Overview of (sub)mm-VLBI Shep Doeleman MIT Haystack Observatory.

36
Overview of (sub)mm-VLBI Shep Doeleman MIT Haystack Observatory

Transcript of Overview of (sub)mm-VLBI Shep Doeleman MIT Haystack Observatory.

Page 1: Overview of (sub)mm-VLBI Shep Doeleman MIT Haystack Observatory.

Overview of (sub)mm-VLBI

Shep Doeleman

MIT Haystack Observatory

Page 2: Overview of (sub)mm-VLBI Shep Doeleman MIT Haystack Observatory.

A (sub)mm-VLBI Workshop• Important: Broad interest in key science drivers.• Timely:

– Technical Advances: sensitivity and baseline coverage has reached ‘tipping point’.

– New submm facilities coming online will significantly improve current array.

– Window for (sub)mm-VLBI may not be open indefinitely.

• Planning Required:– Complex observations must become more turn-key (calibration protocols, permanent VLBI inst., test protocols, …)

– Development and deployment of new instrumentation.

– Array-wide scheduling (and pan-chromatic).

– Development of new sites (still hard, requires collective effort).

Page 3: Overview of (sub)mm-VLBI Shep Doeleman MIT Haystack Observatory.

Workshop Anatomy• Presentations

– new instrumentation to be deployed at most sites.– development of next-generation instrumentation.– sites under development and new sites.– techniques and protocols for observations.

• Discussion– address issues necessary for outline of coherent technical roadmap.– address scheduling issues (frequency, dates, no-jeopardy proposing?)– Assess individual site needs for near-term observations.

Page 4: Overview of (sub)mm-VLBI Shep Doeleman MIT Haystack Observatory.

A Brief History of (sub)mm-VLBI

• 20th anniversary of 1st 1.3mm VLBI fringes! (112Mb/s)

Page 5: Overview of (sub)mm-VLBI Shep Doeleman MIT Haystack Observatory.

Happy Anniversary

Page 6: Overview of (sub)mm-VLBI Shep Doeleman MIT Haystack Observatory.

A Brief History of (sub)mm-VLBI• 20th anniversary of 1st 1.3mm VLBI fringes! (112Mb/s)

• 1994/5 - 215GHz VLBI between IRAM30m - PdeBure(1)

• 1999 - failed attempt at 230GHz on ARO/SMT-KittPeak

• 2001 - 147GHz VLBI on IRAM30m - Metsahovi

• 2002 - 129/147GHz VLBI on IRAM30m, ARO/SMT, KittPeak, Metsahovi (224Mb/s on TAPE).

• 2003 - 230GHz VLBI on IRAM30m, PdeBure, ARO/SMT, KittPeak (512/1024Mb/s on DISK)

• 2006 - failed attempt at 230GHz on CSO-ARO/SMT

• 2007 - 230GHz VLBI on CARMA(1), ARO/SMT, JCMT/SMA, IRAM30m (4Gb/s)

• 2009 - 230GHz VLBI on CARMA(2), ARO/SMT, JCMT/SMA (4Gb/s)

Page 7: Overview of (sub)mm-VLBI Shep Doeleman MIT Haystack Observatory.

SgrA*: Best Case for a SMBH• Stellar orbits approaching within 45 AU. • Proper motions < 1km/s: M>10^5 Msol

(Backer & Sramek 1999, Reid & Brunthaler 2004)

• Short time scale X-ray flares (300 sec rise).• IF flares with

modulation (a>0).

VLT: Genzel et al 2003Baganoff et al 2001

Ghez et al 2005

Page 8: Overview of (sub)mm-VLBI Shep Doeleman MIT Haystack Observatory.

1.3mm Observations of SgrA*

4630km

4030km

908km

Builds on long history of SgrA* VLBI and mmVLBI.

Page 9: Overview of (sub)mm-VLBI Shep Doeleman MIT Haystack Observatory.

Resolving Rsch-scale structures

Gammie et al

14 R

sch

(

as)

ARO/SMT-CARMA

ARO/SMT-JCMT

JCMT-CARMA

Page 10: Overview of (sub)mm-VLBI Shep Doeleman MIT Haystack Observatory.

The minimum apparent size.Broderick & Loeb

Noble & Gammie

Event Horizon

Ra =3 3 Rsch 2( ) R≤.5Rsch

R / −Rsch / R R>.5Rsch

⎧⎨⎪

⎩⎪

Page 11: Overview of (sub)mm-VLBI Shep Doeleman MIT Haystack Observatory.

Alternatives to a MBH

Most condensations of smaller mass objects evaporate on short timescales.Current obs imply Tevap~500 yrs.

Boson Star is a remaining ‘exotic’ possibility where R=Rsch + epsilon.Depends on Boson mass.

Page 12: Overview of (sub)mm-VLBI Shep Doeleman MIT Haystack Observatory.

A Surface or Event Horizon• Does SgrA* have a surface?

• A quiescent surface would radiate.

• The radius R and dM/dt set the expected NIR flux.

• NIR limits set dM/dt limits.

• These are too low to power SgrA*.

• If no surface then Event Horizon.

Broderick & Narayan 2006

Page 13: Overview of (sub)mm-VLBI Shep Doeleman MIT Haystack Observatory.

Model Correlated Flux DensityQuiescent disk Models: Radiatively InefficientAccretion Flow (RIAF)

Courtesy Gammie et aland Broderick&Loeb

Page 14: Overview of (sub)mm-VLBI Shep Doeleman MIT Haystack Observatory.

April 2009 SgrA* Observations

CARMA - Hawaii

Page 15: Overview of (sub)mm-VLBI Shep Doeleman MIT Haystack Observatory.

Time Variable Structures

• Variabilty in NIR, x-ray, submm, radio.

• Probe of metrics near BH, and of BH spin.

• Violates Earth Rotation aperture synthesis.

• Use ‘good’ closure observables to probe structure as function of time.

Page 16: Overview of (sub)mm-VLBI Shep Doeleman MIT Haystack Observatory.

Hot Spot Model for SgrA* Flares

QuickTime™ and aFLIC Animation decompressorare needed to see this picture.

Page 17: Overview of (sub)mm-VLBI Shep Doeleman MIT Haystack Observatory.

Observing Black Hole Orbits with Closure Phase

Doeleman et al 2009

Page 18: Overview of (sub)mm-VLBI Shep Doeleman MIT Haystack Observatory.

Polarization Signatures at the Event Horizon

Fish et al 2009

Page 19: Overview of (sub)mm-VLBI Shep Doeleman MIT Haystack Observatory.

Beam: 0.43x0.21 mas 0.2mas = 0.016pc = 60Rs 1mas/yr = 0.25c

VLBA Movie of M87 @ 43 GHz (7 mm)Craig Walker et al. 2008

More luminous class of AGN with 2000x more massive central BH, and core detected in TeV with FERMI.

Page 20: Overview of (sub)mm-VLBI Shep Doeleman MIT Haystack Observatory.

April 2009 M87 1.3mm VLBI Detections

CARMA1-CARMA2

CARMA-ARO/SMT

JCMT-CARMA

JCMT-ARO/SMT

Resolved componentis > 300as

Compact componentis 35as FWHM, or~ 4.5 Rsch.

Apparent size of ISCOis 7.35 Rsch and

Apparent size of EH is 5.2 Rsch.

Jet genesis, TeV emission.

Page 21: Overview of (sub)mm-VLBI Shep Doeleman MIT Haystack Observatory.

Comparison with Jet Models

a=0.998, =25deg

Broderick & Loeb (2009)

Page 22: Overview of (sub)mm-VLBI Shep Doeleman MIT Haystack Observatory.

Making Progress• Big Questions

• Is there an Event Horizon?• Does GR hold near BH?• How are jets launched?• How does matter accrete/outflow near a BH?

• Essential Requirements

• Baseline coverage: Develop new sites• Sensitivity:

• new receivers (dual pol)• phased arrays• wideband recording

Page 23: Overview of (sub)mm-VLBI Shep Doeleman MIT Haystack Observatory.

Event Horizon Telescope

Phase 1: 7 Telescopes Phase 2: 10 TelescopesPhase 3: 13 Telescopes

Page 24: Overview of (sub)mm-VLBI Shep Doeleman MIT Haystack Observatory.

Adding ALMA

Adding Telescopes

Adding LMTHawaii, CARMA, SMT

Page 25: Overview of (sub)mm-VLBI Shep Doeleman MIT Haystack Observatory.

Progression to an Image

GR Model 7 Stations 13 Stations

Page 26: Overview of (sub)mm-VLBI Shep Doeleman MIT Haystack Observatory.

New Site Timeline to 2011• ASTE + APEX tests at 230GHz in Spring 2010 (4Gb/s).

• Full array observations in 2011 (8Gb/s + 16Gb/s Burst): • ARO/SMT• Phased Mauna Kea (CSO + JCMT + SMA)• Phased CARMA• IRAM 30m• APEX/ASTE• LMT

• 2011 VLBI contemporaneous with XMM observations.

• 345GHz tests in 2011.

Page 27: Overview of (sub)mm-VLBI Shep Doeleman MIT Haystack Observatory.

Hawaii Phased Array Success(CSO+JCMT+SMA)-CARMA

Page 28: Overview of (sub)mm-VLBI Shep Doeleman MIT Haystack Observatory.

Phasing ALMA for VLBI

Page 29: Overview of (sub)mm-VLBI Shep Doeleman MIT Haystack Observatory.

230/345GHz Rx with ALMA Mixers• Use ALMA development to build sideband separating, dual pol, high sensitivity receivers (ALMA bands 6,7).

• Developing project with UMass to replace 230GHz Rx at JCMT using ALMA mixer/preamps:

• Tsys improves by x2.5• BW improves by x4• Dual pol• Target installation date: Winter 2011

Page 30: Overview of (sub)mm-VLBI Shep Doeleman MIT Haystack Observatory.

Wide(er)band VLBI Systems• Currently at 4Gb/s• Continuous 8Gb/s by mid-2010• Burst Mode: using parallel DBE’s and data buffering

in RAM to reach 16Gb/s for 60 sec bursts. • Correlation on software platforms.

Page 31: Overview of (sub)mm-VLBI Shep Doeleman MIT Haystack Observatory.

New Frequency Standards

• Sapphire Oscillator:

– Factor of 10-100 times more stable than Hmaser (T~1-100sec).

– Plan to have CSO at Haystack by Spring 2010 in collaboration with UWA.

• Modified Masers:

– Use of best Quartz crystals in H masers to reduce phase noise.

Page 32: Overview of (sub)mm-VLBI Shep Doeleman MIT Haystack Observatory.

EHT Phases:• Phase I: 7 station 8Gb/s array

•ALMA phasing, preliminary Rx/LO work, new frequency standards, new site studies, operations.

• 2010 -- 2014

• Phase II: 10 station 32Gb/s dual-pol array

• Activate SEST, equip S.Pole, new frequency standards, install new 0.8/1.3mm dual-pol Rx, increase bandwidth of VLBI backends/recorders, relocate ATF dishes, operations.

• 2015 -- 2018

• Phase III: 12 station array up to 64Gb/s• install new dishes, array operations for 5 years.

• 2019 -- 2024

Page 33: Overview of (sub)mm-VLBI Shep Doeleman MIT Haystack Observatory.

Status of Collaboration• Haystack:

• Recorder and Digital Backend• Frequency Standards• ALMA Phasing• Organization of observations

• Harvard-CfA:• Phased Array development• SMA support• ALMA Phasing

• U. Arizona/ARO: • SMTO support• Test observations

• CARMA:• Phased Array work• Site support

• ASIAA: H-maser cost-share

• JCMT/CSO: Telescope support.

• NAOJ: ASTE support

• MPIfR-Bonn• Plateau de Bure/IRAM 30m• APEX support

• IRAM: • IRAM site support• Plateau de Bure phasing

• NRAO: • ALMA Phasing• RDBE + Mark5c

• UC Berkeley: DBE + CARMA phasing

Page 34: Overview of (sub)mm-VLBI Shep Doeleman MIT Haystack Observatory.

More Science• Masers:

• SiO (J=2-1, J=3-2, J=4-5)• HCN (177GHz)• Water• Methanol

• Jet Physics• Sensitivity: ALMA(50) - ARO/SMT at 4GHz (16Gb/s)

• 35mJy at 230GHz = 7sigma in 10 seconds.• Many more sources

Page 35: Overview of (sub)mm-VLBI Shep Doeleman MIT Haystack Observatory.

Summary• 1.3mm VLBI confirms Event Horizon scale

structure in SgrA* and M87• Imaging the Event Horizon and observing BH

orbits are within reach in <5 years.• Higher sensitivity enabling broader science case.• Science/Technical advances: rapid change.

• detections, tech. validation, team, sites.• Assembling strong international collaboration.• Competitive with (and complementary to) much

larger space-based mission (e.g., IXO).• Touches on almost all aspects of

radio/mm/submm communities. • All the ingredients for the EHT exist.

Page 36: Overview of (sub)mm-VLBI Shep Doeleman MIT Haystack Observatory.

mm/submm VLBI CollaborationMIT Haystack: Alan Rogers, Vincent Fish, entire staff.U. Arizona Steward Obs: Lucy Ziurys, Robert Freund CARMA: Dick Plambeck, David Woody, Geoff BowerHarvard Smithsonian CfA: Jonathan Weintroub, Jim MoranJames Clerk Maxwell Telescope: Remo Tilanus, Per FribergUC Berkeley SSL: Dan WerthimerCaltech Submillimeter Observatory: Richard ChamberlinMPIfR: Thomas Krichbaum, Alan RoyASIAA: Paul Ho, Makoto InoueNAOJ: Mareki HonmaIRAM: Michael BremerNRAO: John Webber, Ray Escoffier, Rich LacasseUMass: Neal Erickson, Gopal Narayanan

History: Backer, Lo, Rogers, Krichbaum, Jauncy, Marcaide, Shen, Bower.