Overview of Multisource Phase Encoded Seismic Inversion

54
Overview of Multisource Phas Encoded Seismic Inversion Wei Dai, Ge Zhan, and Gerard Schuster KAUST

description

Overview of Multisource Phase Encoded Seismic Inversion. Wei Dai, Ge Zhan, and Gerard Schuster KAUST. Outline. Seismic Experiment:. L m = d. 1. 1. L m = d. 2. 2. L m = d. . . N. N. . 2. Standard vs Phase Encoded Least Squares Soln. L. d. 3. Theory Noise Reduction. - PowerPoint PPT Presentation

Transcript of Overview of Multisource Phase Encoded Seismic Inversion

Page 1: Overview of Multisource Phase  Encoded Seismic Inversion

Overview of Multisource Phase

Encoded Seismic Inversion

Wei Dai, Ge Zhan, and Gerard SchusterKAUST

Page 2: Overview of Multisource Phase  Encoded Seismic Inversion

Outline1. Seismic Experiment:

L m = d

L m = d1 1

L m = d2 2...N N

2. Standard vs Phase Encoded Least Squares Soln.

L1

L2

d 1

d 2m = vs N L + N L1 21 2[ ]m = [N d + N d ]1 21 2

3. Theory Noise Reduction 4. Summmary and Road Ahead

Page 3: Overview of Multisource Phase  Encoded Seismic Inversion

Gulf of Mexico Seismic SurveyL m = d

Time (s)

4

0

d

Goal: Solve overdeterminedSystem of equations for m

Predicted data Observed data

m(x,y,z)

Common Shot Gather

Streamer Reel

Streamer Cables

4 km

Page 4: Overview of Multisource Phase  Encoded Seismic Inversion

Details of Lm = d

Time (s)

6 X (km)

4

0

1 d

G(s|x)G(x|g)m(x)dx = d(g|s)

Reflectivityor velocity

model

Predicted data = Born approximationSolve wave eqn. to get G’s

m

Page 5: Overview of Multisource Phase  Encoded Seismic Inversion

Outline1. Seismic Experiment:

L m = d

L m = d1 1

L m = d2 2...N N

2. Standard vs Phase Encoded Least Squares Soln.

L1

L2

d 1

d 2m = vs N L + N L1 21 2[ ]m = [N d + N d ]1 21 2

3. Theory Noise Reduction 4. Summmary and Road Ahead

Page 6: Overview of Multisource Phase  Encoded Seismic Inversion

Conventional Least Squares Solution: L= & d =

Given: Lm=dFind: m s.t. min||Lm-d||2

Solution: m = [L L] L d T T-1

m = m – a L (Lm - d) T(k+1) (k) (k)(k)

or if L is too big

L1

L2

d 1

d 2

= m – a L (L m - d ) (k)

+ L (L m - d ) 1 1 2 2 21

TT[ ]

In general, hugedimension matrix

Page 7: Overview of Multisource Phase  Encoded Seismic Inversion

Conventional Least Squares Solution: L= & d =

Given: Lm=dFind: m s.t. min||Lm-d||2

Solution: m = [L L] L d T T-1

m = m – a L (Lm - d) T(k+1) (k) (k)(k)

or if L is too big

L1

L2

d 1

d 2

= m – a L (L m - d ) (k)

+ L (L m - d ) 1 1 2 2 21

TT[ ]

In general, hugedimension matrix

Note: subscripts agree

Page 8: Overview of Multisource Phase  Encoded Seismic Inversion

Conventional Least Squares Solution: L= & d =

Given: Lm=dFind: m s.t. min||Lm-d||2

Solution: m = [L L] L d T T-1

m = m – a L (Lm - d) T(k+1) (k) (k)(k)

L1

L2

d 1

d 2

= m – a L (L m - d ) (k)

+ L (L m - d ) 1 1 2 2 21

TT[ ]

In general, hugedimension matrix

Problem: Each prediction is a FD solveSolution: Blend+encode Data

Page 9: Overview of Multisource Phase  Encoded Seismic Inversion

Blending+Phase Encoding

2 d = N d + N d + N d211 33

PhasePhaseBlending

Encoding MatrixSupergather

L = N L + N L + N L3 32 21 1m [ ]m

d 1L m=1

Encoded supergather modeler

d 3L m=3d 2L m=2

O(1/S) cost!

Blending

Page 10: Overview of Multisource Phase  Encoded Seismic Inversion

Blended Phase-Encoded Least Squares Solution L = & d = N d + N d

Given: Lm=dFind: m s.t. min||Lm-d||2

Solution: m = [L L] L d T T-1

m = m – a L (Lm - d) T(k+1) (k) (k)(k)

or if L is too big

1N L + N L2 1

= m – a L (L m - d ) (k)

+ L (L m - d ) 1 1 2 2 21

TT[ ]

1 2 1 2 2

In general, SMALLdimension matrix

+ Crosstalk+ L (L m - d ) 2

T

11 + L (L m - d ) 1

T

22

Iterations are proxyFor ensemble averaging

Page 11: Overview of Multisource Phase  Encoded Seismic Inversion

Brief History Multisource Phase Encoded Imaging

Romero, Ghiglia, Ober, & Morton, Geophysics, (2000)

Krebs, Anderson, Hinkley, Neelamani, Lee, Baumstein, Lacasse, SEG, (2009)Virieux and Operto, EAGE, (2009)Dai, and Schuster, SEG, (2009)

Migration

Waveform Inversion and Least Squares Migration

Biondi, SEG, (2009)

Page 12: Overview of Multisource Phase  Encoded Seismic Inversion

Outline1. Seismic Experiment:

L m = d

L m = d1 1

L m = d2 2...N N

2. Standard vs Phase Encoded Least Squares Soln.

L1

L2

d 1

d 2m = vs N L + N L1 21 2[ ]m = [N d + N d ]1 21 2

3. Theory + Numerical Results 4. Summmary and Road Ahead

Page 13: Overview of Multisource Phase  Encoded Seismic Inversion

SEG/EAGE Salt Reflectivity Model

• Use constant velocity model with c = 2.67 km/s • Center frequency of source wavelet f = 20 Hz• 320 shot gathers, Born approximation

Z

(km

)

0

1.4

0 X (km) 6

• Encoding: Dynamic time, polarity statics + wavelet shaping• Center frequency of source wavelet f = 20 Hz• 320 shot gathers, Born approximation

Page 14: Overview of Multisource Phase  Encoded Seismic Inversion

0 X (km) 6

0Z

k(m

)1.

40

Z (k

m)

1.4

0 X (km) 6

Standard Phase Shift Migration (320 CSGs)

Standard Phase Shift Migration vs MLSM (Yunsong Huang)

Multisource PLSM (320 blended CSGs, 7 iterations)

1 x

1 x

44

Page 15: Overview of Multisource Phase  Encoded Seismic Inversion

Single-source PSLSM(Yunsong Huang)

Mod

el E

rror

1.0

0.30 50Iteration Number

Unconventional encoding

Conventional encoding: Polarity+Time Shifts

Page 16: Overview of Multisource Phase  Encoded Seismic Inversion

Multi-Source Waveform Inversion Strategy(Ge Zhan)

Generate multisource field data with known time shift

Generate synthetic multisource data with known time shift from estimated

velocity model

Multisource deblurring filter

Using multiscale, multisource CG to update the velocity model with

regularization

Initial velocity model

144 shot gathers

Page 17: Overview of Multisource Phase  Encoded Seismic Inversion

3D SEG Overthrust Model(1089 CSGs)

15 km

3.5 km

15 km

Page 18: Overview of Multisource Phase  Encoded Seismic Inversion

3.5 km

Dynamic QMC Tomogram (99 CSGs/supergather)

Static QMC Tomogram(99 CSGs/supergather)

15 km

Dynamic Polarity Tomogram(1089 CSGs/supergather)

Numerical Results

1000x

300x

300x

Page 19: Overview of Multisource Phase  Encoded Seismic Inversion

Outline1. Seismic Experiment:

L m = d

L m = d1 1

L m = d2 2...N N

2. Standard vs Phase Encoded Least Squares Soln.

L1

L2

d 1

d 2m = vs N L + N L1 21 2[ ]m = [N d + N d ]1 21 2

3. Theory + Numerical Results 4. Summmary and Road Ahead

Page 20: Overview of Multisource Phase  Encoded Seismic Inversion

Multisource Migration: mmig=LTd

Forward Model:

Multisource Least Squares Migration

d +d =[L +L ]m1 221

L{d{Standard migration

Crosstalk term

Phase encoding

Kirchhoff kernel

34

Page 21: Overview of Multisource Phase  Encoded Seismic Inversion

Multisource Least Squares Migration Crosstalk term

Page 22: Overview of Multisource Phase  Encoded Seismic Inversion

Crosstalk Prediction FormulaL (L m - d ) 2

T

11 + L (L m - d ) 1

T

22 e-s w2 2

O( )~X =

X

s .01 1.0

Page 23: Overview of Multisource Phase  Encoded Seismic Inversion

Standard Migration SNR

GS# geophones/CSG

# CSGs

SNR= ...migrate

SNR=

d(t) = Zero-mean white noise [S(t) +N(t) ] Neglect geometric spreading

Standard Migration SNR

Standard Migration SNR

Assume:

migrate+++

stack

S1

SGS G~~

iterate

GI

Iterative Multisrc. Mig. SNR

# iterations

SNR=

Cost ~ O(S)

Cost ~ O(I)

Page 24: Overview of Multisource Phase  Encoded Seismic Inversion

SNR

0

1 Number of Iterations 300

7The SNR of MLSM image grows as the square root of the number of iterations.

SNR = GI

Page 25: Overview of Multisource Phase  Encoded Seismic Inversion

IO 1 1/320

Cost ~

Resolution dx 1 1

SNR~

Stnd. Mig Multsrc. LSM

Less 1

1 <1/44

Cost vs Quality

Summary

1

L1

L2

d 1

d 2m = N L + N L

1 21 2[ ]m = [N d + N d ]

1 21 2

Page 26: Overview of Multisource Phase  Encoded Seismic Inversion

Multisource FWI Summary(We need faster migration algorithms & better velocity models)

Future: Multisource MVA, Interpolation, Field Data, Migration Filtering, LSM

Issues: Optimal encoding strategies, datacompression, loss of information.

Page 27: Overview of Multisource Phase  Encoded Seismic Inversion

Summary(We need faster migration algorithms & better velocity models)

IO 1 vs 1/20 or better

Cost 1 vs 1/20 or better

Resolution dx 1 vs 1

Sig/MultsSig ?

Stnd. FWI Multsrc. FWI

Page 28: Overview of Multisource Phase  Encoded Seismic Inversion

Multisource Migration: mmig=LTd

Forward Model:

Multisource Least Squares Migration

d +d =[L +L ]m1 221

L{d{Standard migration

Crosstalk term

Phase encoding

Kirchhoff kernel

34

Page 29: Overview of Multisource Phase  Encoded Seismic Inversion

Multisource Least Squares Migration Crosstalk term

Page 30: Overview of Multisource Phase  Encoded Seismic Inversion

Numerical Result of Multi-source Super stacking Reflectivity model

5.9X (km)0

Z (k

m)

1. 40

KM of 320 Single Source CSG

5.9X (km)0

Z (k

m)

1. 40

Narrowed Spectrum Wavelet

0.5time (s)0

Am

plitu

de

- 0. 3

0.4

Signal

FT of Wavelet

0.5Frequency (Hz)0

04.

5

50

Dominant frequency

(Xin Wang)

Page 31: Overview of Multisource Phase  Encoded Seismic Inversion

Numerical Result of Multi-source Super stacking KM of 320 Shots Supergather w/o

PE

5.9X (km)0

Z (k

m)

1. 40

-0.05

040

00

0.05

KM of 3000 Stacking Supergather

5.9X (km)0

Z (k

m)

1. 40

320 × 3000

0

KM of 320 Shots Supergather with PE

5.9X (km)

Z (k

m)

1. 40

Gaussian Distribution

0.05-0.05

05 0 320

Signal + Noise Singal + Noise

Singal + Noise

(Xin Wang)

Page 32: Overview of Multisource Phase  Encoded Seismic Inversion

Numerical Result of Multi-source Super stacking Noise

= Σ Σ Γ(g,x,s)* D0 (g|s)sg + R Σ Σ Σ Γ (g,x,s)* D0 (g|s’)

sg s≠s’

= Signal + Noise − Signal

= < N (g,s) N (g,s’)* > if s≠s’ R = e-2ω σ2 2Crosstalk damping coefficientR (σ) / R (σ0) = e 2ω (σ0 - σ )2 2 2

(Xin Wang)

Page 33: Overview of Multisource Phase  Encoded Seismic Inversion

0Z

k(m

)3

0 X (km) 16

The Marmousi2 Model(Wei Dai)

The area in the white box is used for SNR calculation.

200 CSGs.

Born Approximation

Conventional Encoding: Static Time Shift & Polarity Statics

Page 34: Overview of Multisource Phase  Encoded Seismic Inversion

0 X (km) 16

0Z

k(m

)3

0Z

(km

)3

0 X (km) 16

Conventional Source: KM vs LSM (50 iterations)Conventional KM

50x

1x

Conventional KLSM

Page 35: Overview of Multisource Phase  Encoded Seismic Inversion

0 X (km) 16

0Z

k(m

)3

0Z

(km

)3

0 X (km) 16

Multisource KM (1 iteration)

200-source Supergather: Multisrc. KM vs LSM

Multisource KLSM (300 iterations)

1 x200

Page 36: Overview of Multisource Phase  Encoded Seismic Inversion

Outline

1. Migration Problem and Encoded Migration

2. Standard vs Monte Carlo Least Squares Soln.

3. Numerical Results: Kirchhoff, Phase Shift, RTM

4. Summary

L1

L2

d 1

d 2m = vs N L + N L1 21 2[ ]m = [N d + N d ]1 21 2

Page 37: Overview of Multisource Phase  Encoded Seismic Inversion

SEG/EAGE Salt Reflectivity Model

• Use constant velocity model with c = 2.67 km/s • Center frequency of source wavelet f = 20 Hz• 320 shot gathers, Born approximation

Z

(km

)

0

1.4

0 X (km) 6

• Encoding: Dynamic time, polarity statics + wavelet shaping• Center frequency of source wavelet f = 20 Hz• 320 shot gathers, Born approximation

Page 38: Overview of Multisource Phase  Encoded Seismic Inversion

0 X (km) 6

0Z

k(m

)1.

40

Z (k

m)

1.4

0 X (km) 6

Standard Phase Shift Migration (320 CSGs)

Standard Phase Shift Migration vs MLSM (Yunsong Huang)

Multisource PLSM (320 blended CSGs, 7 iterations)

1 x

1 x

44

Page 39: Overview of Multisource Phase  Encoded Seismic Inversion

Single-source PSLSM(Yunsong Huang)

Mod

el E

rror

1.0

0.30 50Iteration Number

Unconventional encoding

Conventional encoding: Polarity+Time Shifts

Page 40: Overview of Multisource Phase  Encoded Seismic Inversion

Outline

1. Migration Problem and Encoded Migration

2. Standard vs Monte Carlo Least Squares Soln.

3. Numerical Results: Kirchhoff, Phase Shift, RTM

4. Summary

L1

L2

d 1

d 2m = vs N L + N L1 21 2[ ]m = [N d + N d ]1 21 2

Page 41: Overview of Multisource Phase  Encoded Seismic Inversion

3D SEG Overthrust Model(1089 CSGs, Chaiwoot)

15 km

3.5 km

15 km

Page 42: Overview of Multisource Phase  Encoded Seismic Inversion

3.5 km

Dynamic QMC Tomogram (99 CSGs/supergather)

Static QMC Tomogram(99 CSGs/supergather)

15 km

Dynamic Polarity Tomogram(1089 CSGs/supergather)

Numerical Results(Chaiwoot Boonyasiriwat)

1000x

300x

300x

Page 43: Overview of Multisource Phase  Encoded Seismic Inversion

IO 1 1/320

Cost ~

Resolution dx 1 1/2

SNR~

Stnd. Mig Multsrc. LSM

I=7

1 1/44

Cost vs Quality: Can I<<S? Yes.

What have we empirically learned?

S=320

Page 44: Overview of Multisource Phase  Encoded Seismic Inversion

Outline

1. Migration Problem and Encoded Migration

2. Standard vs Monte Carlo Least Squares Soln.

3. Numerical Results

4. S/N Ratio

L1

L2

d 1

d 2m = vs N L + N L1 21 2[ ]m = [N d + N d ]1 21 2

Page 45: Overview of Multisource Phase  Encoded Seismic Inversion

Standard Migration SNR

GS# geophones/CSG

# CSGs

SNR= ...migrate

SNR=

d(t) = Zero-mean white noise [S(t) +N(t) ] Neglect geometric spreading

Standard Migration SNR

Standard Migration SNR

Assume:

migrate+++

stack

S1

SGS G~~

iterate

GI

Iterative Multisrc. Mig. SNR

# iterations

SNR=

Cost ~ O(S)

Cost ~ O(I)

Page 46: Overview of Multisource Phase  Encoded Seismic Inversion

SNR

0

1 Number of Iterations 300

7The SNR of MLSM image grows as the square root of the number of iterations.

SNR = GI

Page 47: Overview of Multisource Phase  Encoded Seismic Inversion

Summary

IO 1 1/100

Cost ~

Resolution dx 1 1/2

SNR

Stnd. Mig Multsrc. LSM

GS GI

S I

Cost vs Quality: Can I<<S?

L1

L2

d 1

d 2m = vs N L + N L1 21 2[ ]m = [N d + N d ]1 21 2

Page 48: Overview of Multisource Phase  Encoded Seismic Inversion

Outline• Motivation• Multisource LSM theory• Signal-to-Noise Ratio (SNR)• Numerical results • Conclusions

Page 49: Overview of Multisource Phase  Encoded Seismic Inversion

Conclusions Mig vs MLSM

1.

2. Cost: S vs I

3. Caveat: Mig. & Modeling were adjoints of one another. LSM sensitive starting model

5. Next Step: Sensitivity analysis to starting model

SNR: VSGS GI

4. Unconventional encoding: I << S

2. Memory 1 vs 1/S

Page 50: Overview of Multisource Phase  Encoded Seismic Inversion

Back to the Future?

Poststackencoded migration

DMO Prestackmigration

1980s 1980s-2010 2010?

Evolution of Migration

Poststackmigration

1960s-1970s

Page 51: Overview of Multisource Phase  Encoded Seismic Inversion

1980

Multisource SeismicImaging

vs

copper

VLIW

Superscalar

RISC

1970 1990 2010

1

100

100000

10

1000

10000

Aluminum

Year202020001980

Spee

d

CPU Speed vs Year

Page 52: Overview of Multisource Phase  Encoded Seismic Inversion

Multisource Migration: mmig=LTd

Forward Model:

Multisource Phase Encoded Imaging

d +d =[L +L ]m1 221

L{d{

=[L +L ](d + d ) 1 221

T T

= L d +L d + 1 221

T T

L d +L d2 121

Crosstalk noiseStandard migration

T T

m = m +(k+1) (k)

Page 53: Overview of Multisource Phase  Encoded Seismic Inversion

FWI Problem & Possible Soln.• Problem: FWI computationally costly

• Solution: Multisource Encoded FWI Preconditioning speeds up by factor 2-3

Iterative encoding reduces crosstalk

Page 54: Overview of Multisource Phase  Encoded Seismic Inversion

Outline

1. Migration Problem and Encoded Migration

2. Standard vs Monte Carlo Least Squares Soln.

3. Numerical Results: Kirchhoff, Phase Shift, RTM

4. Summary

L1

L2

d 1

d 2m = vs N L + N L1 21 2[ ]m = [N d + N d ]1 21 2