PACES chemistry Session 1 2009

181
PACES Chemistry Purposeful Academic Classes Excelling Students Wednesday 15 th April 2009 Shenton College

Transcript of PACES chemistry Session 1 2009

Page 1: PACES chemistry Session 1 2009

PACES Chemistry

Purposeful Academic Classes Excelling Students

Wednesday 15th April 2009Shenton College

Page 2: PACES chemistry Session 1 2009

Why are we here?

Page 3: PACES chemistry Session 1 2009

How can we benefit from these sessions?

Page 4: PACES chemistry Session 1 2009

What resources are available

to help us maximise ourperformance?

Page 5: PACES chemistry Session 1 2009
Page 9: PACES chemistry Session 1 2009
Page 10: PACES chemistry Session 1 2009

•Name•School•favourite ….?•intended course and institution•etc

Page 11: PACES chemistry Session 1 2009

✴investigate effective strategies for multiple choice,

calculation and extended answer style exam questions.

My aims for today’s session:

✴look at effective use of the syllabus statement, and

examiner’s reports

Page 12: PACES chemistry Session 1 2009

✴electrochemistry

Your suggestions for today:

✴extended answer questions✴bonding

✴electron configuration✴calculation strategies

✴redox

✴extended answer questions

Page 13: PACES chemistry Session 1 2009

2008 examiner’s report

page 1 summarypage 2 structurepage 3 structure and general commentspage 4 specific comments (multi-choice)page 5 specific comments (part 2)page 6 specific comments (part 3)page 7 specific comments (part 4)pages 9 - 30 marking guidelines

Page 14: PACES chemistry Session 1 2009
Page 15: PACES chemistry Session 1 2009
Page 16: PACES chemistry Session 1 2009
Page 17: PACES chemistry Session 1 2009
Page 18: PACES chemistry Session 1 2009
Page 19: PACES chemistry Session 1 2009
Page 20: PACES chemistry Session 1 2009
Page 21: PACES chemistry Session 1 2009
Page 22: PACES chemistry Session 1 2009
Page 23: PACES chemistry Session 1 2009
Page 24: PACES chemistry Session 1 2009
Page 25: PACES chemistry Session 1 2009
Page 26: PACES chemistry Session 1 2009
Page 27: PACES chemistry Session 1 2009

1.

Page 28: PACES chemistry Session 1 2009

1.

Page 29: PACES chemistry Session 1 2009

1.

Page 30: PACES chemistry Session 1 2009

1.

Page 31: PACES chemistry Session 1 2009

2.

Page 32: PACES chemistry Session 1 2009

2.

Page 33: PACES chemistry Session 1 2009

2.

Page 34: PACES chemistry Session 1 2009

All nitrates, and potassium and sodium salts are soluble and colourless solutions result. Any soluble nickel salt produces a green solution.

2.

Page 35: PACES chemistry Session 1 2009

Calcium carbonate is insoluble.

2.

Page 36: PACES chemistry Session 1 2009

Cadmium carbonate is insoluble.

2.

Page 37: PACES chemistry Session 1 2009

Cadmium carbonate is insoluble.

2.

Page 38: PACES chemistry Session 1 2009

3.

Page 39: PACES chemistry Session 1 2009

ie which would favour the forward reaction.

3.

Page 40: PACES chemistry Session 1 2009

(a) adding a catalyst speeds up both forward and reverse rates but doesn’t favour either reaction.

3.

Page 41: PACES chemistry Session 1 2009

(b) adding Ar(g) increases overall pressure, but does not alter any of the individual gas pressures (ie concentrations) and therefore has no effect on equilibrium.

3.

Page 42: PACES chemistry Session 1 2009

(c) increasing the pressure would increase the concentrations of all gases, but would have a greater impact on the product side and would therefore favour the reverse reaction.

3.

Page 43: PACES chemistry Session 1 2009

(d) increasing the temperature will alter the equilibrium and favour the forward reaction.

3.

Page 44: PACES chemistry Session 1 2009

(d) increasing the temperature will alter the equilibrium and favour the forward reaction.

3.

Page 45: PACES chemistry Session 1 2009

4.

Page 46: PACES chemistry Session 1 2009

Text

Rate is decreased by decreasing pressure, temperature, surface area, and use of an inhibitor.

Only alternative (a) satisfies these criteria.

4.

Page 47: PACES chemistry Session 1 2009
Page 48: PACES chemistry Session 1 2009

5.

6.

Page 49: PACES chemistry Session 1 2009

5.

Page 50: PACES chemistry Session 1 2009

5.

Page 51: PACES chemistry Session 1 2009

5.

Page 52: PACES chemistry Session 1 2009

5.

Page 53: PACES chemistry Session 1 2009

5.

Page 54: PACES chemistry Session 1 2009

6.

Page 55: PACES chemistry Session 1 2009

6.

Page 56: PACES chemistry Session 1 2009

6.

Page 57: PACES chemistry Session 1 2009
Page 58: PACES chemistry Session 1 2009
Page 59: PACES chemistry Session 1 2009
Page 60: PACES chemistry Session 1 2009
Page 61: PACES chemistry Session 1 2009
Page 62: PACES chemistry Session 1 2009
Page 63: PACES chemistry Session 1 2009
Page 64: PACES chemistry Session 1 2009
Page 65: PACES chemistry Session 1 2009
Page 66: PACES chemistry Session 1 2009

2008 TEE multiple choice examples

Page 67: PACES chemistry Session 1 2009
Page 68: PACES chemistry Session 1 2009
Page 69: PACES chemistry Session 1 2009
Page 70: PACES chemistry Session 1 2009
Page 71: PACES chemistry Session 1 2009
Page 72: PACES chemistry Session 1 2009
Page 73: PACES chemistry Session 1 2009
Page 74: PACES chemistry Session 1 2009
Page 75: PACES chemistry Session 1 2009
Page 76: PACES chemistry Session 1 2009
Page 77: PACES chemistry Session 1 2009
Page 78: PACES chemistry Session 1 2009
Page 79: PACES chemistry Session 1 2009
Page 80: PACES chemistry Session 1 2009
Page 81: PACES chemistry Session 1 2009
Page 82: PACES chemistry Session 1 2009
Page 83: PACES chemistry Session 1 2009

part 2 questions 2008 TEE

Page 84: PACES chemistry Session 1 2009
Page 85: PACES chemistry Session 1 2009
Page 86: PACES chemistry Session 1 2009
Page 87: PACES chemistry Session 1 2009
Page 88: PACES chemistry Session 1 2009
Page 89: PACES chemistry Session 1 2009
Page 90: PACES chemistry Session 1 2009
Page 91: PACES chemistry Session 1 2009
Page 92: PACES chemistry Session 1 2009
Page 93: PACES chemistry Session 1 2009
Page 94: PACES chemistry Session 1 2009
Page 95: PACES chemistry Session 1 2009
Page 96: PACES chemistry Session 1 2009
Page 97: PACES chemistry Session 1 2009
Page 98: PACES chemistry Session 1 2009
Page 99: PACES chemistry Session 1 2009
Page 100: PACES chemistry Session 1 2009

TEE part 3

Page 101: PACES chemistry Session 1 2009

a standard procedure for attempting chemistry

calculations

calculations in chemistry often appear to be unique

and complex ….

Page 102: PACES chemistry Session 1 2009

They may appear to be something that you’ve not

encountered before, but every calculation type that you will see in high school chemistry

can be approached in the same way.

Page 103: PACES chemistry Session 1 2009

Step 1

I suggest that the first step in any chemistry calculation, after

balancing equations, is to determine the number of moles of any substance that you can.

Page 104: PACES chemistry Session 1 2009

Eg. Phosphoric acid can be made by the following reaction:

Ca3(PO4)2(s) + H2SO4(aq) -> CaSO4(s) + H3PO4(l)

Balance the equation

b) How many grams of phosphoric acid can be made by reaction of 155 g of Ca 3(PO4)2(s) with more than enough (excess) sulfuric acid?

Page 105: PACES chemistry Session 1 2009

Eg. Phosphoric acid can be made by the following reaction:

Ca3(PO4)2(s) + 3H2SO4(aq) ->3CaSO4(s) + 2H3PO4(l)

Balance the equation

b) How many grams of phosphoric acid can be made by reaction of 155 g of Ca 3(PO4)2(s) with more than enough (excess) sulfuric acid?

Page 106: PACES chemistry Session 1 2009

if you have the mass of a solid you would use:

number of moles = actual mass ÷ molar mass

ie n = m/M

Page 107: PACES chemistry Session 1 2009

if you have the volume of a solution you would use:

number of moles = concentration x volume

ie n = cv

Page 108: PACES chemistry Session 1 2009

if you have the volume of a gas you would use:

n = PV/RTor n = VSTP/22.41

Page 109: PACES chemistry Session 1 2009

Step 2

The second step you should employ is to use the ratio from the chemical equation for the

reaction to determine the number of moles of the

substance that you need to find out about.

Page 110: PACES chemistry Session 1 2009

Step 3

The third step is to use the value of the number of moles that you have just determined

to work out the substance’s mass, volume, concentration

etc.

Page 111: PACES chemistry Session 1 2009

Step 4

The fourth step is to use the substance’s mass, volume,

concentration etc. to answer the question. ie % composition,

empirical formula etc

Page 112: PACES chemistry Session 1 2009

mass

vol (gas)

conc &vol

current& time

moles ofknown

moles ofunknownmoles ofunknown

mass

conc &vol

current& time

vol (gas)

from equation ratio

use formulae to determine nuse formulae to determine m, v, etc

Page 113: PACES chemistry Session 1 2009

Empirical and molecular formulaeStep 1

DETERMINE THE NUMBER OF MOLESi. Start with an AMOUNT of each element. (ie % or g)

ii. Convert the amount to grams of the elementa.) if % convert to g in 100gb.) if g of compound, convert to g of an element. (eg C = 12.01g/44.01g in carbon dioxide and H = 2.016/18.016g in water)

iii. Convert grams to moles (molar masses)

Page 114: PACES chemistry Session 1 2009

Empirical and molecular formulaeStep 2

COMPARE THE NUMBER OF MOLES

i Look at the number of moles of each element and find a ratio that relates them.

(Hint: divide each number of moles by the smallest number to simplify the ratio.)

ii. Reduce to whole integers a.) round only 0.1 and 0.9 b.) multiply all others (eg. 1.3 x 3 = 3.9 & 2.5 x 2 = 5)

Page 115: PACES chemistry Session 1 2009

Empirical and molecular formulaeStep 3

ANSWER THE QUESTION

i. Determine the empirical formulaIf the compound is ionic then you have finished, but if it is a molecular compound, then …..

Is a molar mass given?

ii. If molar mass = empirical formula mass, then the empirical formula is the molecular formula

iii. If the empirical formula mass is some multiple (x) of the molar mass, then distribute the multiple (x) to the empirical formula, to determine the molecular formula.

Page 116: PACES chemistry Session 1 2009

Empirical and molecular formulaeStep 3

ANSWER THE QUESTION

iv. Is any information on the no. of atoms given?  IF NO INFORMATION GIVEN ASSUME EF=MF

Page 117: PACES chemistry Session 1 2009

Empirical and molecular formulaeHints:-- always proceed down the process NEVER go backwards -- do not round until the very end-- all percentages must add to 100-- the grams of all species present must total to the mass of the compound present-- make sure Ar not MW used in calculations (eg. Ar(O) = 16, not 32)-- make sure multiples of EF to MF distributed properly (ex. 5CH2O = C5H10O5)

Page 118: PACES chemistry Session 1 2009

Empirical and molecular formulae

Problems: A sample contains 71.65% Cl, 24.27% C and 4.07% H. The molecular weight is known to be 98.96 g/mol.

What are the empirical and molecular formulas?

Page 119: PACES chemistry Session 1 2009

Empirical and molecular formulae

Problems: A 0.1000 g sample of a compound composed of C, H and O undergoes combustion analysis. If 0.0928 g of water and 0.288 g of carbon dioxide are collected, what is the molecular formula for the compound?

Page 120: PACES chemistry Session 1 2009

Extended answer style questions

ie part 4 of your exam.

Page 121: PACES chemistry Session 1 2009

2007 TEE multiple choice examples

Page 122: PACES chemistry Session 1 2009
Page 123: PACES chemistry Session 1 2009
Page 124: PACES chemistry Session 1 2009
Page 125: PACES chemistry Session 1 2009
Page 126: PACES chemistry Session 1 2009

2007 TEE part 2 examples

Page 127: PACES chemistry Session 1 2009
Page 128: PACES chemistry Session 1 2009
Page 129: PACES chemistry Session 1 2009
Page 130: PACES chemistry Session 1 2009
Page 131: PACES chemistry Session 1 2009
Page 132: PACES chemistry Session 1 2009
Page 133: PACES chemistry Session 1 2009
Page 134: PACES chemistry Session 1 2009
Page 135: PACES chemistry Session 1 2009
Page 136: PACES chemistry Session 1 2009
Page 137: PACES chemistry Session 1 2009
Page 138: PACES chemistry Session 1 2009
Page 139: PACES chemistry Session 1 2009
Page 140: PACES chemistry Session 1 2009
Page 141: PACES chemistry Session 1 2009
Page 142: PACES chemistry Session 1 2009
Page 143: PACES chemistry Session 1 2009
Page 144: PACES chemistry Session 1 2009
Page 145: PACES chemistry Session 1 2009
Page 146: PACES chemistry Session 1 2009

2007 examiner’s report

page 1 summarypage 2 structurepage 3 structure and general commentspage 4 specific comments (multi-choice)page 5 specific comments (part 2)page 6 specific comments (part 3)page 7 specific comments (part 4)pages 9 - 30 marking guidelines

Page 147: PACES chemistry Session 1 2009
Page 148: PACES chemistry Session 1 2009
Page 149: PACES chemistry Session 1 2009
Page 150: PACES chemistry Session 1 2009
Page 151: PACES chemistry Session 1 2009
Page 152: PACES chemistry Session 1 2009
Page 153: PACES chemistry Session 1 2009
Page 154: PACES chemistry Session 1 2009
Page 155: PACES chemistry Session 1 2009
Page 156: PACES chemistry Session 1 2009
Page 157: PACES chemistry Session 1 2009
Page 158: PACES chemistry Session 1 2009
Page 159: PACES chemistry Session 1 2009

2007 TEE multiple choice examples

Page 160: PACES chemistry Session 1 2009
Page 161: PACES chemistry Session 1 2009
Page 162: PACES chemistry Session 1 2009
Page 163: PACES chemistry Session 1 2009
Page 164: PACES chemistry Session 1 2009

2007 TEE part 2 examples

Page 165: PACES chemistry Session 1 2009
Page 166: PACES chemistry Session 1 2009
Page 167: PACES chemistry Session 1 2009
Page 168: PACES chemistry Session 1 2009
Page 169: PACES chemistry Session 1 2009
Page 170: PACES chemistry Session 1 2009
Page 171: PACES chemistry Session 1 2009
Page 172: PACES chemistry Session 1 2009
Page 173: PACES chemistry Session 1 2009
Page 174: PACES chemistry Session 1 2009
Page 175: PACES chemistry Session 1 2009
Page 176: PACES chemistry Session 1 2009
Page 177: PACES chemistry Session 1 2009
Page 178: PACES chemistry Session 1 2009
Page 179: PACES chemistry Session 1 2009
Page 180: PACES chemistry Session 1 2009
Page 181: PACES chemistry Session 1 2009

2007 TEE part 3