Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear...

60
Overview of Hydrogen Production Thomas Nietsch Expert HELION “HyFC” Hydrogen and Fuel Cell Academy European Summer School 1 - 4 October 2007, Svendborg, DK Expert

Transcript of Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear...

Page 1: Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear Electrolysis Heating Fuel 35% TransportationFuel 40% Chemical Feedstock7% (Olefins, Aromatics)

Overview of Hydrogen Production

Thomas NietschExpert

HELION

“HyFC” Hydrogen and Fuel Cell Academy

European Summer School

1 - 4 October 2007, Svendborg, DK

Expert

Page 2: Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear Electrolysis Heating Fuel 35% TransportationFuel 40% Chemical Feedstock7% (Olefins, Aromatics)

Feedstock for hydrogen production

> FyFC Overview of Hydrogen Production – 1-4 Oct 07, Svendborg, DK - Références2 2HELION

Page 3: Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear Electrolysis Heating Fuel 35% TransportationFuel 40% Chemical Feedstock7% (Olefins, Aromatics)

Hydrogen production

Petroleum

Steam Reforming

Petroleum7%

Electrolysis4%

Coal4%

Hydropower

Renewables

Nuclear

Electrolysis

Heating Fuel35%

Transportation Fuel40%

Chemical Feedstock 7%

(Olefins, Aromatics)

Miscellaneous8%

Power Generation

10%Electrolysis0,5%

WORLD HYDROGEN PRODUCTION VS

ENERGY PRODUCTION

3504 Mt

230 Mtoe

64 Mtoe

Gasification

« On-purpose »Hydrogen

Sources: IEA, IGU; 2002 data

> FyFC Overview of Hydrogen Production – 1-4 Oct 07, Svendborg, DK - Références3 3HELION

MerchantHydrogen2.6 Mtoe 85% from natural gas

Coal

(Tar, Aromatics, CO-H2)

Gasification

Nuclear

Natural GasSteamReforming

Chemical Feedstock 2%

Iron & Steel20%

Power Generation

60%

Miscellaneous18%

Heating Fuel

PowerGeneration20%

ChemicalFeedstock

7% NH3, CH3OHRefineries2236 Mtoe

593 Mtoe

2135 Mtoe

73 Mtoe/10,000 Mtoe = 0.8 % of world energyconsumption

By-productHydrogen57 Mtoe

Electricity: 12% of world energy consumption

73%

La production des unités industrielles dédiées, qui représente actuellement l ’équivalent de 73 Mtep, est obtenue à plus de 90% à partir d’ hydrocarbures,essentiellement le gaz naturel, pour 85%. Hydrogen and Fuel Cells�IFP activities François Kalaydjian IFP Sustainable Development Division
Page 4: Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear Electrolysis Heating Fuel 35% TransportationFuel 40% Chemical Feedstock7% (Olefins, Aromatics)

Hydrogen production and conversion chain

Natural gas Uranium Crude oilCO2 from

athmospherBio plants

Organicwasts

Sun, wind,watter

Wood

renewable Non renewable

Primeryenergy

Transformation Reformation RefineryGasificationSynthesis /electrolysis

Vermentation Vergärung Electrolysis Gasification

Natural gas Gas / dieselMethanol

Electricityproductiobn

Ethanol Bio gas HydrogenSecondaryEnergy

Coal

> FyFC Overview of Hydrogen Production – 1-4 Oct 07, Svendborg, DK - Références4 4HELION

Reformer Reformer Reformer Reformer Reformer

Hydrogen

CombustionFuel cell /

ICEIC / turbine

Heat andpower

Heat Heat andpower

Transformation

SecondaryEnergy

Transformation

UsfulEnergy

Page 5: Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear Electrolysis Heating Fuel 35% TransportationFuel 40% Chemical Feedstock7% (Olefins, Aromatics)

Hydrogen production by primary energy sources

� Natural gas: 85 %

� Coal: 4 %

� Crude oil: 7 %

� Hydropower: 4 %

� Renewables

� Nuclear power

> FyFC Overview of Hydrogen Production – 1-4 Oct 07, Svendborg, DK - Références5 5HELION

� Hydrogen production represents 0,8 % of the worlds energy consumption

85 % from NG0,8 % of world wide energy consumption

Page 6: Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear Electrolysis Heating Fuel 35% TransportationFuel 40% Chemical Feedstock7% (Olefins, Aromatics)

Hydrogen production by technologies

� Steam reforming (NG, coal, oil, biomass…)

� Gasification (NG, coal, oil, biomass…)

� Electrolysis (hydro, renewables, nuclear)

w Low temperature

� “New technologies”

w Photo-electrolysis (photolysis)

w Photo-biological production (bio photolysis)

w High temperature thermo-chemical water slitting

iodine / sulphur cycle (IS

> FyFC Overview of Hydrogen Production – 1-4 Oct 07, Svendborg, DK - Références6 6HELION

w Low temperature electrolysis

w High temperature electrolysis

l iodine / sulphur cycle (IS cycle)

Most H2 is produced by

large steam reforming plants

Page 7: Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear Electrolysis Heating Fuel 35% TransportationFuel 40% Chemical Feedstock7% (Olefins, Aromatics)

US DOE Goals for Hydrogen Production Costs 2005 *)

Production technology Goal Target Year

H2 from NG and oil 1,5 $/kg 1) 2010

Electrolysis < 250 kg/day 3) 2,5 $/kg 2) 2010

Electrolysis > 250 kg/day 2,0 $/kg 2) 2010

Biomass 4) 2,6 $/kg 2015

Biological systems 10 $/kg 2015

Photo electrochemical water splitting 5) 5,0 $/kg 2015

> FyFC Overview of Hydrogen Production – 1-4 Oct 07, Svendborg, DK - Références7 7HELION

Thermo-chemical cycles using nuclear heat

Demonstration of technical capability at price competitive with gasoline

2015

OthersEvaluate new production

technologies and fund R&D

1) no CO2 taxes

2) plant gate costs

3) cap costs 300 $/kW, 73 % efficiency, 350 bar

4) 75 000 kg/day, suitable for PEM FC

5) projected to commercial scale

*) US DOE, Energy Efficiency and Renewable Energy, 2003, Annual Progress Report: H2, FCs etc.

Page 8: Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear Electrolysis Heating Fuel 35% TransportationFuel 40% Chemical Feedstock7% (Olefins, Aromatics)

Production technology efficiency $/GJ $/kgSteam methane reforming 1), 2) 83% 5,54 0,75Hydrocarbon partial oxidation 1) 70 - 80 % 7 - 11NG Auto thermal reforming 1) 71 - 74 % 16,88 1,93Coal gasification 1) 63% 6,83 0,92Today's electrolysis 1) 10 - 45 1 - 6Steam reforming of bio oil produced by pyrolysis 1), 3)

56% 9,4 - 16,3 1,26 - 2,19

Direct biomass gasification 1), 3) 40 - 56 % 9 - 18 1,21 - 2,42

2003 Hydrogen Production Costs

Tod

ay's

te

chno

logi

esN

ew te

chno

logi

es

> FyFC Overview of Hydrogen Production – 1-4 Oct 07, Svendborg, DK - Références8 8HELION

Direct biomass gasification 1), 3) 40 - 56 % 9 - 18 1,21 - 2,42High temperature electrolysis 1, 4) 45 - 55 % 14,5 1,95SI cycle 1), 4) 42 - 52 % 1,8 to 2Photo biologic 1,) 4) 24% 41 5,5Photocatalysis 1, 4) 10 - 14 % 37 5

1) based on HHV2) NG at 3,15 $/GJ3) prediction based on lab scale results4) predictions

*) Hydrogen Production Methods, Feb 2005, prepared for MPR Associates, INC, MPR-WP-0001 revision 0, Kathleen McHugh

New

tech

nolo

gies

Page 9: Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear Electrolysis Heating Fuel 35% TransportationFuel 40% Chemical Feedstock7% (Olefins, Aromatics)

Why do we need hydrogen today?

� Self production 96 %

w Ammonia 60 %

l Fertilisers

l Washing powders, etc

w Refineries 29 %

� Merchant 4 %

w On site

w Pipelines

w Tube trailer

> FyFC Overview of Hydrogen Production – 1-4 Oct 07, Svendborg, DK - Références9 9HELION

w Refineries 29 %

w Chemicals 10 %

w Others 1 %

w Bulk

w Cylinders

Ammonia production and refineries

Page 10: Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear Electrolysis Heating Fuel 35% TransportationFuel 40% Chemical Feedstock7% (Olefins, Aromatics)

Why do we need (more) hydrogen tomorrow?

� Transportation

wFuel cell cars

� Increase demand in refineries

� Synthetic fuels

� New power generation

> FyFC Overview of Hydrogen Production – 1-4 Oct 07, Svendborg, DK - Références10 10HELION

� New power generation

w IGCC for CO2 free power generation

CO2 free

transportation and power generation

Page 11: Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear Electrolysis Heating Fuel 35% TransportationFuel 40% Chemical Feedstock7% (Olefins, Aromatics)

Hydrogen production today

� Today hydrogen production consumes finite primary energy

� Today hydrogen production contributes to pollution (CO2, global warming)

> FyFC Overview of Hydrogen Production – 1-4 Oct 07, Svendborg, DK - Références11 11HELION

H2 production consumes finite resources

and contributes to CO2 emissions

Page 12: Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear Electrolysis Heating Fuel 35% TransportationFuel 40% Chemical Feedstock7% (Olefins, Aromatics)

Hydrogen from fossil fuels

� By steam reforming (steam methane reforming –« SMR »)

� By partial oxidation (POX)

� By autothermal reforming (ATR)

> FyFC Overview of Hydrogen Production – 1-4 Oct 07, Svendborg, DK - Références12 12HELION

Reforming of fossil fuels

Page 13: Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear Electrolysis Heating Fuel 35% TransportationFuel 40% Chemical Feedstock7% (Olefins, Aromatics)

Steam reforming

steam

CH4, coal,

oil bio masse

Syn gas

H2, ~10 to 20 % CO

T = 700 to 900 °C

P = 1 to 50 barCH4 + H2O => CO + H2 / ∆h = 206 kJ/mol

> FyFC Overview of Hydrogen Production – 1-4 Oct 07, Svendborg, DK - Références13 13HELION

Sketch steam reforming

oil bio masseheat

Page 14: Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear Electrolysis Heating Fuel 35% TransportationFuel 40% Chemical Feedstock7% (Olefins, Aromatics)

� Steam reforming:

w CH4 + H2O = CO + 3 H2 ∆∆∆∆H = 206 kJ/mole

w CO + H2O = CO2 + H2 ∆∆∆∆H = -41 kJ/mole

w 700 to 850 °C

w 3 to 25 bar

Steam reforming

> FyFC Overview of Hydrogen Production – 1-4 Oct 07, Svendborg, DK - Références14 14HELION

w 3 to 25 bar

w Important CO content

w External heat source / heat supplied by steam

w Catalysts are Ni on Alumina, Alkali promoted, optimised for long-term stability (>3 years) at high temperatures

Catalysis for CO Management �in Fuel Processing K.M. VandenBussche, S. Abdo, Q. Chen, J.S. Holmgren and A.R. Oroskar UOP LLC, Des Plaines, IL ARO Workshop on Fuel Processing June 19-21, 2000
Page 15: Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear Electrolysis Heating Fuel 35% TransportationFuel 40% Chemical Feedstock7% (Olefins, Aromatics)

Equilibrium CO Content for Steam Reforming

0.1

0.15

0.2

0.25

CO in effluent [mole fr]

> FyFC Overview of Hydrogen Production – 1-4 Oct 07, Svendborg, DK - Références15 15HELION

Feed = Methane

1 2 3 4

600700

800900

10001100

0

0.05

0.1

Steam to Carbon Ratio

Outlet temperature

[°C]

High steam to carbon ration, low T

For reducing CO

Catalysis for CO Management �in Fuel Processing K.M. VandenBussche, S. Abdo, Q. Chen, J.S. Holmgren and A.R. Oroskar UOP LLC, Des Plaines, IL ARO Workshop on Fuel Processing June 19-21, 2000
Page 16: Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear Electrolysis Heating Fuel 35% TransportationFuel 40% Chemical Feedstock7% (Olefins, Aromatics)

Partial oxidation (POX) /autothermal reforming (ATR)

air

CH4, coal,

oil bio masse

Syn gas

H2, ~10 to 20 % CO

N2, NOx

T = 700 to 900 °C

P = 1 to 50 bar

CH4 + ½ O2 => CO + 2H2 / ∆h = -36 kJ/mol

> FyFC Overview of Hydrogen Production – 1-4 Oct 07, Svendborg, DK - Références16 16HELION

Sketch POX / ATR

oil bio masseHeat : POX

Heat = 0 : ATR

Page 17: Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear Electrolysis Heating Fuel 35% TransportationFuel 40% Chemical Feedstock7% (Olefins, Aromatics)

� Partial oxidation (POX)

w CH4 + ½ O2 => CO + 2H2 ∆h = -36 kJ/mol

w Combustion intern of a part of CH4

w CO purification

w Temperature range typically 750-1100 °C

Partial oxidation (POX) and autothermal reforming

> FyFC Overview of Hydrogen Production – 1-4 Oct 07, Svendborg, DK - Références17 17HELION

w Temperature range typically 750-1100 °C

w Partial oxidation is catalytic or non-catalytic

w Catalysts are Ni or noble metal on refractory oxides

� Autothermal reforming (ATR)

w Combination of steam reforming and partial oxidation

Catalysis for CO Management �in Fuel Processing K.M. VandenBussche, S. Abdo, Q. Chen, J.S. Holmgren and A.R. Oroskar UOP LLC, Des Plaines, IL ARO Workshop on Fuel Processing June 19-21, 2000
Page 18: Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear Electrolysis Heating Fuel 35% TransportationFuel 40% Chemical Feedstock7% (Olefins, Aromatics)

Equilibrium CO Content for Autothermal Reforming, No Steam Addition

0.08

0.1

0.12

0.14

0.16CO m

ole fraction [-]

> FyFC Overview of Hydrogen Production – 1-4 Oct 07, Svendborg, DK - Références18 18HELION

0

0.02

0.04

0.06

0.08

600 650 700 750 800 900 1000 1100

Outlet Temperature [°C]

CO m

ole fraction [-]

Catalysis for CO Management �in Fuel Processing K.M. VandenBussche, S. Abdo, Q. Chen, J.S. Holmgren and A.R. Oroskar UOP LLC, Des Plaines, IL ARO Workshop on Fuel Processing June 19-21, 2000
Page 19: Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear Electrolysis Heating Fuel 35% TransportationFuel 40% Chemical Feedstock7% (Olefins, Aromatics)

Hydrogen clean up

steam

High temperature

shift reaction

Heat

Syn gas

H2,

~10 to 20 % CO

T = 700 °C

P = 1 to 50 bar

CO +H2O <=> CO2 + 2 H2

/∆h = - 41 kJ/mol

T = 200 to 400 °C

P = 1 to 50 bar

CO +H2O <=> CO2 + 2 H2

/∆h = - 41 kJ/mol

H2,

~ 5 to 10 % CO

Low temperature

shift reaction

Preferential oxidation

> FyFC Overview of Hydrogen Production – 1-4 Oct 07, Svendborg, DK - Références19 19HELION

Heat

Heat

/∆h = - 41 kJ/mol

Heat

T < 200 °C

CO +O2 <=> CO2

/∆h

Preferential oxidation

H2,

~ 1 to 5 % CO

H2,

~ 0,1 to 5 ppm CO

3 steps for H2 clean up

Page 20: Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear Electrolysis Heating Fuel 35% TransportationFuel 40% Chemical Feedstock7% (Olefins, Aromatics)

Water Gas Shift Reaction

� CO + H2O = CO2 + H2 ∆∆∆∆H = - 42 kJ/mole

w Temperature range 600 -> 200 °C

l 400-600 °C : Fe-oxides, Chromia

l 300-400 °C : Fe-oxides, Chromia, Copper

> FyFC Overview of Hydrogen Production – 1-4 Oct 07, Svendborg, DK - Références20 20HELION

l 200-280 °C : Cu/ZnO systems

Catalysis for CO Management �in Fuel Processing K.M. VandenBussche, S. Abdo, Q. Chen, J.S. Holmgren and A.R. Oroskar UOP LLC, Des Plaines, IL ARO Workshop on Fuel Processing June 19-21, 2000
Page 21: Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear Electrolysis Heating Fuel 35% TransportationFuel 40% Chemical Feedstock7% (Olefins, Aromatics)

Equilibrated WGS Effluent, from SR at 800 °C

0.15

0.2

0.25

> FyFC Overview of Hydrogen Production – 1-4 Oct 07, Svendborg, DK - Références21 21HELION

1 23

4

500

400

300250

200

0

0.05

0.1

Mole fraction CO

Steam to Carbon Ratio

Temperature [°C]

3000 ppmv1000 ppmv

High steam to carbon ration, low T

For reducing CO

Catalysis for CO Management �in Fuel Processing K.M. VandenBussche, S. Abdo, Q. Chen, J.S. Holmgren and A.R. Oroskar UOP LLC, Des Plaines, IL ARO Workshop on Fuel Processing June 19-21, 2000
Page 22: Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear Electrolysis Heating Fuel 35% TransportationFuel 40% Chemical Feedstock7% (Olefins, Aromatics)

Fuel Processing Schemes: WGS Conclusions

� CO content is strong function of temperature and steam to carbon ratio

� Catalyst volumes become excessive at low temperature

Ô Strong need for high activity LTS catalyst

> FyFC Overview of Hydrogen Production – 1-4 Oct 07, Svendborg, DK - Références22 22HELION

Ô Strong need for high activity LTS catalyst

� Option of cutting off conversion

w Limitations of clean-up process

w Efficiency considerations

Catalysis for CO Management �in Fuel Processing K.M. VandenBussche, S. Abdo, Q. Chen, J.S. Holmgren and A.R. Oroskar UOP LLC, Des Plaines, IL ARO Workshop on Fuel Processing June 19-21, 2000
Page 23: Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear Electrolysis Heating Fuel 35% TransportationFuel 40% Chemical Feedstock7% (Olefins, Aromatics)

� Steam reforming

w Slow start-up

w Up to C6

w Radiant heat transfer

w Higher efficiency

Commonly Made Observations

� Autothermal

w Fast start-up

w Fuel flexible

w No heat transfer issues

w Lower efficiency

> FyFC Overview of Hydrogen Production – 1-4 Oct 07, Svendborg, DK - Références23 23HELION

w Higher efficiency

w Higher H2 concentration

w No oxygen/HC mixtures

w Lower efficiency

w N2 dilution

w Explosive mixtures

in contained space

Catalysis for CO Management �in Fuel Processing K.M. VandenBussche, S. Abdo, Q. Chen, J.S. Holmgren and A.R. Oroskar UOP LLC, Des Plaines, IL ARO Workshop on Fuel Processing June 19-21, 2000
Page 24: Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear Electrolysis Heating Fuel 35% TransportationFuel 40% Chemical Feedstock7% (Olefins, Aromatics)

Fuel Processing Schemes:CO Clean-Up Methods

� Preferential oxidation

� Selective methanation

� H2 selective membranes

� Pressure or temperature swing adsorption

> FyFC Overview of Hydrogen Production – 1-4 Oct 07, Svendborg, DK - Références24 24HELION

Ø The latter two are not catalytic and require higher pressure operation

Catalysis for CO Management �in Fuel Processing K.M. VandenBussche, S. Abdo, Q. Chen, J.S. Holmgren and A.R. Oroskar UOP LLC, Des Plaines, IL ARO Workshop on Fuel Processing June 19-21, 2000
Page 25: Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear Electrolysis Heating Fuel 35% TransportationFuel 40% Chemical Feedstock7% (Olefins, Aromatics)

Preferential Oxidation Catalysis

� CO + 0,5 O2 = CO2 ∆∆∆∆H = -280 kJ/mole

� H2 + 0,5 O2 = H2O ∆∆∆∆H = -240 kJ/mole

w Temperature range 80-200 °Cl At fuel cell or WGS conditions

> FyFC Overview of Hydrogen Production – 1-4 Oct 07, Svendborg, DK - Références25 25HELION

w Noble metals on oxide carrier (Ru, Pt, Au)l Kahlich et al. , Ulm University

l Oh et al., GM R&D

w Selectivity appears to be strongly dependent on temperature and pO2 ÔÔÔÔ engineering solutions

l Heil et al., Daimler Benz, US 5874051

Catalysis for CO Management �in Fuel Processing K.M. VandenBussche, S. Abdo, Q. Chen, J.S. Holmgren and A.R. Oroskar UOP LLC, Des Plaines, IL ARO Workshop on Fuel Processing June 19-21, 2000
Page 26: Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear Electrolysis Heating Fuel 35% TransportationFuel 40% Chemical Feedstock7% (Olefins, Aromatics)

Summary Reforming

� By steam reforming (steam methane reforming – « SMR »)w CH4 + H2O => CO + H2 ∆h = 206 kJ/mol

w CO +H2O => CO2 + 2 H2 + heat ∆h = - 41 kJ/mol

w 700 to 850 °C / 3 to 25 bar / CO content

w External heat source / heat supplied by steam

w Catalysts are Ni on Alumina, Alkali promoted, optimised for long-term stability (>3 years) at high temperatures

� By partial oxidation (POX)w CH4 + ½ O2 => CO + 2H2 ∆h = -36 kJ/mol

> FyFC Overview of Hydrogen Production – 1-4 Oct 07, Svendborg, DK - Références26 26HELION

w CH4 + ½ O2 => CO + 2H2 ∆h = -36 kJ/mol

w Combustion intern of a part of CH4

w CO purification

� By autothermal reforming (ATR)w Combination of steam reforming and partial oxidation

Page 27: Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear Electrolysis Heating Fuel 35% TransportationFuel 40% Chemical Feedstock7% (Olefins, Aromatics)

Summary CO clean up

> FyFC Overview of Hydrogen Production – 1-4 Oct 07, Svendborg, DK - Références27 27HELION

Texte de conclusion sur 1 ligne… sur 2 lignes

Page 28: Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear Electrolysis Heating Fuel 35% TransportationFuel 40% Chemical Feedstock7% (Olefins, Aromatics)

Modèle de titre sur 1 ligne

GAZNAT

5EAU

EAUVAPGAZCHAUD PRODPRIM

AIR

AIRCHAUD

ATRIN

PRODATR

SHIFTINSHIFT12SHIFT2IN

V1

HEAT1

MIX1

HEAT2RPRIM

V2

MIX2

ATR

HEAT4

HEAT5SHIFT1

SHIFT2

> FyFC Overview of Hydrogen Production – 1-4 Oct 07, Svendborg, DK - Références28 28HELION

Complex system

PROXINPROXOUT

SHIFTOUT

GAZMIXIN

AIRPROX

SEPIN

GAZSEP

EAUSEP

PROX

HEAT6

MIX3

HEAT7

SEPARA

Page 29: Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear Electrolysis Heating Fuel 35% TransportationFuel 40% Chemical Feedstock7% (Olefins, Aromatics)

Comparaison

Benefits high efficiency smaller size

emissions costs for small units

costs for large units simple system

Technology SMR ATR / POX

> FyFC Overview of Hydrogen Production – 1-4 Oct 07, Svendborg, DK - Références29 29HELION

costs for large units simple system

Challenges complex system lower efficiency

Sensitive to natural gas qualities H2 purification

Page 30: Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear Electrolysis Heating Fuel 35% TransportationFuel 40% Chemical Feedstock7% (Olefins, Aromatics)

Hydrogen from water splitting

»Natural gas

> FyFC Overview of Hydrogen Production – 1-4 Oct 07, Svendborg, DK - Références30 30HELION

Texte de conclusion sur 1 ligne… sur 2 lignes

Page 31: Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear Electrolysis Heating Fuel 35% TransportationFuel 40% Chemical Feedstock7% (Olefins, Aromatics)

High temperature water vapour electrolysis

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

Ene

rgy

E/k

wh/

m3 H

2

theoretical stack total enery demand= heat demand + electrical energy demand: ∆hr

theoretical stack electrical energy demand: ∆gr

liquid water

steam

theoretical and real energy imput to electrolyser

real PEM Esystem

"real" SOECsystem

> FyFC Overview of Hydrogen Production – 1-4 Oct 07, Svendborg, DK - Références31 31HELION

0,0

0,5

1,0

0 100 200 300 400 500 600 700 800 900 1000

Temperature T/°C

theoretical stack heat demand: T∆sr

liquid water

p = 1 bar

T (°C) 25 600 800 1000

E0T(V) 1.23 1.035 1 0.977

10.918 1

Cs0(kWh/Nm3) 2.94 2.47 2.38 2.19

Operation at higher temperature

enables lower theoretical electrical consumption

Page 32: Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear Electrolysis Heating Fuel 35% TransportationFuel 40% Chemical Feedstock7% (Olefins, Aromatics)

> FyFC Overview of Hydrogen Production – 1-4 Oct 07, Svendborg, DK - Références32 32HELION

Page 33: Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear Electrolysis Heating Fuel 35% TransportationFuel 40% Chemical Feedstock7% (Olefins, Aromatics)

> FyFC Overview of Hydrogen Production – 1-4 Oct 07, Svendborg, DK - Références33 33HELION

Page 34: Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear Electrolysis Heating Fuel 35% TransportationFuel 40% Chemical Feedstock7% (Olefins, Aromatics)

Technologie alcaline Technologie PEM Electrolyse haute température

Principaux avantages • Technologie éprouvée

depuis des années• Simplicité• Technologie la moins

coûteuse

• Pas d’électrolyte corrosif• Bonne stabilité chimique• Faible perte ohmique à

l’électrolyte• Bonne conductivité

protonique• Bonne résistance mécanique• Technologie très modulaire

• Possibilité de rendement élevé

• Pas d’électrolyte corrosif• Pas de problèmes de

distribution de liquide et d’écoulement

• Technologie très modulaire• Surtension d’électrodes

réduites

Principaux inconvénients • Rendement plus faible

(pertes ohmiques • Prix élevé de la membrane• Utilisation de catalyseurs à

• Besoin de chaleur haute température

> FyFC Overview of Hydrogen Production – 1-4 Oct 07, Svendborg, DK - Références34 34HELION

(pertes ohmiques élevées, surtension aux électrodes

• Densité de courant faible• Electrolyte corrosif

• Utilisation de catalyseurs à partir de matériaux précieux

température• Matériaux doivent être

résistants à la chaleur• Coût des procédés de

fabrication des matériaux élevé

• Durée de vie de la cellule actuellement très faible

Remarques De grandes unités d’électrolyse alcalines ont été construites dans le passé.

Le développement de catalyseurs et membranes bon marchés sont les clés pour la commercialisation à un prix abordable de cette technologie.

Procédé encore à l’échelle du laboratoire.

Etude d’ALPHEA, B.4.1.1.6/BBe /01-05 du 7Sep. 200T
Page 35: Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear Electrolysis Heating Fuel 35% TransportationFuel 40% Chemical Feedstock7% (Olefins, Aromatics)

> FyFC Overview of Hydrogen Production – 1-4 Oct 07, Svendborg, DK - Références35 35HELION

Page 36: Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear Electrolysis Heating Fuel 35% TransportationFuel 40% Chemical Feedstock7% (Olefins, Aromatics)

> FyFC Overview of Hydrogen Production – 1-4 Oct 07, Svendborg, DK - Références36 36HELION

Page 37: Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear Electrolysis Heating Fuel 35% TransportationFuel 40% Chemical Feedstock7% (Olefins, Aromatics)

Comparison table of Water Electrolysis technologies

Technique Alkaline PEMHigh Temperature

(O2- conduction)

High Temperature

(H+ conduction)

Common electrolyte

uAqueous KOH solution

uAcidic Polymer membrane

u Solid Oxide (ceramic compound)

u Proton Conducting Ceramics

Expected application

s

u Industrial applications

u Stationary applications

u Stationary and mobile applications

u Stationary. To be coupled with high T solar or nuclear

Advantages

uMature technology

u Significant operating record in industrial

uQuick start-up

u Significant higher electrical efficiencies

u Freedom of architecture

uGood resistance to poisoning

u Softer conditions for structure and

> FyFC Overview of Hydrogen Production – 1-4 Oct 07, Svendborg, DK - Références37 37HELION

Texte de conclusion sur 1 ligne… sur 2 lignes

industrial applications poisoning

for structure and sealants

DrawbacksuKOH caustic

u “Low” operating pressures

u Limited lifetime of membranes

uHigh costs

u Low capacity

uNot mature

u Long start-up time

uNot mature

u Limited lifetime of structure and sealants due to thermo mechanical stress

u Less resistance to catalyst poisoning

Major R&D challenge

uDecrease capital costs

uHigher pressure and temperature for increased efficiency

uMaterial developments

uReduce price of catalysts

uMaterial development including structure and sealants…

u Stack design

u Identification and development of a suitable electrolyte

uDemonstrate feasibility

Page 38: Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear Electrolysis Heating Fuel 35% TransportationFuel 40% Chemical Feedstock7% (Olefins, Aromatics)

> FyFC Overview of Hydrogen Production – 1-4 Oct 07, Svendborg, DK - Références38 38HELION

Page 39: Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear Electrolysis Heating Fuel 35% TransportationFuel 40% Chemical Feedstock7% (Olefins, Aromatics)

Electrolysis versus SMR

� 1970 -1980: SMR supplants electrolysis. Numerous players (GE, ABB?) get out the electrolyzer’s business

� Today, the major market is for industrial application, mainly in the 3rd world, in aeras where natural gas is not available or expensive, for the markets below.

� In Europe, Japan and USA, use of electrolyzers is mainly for cooling and corrosion control in nuclear reactors.

� Electrolyzers for producing hydrogen as an energy carrier are a small niche market.

Key figures

Norsk Hydro Large scale electrolyzer (30,000 m3/h, i.e. 65t/day) used in the past (1948 -1990) for ammonia production

> FyFC Overview of Hydrogen Production – 1-4 Oct 07, Svendborg, DK - Références39 39HELION

� Most of the time the electrolyzer outflow is under 500 Nm3/h, i.e. 1,08 t/day

El Segundo SMR plant, California. 98,000 Nm3/hi.e. 212 t/day, for a Chevron Texaco’s refineryMain types of markets for H2 produced by electrolysis today

Corrosion control

CoolingHydrogenatio

nProtective atmosphere

Nuclear reactors

Power generators

H2 peroxide

Organic chemicals

Edible oil,

fatty acids

Metallurgy

Electronics

Float Glass

Source: interviews (Norsk Hydro, Accagen, Hydrogenics)

Page 40: Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear Electrolysis Heating Fuel 35% TransportationFuel 40% Chemical Feedstock7% (Olefins, Aromatics)

Three H2 production technologies through water electrolysis

Technique Alkaline electrolysisPolymer Electrolyte Membrane (PEM)

electrolysis

High temperature electrolysis

Electrolyte Aqueous KOH solution Acidic Polymer membraneSolid Oxide = hard, non

porous ceramic compou

Reactions

Electrolyte:

Cathode:

Anode:

Anode:

Cathode:

Anode:

Cathode

Total

4 H20 à 4 H+ + 4 OH-

4 H+ + 4 e- à 2 H2

4 OH- à O2 + 2 H20 + 4 e-

4 H20 à 1/2 O2 + 2H+ + 2e-

2 H+ + 2e- à H2

O2- à 1/2 O2 + 2e-

H2O(g) + 2e- à H2 + O2-

> FyFC Overview of Hydrogen Production – 1-4 Oct 07, Svendborg, DK - Références40 40HELION

Total Reaction

2 H20 à 02 + 2 H2

Characteristics

Operating pressures 3 - 30 bar

Commercial electrolyzers = a number of electrolytic cells arranged in a cell stack

Operating pressures: several 100 bars

Typical technology: SOF

operating at 700 – 1000

Applications Stationary applications Stationary and mobile applications

Stationary. To be coupled whigh T solar or nuclear

AdvantagesMature technology

Significant operating record in industrial applications

Higher turndown ratio

Increased safety (no KOH electrolytes)

More compact design

Significant higher overaprocess efficiencies

KOH caustic

Limited lifetime of the membranes

High costs

Page 41: Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear Electrolysis Heating Fuel 35% TransportationFuel 40% Chemical Feedstock7% (Olefins, Aromatics)

H distribution Clients

Renewable

Energies

> FyFC Overview of Hydrogen Production – 1-4 Oct 07, Svendborg, DK - Références41 41HELION

H2 distribution

Electrical Grid

H2 storageWindmills Fuel cellElectrolysis

Conversion

Clients

O2

Biomass

Page 42: Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear Electrolysis Heating Fuel 35% TransportationFuel 40% Chemical Feedstock7% (Olefins, Aromatics)

> FyFC Overview of Hydrogen Production – 1-4 Oct 07, Svendborg, DK - Références42 42HELION

Page 43: Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear Electrolysis Heating Fuel 35% TransportationFuel 40% Chemical Feedstock7% (Olefins, Aromatics)

Photo-electrolysis (photolysis)

> FyFC Overview of Hydrogen Production – 1-4 Oct 07, Svendborg, DK - Références43 43HELION

Page 44: Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear Electrolysis Heating Fuel 35% TransportationFuel 40% Chemical Feedstock7% (Olefins, Aromatics)

Photo-biological production (biophotolysis)

> FyFC Overview of Hydrogen Production – 1-4 Oct 07, Svendborg, DK - Références44 44HELION

Page 45: Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear Electrolysis Heating Fuel 35% TransportationFuel 40% Chemical Feedstock7% (Olefins, Aromatics)

High temperature thermo-chemical water slitting / iodine / sulphur cycle (IS cycle)

� H2SO4 => SO2 + H2O + ½ O2 850 °C

� I2 + SO2 + 2H2O => H2SO4 + 2 HI 120 °C

� 2 HI => I2 + H2 450 °C

� H O => H + ½ O

> FyFC Overview of Hydrogen Production – 1-4 Oct 07, Svendborg, DK - Références45 45HELION

� H2O => H2 + ½ O2

Page 46: Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear Electrolysis Heating Fuel 35% TransportationFuel 40% Chemical Feedstock7% (Olefins, Aromatics)

Production technologies from natural gas

Technique Steam Methane Reforming (SMR) Partial Oxidation (POX) Autothermal Reforming (ATR)

Heat

endothermic

Heat often supplied from the combustion of some of the CH4 feed-

gas

exothermic exothermic

Inputs WaterO2

Water for water gas shift reaction

Water + O2

Water for water gas shift reaction

ReactionCH4 + H2O + heat àààà CO + 3 H2

Product gas: 12% of COCH4 + ½ O2 àààà CO + 2 H2 + heat

CH4 + ½ O2 àààà CO + 2 H2 + heat

CH4 + H2O + heat àààà CO + 3 H2

Conversion of CO converted to CO and H through the Water-gas shift reaction

> FyFC Overview of Hydrogen Production – 1-4 Oct 07, Svendborg, DK - Références46 46HELION

Conversion of CO

CO converted to CO2 and H2. through the Water-gas shift reaction

CO + H2O àààà CO2 + H2 + heat

Characteristics 700 – 850°C, pressures 3 – 25 bars. Outlet T: 950 – 1100 °C

Combination of SMR and POX

Outlet T: 950 – 1100 °C

Gas pressure up to 100 bars

Benefits High efficiency Smaller size (No need for any external heating of the reactor)

Challenges

Costs for large units

Complex system

Sensitive to natural gas qualities

Cost for small units

Simple system

Lower efficiency

H2 purification

Emissions/flaring

Page 47: Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear Electrolysis Heating Fuel 35% TransportationFuel 40% Chemical Feedstock7% (Olefins, Aromatics)

� Fixed or fluidized bed. At industrial development stage

w Fluidized bed: more flexibility, better performances

w Other tech like “circulating bed”

w Texaco: fluidized bed

� Limited capacity of production because of price and availability (500,000 t/year = 50,000 hect)

� Erratic fuels: inconsistent quality, poor quality

� Maybe the oldest method of producing H2

� Source of city gas

� Variety of gasification processes

� Main processes: Texaco (70 atm, 1200°C, entrained bed)

& Kopper Totzek

Gasification of coal Gasification of biomass

Production technologies from coal: commercially mature, but more complex than the production of

H2 from natural gas

> FyFC Overview of Hydrogen Production – 1-4 Oct 07, Svendborg, DK - Références47 47HELION

� Erratic fuels: inconsistent quality, poor quality control

� Large scale systems: cheaper and lower quality fuels

� Smaller plants: high level of quality better fuel homogeneity

� Biomass gasification is an R&D area shared between H2 production and biofuels production. Gasification & pyrolysis are considered the most promising medium term technos for the commercialization of H2 prod from biomasse

& Kopper Totzek

w Fixed bed

w Fluidized bed

w Entrained flow

� Favorites: high T entrained flow processes

� Typical reaction (endothermic)

� C(s) + H20 + heat àààà CO + H2

� Then water gas shift reaction

� CO + H2O àààà CO2 + H2 + heat

� Higher cost

Page 48: Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear Electrolysis Heating Fuel 35% TransportationFuel 40% Chemical Feedstock7% (Olefins, Aromatics)

Production technologies from natural gasTechnique Steam Methane Reforming (SMR) Partial Oxidation (POX) Autothermal Reforming (ATR)

Heat

endothermic

Heat often supplied from the combustion of some of the CH4

feed-gas

exothermic exothermic

Inputs Water

O2

Water for water gas shift reaction

Water + O2

Water for water gas shift reaction

ReactionCH4 + H2O + heat àààà CO + 3 H2

Product gas: 12% of COCH4 + ½ O2 àààà CO + 2 H2 + heat

CH4 + ½ O2 àààà CO + 2 H2 + heat

CH4 + H2O + heat àààà CO + 3 H2

> FyFC Overview of Hydrogen Production – 1-4 Oct 07, Svendborg, DK - Références48 48HELION

Conversion of CO

CO converted to CO2 and H2. through the Water-gas shift reaction

CO + H2O àààà CO2 + H2 + heat

Characteristics

700 – 1000°C, pressures 3 – 25 bars.

Outlet T: 950 – 1100 °C

Combination of SMR and POX

Outlet T: 950 – 1100 °C

Gas pressure up to 100 bars

BenefitsHigh efficiency

Good costs for large units

Smaller size (No need for any external heating of the reactor)

Good costs for small units

ChallengesComplex system

Sensitive to natural gas qualities

Simple system

Lower efficiency

H2 purification

Emissions/flaring

Page 49: Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear Electrolysis Heating Fuel 35% TransportationFuel 40% Chemical Feedstock7% (Olefins, Aromatics)

Hydrogen and intermittent renewable sources2 projects, illustrating 2 different problematic

2 kWh

100 kWh

40 MWh

»Remote site

Remote energy – site electrification Renewable sources integration on electric grids

»Peak shaving

PEPITEdemo

MYRTEdemo

> FyFC Overview of Hydrogen Production – 1-4 Oct 07, Svendborg, DK - Références49 49HELION

1 – 10 kW 10 – 100 kW 500 kW

2 demonstration systems forecasted

Development of a techno-economic sizing tool for hydrogen hybrid systems

+

qPépite project (south of France) is under ANR sponsorship

qMyrte project (Corsica) is associated to an industrial program, encompassing a 3 MW PV power plant

Page 50: Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear Electrolysis Heating Fuel 35% TransportationFuel 40% Chemical Feedstock7% (Olefins, Aromatics)

Hydrogen cost depending on the energy source

15

20

25

30

/GJ produce

d hyd

rogen

H2 electrolytic

H2 ex natural gas0.03 €/KWh

0.05 €/KWh

> FyFC Overview of Hydrogen Production – 1-4 Oct 07, Svendborg, DK - Références50 50HELION

5

10

15

0 5 10 15 20

€/GJ source

€/GJ produce

d hyd

rogen

H2 ex biomass

H2 ex coal

Le coût de l’ hydrogène produit à partir du gaz naturel est le plus bas . Sur la base d’un prix du gaz naturel de 3€/GJ, le coût de l’ hydrogène est d’environ 7€/GJ. L’hydrogène peut être produit à un coût croissant, à partir de charbon , de biomasse et par électrolyse. Selon le prix de l’électricité, le coût de l’hydrogène produit varie entre 20 et 25 €/GJ.. La production des unités industrielles dédiées, qui représente actuellement l ’équivalent de 73 Mtep, est obtenue à plus de 90% à partir d’ hydrocarbures,essentiellement le gaz naturel, pour 85%. Hydrogen and Fuel Cells�IFP activities François Kalaydjian IFP Sustainable Development Division
Page 51: Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear Electrolysis Heating Fuel 35% TransportationFuel 40% Chemical Feedstock7% (Olefins, Aromatics)

Future energy production

> FyFC Overview of Hydrogen Production – 1-4 Oct 07, Svendborg, DK - Références51 51HELION

Page 52: Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear Electrolysis Heating Fuel 35% TransportationFuel 40% Chemical Feedstock7% (Olefins, Aromatics)

Annex

� Biogas gasification

wExamples for hydrogen production

> FyFC Overview of Hydrogen Production – 1-4 Oct 07, Svendborg, DK - Références52 52HELION

Page 53: Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear Electrolysis Heating Fuel 35% TransportationFuel 40% Chemical Feedstock7% (Olefins, Aromatics)

Gasification plant Texaco

> FyFC Overview of Hydrogen Production – 1-4 Oct 07, Svendborg, DK - Références53 53HELION

Page 54: Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear Electrolysis Heating Fuel 35% TransportationFuel 40% Chemical Feedstock7% (Olefins, Aromatics)

Gasification plant Marik

> FyFC Overview of Hydrogen Production – 1-4 Oct 07, Svendborg, DK - Références54 54HELION

Page 55: Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear Electrolysis Heating Fuel 35% TransportationFuel 40% Chemical Feedstock7% (Olefins, Aromatics)

> FyFC Overview of Hydrogen Production – 1-4 Oct 07, Svendborg, DK - Références55 55HELION

Page 56: Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear Electrolysis Heating Fuel 35% TransportationFuel 40% Chemical Feedstock7% (Olefins, Aromatics)

> FyFC Overview of Hydrogen Production – 1-4 Oct 07, Svendborg, DK - Références56 56HELION

Page 57: Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear Electrolysis Heating Fuel 35% TransportationFuel 40% Chemical Feedstock7% (Olefins, Aromatics)

EM Group Gasifier

> FyFC Overview of Hydrogen Production – 1-4 Oct 07, Svendborg, DK - Références57 57HELION

Page 58: Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear Electrolysis Heating Fuel 35% TransportationFuel 40% Chemical Feedstock7% (Olefins, Aromatics)

> FyFC Overview of Hydrogen Production – 1-4 Oct 07, Svendborg, DK - Références58 58HELION

Page 59: Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear Electrolysis Heating Fuel 35% TransportationFuel 40% Chemical Feedstock7% (Olefins, Aromatics)

> FyFC Overview of Hydrogen Production – 1-4 Oct 07, Svendborg, DK - Références59 59HELION

Page 60: Overview of Hydrogen Production · Electrolysis 4% Coal 4% Hydropower Renewables Nuclear Electrolysis Heating Fuel 35% TransportationFuel 40% Chemical Feedstock7% (Olefins, Aromatics)

> FyFC Overview of Hydrogen Production – 1-4 Oct 07, Svendborg, DK - Références60 60HELION