Overview on selected contact free techniques Scope of ... · high- : ID02 (high resolution SAXS)...

26
Slide: 1 Contact-free manipulation and probing of single biological and soft matter objects Christian Riekel European Synchrotron Radiation Facility, Grenoble, France Overview on selected contact free techniques Scope of applications MicroSAXS/WAXS cameras Contact free techniques: applications & challenges XDL 2011 - 27&28 June- Christian Riekel

Transcript of Overview on selected contact free techniques Scope of ... · high- : ID02 (high resolution SAXS)...

  • Slide: 1

    Contact-free manipulation and probing of single biological and soft matter objects

    Christian Riekel

    European Synchrotron Radiation Facility, Grenoble, France

    Overview on selected contact free techniques

    Scope of applications

    MicroSAXS/WAXS cameras

    Contact free techniques: applications & challenges

    XDL 2011 - 27&28 June- Christian Riekel

  • Slide: 2

    ESRF-ID13 beamline team Manfred Burghammer et al.,Silvia Santucci (optical tweezers)Rita Graceffa (inkjet systems; now at APS BioCAT)Angelo Accardo (superhydrophobic surfaces)

    Italian Institute of Technology (Genoa-Italy)Enzo Di Fabrizio et al., (nanotechnology)

    Laboratorio TASC (Trieste-Italy)Dan Cojoc (optical tweezers)Institute of Biophysics and Nanosystems Research (Graz-Austria)Heinz Amenitsch (optical tweezers)

    Acknowledgements

    XDL 2011 - 27&28 June- Christian Riekel

    EEC funding

  • Slide: 3

    Contact-free and quasi contact-free manipulationOptical Tweezers Inkjet Superhydrophobic Surface

    piez

    o

    gradient force scattering force

    focused laser beam

    stroboscopic display

    XDL 2011 - 27&28 June- Christian Riekel

    Particles in capillary

  • Slide: 5XDL 2011 - 27&28 June- Christian Riekel

    Nano-grippers (NanoHand project)

    10 m

    HeLa cells @ r.t.

    50 m

    • Avoid deformation of ″soft″ objects by ″contact″ forces• Avoid surface induced processes and shearing effects by walls

    Scope of applications

    • Reduce sample volumes!

    • Single objects: positioning, manipulation & assembly• Probing of objects in functional states, often in aqueous environments• Raster probing: heterogeneity & distribution of radiation damage

  • Slide: 6

    focusing optics

    dete

    ctor

    XDL 2011 - 27&28 June- Christian Riekel

    reciprocal space order resolution ()

    real space raster-increment (focal spot)

    Resolution

    source

    sample

    F2F1 F2

  • Slide: 7

    focusing optics

    dete

    ctor

    XDL 2011 - 27&28 June- Christian Riekel

    S’h/v Rad; fwhm)

    sample

    Br13 keV ~2*1021 (upgrade)

    undulator source parameters

    source

    S,S’h,v

    F2F1 F2

  • Slide: 8

    focusing optics

    dete

    ctor

    +

    XDL 2011 - 27&28 June- Christian Riekel

    Sh/v (m; fwhm)S’h/v Rad; fwhm)

    high-: ID02 (high resolution SAXS)ESRF 6 GeV

    sample

    Br13 keV ~2*1021 (upgrade)

    undulator source parameters

    source

    S,S’h,v

    F2F1 F2

  • Slide: 9

    focusing optics

    dete

    ctor

    XDL 2011 - 27&28 June- Christian Riekel

    S’h/v Rad; fwhm)

    undulator source parameters

    high-flux nanofocusCHESS-ERL 5 GeV

    high-coherence21 m fwhm

    5 Rad fwhm

    sample

    ~9*1022Br13 keVBilderback et al., NJP (2010) 12, 035011

    ~2*1021 (upgrade)

    source

    S,S’h,v

    F2F1 F2

  • Slide: 11

    10-110-210-3

    109

    108

    107

    106

    105

    104

    103

    102

    101

    ESRF-ID02

    10-4

    XDL 2011 - 27&28 June- Christian Riekel

    ERL-5m ERL-1m ERL-0.1m?

    I(Q

    )

    148 nm SiO2 spheres

    ESRF: ID02 (high-)

    ID13 (low-)

    ERL pinhole SAXS

    13 keV, Si111

    ID02 upgrade ID13~10 m 1-0.1 m

    ERL SAXS camera for ultrasmall sample volumes

    ≤800*200 m2

    • self assembly: actin…• transient processes: flames…• biomimetic systems: biomineralization…• mesoscopic processes: active matter…

    COLLECTIVE PROPERTIES

    INDIVIDUAL PROPERTIES• single objects: cells, fibrils…• local heterogeneity

    Brilliance and SAXS pinhole camera

    Q (nm-1)60 nm600 nm

    CC

    D

  • Slide: 12

    source&optics detector

    2d

    2s )/()/( 2D

    22d LPSFb /)(

    =0.1 nm PSF= 30 m

    LD (mm)

    s

    (nm

    -1)

    Order resolution - s

    ~1 mrad

    ~100 rad

    ERL microSAXS/WAXS pinhole camera

    100 nm focus

    1 m focus

    F2= 226 mmF1=48 000 mm

    on-axis refractive optics

    ERL-undulatorhigh-coherence

    10 100 1000

    1E-3

    0.01

    XDL 2011 - 27&28 June- Christian Riekel

    LD

    0.2 nm

    1844

    pix

    els

    b

    sample<15

    0 m

    5.3 Rad21.2 m

  • Slide: 13

    Ashkin, PRL (1970) 24, 156 Ashkin et al., Opt. Lett. (1986) 11, 288

    light guide

    ESRF optical tweezers setup

    Optical tweezers: 10-10 – 10-13 N forces

    mirror

    illumination

    CCD

    IR laser

    objective

    Spatial Light Modulator

    Santucci et al., Anal. Chem. (2011) 83, 4863

    capillary&sample

    XDL 2011 - 27&28 June- Christian Riekel

  • Slide: 14

    Ashkin, PRL (1970) 24, 156 Ashkin et al., Opt. Lett. (1986) 11, 288

    Optical tweezers: 10-10 – 10-13 N forces

    mirror

    illumination

    CCD

    IR laser

    objective

    Spatial Light Modulator

    capillary&sample

    XDL 2011 - 27&28 June- Christian Riekel

    SiO2 microbeadsPadgett group Univ. St. Andrews UK

  • Slide: 15

    Ashkin, PRL (1970) 24, 156 Ashkin et al., Opt. Lett. (1986) 11, 288

    Optical tweezers: 10-10 – 10-13 N forces

    mirror

    illumination

    CCD

    IR laser

    objective

    Spatial Light Modulator

    Santucci et al., Anal. Chem. (2011) 83, 4863

    capillary&sample

    XDL 2011 - 27&28 June- Christian Riekel

    20 m

    100 K

    Room temperature PXradiation damage evolution?

  • Slide: 16

    ba 100 m 2,2,0

    3,1,0

    1,3,0

    2,0,0

    0,4,0 1,3,0

    1,1,0 +4,2,0

    3,3,0

    2,4,0b* a*1,1,0

    1,1,0

    (hk0) planea=b=7.5 nm

    50 ms/point

    averaged raster-scan

    10

    50raster-scan of 110 reflection across crystal

    Inte

    nsit

    y(a

    .u.)

    50 ms 100 ms 150 ms 200 ms

    0.25 nm resolution limitview along beam1 m beam–13 keV5 m raster-steps

    XDL 2011 - 27&28 June- Christian Riekel

    Santucci et al., Anal. Chem. (2011) 83, 4863

    Insulin crystaltrapped in capillary

    Optically trapped insulin crystal

  • Slide: 17XDL 2011 - 27&28 June- Christian Riekel

    Optical tweezers challenges

    • Protein microcrystals and serial crystallography

    • Radiation damage studies

    • Small soft and biological objects

    • Aggregation, fusion, reaction…

  • Slide: 18

    microscope image of cluster of ~10 liposomes in capillary

    Cojoc et al., APL (2007) 91, 223107

    ~1 mm

    m

    raster-diffraction image5.3 nm

    1 m beam

    multiwalled liposome,phospholipid membranes

    peptide induced liposome fusionNomura et al., PNAS (2004) 101, 3420

    0 (sec)3.6 4.2 4.8 5.4 6.6 7.8 10.8

    5 m

    XDL 2011 - 27&28 June- Christian Riekel

    MD simulation (Stevens, Sandia Lab)

    Challenge: probing of single liposome

    Optically trapped liposomes

  • Slide: 19

    10 s 2*104 microdrops/point

    stroscopic SAXS1 m beam-8 m raster

    Inkjet systems generate wall-free reaction volumes

    ...5 µs pixel detector frames

    triggering sequence500 s strobe period

    8 m8 m

    XDL 2011 - 27&28 June- Christian Riekel

    ballistic (2m/s) water microdropsdrop-on-demand inkjet system268 picoliters – 80 m stroscopic display

    Graceffa et al., APL (2009) 94, 62902Rita Graceffa, PhD thesis, Grenoble (2010)

    MEDIPIX: 256x256 pixels

  • Slide: 20

    10 s 2*104 microdrops/point

    stroscopic BioSAXS1 m beam-center drop

    Inkjet systems & BioSAXS

    XDL 2011 - 27&28 June- Christian Riekel

    ballistic (2m/s) water microdropsdrop-on-demand inkjet system268 picoliters – 80 m stroscopic display

    Graceffa et al., APL (2009) 94, 62902Rita Graceffa, PhD thesis, Grenoble (2010)

    Cytochrome C

    ...5 µs pixel detector frames

    triggering sequence500 s strobe period

    MEDIPIX: 256x256 pixels

  • Slide: 21

    0 ms

    2 ms

    4 ms

    bufferunfolded cytochrome C @ pH2

    folded cytochrome C

    fold

    ing

    tim

    eOH-

    20µm*20µm

    buffer

    10*10µm2

    10*10µm2

    Rita GraceffaPhD thesis, Grenoble (2010)

    XDL 2011 - 27&28 June- Christian Riekel

    Inkjet systems & BioSAXS

  • Slide: 22XDL 2011 - 27&28 June- Christian Riekel

    protein microarray by inkjet technologyLaurell lab - Lund University

    Inkjet challengesMicrodrops

    • In flight Fewer and smaller microdrops in stroboscopic sequenceSingle microdrop scattering at ERL?BioSAXS with

  • Slide: 23

    non-wetting plant leave artificial non-wetting surface(superhydrophobic)

    Quasi contact-free superhydrophobic surfaces

    XDL 2011 - 27&28 June- Christian Riekel

    Accardo et al., Langmuir (2010) 26, 15057

    PMMA

  • Slide: 24XDL 2011 - 27&28 June- Christian Riekel

    Raster-diffraction

    Hauser et al., PNAS (2011) 108, 1361

    Accardo et al., Soft Matter, ASAP, 13.6.2011

    100 m

    Lysozyme fibrillation3-mer peptide residue

    Blake et al., Structure (1996) 4, 989

    SEM

    Peptide and protein precipitation

    -sh

    eet

    helix

    amyloid

    fibr

    il

  • Slide: 25XDL 2011 - 27&28 June- Christian Riekel

    aggregation Nbr of peptide molecules

    Nbr

    inte

    rcha

    inhy

    drog

    en b

    onds

    Peptide aggregation simulation

    Auer et al., HFSP Journal (2007) 1, 137

    -sheet aggregation

    fibroin

    I Q (n

    m-1)

    aggregate102

    101

    100

    10-1

    10-2

    10-3fibroin

    in solution

    BioSAXS: silk fibroin aggregation

    0.1 1

    260

    nmag

    greg

    atio

    n

    Q (nm-1)

    Martel et al., JACS (2008), 130, 17070

    Microfluidic cell ml-scale liquid consumption

  • Slide: 26XDL 2011 - 27&28 June- Christian Riekel

    • BioSAXS pL - nL drops, m to subm beams

    • Faster scans continuous scan with subms patterns, kinetics

    • Coherent imaging complementary approach, in situ processes…

    • Stability avoid sample movements during fast scans

    Superhydrophobic surfaces challenges

  • Slide: 27

    Pixe

    l det

    ecto

    r

    XDL 2011 - 27&28 June- Christian Riekel

    beam steering optics

    ERL-undulator

    x/y/zrot

    scanning-gonio

    Generic ERL micro/nanoprobe camera

    focus

    Undulator source 5-25 keV rangeFocusing optics ~50 nm to ~5 m focus; automated switchingFresnel lens beam steering option for fast raster-scansCoherent beam optimize BL for coherent imagingRaster goniometer continuous scan capabilityPixel detector ≤50 m pixels;

  • Slide: 28XDL 2011 - 27&28 June- Christian Riekel