Outlook of the lecture Magnetism in nutshell X‐ray absorption ...magnetism.eu › esm › 2018 ›...

49
Outlook of the lecture Magnetism in nutshell X‐ray absorption spectroscopy XAS Magnetic XAS = XMCD (X‐ray Magnetic Circular Dichroism) Eberhard Goering, MPI‐IS, Stuttgart

Transcript of Outlook of the lecture Magnetism in nutshell X‐ray absorption ...magnetism.eu › esm › 2018 ›...

Page 1: Outlook of the lecture Magnetism in nutshell X‐ray absorption ...magnetism.eu › esm › 2018 › slides › goering-slides1.pdf · •X‐ray absorption spectroscopy XAS •Magnetic

Outlook of the lecture 

• Magnetism in nutshell• X‐ray absorption spectroscopy XAS• Magnetic XAS = XMCD (X‐ray Magnetic Circular Dichroism)

Eberhard Goering, MPI‐IS, Stuttgart

Page 2: Outlook of the lecture Magnetism in nutshell X‐ray absorption ...magnetism.eu › esm › 2018 › slides › goering-slides1.pdf · •X‐ray absorption spectroscopy XAS •Magnetic

Magnetism in a nutshell• „Rotating“ charges produce magnetic field (angular momentum)

• There are two types spin (S)  and orbital (L) magnetic moments

s

zB

0

866.023

1sss

2

2

macroscopic

atomistic

L s 

L is often quenched (3d) = close to zero     super important, but hard to quantify! 

interacts with the lattice

Magneton sBohr' factor Gg

J/T 10274.9 2 24

B

BBzBzzSBzzL SSgmLm

Magnetism is related to angular momenta of charges

L and S

Page 3: Outlook of the lecture Magnetism in nutshell X‐ray absorption ...magnetism.eu › esm › 2018 › slides › goering-slides1.pdf · •X‐ray absorption spectroscopy XAS •Magnetic

-2 -1 0 1 2

-1,0

-0,5

0,0

0,5

1,0

7 ML Fe

[110]

[100]

[110]

Feld [kOe]

orbital moment 

• orbital moment has preferred axis in anisotropic crystal field• LS‐coupling in 3d‐shell orients the spin

• The small L is important for almost all properties, especially for technology• remnant field, easy and hard axis, coercivity ….

magnetic easy axis

L S

Anisotropy

P. Bruno, Physical Review B 39 (1989) 865

Page 4: Outlook of the lecture Magnetism in nutshell X‐ray absorption ...magnetism.eu › esm › 2018 › slides › goering-slides1.pdf · •X‐ray absorption spectroscopy XAS •Magnetic

Some examples for “modern” magnetism applications!

• Supermagnets

www.helbling.ch

2x2cm Magnet

C- W- Co- FeNiAl AlNiCol SmCo5 Nd Fe B2 14

Stähle

1880 1900 1920 1932 1936 1949 1967 1984-1997

Tico

nal II

Tico

nal G

G

Low weight and high field = forcesOptimizing interaction strength between lattice and magnetic moments  orbital moments

Important to know: What is the magnetism of each element?Nd? Fe? Co? Sm?....

Page 5: Outlook of the lecture Magnetism in nutshell X‐ray absorption ...magnetism.eu › esm › 2018 › slides › goering-slides1.pdf · •X‐ray absorption spectroscopy XAS •Magnetic

Some examples for “modern” magnetism applications!

• Data storage 

Optimizing interaction strength between lattice and magnetic moments orbital moments permanent magnets, magnetostriction, spin wave damping, etc. etc.

10 TB„Perpendicular Recording“

NdFeB‐Servo‐Motor

Page 6: Outlook of the lecture Magnetism in nutshell X‐ray absorption ...magnetism.eu › esm › 2018 › slides › goering-slides1.pdf · •X‐ray absorption spectroscopy XAS •Magnetic

Why X‐rays and magnetism?

• It is important to know spin and orbital moments• for each element in the system separately • contact areas are important  probing single atomic layers and separating them from others 

• We know: X‐rays provide significant spatial resolution on the atomic scale 

• Your will see here how this is transferred to magnetism using X‐ray Magnetic Circular Dichroism (XMCD)

• Or in other words: XMCD is able to transfer ANYX‐ray technique in it’s magnetic counterpart! 

Page 7: Outlook of the lecture Magnetism in nutshell X‐ray absorption ...magnetism.eu › esm › 2018 › slides › goering-slides1.pdf · •X‐ray absorption spectroscopy XAS •Magnetic

Now XAS

• X‐ray absorption spectroscopy XAS• Dipole selection rules provide “wanted projections”

• symmetry selective • Electric field vector can provide orbital occupation and orientation

• Further Examples:• Gas on a surface  Chemistry and binding orientation• Valence and Band structure determination (unoccupied of cause)

Page 8: Outlook of the lecture Magnetism in nutshell X‐ray absorption ...magnetism.eu › esm › 2018 › slides › goering-slides1.pdf · •X‐ray absorption spectroscopy XAS •Magnetic

Why XAS! 

• X‐ray absorption spectroscopy (XAS)

• dipole selection rules 

• probing 3d magnetism   2p  3d 

• probing 4f magnetism   3d  4f 

One famous example (also for magnetism): 2p  3d 

p2 2/1122

2/1122

2/1

2/3

SLJpp

SLJpp

J

J

2/1

2/3

2

2

p

p

Spin‐Orbit‐Splitting

Energy

ll qmm

1

Page 9: Outlook of the lecture Magnetism in nutshell X‐ray absorption ...magnetism.eu › esm › 2018 › slides › goering-slides1.pdf · •X‐ray absorption spectroscopy XAS •Magnetic

p2Spin‐Orbit‐Splitting

2/1

2/3

2

2

p

p

energy position of the resonant spectra (binding energy ) depends strongly on the nuclear chargeelement specific!

probes the unoccupied (here) 3d electrons  holes 

XAS: In resonance very strong effectsOne famous example (also for magnetism): 2p  3d 

Energy

Page 10: Outlook of the lecture Magnetism in nutshell X‐ray absorption ...magnetism.eu › esm › 2018 › slides › goering-slides1.pdf · •X‐ray absorption spectroscopy XAS •Magnetic

All is based on Fermi’s Golden Rule!

• It provides the probability                           to excite an electron fromthe initial state       to the final state   

Based on time dependent pertbation theory Time integral  “Energy‐Conserving‐ Deltafunction” 

if

2)1( (dtd t)cW bba

)(H :isn Hamiltonia totalThe

)(2 :RuleGolden sFermi'

0tot

2

tHH

EEHW

phot

ifiphotffi

Page 11: Outlook of the lecture Magnetism in nutshell X‐ray absorption ...magnetism.eu › esm › 2018 › slides › goering-slides1.pdf · •X‐ray absorption spectroscopy XAS •Magnetic

What have we learned so far? XAS because ..

• it probes unoccupied states• element specific due to energy position• symmetry selective due to selection rules  p  d 

What else? 

Page 12: Outlook of the lecture Magnetism in nutshell X‐ray absorption ...magnetism.eu › esm › 2018 › slides › goering-slides1.pdf · •X‐ray absorption spectroscopy XAS •Magnetic

Good for chemistry and band structure determination 

• Example: Mn L2,3    2p3d• different oxidization states• shape provides important information about the unoccupied density of states

• some less clear chemical shift observable

• reason: also the initial (here 2p) and the final states (here 3d) are shifted

• details often complicated, due to electron‐electron‐interaction and so called “multiplet effects” (not discussed here)

source: PHYSICAL REVIEW B Volume: 75 Issue: 4 Article Number: 045102

“nano”‐complex

Page 13: Outlook of the lecture Magnetism in nutshell X‐ray absorption ...magnetism.eu › esm › 2018 › slides › goering-slides1.pdf · •X‐ray absorption spectroscopy XAS •Magnetic

Hexadecane              on a Cu surface  

• Molecular orientation on the surface  

Source: D.A.Fischer Tribology Letter 3 (1997) 41

C16H34

Tilt angle determined by the angular dependency of the XAS spectra

CC *

HC

C 1s  2p 

parallelEC H

larperpendicuE

C

C

This also works nicely in anisotropic single crystals

Page 14: Outlook of the lecture Magnetism in nutshell X‐ray absorption ...magnetism.eu › esm › 2018 › slides › goering-slides1.pdf · •X‐ray absorption spectroscopy XAS •Magnetic

XAS: How to measure X‐ray Absorption Spectroscopy

I0d

I1

intensity 1/efor length thei.e.

length,n attenuatio )(

1

)(ln1)(

)(

0

)(0

E

EII

dE

eIEI

phot

dEphot

Lambert‐Beer‐Law: 

Example: Fe metal (calculation without resonances and spin –orbit‐splitting)  

source: http://henke.lbl.gov/optical_constants/

Hard to measure below 3‐5keV,due to the very short attenuation length Other techniques to measure the absorption

1s orK edge

2p 3/2 and 1/2 orL2,3 edges

2s orL1 edge

3p orM23 edges

Page 15: Outlook of the lecture Magnetism in nutshell X‐ray absorption ...magnetism.eu › esm › 2018 › slides › goering-slides1.pdf · •X‐ray absorption spectroscopy XAS •Magnetic

The absorption coefficient is often measured indirectly• Example: Soft X‐rays   50‐2000eV

I0conventional transmission

Idea: Every additionally absorbed photon, for example due to the 2p3d transition, produce additional electrons (Photo el., AUGER and secondaries) and fluorescence photonshigher absorption more electrons (fluorescence photons) 

e‐GNDTotal Electron Yield (TEY)

Total Fluorescence Yield (TFY)

Typical sampling depth:Transmission: like TEY:     0.5‐3nmTFY:     30‐200nm

Page 16: Outlook of the lecture Magnetism in nutshell X‐ray absorption ...magnetism.eu › esm › 2018 › slides › goering-slides1.pdf · •X‐ray absorption spectroscopy XAS •Magnetic

Helical Undulator108 x more brilliancethan x-ray tubes

20 ps

t ~ 2 ns

ca.10 mm

104 * more brilliancethan x-ray tubes

You need tunable polarized soft X-raysSynchrotron radiation

Global Synchrotron Density

Page 17: Outlook of the lecture Magnetism in nutshell X‐ray absorption ...magnetism.eu › esm › 2018 › slides › goering-slides1.pdf · •X‐ray absorption spectroscopy XAS •Magnetic

multi-bunch mode:348 buckets (~ 0.75 mA) + “camshaft” (~ 10 mA)

I = 200-300 mA

standard operation mode

2 ns…

t

I = <25 mA

Single Bunch Mode

available only for 2 x 2 weeks/a

T = 800 nst

For dynamic investigations time structure of synchrotron radiation

Pulse width down to 10 psec

Page 18: Outlook of the lecture Magnetism in nutshell X‐ray absorption ...magnetism.eu › esm › 2018 › slides › goering-slides1.pdf · •X‐ray absorption spectroscopy XAS •Magnetic

Now we go for Magnetism

• As magnetism is related to angular motion, why not using an “angular” probe?

• We will use circular polarized X‐rays!

Page 19: Outlook of the lecture Magnetism in nutshell X‐ray absorption ...magnetism.eu › esm › 2018 › slides › goering-slides1.pdf · •X‐ray absorption spectroscopy XAS •Magnetic

XMCD: X‐ray Magnetic Circular Dichroism

• In other words: Sample magnetization changes the absorption of X‐rays

• Sometimes a rather dramatic effect

• Pathway• What is XMCD?• How does it look like? Example: Fe Metal• How is it used? Quantitative!  sum rules• Can we understand this? Somehow! 

Actually: First observed by Gisela Schütz in 1987Director MPI for Intelligent Systems 

Page 20: Outlook of the lecture Magnetism in nutshell X‐ray absorption ...magnetism.eu › esm › 2018 › slides › goering-slides1.pdf · •X‐ray absorption spectroscopy XAS •Magnetic

Again: How to get polarized X‐rays?

xy

z

1. bending magnet

2. Undulator

ca. 30m

relativistic electrons

We also need „optical“ components

approx. 1000 times higher brilliance

Page 21: Outlook of the lecture Magnetism in nutshell X‐ray absorption ...magnetism.eu › esm › 2018 › slides › goering-slides1.pdf · •X‐ray absorption spectroscopy XAS •Magnetic

How does it look exactly for soft x‐rays • typical setup for soft x‐rays (100‐2000eV)

planar grating (approx 1000 lines/mm) for about 0.5-10 nm wave length

focusing mirror

sample

top view

side view

Ultra-High-Vacuum! 10-10 mBar

Page 22: Outlook of the lecture Magnetism in nutshell X‐ray absorption ...magnetism.eu › esm › 2018 › slides › goering-slides1.pdf · •X‐ray absorption spectroscopy XAS •Magnetic

Measurement of the absorption coefficient µ  now depending on the sample magnetization

Measured quantity:

I±(x) = I0 exp( -d µ± )I0

MagnetizationPolarization

dI1

X-ray magnetic circular dichroism: XMCD

=+‐‐ (PM) 

Page 23: Outlook of the lecture Magnetism in nutshell X‐ray absorption ...magnetism.eu › esm › 2018 › slides › goering-slides1.pdf · •X‐ray absorption spectroscopy XAS •Magnetic

XMCD: element specific, as XAS is! 

0

1

2

3

4

5

6

2p1/2

2p3/2

Fe 2p 3d absorption

- +

abso

rptio

n [e

dge

norm

aliz

ed]

690 700 710 720 730 740 750 760-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

+--D

ichr

oism

(edg

e no

rmal

ized

)

Photon energy [eV]

E2p

2p3/2

2p1/2

Fe 3d

E2p

Energy

F

• Element specific, due to the defined energy of the absorption edges! • Magnetism has a strong impact on the absorption coefficient!

XMCD strongly modifies

the X-ray optical properties

Page 24: Outlook of the lecture Magnetism in nutshell X‐ray absorption ...magnetism.eu › esm › 2018 › slides › goering-slides1.pdf · •X‐ray absorption spectroscopy XAS •Magnetic

Magneto‐Optic‐Effects: Origin (also for XMCD :=)

Start: Hunds rules Groundstate: Simplest example 3d1

L = 2 ; S = ½ and J = L - S = 3/2For T 0 and B only mJ = -2 +1/2 = -3/2 is occupied (saturated)Dipole-Selection-Rules: l = ±1 circular Pol.: mJ = ±1

• This is a very general approach! • Could be done in resonance or off resonance

3/21/2‐1/2‐3/2

mJ=5/23/21/2‐1/2‐3/2‐5/2

J = 5/2      

J = 3/2

mJ = ‐1mJ = +1 mJ = 0right circ. left circ.lin pol.

Take home message:For circular polarizationabsorption is modified by

magnetism!

Page 25: Outlook of the lecture Magnetism in nutshell X‐ray absorption ...magnetism.eu › esm › 2018 › slides › goering-slides1.pdf · •X‐ray absorption spectroscopy XAS •Magnetic

NS

This is how the L2 and L3 edge excitations are using right circular polarized light!

• Schematics of the excitation:S

Flipping the magnetization gives different excitation probabilities

H. Ebert, Rep. Prog. Phys. 59, 1996

N    S

N    S

N    S

Page 26: Outlook of the lecture Magnetism in nutshell X‐ray absorption ...magnetism.eu › esm › 2018 › slides › goering-slides1.pdf · •X‐ray absorption spectroscopy XAS •Magnetic

One example: SmCo5 doped with some Fe• The magnetic moment of each element could be extracted separately

• Good for the understanding of magnetism in complex systems  

• Sample has been modified to change the coercive behavior Sm is responsible for that!

700 710 720 730-4

-2

0

2

4

6Fe L2,3

XMCD@2T Hc=0.00T Hc=0.15T Hc=0.90T

Abso

rptio

n (n

orm

aliz

ed)

Photon Energy (eV)770 780 790 800 810

-2

0

2

4

6

XMCD@2T Hc=0.00T Hc=0.15T Hc=0.90T

Abso

rptio

n (n

orm

aliz

ed)

Photon Energy (eV)

Co L2,3

1060 1080 1100 1120 1140

-2

-1

0

1

2

3

4

XMC

D (n

orm

aliz

ed)

Photon Energy (eV)

Hc= 0.00T Hc= 0.15T Hc= 0.90T

1060 1080 1100 1120 11400

2

4

6

8

10

12

14

16

Abso

rptio

n (n

orm

aliz

ed)

Photon Energy (eV)

Schütz, Goering, Stoll, Int. J. Mat. Sci. 102 (2011) 773 

B

Page 27: Outlook of the lecture Magnetism in nutshell X‐ray absorption ...magnetism.eu › esm › 2018 › slides › goering-slides1.pdf · •X‐ray absorption spectroscopy XAS •Magnetic

XMCD in 3d Transition Elements

Spin orbit splitting of 2p shelldecreases from Cu to TiWidth increasemoreunoccupied electrons

Page 28: Outlook of the lecture Magnetism in nutshell X‐ray absorption ...magnetism.eu › esm › 2018 › slides › goering-slides1.pdf · •X‐ray absorption spectroscopy XAS •Magnetic

Now it happens: Sum rules 

T. Thole, P. Carra et al. : PRL 86 (1992) 1943 ; PRL 70 (1993) 694

We cant do this here in detail!This would take at least 3‐4 times a 1.5h lecture!

Page 29: Outlook of the lecture Magnetism in nutshell X‐ray absorption ...magnetism.eu › esm › 2018 › slides › goering-slides1.pdf · •X‐ray absorption spectroscopy XAS •Magnetic

Orbital L and Spin S  XMCD 

700 710 720 730 740

-2

-1

0

1

Rea

les

XMC

D S

pekt

rum

Photonenenergie [eV]

+ - -

“Nur Bahn”

“Nur Spin”

(+ + -)/2

XMCD

XAS

„Real“ Spectra (Fe) A(L3)

A(L2)

(µ++µ‐)/2

µ+ ‐ µ‐

pure S        

pure L          

Page 30: Outlook of the lecture Magnetism in nutshell X‐ray absorption ...magnetism.eu › esm › 2018 › slides › goering-slides1.pdf · •X‐ray absorption spectroscopy XAS •Magnetic

XMCD is famous because its quantitative: Sum‐Rules

• quantitative determination of projected magnetic moments

• S, L and Tz separable • in projected Bohr‐magnetons!

• one needs the “areas” and the number of holes 

• (10‐n3d) 

Theoretical prediction: T. Thole, P. Carra et al. : PRL 86 (1992) 1943 ; PRL 70 (1993) 694

700 710 720 730 740

‐2

‐1

0

1

XMCD

 (normalize

d)

Photon Energy (eV)

0

1

2

3

4

5

Absorptio

n  (n

ormalize

d)

dzz

dz

nTS

nL

3

3

102

27

1023

4

We will see Tz later more!

“Spin” averaged or non magnetic spectrum!

magnetic or difference spectrum!

hn

2South

2North

South-North

Exp. verification and rough procedure: C.T. Chen et al, PRL 75 (1995) 152

Page 31: Outlook of the lecture Magnetism in nutshell X‐ray absorption ...magnetism.eu › esm › 2018 › slides › goering-slides1.pdf · •X‐ray absorption spectroscopy XAS •Magnetic

Data measurement and analysis: Co thin film!Measure sample current I1 and incoming intensity  I0 for north and south fieldStep 1: Divide them  I1/I0

770 780 790 800 810 8200

102030405060708090

100110120130140

I 0,I1 c

urre

nt (p

A)

Energy (eV)

I1

I0

Co 2p > 3d L2,3

740 750 760 770 780 790 800 810 820 830

2,0

2,5

3,0

3,5

4,0

4,5

I 1/I0

Energy (eV)

South North

Co 2p > 3d L2,3

only north 

north and south means field orientation with respect to the photon beam!

Page 32: Outlook of the lecture Magnetism in nutshell X‐ray absorption ...magnetism.eu › esm › 2018 › slides › goering-slides1.pdf · •X‐ray absorption spectroscopy XAS •Magnetic

Data measurement and analysisStep 2: Remove „offset“ by a simple factor Important: Make sure that pre‐ and Post‐Edge  region (without XMCD) are equal

740 750 760 770 780 790 800 810 820 830

2,0

2,5

3,0

3,5

4,0

4,5

I 1/I0

Energy (eV)

South North

Co 2p > 3d L2,3

Here the factor is 1.04

760 770 780 790 800 810 820

2,0

2,5

3,0

3,5

4,0

4,5

I 1/I0 (

fact

or a

pplie

d)Energy (eV)

South North

Co 2p > 3d L2,3

Page 33: Outlook of the lecture Magnetism in nutshell X‐ray absorption ...magnetism.eu › esm › 2018 › slides › goering-slides1.pdf · •X‐ray absorption spectroscopy XAS •Magnetic

Data measurement and analysisStep 3: Subtract background by a linear approximationImportant: Exactly the same for north and south spectra

760 770 780 790 800 810 820

2,0

2,5

3,0

3,5

4,0

4,5

I 1/I0 (

fact

or a

pplie

d)

Energy (eV)

South North

Co 2p > 3d L2,3

760 770 780 790 800 810 820

0,0

0,5

1,0

1,5

2,0

2,5

I 1/I0 (

line

subt

r.)

Energy (eV)

South North

Co 2p > 3d L2,3

Page 34: Outlook of the lecture Magnetism in nutshell X‐ray absorption ...magnetism.eu › esm › 2018 › slides › goering-slides1.pdf · •X‐ray absorption spectroscopy XAS •Magnetic

Data measurement and analysisStep 4: Devide by post edge value to normalize Important: Exactly the same value for north and south spectra

760 770 780 790 800 810 820

0,0

0,5

1,0

1,5

2,0

2,5

I 1/I0 (

line

subt

r.)

Energy (eV)

South North

Co 2p > 3d L2,3

760 770 780 790 800 810 820-0,5

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

5,5

I 1/I0 (

edge

nor

mEnergy (eV)

South North

Co 2p > 3d L2,3

Now the data is so called edge normalized!

Here 0.425

Page 35: Outlook of the lecture Magnetism in nutshell X‐ray absorption ...magnetism.eu › esm › 2018 › slides › goering-slides1.pdf · •X‐ray absorption spectroscopy XAS •Magnetic

Data measurement and analysisStep 5: Plot together with difference XMCD= North‐South 

770 780 790 800 810-2,0-1,5-1,0-0,50,00,51,01,52,02,53,03,54,04,55,05,5

I 1/I0 (

edge

nor

m

Energy (eV)

South North XMCD

Co 2p > 3d L2,3

Page 36: Outlook of the lecture Magnetism in nutshell X‐ray absorption ...magnetism.eu › esm › 2018 › slides › goering-slides1.pdf · •X‐ray absorption spectroscopy XAS •Magnetic

Data measurement and analysisStep 6: For sum rule analysis remove non resonant background and calculate the “non magnetic” average. This does not change XMCD signal

760 770 780 790 800 810 820-0,5

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

5,5

I 1/I0 (

edge

nor

m

Energy (eV)

South North backgroundB

Co 2p > 3d L2,3

770 780 790 800 810-2,0-1,5-1,0-0,50,00,51,01,52,02,53,03,54,04,55,05,5

XAS

(edg

e no

rm)

Energy (eV)

(N/2-S/2)-Back

Co 2p > 3d L2,3

Page 37: Outlook of the lecture Magnetism in nutshell X‐ray absorption ...magnetism.eu › esm › 2018 › slides › goering-slides1.pdf · •X‐ray absorption spectroscopy XAS •Magnetic

Data measurement and analysisStep 7: Calculate the integrals for XAS (= nonmagnetic) and XMCD 

770 780 790 800 810-2,0-1,5-1,0-0,50,00,51,01,52,02,53,03,54,04,55,05,5

XAS

(edg

e no

rm)

Energy (eV)

(N/2-S/2)-Back

Co 2p > 3d L2,3

760 770 780 790 800 810 820-2,0

-1,5

-1,0

-0,5

0,0

0,5

1,0

I 1/I0 (

edge

nor

m

Energy (eV)

XMCD

Co 2p > 3d L2,3

760 770 780 790 800 810 820-4,0

-3,5

-3,0

-2,5

-2,0

-1,5

-1,0

-0,5

0,0

0,5

Inte

gral

(XM

CD

)

Energy (eV)

Integral XMCD

Co 2p > 3d L2,3

760 770 780 790 800 810 820-2

0

2

4

6

8

10

12

14

XAS

(edg

e no

rm)

Energy (eV)

XAS Integral

Co 2p > 3d L2,3

XAS = 13.77

‐3.684

‐1.169

= XMCD (L3)

XMCD (L2)=‐1.169‐(‐3.684)=2.515

Page 38: Outlook of the lecture Magnetism in nutshell X‐ray absorption ...magnetism.eu › esm › 2018 › slides › goering-slides1.pdf · •X‐ray absorption spectroscopy XAS •Magnetic

Data measurement and analysisStep 8: Sum Rules Calculation: Use values in formula

785.049.277.132

515.2264.37

14.049.277.132

515.264.334

zz

z

TS

L

XAS = 13.77= 

XMCD (L3)= ‐3.684 =

XMCD (L2)= 2.515 =

49.2)Co(1 3 dn

dzz

dz

nTS

nL

3

3

102

27

1023

4

Page 39: Outlook of the lecture Magnetism in nutshell X‐ray absorption ...magnetism.eu › esm › 2018 › slides › goering-slides1.pdf · •X‐ray absorption spectroscopy XAS •Magnetic

Data measurement and analysisStep 9: Correct for finite degree of circular polarizationDepends on Energy, setup, beamline, source as bending or undulator etc. etc.  usually ask the beamline responsible

In our case here 84%! 

Using the g‐factor of 2 for the spin and transfer from angular momenta to magnetic moments

BBBz

zSBBBz

zL

Sm

Lm 87.1

84.0785.02

84.02 17.0

84.014.0

84.0

Element exp.  (XMCD) theo.

ms (µB) ml (µB) ms (µB) ml (µB)

Fe Chen PRL 75 1.98 0.085 2.19 0.059

Co Chen PRL 75 1.55 0.153 1.57 0.087

Ni Dhesi PRB 60 0.58 0.07 0.58 0.06

The deviation here is because of Tz!

Page 40: Outlook of the lecture Magnetism in nutshell X‐ray absorption ...magnetism.eu › esm › 2018 › slides › goering-slides1.pdf · •X‐ray absorption spectroscopy XAS •Magnetic

770 780 790 800 810-2,0-1,5-1,0-0,50,00,51,01,52,02,53,03,54,04,55,05,5

I 1/I0 (

edge

nor

m

Energy (eV)

XMCD N/2+S/2

Co 2p > 3d L2,3

Sum‐Rules Hands On• Try to estimate the areas  using a rule and a pen.

Page 41: Outlook of the lecture Magnetism in nutshell X‐ray absorption ...magnetism.eu › esm › 2018 › slides › goering-slides1.pdf · •X‐ray absorption spectroscopy XAS •Magnetic

Estimating area by FWHM x Height or as you want

Bzz

Bz

TS

L

57.17

14.0

XMCD N/2+S/2

Page 42: Outlook of the lecture Magnetism in nutshell X‐ray absorption ...magnetism.eu › esm › 2018 › slides › goering-slides1.pdf · •X‐ray absorption spectroscopy XAS •Magnetic

Data measurement and analysisTypical pitfall: Offset corrected with wrong factor

Best visible in a finite slope in the XMCD integralIf present  better factor

740 750 760 770 780 790 800 810 820 830

2,0

2,5

3,0

3,5

4,0

I 1/I0

Energy (eV)

South North

Co 2p > 3d L2,3

740 750 760 770 780 790 800 810 820 830-1,0

-0,5

0,0

0,5

XMC

D

Energy (eV)

XMCDCo 2p > 3d L2,3

740 750 760 770 780 790 800 810 820 830

-2,5

-2,0

-1,5

-1,0

-0,5

0,0

Inte

gral

(XM

CD

)Energy (eV)

XMCDCo 2p > 3d L2,3

Page 43: Outlook of the lecture Magnetism in nutshell X‐ray absorption ...magnetism.eu › esm › 2018 › slides › goering-slides1.pdf · •X‐ray absorption spectroscopy XAS •Magnetic

Why using a single factor for Offset correction?Electron current depends on B‐field dependent proportionality. 

Could be asymmetric

E. Goering et al., J.Sync.Rad. 8 (2001) 434‐436  and J. Appl. Phys. 88 (2000) 5920 

),()(),( BEBfBEI photphot

),()(),(

),()(),(

0

0

BEEBE

BEEBE

photcphotphot

photcphotphot

),()()(),()()();( 00 BEEBfBEEBfBEI photcphotphotcphotphot

),()(2);(:)()()( if

BEBfBEIBfBfBf

photcphot

)()( as choose )()( if BfkBfkBfBf

As µ0 is not a straight line,  a line offset subtraction is wrong!

),()()()()()( 0 BEBfBfEBfBf photcphot

Page 44: Outlook of the lecture Magnetism in nutshell X‐ray absorption ...magnetism.eu › esm › 2018 › slides › goering-slides1.pdf · •X‐ray absorption spectroscopy XAS •Magnetic

Sum Rules: In general for all edges!

From Schütz, Stoll, and Goering Handbook of Magnetism (Wiley) based on T. Thole, P. Carra et al. : PRL 86 (1992) 1943 ; PRL 70 (1993) 694

J+ is L+S   and J‐ is L‐S: Example L3 edge: l=1 s=1/2  J=J+= 1+1/2 = 3/2  and J=J‐= 1‐1/2 = 1/2 

this is the absorption sum for all absorption channels: µ‐= left, µ+= right,  and µ0= z‐polarized light

angular momenta for the i=initial and f=final states

Page 45: Outlook of the lecture Magnetism in nutshell X‐ray absorption ...magnetism.eu › esm › 2018 › slides › goering-slides1.pdf · •X‐ray absorption spectroscopy XAS •Magnetic

What is this Tz?G. van der Laan, J. Phys.: Condens. Matter 10 (1998) 3239SQTz

ˆ72

perturbation theory provides:Q: quadrupolar charge distribution

traceless tensor 2nd order

+

+- -

0zT

0zTIs important in less than cubic systems, with oriented crystals, in 4f metals, and in ultra thin films and interfaces

Something more about Tz: König and Stöhr, PRL 75 (1995) 3748; Buck and Fähnle, JMMM 166 (1997) 297

Page 46: Outlook of the lecture Magnetism in nutshell X‐ray absorption ...magnetism.eu › esm › 2018 › slides › goering-slides1.pdf · •X‐ray absorption spectroscopy XAS •Magnetic

Further “Problems”

• For the light 3d transition metals, its hard to separate P3/2 and P1/2 excitations  excitations “mix”

• In 4f systems, as supermagnets, the spin‐sum‐rule is not „simply“ valid anymore (orbital works fine)

• Actually, we are working on this at the moment, and it looks to be solvable, at least in a practical way. 

see:  E. Goering, Phil. Mag. 85 (2005) 2897‐2911 and references therein

see:  Y. Teramura et al, J.Phys.Soc 65 (1996) 3056 and T. Jo, J.El.Spec.Rel.Phenom, 86 (1997) 73

Page 47: Outlook of the lecture Magnetism in nutshell X‐ray absorption ...magnetism.eu › esm › 2018 › slides › goering-slides1.pdf · •X‐ray absorption spectroscopy XAS •Magnetic

Scienta‐PES

FOCUS‐PEEM

PLDNeue 7TXMCD‐System

7T magnet

5‐450K Kryomanipulator

2013 we could inaugurate our “new” 7T XMCD system!

• ANKA‐Karlsruhe@ WERA‐Beamline

• Unique superconducting magnet system• 7T ramped with 1.5T/s!  (‐5T  +5T in 6,6s)

– low temperatures, portable, “load lock”– TEY, FY, Transmission  parallel  – No L‐He refill  two “cryo‐coolers”– Gives anough signal to detect paramgnetism of diluted 

systems  now 0.0002µB sensitivity– Fast XMCD measurements with highest quality  2‐5 

min/spectra 

Page 48: Outlook of the lecture Magnetism in nutshell X‐ray absorption ...magnetism.eu › esm › 2018 › slides › goering-slides1.pdf · •X‐ray absorption spectroscopy XAS •Magnetic

500 600 700 800 900 1000 11001.55

1.60

1.65

1.70

1.75

1.80

1.85

1.90

1.95

II0 (a

.u.)

Energy (eV)

rel. BG: 5%rel. Ni L3: 1.5 %

In‐situ prepared Ni nanostructures (3nm height) :0.2 ML nominal (@ 200 K) on  Graphen/Ir  Moiré‐template

Cooperation with group of M. Fonin, Univ.‐ Konstanz

Sicot et. al.: APPLIED PHYSICS LETTERS 96, 093115 2010

STM

XMCD at the „recent“ limit: 0.2ML paramagnetic Ni on Graphen

0

1

2

3

XAS

15 K, 7 T

850 860 870 880 890-1.0

-0.5

0.0

integrated

XMC

D

Energy (eV)

The oscillations are the so called EXAFS, which are usually not recognized, because they are so tiny!  (for those who are interested) 

Page 49: Outlook of the lecture Magnetism in nutshell X‐ray absorption ...magnetism.eu › esm › 2018 › slides › goering-slides1.pdf · •X‐ray absorption spectroscopy XAS •Magnetic

Questions:

Remember:

1: Can we distinguish between pinned and rotatable moments? 

2: Do we get a XMCD signal for a sample with permanent magnetic moments but disordered? 

3: What do we get, if we have the same magnetic atoms, but half the amount?   As Fe‐XMCD for Fe  FeCo alloy