Overview 1. (L1) Cascadia real-time GPS Station Network (PANGA + PBO) 2.(L2) GPS processing...

36
Real-time GPS in Cascadia and its application to hazards reduction Pacific Northwest Geodetic Array Dept. of Geological Sciences Central Washington University www.panga.org Tim Melbourne Marcelo Santillan Craig Scrivner Walter Szeliga CS481 Team Risc (GPS Cockpit) Frank Webb (JPL) Support: NASA ROSES NNH07ZDA001N and USGS NEHRP

Transcript of Overview 1. (L1) Cascadia real-time GPS Station Network (PANGA + PBO) 2.(L2) GPS processing...

Page 1: Overview 1. (L1) Cascadia real-time GPS Station Network (PANGA + PBO) 2.(L2) GPS processing (phase+psuedorange data -> position estimates) 3.(L3) EEW.

Real-time GPS in Cascadia and its application to hazards reduction

Pacific Northwest Geodetic ArrayDept. of Geological Sciences

Central Washington Universitywww.panga.org

Tim MelbourneMarcelo Santillan

Craig ScrivnerWalter Szeliga

CS481 Team Risc (GPS Cockpit)

Frank Webb (JPL)

Support: NASA ROSES NNH07ZDA001N and USGS NEHRP

Page 2: Overview 1. (L1) Cascadia real-time GPS Station Network (PANGA + PBO) 2.(L2) GPS processing (phase+psuedorange data -> position estimates) 3.(L3) EEW.

Overview1. (L1) Cascadia real-time GPS Station Network (PANGA + PBO)

2. (L2) GPS processing (phase+psuedorange data -> position estimates)

3. (L3) EEW products derived from rtGPS position streams

4. Example earthquakes as examples – 2010 Sierra El Mayor, 2010 Maule, 2011 Tohoku-Oki

5. GPS Cockpit Project: Managing rtGPS time series and derived products

Page 3: Overview 1. (L1) Cascadia real-time GPS Station Network (PANGA + PBO) 2.(L2) GPS processing (phase+psuedorange data -> position estimates) 3.(L3) EEW.

SeattleM6-7 crustal

faults not well known, <1m

EEWM8-9: megathrust, <5m EEW

Page 4: Overview 1. (L1) Cascadia real-time GPS Station Network (PANGA + PBO) 2.(L2) GPS processing (phase+psuedorange data -> position estimates) 3.(L3) EEW.

450 rtGPS stations: PANGA (~220) + PBO (~230)

Page 5: Overview 1. (L1) Cascadia real-time GPS Station Network (PANGA + PBO) 2.(L2) GPS processing (phase+psuedorange data -> position estimates) 3.(L3) EEW.

Latency: most data arrives in less than 1 secondPANGA telemetered to CWU

PBO telemetered to UNAVCO, then to CWU

Arrival at CWU Arrival at Boulder

Page 6: Overview 1. (L1) Cascadia real-time GPS Station Network (PANGA + PBO) 2.(L2) GPS processing (phase+psuedorange data -> position estimates) 3.(L3) EEW.

Relative Positioning Absolute (Point) Positioning

(L2) Real-time processing strategies

Higher relative precision

Requires stable reference station

Requires dense network

Primarily commercial RTK

Lower absolute precision (improving)

Single station-capable

Linear wrt station #

Requires rt orbit + clock corrections

Requires extensive data editing

Page 7: Overview 1. (L1) Cascadia real-time GPS Station Network (PANGA + PBO) 2.(L2) GPS processing (phase+psuedorange data -> position estimates) 3.(L3) EEW.

- (1) Relative positioning: Trimble commercial product (joint w/ WSRN and OGRN RTK processing)

- (2) Real-time GIPSY Point positioning:

- (3) Developing standard GIPSY (not RTG) processing with clock and orbit correction streams from DLR (German Aerospace Center, Munich, Hauschild)

2. PANGA/CWU real-time processing

Page 8: Overview 1. (L1) Cascadia real-time GPS Station Network (PANGA + PBO) 2.(L2) GPS processing (phase+psuedorange data -> position estimates) 3.(L3) EEW.

(Method 1) Trimble T4D operated jointly with WSRN & OGRN

Page 9: Overview 1. (L1) Cascadia real-time GPS Station Network (PANGA + PBO) 2.(L2) GPS processing (phase+psuedorange data -> position estimates) 3.(L3) EEW.

Trimble T4D operated jointly with WSRN & OGRN

Page 10: Overview 1. (L1) Cascadia real-time GPS Station Network (PANGA + PBO) 2.(L2) GPS processing (phase+psuedorange data -> position estimates) 3.(L3) EEW.

Method 2: JPL GDGPS RT-GIPSY SYSTEM (Bar-Sever)

Page 11: Overview 1. (L1) Cascadia real-time GPS Station Network (PANGA + PBO) 2.(L2) GPS processing (phase+psuedorange data -> position estimates) 3.(L3) EEW.

Requires clock corrections streamed over Ntrip (DLR, IGS

Method 3: CWU short-arc real-time processing with GIPSY

Page 12: Overview 1. (L1) Cascadia real-time GPS Station Network (PANGA + PBO) 2.(L2) GPS processing (phase+psuedorange data -> position estimates) 3.(L3) EEW.

IGS Final

Method 3: CWU real-time processing with GIPSY

Page 13: Overview 1. (L1) Cascadia real-time GPS Station Network (PANGA + PBO) 2.(L2) GPS processing (phase+psuedorange data -> position estimates) 3.(L3) EEW.

Method 3: CWU real-time processing with GIPSY-Requires extensive phase-level data QC-Less than 5s latency

Page 14: Overview 1. (L1) Cascadia real-time GPS Station Network (PANGA + PBO) 2.(L2) GPS processing (phase+psuedorange data -> position estimates) 3.(L3) EEW.

BREW

CNCR

CABL

TRND

CHZZ

~10cm deviations are common in all methods

Page 15: Overview 1. (L1) Cascadia real-time GPS Station Network (PANGA + PBO) 2.(L2) GPS processing (phase+psuedorange data -> position estimates) 3.(L3) EEW.

2010 Maule Chile M8.8

Mike Bevis, UNAVCO

4. Example Earthquakes

Page 16: Overview 1. (L1) Cascadia real-time GPS Station Network (PANGA + PBO) 2.(L2) GPS processing (phase+psuedorange data -> position estimates) 3.(L3) EEW.

2010 Maule: Absolute point positioning of CONZ

2010 Chile M8.8

east

north3

m

Page 17: Overview 1. (L1) Cascadia real-time GPS Station Network (PANGA + PBO) 2.(L2) GPS processing (phase+psuedorange data -> position estimates) 3.(L3) EEW.

Sierra El Mayor, 4/4/2010

Page 18: Overview 1. (L1) Cascadia real-time GPS Station Network (PANGA + PBO) 2.(L2) GPS processing (phase+psuedorange data -> position estimates) 3.(L3) EEW.

Good agreement between GPS PP and Accelerometer Data

Page 19: Overview 1. (L1) Cascadia real-time GPS Station Network (PANGA + PBO) 2.(L2) GPS processing (phase+psuedorange data -> position estimates) 3.(L3) EEW.

CWU, pp., 5 minutes

http://www.panga.cwu.edu/events/baja/

PBO, relative p., 24+24 hr

http://supersites.earthobservations.org/baja.php

Absolute vs. relative positioning

Page 20: Overview 1. (L1) Cascadia real-time GPS Station Network (PANGA + PBO) 2.(L2) GPS processing (phase+psuedorange data -> position estimates) 3.(L3) EEW.

pgDisplacement- 2010 Sierra El Mayor

GPS PGD Seismic PGA

Page 21: Overview 1. (L1) Cascadia real-time GPS Station Network (PANGA + PBO) 2.(L2) GPS processing (phase+psuedorange data -> position estimates) 3.(L3) EEW.

2011 Tohoku-Oki Earthquake

GEONET GPS ARRAY

Page 22: Overview 1. (L1) Cascadia real-time GPS Station Network (PANGA + PBO) 2.(L2) GPS processing (phase+psuedorange data -> position estimates) 3.(L3) EEW.
Page 23: Overview 1. (L1) Cascadia real-time GPS Station Network (PANGA + PBO) 2.(L2) GPS processing (phase+psuedorange data -> position estimates) 3.(L3) EEW.
Page 24: Overview 1. (L1) Cascadia real-time GPS Station Network (PANGA + PBO) 2.(L2) GPS processing (phase+psuedorange data -> position estimates) 3.(L3) EEW.

+15s:Seismic Detection

JMA: M6.8

NEIC W phase:M9.0~20 minutes

Page 25: Overview 1. (L1) Cascadia real-time GPS Station Network (PANGA + PBO) 2.(L2) GPS processing (phase+psuedorange data -> position estimates) 3.(L3) EEW.

2011 Tohoku-Oki 3d GPS displacements (3x speed)

Page 26: Overview 1. (L1) Cascadia real-time GPS Station Network (PANGA + PBO) 2.(L2) GPS processing (phase+psuedorange data -> position estimates) 3.(L3) EEW.

+60s: Mw 8.47

GPS Moment Estimate

Page 27: Overview 1. (L1) Cascadia real-time GPS Station Network (PANGA + PBO) 2.(L2) GPS processing (phase+psuedorange data -> position estimates) 3.(L3) EEW.

+90s: Mw 8.80

GPS Moment Estimate

Page 28: Overview 1. (L1) Cascadia real-time GPS Station Network (PANGA + PBO) 2.(L2) GPS processing (phase+psuedorange data -> position estimates) 3.(L3) EEW.

+120s: Mw 9.04

GPS Moment Estimate

Page 29: Overview 1. (L1) Cascadia real-time GPS Station Network (PANGA + PBO) 2.(L2) GPS processing (phase+psuedorange data -> position estimates) 3.(L3) EEW.

+180s: Mw 9.05

GPS Moment Estimate

Page 30: Overview 1. (L1) Cascadia real-time GPS Station Network (PANGA + PBO) 2.(L2) GPS processing (phase+psuedorange data -> position estimates) 3.(L3) EEW.

+15s:Seismic Detection

JMA: M6.8

NEIC W phase:M9.0~20 minutes

60s:M8.5 90s:M8.8 120s:M9.04

Page 31: Overview 1. (L1) Cascadia real-time GPS Station Network (PANGA + PBO) 2.(L2) GPS processing (phase+psuedorange data -> position estimates) 3.(L3) EEW.

5. GPS Cockpit

-Time Series viewer (interactive): negation of false positives-Data Aggregator (Perl, modular, talk to Craig Scrivner)-Many new derived products:

-DefMaps-Inversions-GPS ShakeCast

-Assimilation into seismic EEW not obvious

Page 32: Overview 1. (L1) Cascadia real-time GPS Station Network (PANGA + PBO) 2.(L2) GPS processing (phase+psuedorange data -> position estimates) 3.(L3) EEW.

GPS Cockpit

DefMap Slip

Page 33: Overview 1. (L1) Cascadia real-time GPS Station Network (PANGA + PBO) 2.(L2) GPS processing (phase+psuedorange data -> position estimates) 3.(L3) EEW.

GPS CockpitGPS Cockpit

Page 34: Overview 1. (L1) Cascadia real-time GPS Station Network (PANGA + PBO) 2.(L2) GPS processing (phase+psuedorange data -> position estimates) 3.(L3) EEW.

GPS CockpitGPS Cockpit

Page 35: Overview 1. (L1) Cascadia real-time GPS Station Network (PANGA + PBO) 2.(L2) GPS processing (phase+psuedorange data -> position estimates) 3.(L3) EEW.

Time for a demo!

Page 36: Overview 1. (L1) Cascadia real-time GPS Station Network (PANGA + PBO) 2.(L2) GPS processing (phase+psuedorange data -> position estimates) 3.(L3) EEW.

Conclusions1. Cascadia has mature real-time GPS networks (PANGA + PBO)

2. Data analysis is evolving rapidly

3. EEW products based on rtGPS position streams are also improving

4. Recent earthquakes show the importance of rtGPS in hazards monitoring

5. GPS Cockpit: First release on March 15