Otc-19372 Xhpht Pip Final1

41
‘Investigation into the Limit State Design of XHPHT PIP Flowlines using Local and Global Finite Element Analysis Methods’ May 2008 OTC 19372, Houston. Paul Jukes, Jason Sun, Ayman Eltaher J P Kenny, Inc., Houston, USA.

description

pipelinE

Transcript of Otc-19372 Xhpht Pip Final1

Page 1: Otc-19372 Xhpht Pip Final1

‘Investigation into the Limit State Design of XHPHT PIP Flowlines using

Local and Global Finite Element Analysis Methods’

May 2008

OTC 19372, Houston.

Paul Jukes, Jason Sun, Ayman EltaherJ P Kenny, Inc., Houston, USA.

Page 2: Otc-19372 Xhpht Pip Final1

Overview of Presentation• Introduction :

– Design Challenges

• Limit State Based Design

• SIMULATOR

• Global and Local FEA Models

• Conclusions

Page 3: Otc-19372 Xhpht Pip Final1

Introduction : Design Challenges

• 10,000ft (3000m) WD• Hydrostatic Collapse• Installation Issues

• Pressure 700bar (10,000psi)• Temperatures 177°C (350°F)• High Thermal Performance

Deepwater

HP / HT

• Span Length > 200m (660ft)• Multimode Vibration• Limitations of Design Codes

Super Spans

Page 4: Otc-19372 Xhpht Pip Final1

Introduction : Why Use Advanced FEA?

• Highly Non-linear Problems• Not Possible with Stress Based Design• ‘Added-Value’• Deepwater & HT Solution• Optimize Design Solution• Significant Financial Savings!!

Page 5: Otc-19372 Xhpht Pip Final1

Limit State Based Design

Advanced Analysis Tools

Page 6: Otc-19372 Xhpht Pip Final1

Limit State Based Design

Overview:• Limit States:

– Local Buckling– Hoop Ratcheting– Strain Capacity– Low cycle Fatigue

• Codes/Guidance:– HOTPIPE, DNV OS-F101, – DNV-RP-F110, SAFEBUCK,– API-1111

• Advanced Finite Element Analysis Tools

Page 7: Otc-19372 Xhpht Pip Final1

‘Simulator’ FEA

190

192

194

196

198

200

202

1900 1920 1940 1960 1980 2000 2020 2040 2060 2080 2100

Distance Along Pipeline [m]

Lat

eral

Pos

ition

[m]

Embedded Boulders

Advanced Analysis Tools

Page 8: Otc-19372 Xhpht Pip Final1

‘Simulator’ Suite

• Tailored Software• ABAQUS FE Engine• Calibrated• Highly non-linear• Single Pipe/PIP

Steel Flowline

Thermal Insulation

Outer Steel Sleeve

Protective Coating

Corrosion Coating

Page 9: Otc-19372 Xhpht Pip Final1

‘Simulator’ Suite Gold Standard

• ‘Gold Standard’ Finite Element Models– Reeling Analysis – Lateral Buckling Analysis – Upheaval Buckling Analysis– Spanning and VIV Analysis – Trawlboard Pullover 180

185

190

195

200

205

1800 1850 1900 1950 2000 2050 2100 2150 2200

Distance Along Pipeline [m]

Lat

eral

Pos

ition

[m]

190

192

194

196

198

200

202

1900 1920 1940 1960 1980 2000 2020 2040 2060 2080 2100

Distance Along Pipeline [m]

Lat

eral

Pos

ition

[m]

Embedded Boulders

Page 10: Otc-19372 Xhpht Pip Final1

‘Simulator’ Suites

Soil Friction Model – User Subroutine

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 1 2 3 4 5 6 7 8 9 10Lateral Movement, in

Fric

tion

Fact

or

Upper Bound

Mean Value

Lower Bound

Page 11: Otc-19372 Xhpht Pip Final1

Examples : Spans and VIV Analysis

Phase 7 Trunkline Free Span Exceeding Fatigue Limits within 25 Year Design Life74

74.5

75

75.5

76

76.5

77

77.5

7828.9 28.9 28.9 28.9 28.9 29.0 29.0 29.0 29.0 29.0 29.1

KP (km)

Wat

er D

epth

(m)

Seabed

Bottom of Pipe (operation condition)

• Detailed Span and VIV Analysis• Modal Analysis• ‘Added Value’

– Reduced Intervention

Page 12: Otc-19372 Xhpht Pip Final1

Examples : Lateral Buckling Simulation

-20

0

20

40

60

80

100

120

350 450 550 650 750 850 950

Pipe Distance, ft

Late

ral D

ispl

acem

ent,

in

36F49F69F80F95F110F120F134F146F165F180F

• Post Buckle Formation• Limit State Based Design• ‘Added Value’• Thermal Buckle Management

Page 13: Otc-19372 Xhpht Pip Final1

Examples : Pipeline Walking Analysis

0

20

40

60

80

100

120

140

160

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Pipe Distance, ft

Tem

pera

ture

, F

0.0844494 [h] 0.250011 [h] 0.416798 [h] 0.583757 [h]0.750233 [h] 0.916866 [h] 1.00023 [h] 1.16706 [h]1.33336 [h] 1.50014 [h] 1.66668 [h] 2.00018 [h]3.00019 [h] 7.00009 [h] 48.0001 [h]

-20

-10

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8 9 10

Operating Temperature Cycle

Axi

al D

ispl

acem

ent (

in)

D6D7

+ : From D6 to D7- : From D7 to D6

Page 14: Otc-19372 Xhpht Pip Final1

Examples : Reeling & Lateral Buckling

Overview• Long model

– 250m reeling– 500m lateral

• PIP• Ultimate Limit States.

Pipe

Ramp Aligner

Tensioner

Straightener

Reel

Page 15: Otc-19372 Xhpht Pip Final1

Global and Local FEA Study

Advanced Analysis Tools

180

185

190

195

200

205

1800 1850 1900 1950 2000 2050 2100 2150 2200

Distance Along Pipeline [m]

Lat

eral

Pos

ition

[m]

Page 16: Otc-19372 Xhpht Pip Final1

‘Global’ PIP FE Model

Loadshare

1,500m (4,921ft)

Spacer, 2m (6ft)Inner Pipe

Outer PipeSleeper

Seabed Friction

Friction Coefficient 0.2

Page 17: Otc-19372 Xhpht Pip Final1

Element Selected

• PIPE31H, 3D Pipe Element– Inner Pipe– Outer Pipe

• ITT31, 3D Tube-to-Tube Contact Element– Spacer

• CONN32, Connector Element– Loadshare– Sleeper– Boundary

Page 18: Otc-19372 Xhpht Pip Final1

‘Local’ Full Size PIP FE Model

Page 19: Otc-19372 Xhpht Pip Final1

Composition of 3D PIP FE Model

• 4-node 3D shell element, S4R– Inner Pipe– Outer Pipe

• 8-node 3D stress element, C3D8R– Spacer– Bulkhead

• Constraint– Spacer to Inner Pipe– Pipeline to Bulkhead

• Interaction/Contact– Spacer to Outer Pipe

Page 20: Otc-19372 Xhpht Pip Final1

Pipeline Data To Build FE Model

0.591 (15.0)0.787 (20.0)Wall Thickness inch (mm)

12.750 (0.324)8.625 (0.219)Diameter inch (m)

490 (7850)490 (7850)Density lb/ft3 (kg/m3)

X70X70Pipeline Material

Outer PipeInner Pipe

Pipe Material & GeometryParameter

• Pipe and Geometry

Page 21: Otc-19372 Xhpht Pip Final1

Pipeline Data To Build FE Model

1.31 x 10-5

(13.1 x 10-6)6.5 x 10-6

(11.7 x 10-6)Coeff. Thermal Expansion

°F-1(°C-1)

72.4 (499)82.7 (570)SMTS ksi (MPa)

61.2 (422)70 (482.6)SMYS ksi (MPa)

0.30.3Poisson Ratio

29.9 x 106 (206)30.0 x 106 (207)Material Modulus psi (GPa)

Temp 350°F(177°C)Temp 68°F(20°C)

Pipe PropertiesParameter• Material and Operating Condition

350 (177)Design Temperature °F (°C)

6,500 psi (44.8 MPa)Inner Pressure MAOP psi (MPa)

40 (4.4)Seabed Temperature °F (°C)

4,500 (1,371.6)Water Depth WD ft (M)

Pipe Operating ConditionParameter

Page 22: Otc-19372 Xhpht Pip Final1

Results

Global and Local FEA Study

Page 23: Otc-19372 Xhpht Pip Final1

Study Case #1: Straight Pipeline vs. Lateral Buckled Pipeline

Pipeline Buckles with Initial Imperfection

Page 24: Otc-19372 Xhpht Pip Final1

Lateral Buckle Releases Inner Pipe Compression

Inner Pipe Axial Force

-750

-700

-650

-600

-550

-500

-450

-400

-350

-300

2 822 1642 2462 3282 4103

Pipeline Distance (ft)

Axi

al F

orce

(kip

s)

Buckled Axial Force, Inner Pipe Not Buckled Axial Force, Inner Pipe

Page 25: Otc-19372 Xhpht Pip Final1

Local FEA Response

•Pipeline

Page 26: Otc-19372 Xhpht Pip Final1

3D Helix of Inner Pipe Under XHT @350°F (Scale x80)

Page 27: Otc-19372 Xhpht Pip Final1

Inner Pipe Displacement Relative to Outer Pipe(Lateral Direction)

-0.40

-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

0.40

356 534 712 890 1069

Distance (ft)

Dis

plac

emen

t (in

)

Local Stress and Strain Response

• Inner Pipe lateral Displacement

Page 28: Otc-19372 Xhpht Pip Final1

3D Helix Observed in Buckled Global PIP Model (Scale x400)

•Data off Buckle Region

Page 29: Otc-19372 Xhpht Pip Final1

3D Helix of Inner Pipe Under XHT (Scale x100)

Page 30: Otc-19372 Xhpht Pip Final1

Local Stress and Strain Response

•Inner Pipe

Page 31: Otc-19372 Xhpht Pip Final1

Local Stress and Strain Response

•Outer Pipe

Page 32: Otc-19372 Xhpht Pip Final1

Local Stress and Strain Response

•Spacer

Page 33: Otc-19372 Xhpht Pip Final1

Full Size PIP FE vs. Global PIP Model

-19.2-21.5-9.3-7.317.919.1Outer Pipe

34.229.1-33.6-36.658.457.0Inner Pipe

3D FEGlobal FE3D FEGlobal FE3D FEGlobal FE

Hoop StressAxial StressVon Mises Stress

Peak Stresses (ksi)Parts

• Good Match between Local (3D) and Global FE Results

Page 34: Otc-19372 Xhpht Pip Final1

Limit State Results : Local Buckling

0.196N/AAPI

0.7440.060DNV, DC

0.9830.922DNV, LC

1,000m (3,050ft)

0.281N/AAPI

0.8030.070DNV, DC

1.0470.964DNV, LC

1,500m (4,920ft)

0.382N/AAPI

0.8670.080DNV, DC

1.1591.008DNV, LC

No Sleeper

Outer PipeInner Pipe

Limit State Unity CheckDesign CodeSleeper Intervals

Page 35: Otc-19372 Xhpht Pip Final1

Limit State Results : Hoop Stress Ratcheting

0.8850.9871,000m (3,050ft)

0.9951.0731,500m (4,920ft)

1.0301.125No Sleeper

Outer PipeInner Pipe

Limit State Unity Check

Sleeper Intervals

Page 36: Otc-19372 Xhpht Pip Final1

Limit State Results : Strain Capacity

0.1800.1781,000m (3,050ft)

0.3060.2731,500m (4,920ft)

0.2930.279No Sleeper

Outer PipeInner Pipe

Limit State Unity Check

Sleeper Intervals

Page 37: Otc-19372 Xhpht Pip Final1

Limit State Results : Low Cycle Fatigue Check

2984341,4892,170Outer

1,9508899,7494,444Inner1,000m (3,050ft)

2103061,0481,528Outer

1,5176927,5863,458Inner1,500m (4,920ft)

1992759441,376Outer

1,3145996,5712,996InnerNo Sleeper

Class FClass DClass FClass D

DNV Factored No. of Cycles

Allowable No. Cycles

PipeSleeper Intervals

Page 38: Otc-19372 Xhpht Pip Final1

Conclusions

Global and Local FEA Study

Page 39: Otc-19372 Xhpht Pip Final1

Conclusions

• A Global & Local PIP FE model presented

• Local full size PIP FE model,– Pipeline response at component

level• Global and Local FE models present

comparable results• Limit State Based Design• Allows Deepwater XHTHP PIP Designs• Advanced FEA is the way forward!

Page 40: Otc-19372 Xhpht Pip Final1

Global and Local FEA Study

Thank you!Any Questions?

Page 41: Otc-19372 Xhpht Pip Final1

‘Investigation into the Limit State Design of XHPHT PIP Flowlines using

Local and Global Finite Element Analysis Methods’

May 2008

OTC 19372, Houston.

Paul Jukes, Jason Sun, Ayman EltaherJ P Kenny, Inc., Houston, USA.