Osman Dadi

70
OSMAN DADI urban planning • architecture • 2013

description

urban planning and architecture work 2013

Transcript of Osman Dadi

Page 1: Osman Dadi

OSMAN DADIurban planning • architecture • 2013

Page 2: Osman Dadi

2

OSM

AN D

ADI • 2013

Page 3: Osman Dadi

3

Contents05 REGIONALPLANASSOCIATION

06 Greater Newburgh Area Transportation and Land Use Plan14 Bridgeport Corridor and Waterfront Design Guidelines18 Orange County Greenway 20 Marketing and Presentations22 Writing Samples and Insight

27 ZIMMERGUNSULFRASCAARCHITECTS,LLP

28 University of Hawaii Cancer Research Center34 Children’s Hospital Los Angeles36 San Jose District Courthouse

43 RICEUNIVERSITYSCHOOLOFARCHITECTURE

44 Menil Museum Cafe50 Interpretive Music Center - Houston54 Slab Space56 Wetlands Research Center and Pavilion

59 PERSONALWORK

60 Vision for Houston Rail 205064 Urban Art

Page 4: Osman Dadi

4

Page 5: Osman Dadi

5

Regional Plan Association

Page 6: Osman Dadi

6

OSM

AN D

ADI • 2013

12.2011 - 03.2012

The Greater Newburgh Area Transportation and Land Use Plan is a two year project that was finished during my term at Regional Plan Association. My primary task was designing and publishing the final master plan document, including creating maps from synthesized GIS data and developing the optimal presentation for the county and its constituents.

The Newburgh Area Transportation and Land Use study was implemented by the Orange County Planning Department to identify key priorities for creating integrated solutions for transportation and land use within the northeastern portion of Orange County. The multi-modal plan for transportation was intended to identify strategies for enhancing mobility while preserving quality of life.

CONTRIBUTIONSANDPROCESS

• Final document layout, editing, and design• Final map development• Graphic Design• Creating graphic renditions of the results of the

project’s GIS analysis.

In creating the final document, I utilized RPA’s report methodology. As the plan is rather lengthy, our team found it important to break the monotony of the text with frequent photographs that conveyed the context of the conditions described. Additionally, the flow of the text is highly important, and tables, charts, and maps were thus placed accordingly. As the study website was developed using black and orange as key colors, the report utilizes the same theme.

The maps within the report were developed to tie together content in a graphic manifestation, and thus followed the same graphic language. I sought specifically to highlight relevant information by using bright, bold colors for the subject of the maps, while using soft, gray tones and transparencies to soften the context. Thus, roads networks are shown in gray throughout all maps; the study area and municipal boundaries are shown as well, though the coloring is muted such that the most important information stands out.

A typical page from the Greater Newburgh Area Transportation and Land Use Plan Report.

GreaterNewburghAreaTransportationandLandUsePlan

Page 7: Osman Dadi

REG

ION

AL P

LAN

ASS

OC

IATI

ON

7

Figure 4-8: Traffic Analysis Locations in the Newburgh Study Area

Table 4-7: 2010 Existing and 2035 Forecast Volumes and V/C Ratios

Intersection Volumes Volume-Capacity Ratio

Intersection Exist. BAU SGA SGB Exist. BAU SGA SGB

1 NY 17K & Union St/Route 211 1,414 1,565 1,601 1,561 0.87 0.97 0.99 0.96

2 NY 17K & NY 208 2,260 2,762 2,788 2,765 0.57 0.70 0.71 0.70

3 NY 17K & NY 747 1,939 2,519 2,591 2,671 0.48 0.62 0.64 0.65

4 NY 17K & Rock Cut Rd 1,769 1,792 1,839 1,794 0.97 0.98 1.01 0.99

5 NY 17K & NY 300 3,668 4,062 4,125 3,956 0.88 0.98 0.99 0.95

6 NY 17K & Robinson/US 9W 2,235 2,445 2,324 2,439 0.75 0.82 0.78 0.82

7 NY 207 & NY 747 1,477 2,361 2,321 2,315 0.58 0.93 0.91 0.91

8 NY 207 & Breunig Rd 1,361 2,557 2,187 2,115 0.46 0.86 0.73 0.71

9 NY 207 & NY 300 3,025 3,137 3,172 3,196 0.90 0.94 0.95 0.95

10 NY 208 & Main St/NY 52 1,270 1,629 1,737 1,735 0.64 0.82 0.88 0.88

11A NY 208 & I-84/Neeleytown 1,587 2,253 2,213 2,214 0.59 0.83 0.82 0.82

11B NY 208 & I-84/Neeleytown 1,594 2,450 2,413 2,363 0.52 0.80 0.79 0.77

12 NY 300 & NY 52 2,522 2,756 2,738 2,703 0.96 1.05 1.05 1.03

13 NY 300 & NY 94 2,540 2,637 2,642 2,745 0.98 1.02 1.02 1.06

14 NY 32 & NY 300 1,793 2,565 2,483 2,340 0.63 0.90 0.87 0.82

15 US 9W & Fostertown Rd 2,012 2,264 2,285 2,192 0.88 0.99 1.00 0.96

16 US 9W & NY 32 2,719 3,047 3,043 3,003 0.67 0.76 0.76 0.75

17 US 9W & Forge Hill Rd 2,292 3,225 3,327 3,481 0.58 0.81 0.84 0.87

18 NY 94 & Jackson Ave 1,215 2,024 2,077 2,020 0.51 0.85 0.87 0.85Notes: BAU = Business as Usual; SGA = Smart Growth A; SGB = Smart Growth B.

72 Newburgh Area Transportation & Land Use Study

D. Evaluation of Travel Demand Model Results

Intersection AnalysisAsetof18trafficanalysislocationswasselectedforassessingthepotentialeffectsoftheproposeddevelopmentscenarios(seeFigure 4-8).TheselocationswereselectedbaseduponinputfromStudyAreastakeholdersandtheStudyTeam’sownobservationsandprofessionaljudg-ment.These18intersectionsrepresentkeylocationsalongimportantcorridorsandaselectnumberoflocationswithintheVillages.Theyareconsideredtobearepresentativesetoflocationsatwhichtheeffectsofthelandusescenarioscouldbeassessed,potentialroadwayimprovementpackagesoutlined,andbroadfindingsgeneralizedfortheStudyAreaasawhole.Theydonotreflecttheonlylocationsthatcouldbeaffected.The18intersectionsare:

• Route17KandRoute211/UnionStreet

• Route17KandRoute208(ScottsCorner)

• Route17KandRoute747• Route17KandRockCutRoad• Route17KandRoute300• Route17K/BroadwayandRoute9W/

RobinsonAvenue• Route207andRoute747• Route207andBreunigRoad• Route207andRoute300• Route208andRoute52/MainStreet• Route208andNeelytownRoad/I-84

Ramps• Route300andRoute52• Route300andRoute94(VailsGate)• Route300andRoute32• Route9WandFostertownRoad• Route9WandRoute32• Route9WandForgeHillRoad• Route94andJacksonAvenue

Measuring CongestionThetraveldemandmodelproducedoutputsofvolumesofnewtrafficanda“volumetocapacity”(“v/c”)ratioateachofthe18intersections.Netchange

intrafficvolumeisoneindicatorthatimprovementsmaybenecessaryatalocation.Thev/cratio,asitisreferredto,isanotherkeymetricfortrafficengi-neerstoidentifylocationswherenewvolumeswouldcauseadditionalconges-tion.Thetheoreticalmaximumcapacity

Traffic Analysis Locations

Page 8: Osman Dadi

8

The Greater Newburgh Study Area.

Page 9: Osman Dadi

9

Figure 4-2: Land Use in the Greater Newburgh Study Area.

62 Newburgh Area Transportation & Land Use Study

potentialhousingunitsortheamountofcommercialsquarefeetthatcanbebuiltonitundercurrentzoning,accountingforecologicalconstraintsandparkingneeds.Dependingonthecommercialestablishmenttypeallowedineachzone(e.g.industrial,retail),thepotentialsquarefootageofeachcommerciallyzonedprop-ertyismultipliedbyajobdensityfactorforthatcommercialestablishmenttypetogetapotentialnumberofjobsenabledoneachparcel.TheresultisanestimateofthetotalnumberofhouseholdsandjobsthatcouldbebuiltacrosstheentireStudyAreaundercurrentzoning.

Itisimportanttonotethatthebuild-outmethodologydoesnotmakeanyspecificaccommodationforprovisionofwatersupplyorwastewatertreatmentinfrastructure.Forthepurposesofthisanalysisitisassumedthatadequatewatersupplyandwastewatertreatmentiseitheravailableorwouldbemadeavailabletoaccommodatethatnewgrowth.Inthescenariosthatdoconstraindevelopmentbasedonfuturepopulation,prioritywasgiventothoseparcelsthatarewithinexistingwatersupplyorwastewatertreat-mentdistricts.ThestudyteamrecognizesthechallengesconfrontedbyOrangeCountycommunitiesinprovidingthese

essentialpiecesofinfrastructurebutcouldnotaddressthesechallengeswithinthescopeofthisstudy.

Abuild-outcanbeunconstrainedbytimeorpopulationandeconomiccondi-tions(i.e.whatamountofdevelopmentwouldoccurbasedsimplyonwhatthezoningpermits)orconstrainedbyatimefactororothersocio-economicfactor(i.e.howmuchdevelopmentwouldoccurtomeetprojectedpopulationforecasts).

TheUnconstrainedBuild-Outanalysisdemonstratesthecapacityfordevelopmentundercurrentzoning,buttellsusnothingaboutthefuturedemandforhousingunitsorcommercialspace.Thepopulationconstrainedbuild-outanalysisdemonstrateswheredevelopment

Open SpaceProtected LandAgriculturalCommercialIndustrialCivic UsesResidential 1 unit/acre or lessResidential 1 to 4 units/acreResidential 4+ units/acre

Land Use in the Greater Newburgh Study Area.

Page 10: Osman Dadi

10

OSM

AN D

ADI • 2013 The chart conveys different buildout scenarios all together, by municipality.

The Study Area boundary for the Newburgh cluster.

Page 11: Osman Dadi

REG

ION

AL P

LAN

ASS

OC

IATI

ON

11Figure 4-5: Study Area Buildout Footprints by parcel showing Existing Developed, Smart Growth A, and Smart Growth B Buildouts.

65 Newburgh Area Transportation & Land Use Study

Smart Growth B BuildoutSmart Growth A BuildoutExisting Developed

Study Area Buildout Footprints by parcel showing Existing Developed, Smart Growth A, and Smart Growth B Buildouts.

Page 12: Osman Dadi

12

OSM

AN D

ADI • 2013

Figure 3-1: Existing Transit Routes in the Newburgh Area.

48 Newburgh Area Transportation & Land Use Study

C. Existing Transportation Network

Regional Roadway ElementsTwomajorinterstatehighwayscrossinthecenteroftheStudyArea,adjacenttoStewartAirportandthemajorcommercialareasintheTownsofNewburghandNewWindsor.Interstate87,theNewYorkStateThruway,isanorth-southroadwaythatlinkstheNewYorkCitymetropol-itanareawithupstateNewYork.Inter-state84isaneast-westroadwaythatlinkssouthernNewEnglandandtheBostonmetropolitanareawithScranton,PAandpointswest.Athirdmajorhighwaycorridor,NYRoute17(futureI-86),isjustsouthoftheStudyArea,butasitundergoesmajorinvestmentstobringtheroadwaytoInterstateHighwaystandards,itisbecominganincreasinglyimportanttradecorridorlinkingOrangeCountyandtheNewYorkCitymetropolitanareatoNewYorkState’sSouthernTier.

Regional Transit ElementsTwocommuterrailserviceslinktheStudyAreatothemetropolitancore:Metro-North’sPortJervisLineandMetro-North’sHudsonLine.ThePortJervisLineisprimarilyasingle-trackraillinethatbeginsinthewesternportionsofOrangeCountyatthePennsylvaniastatelineandmakesasweepingarcoverthenortherntieroftheCounty,turningduesouthwithintheStudyAreaandcontinuingacrosstheStateline(becomingtheNJTransitMainLine)toitsterminusinHoboken.PortJervisLineriderscantransferatSecaucustootherNJTransitrailservicesontheNortheastCorridor,includingrailservicetoNewYorkPennStationonManhattan’seastside(servedbyLongIslandRailRoadandAmtrakintercityservicetopointsinNewEngland),NewarkPennStation(servedbyAmtrakintercityservicetowardspointssouthandwest),andNewarkLibertyInternationalAirport.AttheendofthePortJervisLineinHoboken,riderscan

transfertoPATHorferriestoManhattanortotheHudson-BergenLightRailforconnectionstoJerseyCity.

AferryandashuttlebusfromNewburghtoBeaconStation,acrosstheHudsonRiverinDutchessCounty,providetransitconnectionstoMetro-North’sHudsonLine.TheHudsonLineprovidesdirectservicetoPoughkeepsieandGrandCentralTerminal.

AdditionalservicetothePortAuthorityBusTerminalonManhattan’swestsideisprovidedbyShortLineBus/CoachUSA.ShortLineBusandAdiron-dackTrailwaysalsoofferintercitybusservicesthroughouttheLowerHudsonValley,notablytoemploymentcentersinWhitePlains,andtodestinationsinLongIsland,Connecticut,andupstateNewYork.

LocalbusrouteslinktheCityofNewburghtosurroundingneighbor-hoodsbuthavemorelimitedserviceintheTownsbecauseofthedifficultyinattractingsufficientridersfromthatlowerdensityarea.WithintheTownofNewburgh,busroutesgenerallyonlyservemajorshoppingareas.ExistingbusroutesareshowninFigure 3-1.Thewesternvillagesandsurroundingportionsofthetownsoperate“dial-a-bus”serviceson-demandratherthanfixedroutes,duetotherelativelylowvolumesoftransitridersgeneratedbyoutlyingareas.The

Route17Kpark-and-ridelotservesasahubforlocal,commuter,andintercitybusservices.

Taxisserveastheprimarymeansof“public”transportationformanyresidentsoftheCityofNewburghwhohaveoriginsand/ordestinationsinlocationsthatarenotservedbyexistingfixed-routetransitservices.

Air TransportationStewartInternationalAirport,alsoknownbyitssymbol“SWF”,isoperatedbythePortAuthorityofNewYorkandNewJersey(PANYNJ).ItislocatedbetweenRoutes17Kand207westofI-87andhasprimaryaccesspointsfromRoute747andRoute207.StewartprovidesbothpassengerandfreightserviceaswellasanactiveNewYorkAirNationalGuardbase.Theairporthastworunwayscapableofhandlinglargecommercialpassengeraircraft(e.g.,Boeing747)aswellasmili-tarytransportaircraft(C-5A),andevenNASA’sformerSpaceShuttle.

Passengerlevelspeakedatapproxi-mately900,000in2007afterJetBlueandAirTranbeganprovidingdiscountedairfarestoanumberofpointsalongtheeastcoast(includingFlorida)andtheMidwest.DirectflightsareprovidedtoDetroit,Atlanta,Philadelphia,andseveralFloridalocations.However,followingsurgesinaviationfuelpricesandan

Existing Northside Bus RouteExisting Southside Bus Route

Existing transit routes in the Newburgh Study Area.

Page 13: Osman Dadi

REG

ION

AL P

LAN

ASS

OC

IATI

ON

13

Figure 5-7: Proposed Mid-Valley Bus Route

102 Newburgh Area Transportation & Land Use Study

currentlocalbusserviceisoperatedbytwovehicleseachprovidingserviceevery120minutes.Theportionoftheroutecoveredbybothvehicles(BroadwayandthecommercialcorridoralongRoute300)effectivelyprovidesserviceevery60minutes.ServiceisofferedMondaythroughSaturdaywithweekdayserviceoperatingbetween6:55AMand5:30PM,whileSaturdayserviceoperatesbetween8:30AMand5:30PM.

Intheproposedshort-termservicerecommendation,theportionofthe

serviceindicatedbythe“red”and“blue”routesinFigures 5-5 and 5-6wouldbeoperatedbythreevehiclesinsteadoftwo,allowingfor90-minuteheadwaysoneachroute,oreffectively45minutesontheoverlappingportionoftheroutesonBroadwayandintheRoute300commercialcorridor.Afourthvehiclewouldoperatethe“purple”routeshowninFigure 5-7on90-minuteheadways.TheserviceplandevelopedfortheShort-TermTransitRecommendationssuggestsincreasingthespanofservicetothehours

of6:00AMand9:00PMontheweekdaysand7:00AMand7:00PMonSaturdays.

Intheshortterm,operationsoftheNewburgh-BeaconShuttlebetweenNewburghandtheBeaconMetro-NorthRailroadstationshouldbeimprovedviadiscussionsbetweenregionalstakeholders,OrangeCounty,theserviceoperator,thePortAuthorityofNewYorkandNewJersey,andtheNewYorkStateDepart-mentofTransportation.ChangingtrafficpatternsatStewartAirport,opportuni-tiestoprovidebetteraccesstoemerging

Northside RouteSouthside RouteMid-Valley RouteNewburgh-Beacon Shuttle

Proposed Mid-Valley bus route in the Newburgh Study Area.

Page 14: Osman Dadi

14

OSM

AN D

ADI • 2013

05.2012 - 06.2012

The Bridgeport Corridor and Waterfront Design Guidelines aim to apply a uniform set of form based zoning policies to the North Main and State Street Corridors, and several vacant industrial sites along the Yellow Mill River, Pequonnock River, and Johnson’s Creek waterways. The goal is to redevelop these corridors and waterfront areas to become urban, walkable, and dense amenities to the City of Bridgeport.

CONTRIBUTIONS

• Comparable guidelines and site analysis.• Design guidelines, including zoning and building

codes.• Document layout, editing, and design

DESIGNGUIDELINESSUMMARY

SHALLOWLOTWITHREARORSIDEPARKINGThe intent of the shallow lot guidelines is to provide the maximum building street frontage while accommodating parking in means that are attractive and conducive to walking and density.

Many sites along Main Street and State Street are limited by a parcel depth of 100 feet or less. The guidelines recommend developers to seek creative ways to accommodate parking while making sidewalk space attractive for pedestrians. Rear parking lots are recommended; side parking is allowed up to a maximum of 64’ in width provided the lot is adequately screened with foliage 90% opaque year round at least four feet tall. Shared parking between properties is recommended where feasible. Sidewalk space is 16’ wide in addition to on-street parking 8’ wide; this zone accommodates creative streetscape with street trees at 25’ intervals. Buildings frontages must have an 80-90% transparency on the first floor, typically accommodating retail space. On property adjacency to residential zones, buildings must be setback from the property line at least 15’ and screened with the L3 landscape treatment of a 6’ foliage barrier with trees spaced at 30’ intervals.

BridgeportCorridorandWaterfrontDesignGuidelines

Page 15: Osman Dadi

REG

ION

AL P

LAN

ASS

OC

IATI

ON

15

Street Parcel Line

16’ Sidewalk Zone with street trees spaced at 25’ intervals. 90% transparency at first floor Street Frontage. On street parking provided.

Building height under 45 feet, setbacks at third level 8’ on street frontage.

15’ setback zone from nearest residential property, with L3 landscape treat-ment (6’ foliage boundary with 30’ tree spacing)

Street facing parking lots will be screened to the sidewalk by 4’ tall 90% opaque foliage and streetscaping.

Building setback 8’ from sidewalk.

Opportunities for shared parking between parcels are encouraged.

Typical Lot Depth 100’

Parking to the rear of the building, buffered from Residential zone by L3 landscape treatment (6’ foliage boundary with 30’ tree spacing)

16’ Sidewalk Zone with street trees spaced at 25’ intervals. 90% transparency at first floor Street Frontage. On street parking provided.

15’ setback zone from nearest residential property, with L3 landscape treat-ment (6’ foliage boundary with 30’ tree spacing)

Street Parcel Line

Street Parcel Line

Street facing parking lots will be screened to the sidewalk by 4’ tall 90% opaque foliage and streetscaping.

Building setback 8’ from sidewalk.

Building height under 45 feet, setbacks at third level 8’ on street frontage.

16’ Sidewalk Zone with street trees spaced at 25’ intervals. 90% transparency at first floor Street Frontage. On street parking provided.

15’ setback zone from nearest residential property, with L3 landscape treat-ment (6’ foliage boundary with 30’ tree spacing)

Typical axonometric, 100’ parcels.

Typical sections.

Typical plan.

SHALLOWLOTWITHREARORSIDEPARKING

Page 16: Osman Dadi

16

OSM

AN D

ADI • 2013

DEEPLOTWITHBUILDINGOVERHANGMany sites along the corridors may be too small for shared parking while allowing for the maximum developable area. The guidelines encourage developers to seek creative means to accommodate parking requirements while maximizing density and walkability.

This strategy introduces the concept of parking accommodated beneath the rear of a building in lots that are great than 100’ in depth or where feasible. The parking tucked under a building must be screened in an aesthetic manner, ideally behind the main buildings while serving as the primary buffer between the mixed use zone and residential neighborhoods. Sidewalk space is 16’ wide in addition to on-street parking 8’ wide; this zone accommodates creative streetscape with street trees at 25’ intervals. Buildings frontages must have an 80-90% transparency on the first floor, typically for retail space. The upper floors of a building can accommodate roof terraces for residential uses. Adjacent to residential zones, parking lots must be screened with the L3 landscape treatment of a 6’ foliage barrier with trees spaced at 30’ intervals.

STATESTREETTRAFFICANDPARKINGSTRATEGYState Street can be configured in a multitude of ways; however, the guidelines recommend that the focus stays on a narrow right of way for automobiles that maximized on-street parking, widens sidewalk/pedestrian/treescape space, and potentially provides for frequent crosswalks, builbouts, and protected bike lanes.

The total sidewalk space is held at 16, accommodating street trees and landscaping, while retaining a 90% ground level transparency for retail and commercial space. Two lanes of traffic provide access to two lanes of on-street parking. Several parking spots can be occupied by landscaped bulb-outs for additional tree coverage.

STATESTREETTRAFFICANDPARKINGSTRATEGY

Page 17: Osman Dadi

REG

ION

AL P

LAN

ASS

OC

IATI

ON

17

Street Parcel Line

16’ Sidewalk Zone with street trees spaced at 25’ intervals. 90% transparency at first floor Street Frontage. On street parking provided.

Building height under 45 feet, setbacks at third level 8’ on street frontage.

L3 landscape treatment (6’ foliage boundary with 30’ tree spacing)

Cosmetic breaks in facade at maximum 60’ intervals

Building setback 8’ from sidewalk.

Parking tucked under rear of building; Residential floors wrap around terrace courtyard area

Typical Lot Depth over 100’

16’ Sidewalk Zone with street trees spaced at 25’ intervals. 90% transparency at first floor Street Frontage. On street parking provided.

L3 landscape treatment (6’ foliage boundary with 30’ tree spacing)

Street Parcel Line

Street Parcel Line

Cosmetic breaks in facade at maximum 60’ intervals.

Building setback 8’ from sidewalk.

Building height under 45 feet, setbacks at third level 10’ on main street frontage, 8’ on side street frontage

16’ Sidewalk Zone with street trees spaced at 25’ intervals. 90% transparency at first floor Street Frontage. On street parking provided.

15’ setback zone from nearest residential property, with L3 landscape treat-ment (6’ foliage boundary with 30’ tree spacing)

This strategy allows expanded parking by placing it beneath the building on the first floor at the rear, creating a buffer to residences.

This strategy allows expanded parking by placing it beneath the building on the first floor at the rear, creating a buffer to residences.

Typical axonometric, deep parcels.

Typical section.

Typical plan.

DEEPLOTWITHBUILDINGOVERHANG

Page 18: Osman Dadi

18

OSM

AN D

ADI • 2013

09.2011 - 05.2012

The Orange County Greenway Compact is an effort being led by Orange County and Regional Plan Association to absorb communities within Orange County into the Hudson Valley Greenway Compact. Regional Plan Association has been tasked with creating the supporting documents and mapping. The compact provides funding and resources for communities that follow sustainable smart growth.

CONTRIBUTIONS

• Existing Comprehensive Plan research and analysis, including transportation plans, growth plans, community land use and zoning policies.

• Priority Growth Areas assessment.• Policy Compilation and analysis• GIS Mapping assistance• Trail network development

PROCESS

The Comprehensive Plan analysis demonstrates Orange County’s sophistication in creating priority growth areas around major urban centers in the county. Several municipalities have successfully incorporated, independently, many of the provisions of the Greenway Compact, and can be brought into the program through adoption of the act.

These maps convey potential greenway and trail connections intended to link urban areas identified by the priority growth areas. The key premise is to preserve agricultural and natural land while creating policies and identifying areas for sustainable smart growth.

OrangeCountyGreenway

Page 19: Osman Dadi

REG

ION

AL P

LAN

ASS

OC

IATI

ON

19

Hamptonburgh

Wallkill

Deerpark

Port Jervis

Greenville

Wawayanda

Minisink

Goshen

Goshen

Florida

Warwick

Greenwood Lake

WarwickTuxedo

Tuxedo Park

Monroe

Monroe

Harriman

Woodbury

Middletown

Maybrook

Unionville

Highlands

Highland Falls

Washingtonville

Blooming Grove

New Windsor

Montgomery

Montgomery

WaldenCrawford

Mount Hope

Newburgh

Newburgh

Chester

Chester

Cornwall

Kiryas Joel

Cornwall-On-HudsonOtisville

South Blooming Grove

Village

Village

City

Map Key:

Community generally �ts Greenway criteria

Community partially �ts Greenway criteria

Community does not �t Greenway criteria

Community not reviewed; more information necessary

Village

Village

Municipal Comprehensive Plans were analyzed to determine each community’s existing compliance with the Greenway Pact, then mapped below. A land cover map (left) shows Orange County’s Priority Growth Areas overlayed onto potential greenway and trail connections.

Page 20: Osman Dadi

20

OSM

AN D

ADI • 2013 A planning framework diagram utilized in the Windsor, CT RFP.

Page 21: Osman Dadi

REG

ION

AL P

LAN

ASS

OC

IATI

ON

21

09.2011 - 05.2012

The Centers program at Regional Plan Association sought out urban design and placemaking projects within the Tristate region. My role lay in presentation strategy and graphic design, such as planning framework diagrams and mapping.

CONTRIBUTIONS

• Comparable guidelines and site analysis• Design guidelines, including zoning and building

codes• Document layout, editing, and design• Planning framework diagrams• Additional graphics• Presentation materials

We first identified sites and land most conducive to potential development, and categorized them by development type. I suggested a “rail station alternative” siting, as the current station location with its closer proximity to Windsor seemed a better suited to transit oriented development.

The diagram is masked in grayscale, while utilizing bright colors to bring out information. Red and yellow tones represent development, while blue tones are conducive to transportation linkages and civic areas.

MarketingandPresentations

These series of images were used to convey the different buildout patterns and consequent land use stemming from growth policies that advocate controlled or uncontrolled growth. Increased connectivity and efficient land utilization occurs in the circumstance C.

A.EXISTINGCONDITIONS B.BUILD-OUTASUSUAL C.SMARTGROWTHBUILD-OUT

Page 22: Osman Dadi

22

OSM

AN D

ADI • 2013

Regional Plan Association, a not-for-profit non-governmental organization, allows its research staff many opportunities to contribute to ideas in transportation and urban policy, including spotlight articles and blog postings. I utilized the opportunity to present my thoughts regarding the funding decisions of Maryland’s Inter-County Connector (ICC), and design proposals for the future California High Speed Rail Corridor in the San Francisco peninsula.

A google map was created with the article to help New York readers understand the geography of projects discussed in the article. The ICC is shown in purple, rail projects in green, HOT lanes as orange, and toll collection as a dollar sign.

WritingSamplesandInsight

Page 23: Osman Dadi

REG

ION

AL P

LAN

ASS

OC

IATI

ON

23

ONEEXPENSIVEHIGHWAYCAN’TSOLVEASTATE’SWORTHOFTRAFFICWOES

By Osman Dadi, Research Associate, RPADecember 21, 2011

On November 22, 2011, the InterCounty Connector opened in central Maryland, finishing a long-anticipated link between I-270 and I-95, two of state’s busiest thoroughfares and paralleling a third, I-495. The completed highway, hotly debated since the late 1960s, fulfills a campaign pledge of Maryland Gov. Robert L. Ehrlich Jr., the one-term Republican governor defeated in 2006.

The new road showcases the very best (and most expensive) in highway design. The road, also known as the MD-200, is a wide six lanes with smooth curves, large medians and large buffer zones with tall, noise-attenuating walls. Electronic information panels and toll collection gantries occur frequently. Bridges across major streams are long, straight, and wide; road overpasses are similarly generous, appearing to be sized to accommodate 10 or more lanes with 25-foot clearances. Along a portion of the route, state engineers and consultants even added a wide, 500-foot twin tunnel capable of accommodating four lanes plus shoulders in each direction to mitigate disruptions to a nearby residential suburb.

Despite its size and expense, or in fact because of it, the project might end up causing more traffic problems than it solves. Its planning and construction highlight the risks of concentrating limited infrastructure funds on one form of transportation. These are challenges the tri-state region faces as well, as limited transportation dollars are doled out among road, bridge, maintenance and mass-transit projects, such as in the Tappan Zee Bridge replacement, where some have proposed cutting a long-planned transit component.

In Maryland, the new road is without a doubt a quicker alternative for drivers who can afford to avoid the parallel, free route, I-495. Travel savings amount to roughly 15-20 minutes in each direction when traffic is light. The state aims to attract 30,000 daily commuters on average by June 2012. But these time savings will likely be short-lived, as development around the highway, as well as driver choices, fill the road with more cars.

Powerful development interests have already begun transformational plans, such as the 2,200-acre Konterra project in Prince George’s County where the eastern end of the ICC meets I-95. This underscores what all major studies said about the ICC before it began construction: The new road won’t relieve congestion on I-495 as intended, and following the concept of induced demand, the ICC will actually increase traffic at several key points in the state highway network as it generates new automobile trips and, over time, sprawl.

Additionally, the ICC has already strained budgets, both private and public. The cost of the highway, with two short eastern segments still unfinished, is $2.56 billion for an 18-mile route. It has some of the most expensive tolls per mile in the nation at $4 for the length of the route at peak hours and lower, variable rates at other times. Effectively, this translates into an $8 round trip per vehicle at the peak, on top of the high costs of driving and gasoline. Yet tolling doesn’t come close to covering the road’s cost, so the state has doubled tolls and lowered maintenance on all other statewide facilities, including toll bridges more than 100 miles away.

Finally, there are the many opportunity costs. Gov. Ehrlich borrowed a decade’s worth of money from the state’s future federal transportation funds. Thus, the debt undertaken by the state of Maryland in building the highway effectively stalled three viable and long-planned statewide rail projects-- the Purple Line in lower Montgomery County, the Corridor Cities Transitway along the upper I-270 corridor in Montgomery County, and the Red Line subway in central Baltimore. The Purple Line is especially significant, as it is planned on a route between two of Montgomery County’s most important business and community centers, Bethesda and Silver Spring, and would directly provide a parallel alternative to congested I-495 and some ICC users. Additionally, the route connects two branches of the busiest subway line in Washington.

The ICC, on the other hand, is routed through fringe suburbs, and doesn’t provide travel alternatives to congested urban areas in lower Montgomery County. The combined cost of those transit lines was in the range of $3 billion to $4 billion, or roughly the same as the cost of the ICC and new high-occupancy toll lanes on I-95 in Baltimore. The expected number of users, though, was very different. The three rail projects were expected to handle 105,000 to 155,000 passengers a day, compared with the ICC’s predicted 30,000 to 40,000 commuters.

As seen on a map, it’s clear that the ICC is simply one segment of the long-discussed outer beltway around the greater Washington, D.C., area, a planning concept now generally discredited but still not discarded. Some say the ICC could have been built sooner and at lower cost. But looking forward, one thing is apparent: Drivers in Montgomery County and on I-495, commuters in Baltimore, and residents elsewhere in the state will be mired in congestion, traffic, and cost, with few alternatives, for potentially decades to come.

Page 24: Osman Dadi

24

OSM

AN D

ADI • 2013

REMAKINGTHESANFRANCISCOPENNINSULACORRIDORWITHABICYCLEEXPRESSWAY

By Osman Dadi, Research Associate, RPAJanuary 12, 2012

Accommodating high-speed rail trains in the San Francisco peninsula has been a contentious topic because of potential noise and visual impacts on the surrounding communities. Recently, the California High-Speed Rail Authority announced its support for a “blended approach” that would utilize the existing Caltrain corridor. But what if a solution could be found that ensures grade separation between trains and automobiles while also opening up dramatically enhanced commuting options for bicyclists? 

This proposition allows another incredible opportunity for the Peninsula that would benefit all communities: integrating a grade-separated bicycle expressway into that new infrastructure. The benefits of a separated cycle expressway are many: just as cars on interstate highways are able to travel faster, without stopping for traffic lights, and thus also in a safer means, an expressway for cyclists would allow bicyclists to do the same. The new route would pass over main roads, eliminating vehicular conflicts and allowing fast travel times. Exits spaced out at quarter or half mile intervals would connect into the existing on street bicycle corridors, creating a network between them. The route would allow bicyclists to bypass some of the busiest arterial roads, reducing conflicts with automobiles and hereby helping automobile traffic move faster, while making the experience safer for cyclists and drivers alike. Just as I-280 and US-101 act as the primary automobile highways along the Peninsula, and Caltrain the primary rail corridor, a bicycle expressway would fill a similar role for bicycles. It would provide a new, direct, and fast grade separated route for workers utilizing bicycling and transit as their primary means of commuting, as well as a dedicated route for recreational bicyclists.

The San Francisco peninsula is known for many things, among them a workforce driven by innovative ideas (especially in Silicon Valley), great weather nearly all year round, a culture that largely embraces healthy and environmentally friendly lifestyles, and strong support for biking. The bicycle network of the Bay Area, while quite extensive, is simultaneously also quite disconnected. Particularly in the central Peninsula, there are few dedicated off street bicycle corridors, and routes on streets are frequently disconnected to each other. Thus, there is presently no direct means for a bicyclist to traverse many portions of the Peninsula without mixing into automobile traffic, itself a dangerous proposition given the high speed nature of main routes like El Camino Real or the Expressways around San Jose.

Simultaneously, the existing peninsula Caltrain corridor is slated for a much needed change. The present line has not been significantly upgraded for several decades, but has been planned for large scale electrification for many years. When the California High Speed Rail plan was announced between San Francisco and Los Angeles, an opportunity arose to couple that electrification project with a broader reconstruction that also accommodates high speed rail service by expanding, electrifying, and grade separating the corridor. The configuration of the new route, though still undecided, will likely be elevated on an embankment, elevated on a structure, or (if communities along the route are willing to help fund it) trenched. 

The benefits of grade separation and electrification alone are enormous: eliminating grade crossings allow faster train speeds, eliminate noise pollution from train horns, and electrification removes diesel fumes and noise. Additionally, automobile conflicts with trains are eliminated, also making it safer and faster for drivers to cross the railway.

Ideally, a new bicycle route would be directly integrated into the new Caltrain system, making it extremely easy and efficient to bring your bicycle onto a train, thus extending the reach of that transit system. As a hypothetical example, two cars on the north side of each train (the direction of travel is irrelevant) could be designated bicycle cars, and feature extra room for bicycle storage. Where on current trains bringing bicycles on board requires you to carry them up train stairs and through the carriage doors, this process would be dramatically simplified with level boarding. The northern part of each platform would be designated bicycle loading zones, similar to how we have zones for boarding people with wheelchairs; these would in turn connect directly into the expressway. Thus, a train rider could complete a journey to destinations that are beyond convenient walking and bus distances by connecting to the cycle expressway at the station and biking the remaining distance safely.

A critic might ask: how much more would such an addition cost? Do we really need to add a bicycle expressway?  Adding a new easement would cost more, yes, but the benefits would be equally numerous. Considering that a rebuilt corridor is already slated to cost several billion dollars (regardless of whether HSR is adopted), adding a bicycle route would add only a small fraction to the grand total, yet would provide a dramatically new and fast means to traverse the Peninsula. A new route would dramatically extend the reach of the Caltrain network, providing another means for transit riders to access locations out of walking distance from stations. Since the region is going to rebuild the Peninsula rail corridor anyway, it should be built completely and properly, with the greatest needs of the metropolis factored in. If a bike sharing network is ever introduced in the Bay Area, it would likely make extensive use of the new cycle expressway.

The peninsula has unfortunately become the most

Page 25: Osman Dadi

REG

ION

AL P

LAN

ASS

OC

IATI

ON

25

contentious area for accommodating the planned California High Speed Rail line. The debate has largely failed to recognize the incredible potential of reconstruction to change mobility options in that entire region. Failure to integrate biking into this critical piece of infrastructure would mean that the entire Peninsula will miss an opportunity to add new travel means - or anything similar--to the region for decades, possibly

even for the next century. Adding a route would benefit the Peninsula tremendously, helping add to the vibrant discourse of ideas that frequently stem from this portion of the country.

Page 26: Osman Dadi

26

Page 27: Osman Dadi

27

Zimmer Gunsul Frasca Architects

Page 28: Osman Dadi

OSM

AN D

ADI • 2013

28

10.2009 03.2010 – 07.2010

The University of Hawaii Cancer Research Center, located in Honolulu, is approximately 149,000 SF and consists of two buildings, the Wet and Dry research facilities, connected by a breezeway and elevator tower. The project was undertaken with the local Hawaiian firm Shimokawa + Nakamura Architects; the Zimmer Gunsul Frasca team, as a subcontractor to the local firm, was in charge of core-and-shell drawings, exterior, and structure of the project.

The existing Jabsom Campus is built around a circular green courtyard. The main entrance to the campus is off Ilalo Street, and parking is accessible primarily from adjacent properties to the west. A new fire lane and service road is developed in the ZGF design in order to facilitate loading access. Additionally, the building preserves as much of the courtyard as possible within the buildable area.

CONTRIBUTIONSANDPROCESS

COMPETITIONANDPRE-DESIGN• 3D Existing Site and Context Modeling in Sketch-Up• Scheme C Preliminary Design and Sketch-Up

Modeling

During the competition phase of this project, I spent roughly one week in pre-design, where I created a Sketch-Up model of the existing buildings on the Jabsom Campus, and also created models of an alternative Scheme C.

100%SCHEMATICDESIGN• Cartoon Set development• Elevations development and strategy• Programming Strategy• Structural Grid management

I spent roughly two and a half months in the Schematic Design phase of the Cancer Research Center, working with the team to develop the cartoon set, finalize the program layout, and develop the elevations. My

3D Sketch-Up Model of the Cancer Research Center in Schematic Design. Elevations were my responsibility.

UniversityofHawaiiCancerResearchCenter

Page 29: Osman Dadi

ZIM

MER

GU

NSU

L FR

ASC

A AR

CH

ITEC

TS

29

supervisor Hieu Phan and I worked closely. As the building footprint is extensive, including eleven exterior elevations, we divided the building into three sections to clarify drawing sets. I spent several days creating the Sketch-Up model of the building, used to create high quality renderings of the building’s future appearance. At the end of Schematic Design, I shifted to working with the structure.

50%DESIGNDEVELOPMENT• Core and Shell Design and Drawing Management• Floor Plan management• Fire Stair Design management• Grand Staircase Design Management (including

implementation in physical model)• Development of the physical building model• Curtain Wall and Roof Details, Enlarged Sections

Through 50% Design Development, I worked closely with the team on structure, core and shell drawings, and stair management. I continuously updated the cartoon set,

floor plans as the structural grid continued to shift and finalize, and fire stair design to accommodate changes. Additionally, I worked through technical parts of the curtain walls and elevations, including enlarged plans and sections of the design of the curtain wall structure. My effort in this stage concluded with the development of the physical model, where I created the breezeway area.

The Cancer Research Center in the context of its site. The development of the 3D site model had been my responsibility.

Page 30: Osman Dadi

OSM

AN D

ADI • 2013

30

Page 31: Osman Dadi

ZIM

MER

GU

NSU

L FR

ASC

A AR

CH

ITEC

TS

31

ALLDRAWINGSVarious curtain wall enlarged plans and sections I created for the 50% Design Development package.

Page 32: Osman Dadi

OSM

AN D

ADI • 2013

32

Enlarged Sheet A1.34, Third Floor, Stair 2, 1/8” = 1’-0”. Our team was tasked with creating core and shell drawings of the building. Con-figuration of this fire stair was my responsibility.

Sample Grand Staircase Elevator Elevation (scaled to half-size). These drawings were my responsibility.

Page 33: Osman Dadi

ZIM

MER

GU

NSU

L FR

ASC

A AR

CH

ITEC

TS

33

Final Model of the University of Hawaii Cancer Research Center.I had been responsible for creating the staircase tower.

Page 34: Osman Dadi

OSM

AN D

ADI • 2013

34

11.2009 – 03.2010

The Childrens Hospital Los Angeles Phase III expansion is a seven story, 480,000 SF facility located in Los Angeles, California. The construction administration team consisted of the Project Manager, Project Assessor, and coordination staff for document control, scope, M/E/P, interiors, medical equipment, and other management.

As a member of ZGF’s CHLA construction administration team, I utilized the opportunity to provide general support.

CONTRIBUTIONS

• Construction Administration• CCD and RFI Responses• Drawing Database Management

I managed a seven year drawing database in Microsoft Access, including updating all catalogs of RFIs, CCDs, ASIs, and documented changes to the permit drawing set. Additionally, I responded to several RFI, CCD, and OSHPD requests from the contractor, clarifying the procedures and details in constructing areas of the project.

Construction Change Directive (CCD) 612 addresses details in the construction of a waterproof exterior entry area. Using plans from the drawing set and some axonometric sketches from the staff, I created enlarged sections showing the portion of the entry area in the context of a curb, a seismic joint, a threshold (doorway), a storefront, a drain channel, and at the base of the wall and mechanical fan enclosure.

Children’sHospitalLosAngeles

Partial site plan and enlarged axonometric sketches (shown for reference only, scaled to a quarter the original size).

Page 35: Osman Dadi

ZIM

MER

GU

NSU

L FR

ASC

A AR

CH

ITEC

TS

35

Enlarged sections at curb, seismic joint, storefront, and base of wall. These have been scaled to half the original size.

Page 36: Osman Dadi

OSM

AN D

ADI • 2013

36

08.2009 - 09.2009

Zimmer Gunsul Frasca Architects was chosen to take part in the design of four courthouses in the state of California, including a District Courthouse in San Jose. Scheme C, shown here and which I worked very closely with Braulio to develop, was selected, and is currently under construction.

The 69,500 SF site owned by the county; an additional 10,600 SF owned by the Valley Transportation Authority allows for a combined parcel of 80,000 SF. Based on codes, the maximum allowable height is approximately 223-242 feet tall. Structures within 100 feet of historic landmarks cannot deviate by more than one story from immediately adjacent historic buildings. In no circumstance can they exceed 70 feet within this zone.

In this scheme, courtrooms are arranged to be perpendicular to each other, and the judges chambers are organized in a suite. Thus, each courtroom will receive the maximum possible amount of glazing on at-least one face. The newly formed atrium then provides a dramatic presence on St. James Street. Court Administration can be stacked over the court rooms on a seventh level. If necessary in the future, this space can be converted into four additional court rooms, an additional judges chamber, and an additional jury room. This design also maintains a direct pedestrian connection to both the rose garden and to St. James Park.

CourtroomsJury Rooms and Court SupportSecure Holding AreasJudges Facilities (private access only)Court Services and Staff Support (first level)Waiting AreasDependency, Family, and Drug Justice PartnersAdministrative FacilitiesDependency and Drug ClerksProbate and Civil Grand Jury FacilitiesChild Waiting FacilitySheriff Operations OfficeSelf Help CenterMechanical AreasCirculation

SanJoseDistrictCourthouse

Page 37: Osman Dadi

ZIM

MER

GU

NSU

L FR

ASC

A AR

CH

ITEC

TS

37

CONTRIBUTIONSANDPROCESS

• SketchUp Modeling of all schemes (including shown)• Programming and Building Layout• Presentation Graphics and Materials

Over a span of two weeks, I worked to develop one of the proposals for the Courthouse. Due to the L-shape of the site, ZGF proposed two linear schemes; however, I thought it wise to work on an alternative which configured courthouses at a right angle. In doing so, and by placing other required facilities on a third side, I discovered the potential for a multistory atrium for the building that would allow light into the waiting areas, create a grand presence on the primary access street, and also allow the maximum penetration of light into the courtrooms. Public circulation would best be suited where the atrium, public space, and mixed court facilities were situated closest to each other.

Utilizing these ideas, I developed a strong proposal which moved forward as one of the alternatives in the final presentation bid for the project. I coordinated the program layout for this scheme to minimize height, and helped develop the final 3D model that was utilized in animations. Ultimately, ZGF won this competition and developed a variation of my original concept.

Automobiles and other vehicles gain primary access to the site from CA Hwy 87 along St. James St. Pedestrians can access the site from the adjacent Downtown Superior Court and Old Courthouse. Most visitors arriving via automobile will park in and walk from a parking structure on North Market Street. Transit users and other pedestrians will access the site from the transit mall on North First Street. Service and loading zone areas will be designated along Devine Street and North Market Streets, away from pedestrian usage. Detainee Buses will arrive from Hwy 87 along St. James Street and enter a secure sallyport on Devine Street. As the new courthouse will be operating in tandem with existing civic buildings directly south, there is a civic building relationship along St. James St, as well as an urban park and plaza relationship along North First Street

• Xxxxxxxx

• Xxxxxxxx

SITE SITE ANALYSIS RELATIONSHIPS

• Civic relationship along

St James Street

• Service and loading zone

along Devine Street and

North Market Streets

• Detainee Buses arrive from

Hwy 87 along St James Street

and enter secured sallyport

on Devine Street

Public Zone

Bus

Service Zone

Rose Garden

SITE ANALYSIS LOCATION

• San Jose is the third largest

California city

• The project parcels are part of

the Downtown Core and subject

to specific design guidelines and

zoning ordinances

SiteCity Limits

Downtown

Primary Site – Parcel 56

• Owned by Santa Clara County

• Approximately 69,500 sf

Expanded Site – Parcel 56 & 57

• Additional 10,600 sf

• Owned by Valley Transportation

Authority (VTA).

• Combined parcel is

approximately 80,000 sf20’ setback

SITE ANALYSIS PARCEL

VTA

• Connections from adjacent

Downtown Superior Court

and Old Courthouse

• Majority of visitors arriving by

car, walk from parking structure

on North Market Street

• Pedestrians from St James Park

and the transit mall on North

First Street

SITE SITE ANALYSIS PEDESTRIAN CIRCULATION

Page 38: Osman Dadi

OSM

AN D

ADI • 2013

38

PROGRAM SYNTHESIS

|| Osman Dadi || 2009-2010 Zimmer Gunsul Frasca Architects || Los Angeles, California || 35

Late Ground Level Plan

scan; original size

Arranging the courtrooms perpendicular to each other and stacking them creates a dramatic presence on St. James Street.

An early sketch conveys the layout of the ground floor, sallyport, public courtyard, and main entry area.

Page 39: Osman Dadi

ZIM

MER

GU

NSU

L FR

ASC

A AR

CH

ITEC

TS

39

PROGRAM SYNTHESIS

Bio5 - Atrium

|| Osman Dadi || 2009-2010 Zimmer Gunsul Frasca Architects LLP || Los Angeles, California || 36

SCHEME C DEVELOPMENTTypical Upper Levels Plan

scan; original size

A sketch showing the typical layout of upper floors.

An extra floor can be accommodated with court adminstration if necessary.

Page 40: Osman Dadi

OSM

AN D

ADI • 2013

40

PROGRAM SYNTHESIS

Duke - Atrium

The layout of the courtrooms allows a south facing seven story public atrium consisting of circulation and waiting areas.

Page 41: Osman Dadi

ZIM

MER

GU

NSU

L FR

ASC

A AR

CH

ITEC

TS

41

PROGRAM SYNTHESIS

PROGRAM SYNTHESIS

Bio 5 Atrium

A grand entryway is developed to the southeast.

This strategy creates judges suites, and allows maximum light penetration into the courtrooms.

Page 42: Osman Dadi
Page 43: Osman Dadi

Rice University School of Architecture

Page 44: Osman Dadi

OSM

AN D

ADI • 2013

44

01.2011 - 05.2011

The Menil Café was produced collaboratively within the Rice Building Workshop, a subset of the Rice School of Architecture led by Professors Nonya Grenader and Danny Samuels. Our RBW studio of ten graduate and fifth year students created three schemes for the museum proposal, of which two were advanced to a final design selection phase. The scheme below presents the second option, known as “Scheme C,” which I worked on for approximately three months.

The renderings shown were developed as a team within the studio. This proposal was ultimately dropped in favor of the alternative, “Scheme A.”

CONTRIBUTIONS

• Schematic Design• Design Development• Site Programming • Interior Design and Lighting• Roof Design and Layout• Building Plans and Sections, including final drawings• Wall Sections and Details Development• Final Model

PROCESS

This scheme occupies the open lot to the east of the bookstore. Visitors approach the café from the path connecting the West Alabama parking lot to Sul Ross Street or directly from the sidewalk on Sul Ross.

A system of heavy walls supporting an expansive roof defines this scheme. The continuous wall on the building’s eastern edge forms the backdrop for activity in the café and outdoors. A linear skylight connecting the roof to this wall washes it in indirect sunlight, illuminating board-formed concrete texture. The other “heavy” north/south walls respond to the two ways of moving through the site: the faster axis parallel to the path and the slower east/west axis tying the bookstore to the café. A series of lighter walls perpendicular to the heavy walls reinforce the porosity of the north/south axis. Outdoors, the roof forms a deep overhang above seating areas, but allows indirect light through a steel shade trellis.

While the walls and roof shelter protect occupants from harsh western sunlight, the openness of spaces between walls and through the shade trellis celebrates views of both the Menil Collection and the greenery of the open lawn behind the bookstore.

text used with permission from the Menil Cafe Booklet.

MenilMuseumCafe

Page 45: Osman Dadi

RIC

E U

NIV

ERSI

TY S

CH

OO

L O

F AR

CH

ITEC

TUR

E

45

Scheme C Site Plan.

Scheme C viewed from the Menil Museum.

Rice Bui lding Workshop 25

Sc

he

me

C

0’ 8’4’ 16’Site Plan: 1”=50’-0”

Rice Bui lding Workshop24

T h i s s c h e m e o c c u p i e s t h e o p e n l o t t o t h e e a s t o f t h e

b o o k s t o r e . V i s i t o r s a p p r o a c h t h e c a f é f r o m t h e p a t h

c o n n e c t i n g t h e W e s t A l a b a m a p a r k i n g l o t t o S u l R o s s S t r e e t

o r d i r e c t l y f r o m t h e s i d e w a l k o n S u l R o s s . T h e y e n t e r b y

v e e r i n g o f f o f t h e m a i n p a t h i n t o s h a d e d , o u t d o o r s e a t i n g

a r e a s .

A s y s t e m o f h e a v y w a l l s s u p p o r t i n g a n e x p a n s i v e r o o f

d e f i n e s t h i s s c h e m e . T h e c o n t i n u o u s w a l l o n t h e b u i l d i n g ’ s

e a s t e r n e d g e f o r m s t h e b a c k d r o p f o r a c t i v i t y i n t h e c a f é

a n d o u t d o o r s . A l i n e a r s k y l i g h t c o n n e c t i n g t h e r o o f t o t h i s

w a l l w a s h e s i t i n i n d i r e c t s u n l i g h t , i l l u m i n a t i n g t h e b o a r d -

f o r m e d c o n c r e t e t e x t u r e . T h e o t h e r “ h e a v y ” n o r t h / s o u t h

w a l l s r e s p o n d t o t h e t w o w a y s o f m o v i n g t h r o u g h t h e s i t e :

t h e f a s t e r a x i s p a r a l l e l t o t h e p a t h a n d t h e s l o w e r e a s t / w e s t

a x i s t y i n g t h e b o o k s t o r e t o t h e c a f é . A s e r i e s o f l i g h t e r w a l l s

p e r p e n d i c u l a r t o t h e h e a v y w a l l s r e i n f o r c e t h e p o r o s i t y o f t h e

n o r t h / s o u t h a x i s . O u t d o o r s , t h e r o o f f o r m s a d e e p o v e r h a n g

a b o v e s e a t i n g a r e a s , b u t a l l o w s i n d i r e c t l i g h t t h o u g h a s t e e l

s h a d e t r e l l i s .

W h i l e t h e w a l l s a n d r o o f s h e l t e r o c c u p a n t s f r o m h a r s h

w e s t e r n s u n l i g h t , t h e o p e n n e s s o f s p a c e s b e t w e e n w a l l s a n d

t h r o u g h t h e s h a d e t r e l l i s c e l e b r a t e s v i e w s o f b o t h t h e M e n i l

C o l l e c t i o n a n d t h e g r e e n e r y o f t h e o p e n l a w n b e h i n d t h e

b o o k s t o r e .

S c h e m e C

Above, Perspective looking Northeast from Sul Ross Street

Page 46: Osman Dadi

OSM

AN D

ADI • 2013

46

Primary walls organize space. Adjacent green space.

Entry sequence. Views from Cafe.

South Elevation.

North Elevation.

Rice Bui lding Workshop 27

Sc

he

me

C

bookstore

0’ 8’4’ 16’

Concept Diagram: Primary wal ls organize space. Adjacent Green Space

Entry Sequence Views from Cafe

Rice Bui lding Workshop 27

Sc

he

me

C

bookstore

0’ 8’4’ 16’

Concept Diagram: Primary wal ls organize space. Adjacent Green Space

Entry Sequence Views from Cafe

Rice Bui lding Workshop 27

Sc

he

me

C

bookstore

0’ 8’4’ 16’

Concept Diagram: Primary wal ls organize space. Adjacent Green Space

Entry Sequence Views from Cafe

Rice Bui lding Workshop 27

Sc

he

me

C

bookstore

0’ 8’4’ 16’

Concept Diagram: Primary wal ls organize space. Adjacent Green Space

Entry Sequence Views from Cafe

Rice Bui lding Workshop 31

Sc

he

me

C

0’ 8’4’ 16’

South Elevation: 3/32”=1’-0”

Section A: 3/32”=1’-0”

Rice Bui lding Workshop30

0’ 8’4’ 16’

West Elevation: 3/32”=1’-0”

North Elevation: 3/32”=1’-0”

Page 47: Osman Dadi

RIC

E U

NIV

ERSI

TY S

CH

OO

L O

F AR

CH

ITEC

TUR

E

47

West Elevation.

Rice Bui lding Workshop30

0’ 8’4’ 16’

West Elevation: 3/32”=1’-0”

North Elevation: 3/32”=1’-0”

Rice Bui lding Workshop26

0’ 8’4’ 16’Floor Plan: 3/32”=1’-0”Scheme C Floor Plan.

Page 48: Osman Dadi

OSM

AN D

ADI • 2013

48

Section at kitchen.

Section at serving counter.

Section at bathroom and entry corridor.

Section at Cafe seating area with skylight.

Rice Bui lding Workshop32

0’ 8’4’ 16’

Section B: 3/32”=1’-0”

Section C: 3/32”=1’-0”

Rice Bui lding Workshop 31

Sc

he

me

C

0’ 8’4’ 16’

South Elevation: 3/32”=1’-0”

Section A: 3/32”=1’-0”

Rice Bui lding Workshop 33

Sc

he

me

C

0’ 8’4’ 16’

Section D: 3/32”=1’-0”

Section E: 3/32”=1’-0”

Rice Bui lding Workshop32

0’ 8’4’ 16’

Section B: 3/32”=1’-0”

Section C: 3/32”=1’-0”

Page 49: Osman Dadi

RIC

E U

NIV

ERSI

TY S

CH

OO

L O

F AR

CH

ITEC

TUR

E

49

Rice Bui lding Workshop 37

Sc

he

me

C

Model at 1/8”=1’-0,” Aerial Perspective from Meni l Col lection

Rice Bui lding Workshop38

Above, Model Perspective looking NortheastTop, Model Perspctive looking North from Sul Ross Street

Rice Bui lding Workshop 39

Sc

he

me

C

Above, Model Perspective looking Southeast

Aerial perspective from Menil Collection, 1/8”=1’-0”.

Model perspective looking southeast.

Model perspective looking north from Sul Ross Street.

Page 50: Osman Dadi

OSM

AN D

ADI • 2013

50

08.2008 - 12.2008

The Interpretive Music Center is situated on a north facing L-shaped infill site in Midtown Houston. The center’s purpose “revolves around the study, performance and promotion of the works of contemporary musical artists, works that remain relevant, influential and significant across generations of interpreters and listeners.”

The 12,000 square foot program consists of an exhibition gallery, general multipurpose space, performance space, administrative office suite and supporting library, gift shop & bookstore, lobby, courtyard, and basement mechanical space.

PROCESS

The IMCH solution explores the flexibility of an infill site by creating a courtyard in the rear using an interior light well, thereby allowing light to enter into the main building from the front and rear. The scheme evolved as a cube over a void, the former containing the primary program. A core connects all levels while dividing the cube into primary and secondary spaces. The building language is repeated in the lateral direction, creating terraces overlooking the event spaces.

As the site faces north, the primary source of light is from the back of the building, allowing the building to be lit from the interior and draw people in. The rear facade is open to the courtyard; the front facade contains a mechanical light filtration system that provides insulation from humidity.

A spiral staircase ties the interior spaces together.

76Rice University School of Architecture

shows void to left, primary spaces center, other areas right1/16”:1’ original scale3/128”:1’ scale shown

InterpretiveMusicCenter-Houston

Model detail showing primary event spaces and grand stair.67 Osman Dadi 2009

An early sketch of the main performance space.

Transverse building section.

Page 51: Osman Dadi

RIC

E U

NIV

ERSI

TY S

CH

OO

L O

F AR

CH

ITEC

TUR

E

51

The principal facade of the IMCH, at 1/4”=1’-0”.

Sunlight filters into the light well from the rear of

the project, creating a dra-matic silhouette effect.

Page 52: Osman Dadi

OSM

AN D

ADI • 2013

52

80Rice University School of Architecture

1/16”:1’ original scale3/128”:1’ scale shown

83 Osman Dadi 2009

1/16”:1’ original scale3/128”:1’ scale shown

82Rice University School of Architecture

1/16”:1’ original scale3/128”:1’ scale shown

79 Osman Dadi 2009

1/16”:1’ original scale3/128”:1’ scale shown79 Osman Dadi 2009

1/16”:1’ original scale3/128”:1’ scale shown

79 Osman Dadi 2009

1/16”:1’ original scale3/128”:1’ scale shown

79 Osman Dadi 2009

1/16”:1’ original scale3/128”:1’ scale shown

79 Osman Dadi 2009

1/16”:1’ original scale3/128”:1’ scale shown

Ground Floor Plan.Basement Floor Plan, 11 feet below ground level.

Third Floor Plan, 25 feet 4 inches. Fourth Floor Plan, 32 feet.

Page 53: Osman Dadi

RIC

E U

NIV

ERSI

TY S

CH

OO

L O

F AR

CH

ITEC

TUR

E

53

84Rice University School of Architecture

1/16”:1’ original scale3/128”:1’ scale shown

81 Osman Dadi 2009

1/16”:1’ original scale3/128”:1’ scale shown

75 Osman Dadi 2009

shows light well/courtyard to right, main spaces centera spiral staircase connects all levels1/16”:1’ original scale3/128”:1’ scale shown

79 Osman Dadi 2009

1/16”:1’ original scale3/128”:1’ scale shown

79 Osman Dadi 2009

1/16”:1’ original scale3/128”:1’ scale shown

Second Floor Plan, 14 feet.

Fifth Floor Plan, 48 feet 8 inches.

An early light study.

Primary building section.

A cross section of the model with light well and building program.

Page 54: Osman Dadi

OSM

AN D

ADI • 2013

54

08.2007 - 12.2007

The Slab Space project, conducted during the Architecture 301 studio, aimed to “transform the “slab” into an affective surface for a medium-high density residential resort community on the edge of urban Houston,” by utilizing concepts of morphogenesis, computation, and modeling in digital format

PROCESS

PHASEIA simple spine and rib system was created by first folding an 8” x 2” slip of paper to create a simple unit. Three or more of these units create a spine that can torque and bend in many different directions. Ribs are created by binding two spines with connectors. A stable superstructure evolves once three spines are built into a rib system.

PHASE2My partner and I merged our rib and spine systems and created two different superstructures: a lateral typology and a tower typology. In the lateral system, the units are versatile spaces, while the ribs provide all structure and circulation. The tower system utilizes the same concept, but vertically.

PHASE3The lateral proposal from Phase 2 was applied to develop an urban resort and retail community for young adults in Houston. The superstructure includes a diverse array of different retail and residential uses. Open spaces provide zones for public activity.

SlabSpace

Phase 2: Lateral typology with circulation system deployment.

Phase 3: Habitable spaces are added to the rib and spine system.

Phase 3: Final superstructure.

Phase 1: The Spine and Rib system.

Page 55: Osman Dadi

RIC

E U

NIV

ERSI

TY S

CH

OO

L O

F AR

CH

ITEC

TUR

E

55

NODES PARKING NODES LIGHT RAIL NODES RAIL STATIONS CONVENTION NODESINTERIOR ARTERIALS PARKING ACCESS LIGHT RAIL ACCESS LIGHT RAIL ACCESS EXTERIOR ARTERIALS

42Rice University School of Architecture

circulation paths shown, units hiddenrhinoceros rendering

circulation paths shown, respective to unitsrhinoceros rendering

full system design shownrhinoceros rendering

Transportation Map

diagramatic circulation and transportation mapshows allocations of transportation movementrhinoceros rendering

Circulation network diagram.

3D modeling of circulation system, facing north.

Page 56: Osman Dadi

OSM

AN D

ADI • 2013

56

08.2006 - 10.2006

The students in our Architecture 201 studio, with Professors Doug Oliver and Jim Ray, were to independently create a research and display pavilion intended for the study of wetlands ecosystems and the promotion of public awareness of environmental conservation.

PROCESS

The Wetlands Research Center condenses a 200 square foot lab space, 300 square foot greenhouse with 20 foot high ceilings, and 300 square foot visitor’s area into a compact, space efficient layout utilizing two layered fields. The primary field is structural, consisting of cast-in-place concrete beams and columns that span the building exterior. A secondary, horizontal solar screening system provides shade to exposed areas of the building for passive climate control.

The greenhouse exists as its own entity on one side of the building, whereas the visitor’s center and stacked over the research lab area on the other side of the building. Circulation is provided through a staircase at the center of the building, housing a cistern beneath it.

The building uses a water cooling system that drains rain water from the roof into the cistern using the sloped roof, then pumping water back over the building during sunny daytime hours, thus absorbing heat while consequently cooling and dampening the interior of the greenhouse. This passive cooling system is aided by high performance glazing systems that provide additional insulation.

17 Osman Dadi 2009

19 Osman Dadi 2009

20Rice University School of Architecture

Roof Detail

water collection and temperature modulating system1/4”:1’ scalebasswood and plastic

Front Elevation

viewing into greenhouse1/4”:1’ scalebasswood and plastic

17 Osman Dadi 2009

19 Osman Dadi 2009

WetlandsResearchCenterandPavilion

View of model facing south, showing primary greenhouse facade.

Model view looking southeast, showing entryway and greenhouse.

View of model facing northeast and the main visitor area.Aerial model view showing glass roof structure over greenhouse.

Page 57: Osman Dadi

57

First Floor Plan, ink on vellum.

Typical Section, ink on vellum.

Model detail of layered roof structure and solar shades.

Page 58: Osman Dadi

58

162nd AVENUEBoulder

Five Points

DowntownGolden

B

A

AB

C

D

CD

BOULDER TRANSIT VILLAGE

LONGMONT

BOULDER CENTER

FLATIRON

35th/DOWNING33rd/DOWNING30th/DOWNING

29th/WELTON

20th/WELTON

25th/WELTON

27th/WELTON

38th/BLAKE

18th/CALIFORNIA

16th/CALIFORNIA

18th/STOUT

16th/STOUT

DENVER UNION STATION

PEPSI CENTERETLICH CENTER

INVESCO FIELD AT MILE HIGH

AURARIA WEST CAMPUS

I-25/BROADWAY

ALAMEDA

LOUISIANA/PEARL

UNIVERSITY OF DENVER

COLORADO/BUCHTEL

YALE

SOUTHMOOR

10th/O

SAGE

EVANS

BATES

ENGLEWOOD

OXFORD/CITY OF SHERIDAN

LITTLETON - DOWNTOWN

LITTLETON - MINERAL

C-470/LUCENT

JEFFCO GOVERNMENT

CENTER

FEDERAL CENTER

OAK

GARRISON

WADSWORTH

LAMAR

SHERIDAN/12

th

PERRYKNOX

DECATUR

RED ROCKS

COMMUNITY

COLLEGE

WARD ROAD ARVADA RID

GE

SHERIDAN BLVD

FEDERAL BLVD

PECOS

41st AVENUE COLORADO BLVD CENTRAL PARK PEORIA

BELLEVIEW

RIDGE GATE PARKWAY

ARAPAHOE AT VILLAGE CENTER

DRY CREEK

COLISEUM/STOCK SHOW

COUNTY LINE

LINCOLN

SKY RIDGE

LONE TREE CENTER

ORCHARD

DENVER INTERNATIONAL AIRPORT

72ND AVENUE

88th AVENUE

104th AVENUE

112th AVENUE

124th AVENUE

144th AVENUE

DAYTON

NINE MILE

DIFF

FLORIDA

AURORA

ABILENE

13th AVENUE

THEATRE DISTRICT/

CONVENTION CENTER

COLFAX AT AURARIA

COLFAX

MONTVIEW

GUNBARREL

TABLE MESA

McCASLIN

LOUISVILLE

SOUTH WESTMINSTER

WESTMINSTER CENTER

CHURCH RANCH 104th AVENUE

WALNUT CREEK

BROOMFIELD

Page 59: Osman Dadi

59

162nd AVENUEBoulder

Five Points

DowntownGolden

B

A

AB

C

D

CD

BOULDER TRANSIT VILLAGE

LONGMONT

BOULDER CENTER

FLATIRON

35th/DOWNING33rd/DOWNING30th/DOWNING

29th/WELTON

20th/WELTON

25th/WELTON

27th/WELTON

38th/BLAKE

18th/CALIFORNIA

16th/CALIFORNIA

18th/STOUT

16th/STOUT

DENVER UNION STATION

PEPSI CENTERETLICH CENTER

INVESCO FIELD AT MILE HIGH

AURARIA WEST CAMPUS

I-25/BROADWAY

ALAMEDA

LOUISIANA/PEARL

UNIVERSITY OF DENVER

COLORADO/BUCHTEL

YALE

SOUTHMOOR

10th/O

SAGE

EVANS

BATES

ENGLEWOOD

OXFORD/CITY OF SHERIDAN

LITTLETON - DOWNTOWN

LITTLETON - MINERAL

C-470/LUCENT

JEFFCO GOVERNMENT

CENTER

FEDERAL CENTER

OAK

GARRISON

WADSWORTH

LAMAR

SHERIDAN/12

th

PERRYKNOX

DECATUR

RED ROCKS

COMMUNITY

COLLEGE

WARD ROAD ARVADA RID

GE

SHERIDAN BLVD

FEDERAL BLVD

PECOS

41st AVENUE COLORADO BLVD CENTRAL PARK PEORIA

BELLEVIEW

RIDGE GATE PARKWAY

ARAPAHOE AT VILLAGE CENTER

DRY CREEK

COLISEUM/STOCK SHOW

COUNTY LINE

LINCOLN

SKY RIDGE

LONE TREE CENTER

ORCHARD

DENVER INTERNATIONAL AIRPORT

72ND AVENUE

88th AVENUE

104th AVENUE

112th AVENUE

124th AVENUE

144th AVENUE

DAYTON

NINE MILE

DIFF

FLORIDA

AURORA

ABILENE

13th AVENUE

THEATRE DISTRICT/

CONVENTION CENTER

COLFAX AT AURARIA

COLFAX

MONTVIEW

GUNBARREL

TABLE MESA

McCASLIN

LOUISVILLE

SOUTH WESTMINSTER

WESTMINSTER CENTER

CHURCH RANCH 104th AVENUE

WALNUT CREEK

BROOMFIELD

Personal Work

Page 60: Osman Dadi

OSM

AN D

ADI • 2013

60

04.2011 – 07.2011

Houston was my home for five years while at Rice University. The sprawling nature of the metropolitan area is fueled largely by one of the largest, continually expanding highway networks in the nation. The city’s red line light rail corridor is nevertheless successful. I believe the current light rail extension plans are inadequate and inefficient for a city of this size. Thus, I sought to present a long term rapid transit vision for the metropolitan area that could comprehensively serve the city and provide viable alternatives to driving.

PROCESS

The Houston rail system is envisioned as an extension of the current plans. Three major nodes exist at Market Square in downtown, the Galleria Center in Uptown, and the Texas Medical Center complex. As these districts are the triangulated hub of economic activity in the city,

it is sensible to connect them directly: the Blue, Purple, and Green lines from downtown to uptown, a modified rapid Red Line between downtown and the Texas Medical Center, and the belt Yellow line connection Uptown, Greenway Plaza, and the Galleria. These trunk routes are extended into the inner and outer suburbs while providing extensions to airports and other economic hubs.

Light rail and streetcar networks complement the trunk routes by providing more localized service. The Houston regional rail system stems from a new High Speed Rail trunk route that extends northwest towards Dallas, Austin, and San Antonio; to the southeast to New Orleans and Galveston. Regional rail routes converge at a new central station in downtown. Frequent transfers between the different rail systems allow for maximum travel flexibility for a transit rider.

The system is designed in a grid rather than hub-and-spoke format due to the polycentric metropolitan area.

8

8

8

8

59

59

59

59

908

1010

10

10

290

290

6

225

610

610

245

145

610

610

610

610

610

288

288

45

45

45

45

45

45

527

59

VisionforHoustonRail2050

The final product is 24” x 17”.

Page 61: Osman Dadi

PER

SON

AL W

OR

K

61

A preliminary concept diagram.

Early network study.

Page 62: Osman Dadi

8

8

8

8

59

59

59

59

908

1010

10

10

290

290

6

225

610

610

245

145

610

610

610

610

610

288

288

45

45

45

45

45

45

527

59

Page 63: Osman Dadi

8

8

8

8

59

59

59

59

908

1010

10

10

290

290

6

225

610

610

245

145

610

610

610

610

610

288

288

45

45

45

45

45

45

527

59

Page 64: Osman Dadi

OSM

AN D

ADI • 2013

64

From an early age, I have been fascinated with transportation systems. Growing up in the Washington, DC metropolitan area, I spent considerable time studying maps of Montgomery County, Maryland, and the surrounding Washington-Baltimore metropolitan area. Recognizing patterns in urban infrastructure over time, from the growth of the railway and streetcar cities in the early 20th century, to the subsequent demise of the central city and growth of the suburbs through freeways and road networks, I sought to recreate fictitious cities following the same growth paradigm. Shown here are just a few of over one hundred of these drawings that model highways, railways, and general urban ideas.

UrbanArt

Page 65: Osman Dadi

PER

SON

AL W

OR

K

65

Page 66: Osman Dadi

OSM

AN D

ADI • 2013

66

Page 67: Osman Dadi

PER

SON

AL W

OR

K

67

Page 68: Osman Dadi

OSM

AN D

ADI • 2013

68

Page 69: Osman Dadi
Page 70: Osman Dadi

CONTACT

OSMANDADIPhone: 240-449-9428Email: [email protected]

CURRENTADDRESS82 Farm Lake Crescent RoadChappaqua, NY 10514

PREFERREDMAILINGADDRESS11604 Moorestown PlaceGaithersburg, MD 20878