Polymeric Inorgan

Coagulants for Water Treatment,” Ph. D. Dissertation, Pukyong Nationa

University, Busan, Korea(2000).

3. Letterman, R. D. and Driscoll, C. T., “Survey of Residual Alum

num in Filtered Water,”J. AWWA, 80(4), 154-158(1988).

4. Cohen, J. M., Rourke, G. A. and Woodward, R. L., “Natural and Synth

Polyelectrolytes as Coagulant Aids,” J. AWWA, 50(4), 463-478(1958).

5. James, C. R. and O’Melia, C. R., “Considering Sludge Production

the Selection of Coagulants,” J. AWWA, 74(3), 148-151(1982).

6. Lee, H. J., Kim, J. S. and Kang, L. S., “Utilization of Organic Pol

mers for Improvement of Drinking Water Treatment Process,” J. Korean

Env. Sci. Soc., 7(2), 217-221(1998).

7. APHA, AWWA and WPCF, “Standard Method of the Examinatio

of Water and Wastewater,” 20th Ed., Washington, D. C., USA(199

8. Smith, R. M., Relation Among Equilibrium and Nonequilibrium Aque

ous Species of Aluminum Hydroxy Complexes, Nonequilibrium Sy

tems in Natural Water Chemistry (Gould, R.F. eds.), A.C.S. Advance

Chemistry Series No. 106, Washington, D.C., 250-279(1971).

9. Bersillon, J. L., Hsu, P. H. and Fiessinger. F., “Characterization

Hydroxy-Aluminum Solutions,”Soil Sci. Soc. Am. J., 51, 825-828(1988).

10. Parker, D. R. and Bertsch, D. M., “Identification and Quantificati

of the ‘Al13’ Tridecameric Polymeric Polycation Using Ferron,” Envi-

ron. Sci. Tech., 26(5), 908-914(1992).

11. Shin, M. C., Choi, S. J., Lee, S. H., Shin, J. H. and Park, L.

“Improvement of Water Treatment Efficiency by Polymeric Floccu

lants,” J. Korean Soc. Env. Eng., 19(8), 1043-1050(1997).

12. Park, K. Y., Lee, K. C. and Kim, J. K., “Manufacture of PAC(poly

aluminum chloride) by Partial Decomposition of Aluminum Chlorid

Hexahydrate,”HWAHAK KONGHAK, 32(5), 742-746(1994).

HWAHAK KONGHAK Vol. 41, No. 3, June, 2003