OSGC-000-000-007-127

78
GEOScan Planning Workshop Report March 2730, 2011, Annapolis, MD A planning workshop to place geoscience instrumentation on the Iridium Inc. NEXT global satellite constellation was held on March 2730. The attendees included over 120 discipline scientists, cubesat and lowcost satellite engineers, systems engineers and student participants, government officials and industry representatives. Numerous candidate science and sensor options were presented, and working groups are forming to follow up on these necessary items prior to proposal as an NSF MREFC. This document summarizes the candidate sensors and science themes that were presented for consideration. Eds., Lars Dyrud, Jonathan T. Fentzke Johns Hopkins Applied Physics Laboratory 06/24/2011

description

telemat

Transcript of OSGC-000-000-007-127

Page 1: OSGC-000-000-007-127

                                                                                                                                                   

GEOScan  Planning  Workshop  Report  March  27-­‐30,  2011,  Annapolis,  MD      A  planning  workshop  to  place  geoscience  instrumentation  on  the  Iridium  Inc.  NEXT  global  satellite  constellation  was  held  on  March  27-­‐30.  The  attendees  included  over  120  discipline  scientists,  cube-­‐sat  and  low-­‐cost  satellite  engineers,  systems  engineers  and  student  participants,  government  officials  and  industry  representatives.  Numerous  candidate  science  and  sensor  options  were  presented,  and  working  groups  are  forming  to  follow  up  on  these  necessary  items  prior  to  proposal  as  an  NSF  MREFC.  This  document  summarizes  the  candidate  sensors  and  science  themes  that  were  presented  for  consideration.    Eds.,  Lars  Dyrud,  Jonathan  T.  Fentzke                                      Johns  Hopkins  Applied  Physics  Laboratory    06/24/2011  

Page 2: OSGC-000-000-007-127

  2  

Page 3: OSGC-000-000-007-127

  3  

 

Table  of  Contents  

Introduction.................................................................................................................5  

GEOScan  Program  Themes ...........................................................................................6  System  Sensors ...........................................................................................................................................................6  Hosted  PI  Sensors ......................................................................................................................................................7  Iridium  NEXT  &  GEOScan..............................................................................................7  

NEXT  SensorPOD  for  GEOScan......................................................................................8  

Workshop  Summary  &  Next  Steps ...............................................................................9  GEOScan  Working  Groups...................................................................................................................................10  Science  Themes  and  Instrumentation.........................................................................10  GPS/Geodesy.............................................................................................................................................................11  Brian  Gunter  –  Using  Iridium  NEXT  to  observe  global  time-­variable  gravity..............................11  Kerri  Cahoy   – GPS  Radio  Occultation  for  GEOScan.................................................................................13  Gary  Bust  –  Ionospheric  Measurements  and  Ionospheric  Data  Assimilation ...............................14  Rebecca  Bishop    –  Compact  Total  Electron  Content  Sensor .................................................................18  Thomas  Gaussiran  &  David  Rainwater  –  DORIS  on  Iridium-­NEXT:  Ionospheric  &  Tropospheric  Science  and  Precise  Orbit  Determination ........................................................................19  Glenn  Lightsey  –  FOTON  Software  Defined  GPS  Receiver ......................................................................23  Sam  Yee    –  COTS  GPS  System  Science  Sensor  Overview..........................................................................25  Tom  Meehan  –  Synoptic  Tropo-­ionospheric  Occulations  via  NEtworked  Sensors  (STONES)25  Bill  Schreiner  –  Use  of  NASA’s  TriG  (Tri-­GNSS)  RO  receiver  as  a  GEOScan  Hosted  Sensor .....27  Kenn  Gold  –  Global  Broadband  Operationally  Responsive  Navigator .............................................29  

Climate/Atmosphere .............................................................................................................................................31  Warren  Wiscombe  &  Steven  Lorentz  –  Earth  Radation  Budget  Bolometer ..................................31  Sebastian  Schmidt  –  Tracking  the  Global  Radiative  Energy  Budget  with  GEOScan..................33  Larry  Paxton  –  Novel  Integrated  Applications ...........................................................................................34  Earle  Williams  –  Scientific  Interest  in  Global  Lightning  from  IRIDIUM  Satellite  Measurements ...........................................................................................................................................................34  Bob  Erlandson-­  GEOScan  Multi-­Purpose  Imager  (MPI) .........................................................................35  Shawn  Murphy  –  Compact  Hyperspectral  Imaging  Module  for  Earth  Science  (CHIMES).......37  William  J.  Blackwell    –  Minature  Microwave  Atmospheric  Sounder  (MiniMAS) .........................38  John  Boldt  –  MicroCam..........................................................................................................................................39  Hugh  Christian  –  Global  Lightning  Imaging  Sensor  (GLIS) ..................................................................40  Steve  Jaskeluk  –  SmartCam.................................................................................................................................42  Andrew  Kalman    –  GHVCam ...............................................................................................................................42  Alan  Marchant  –  DISC ...........................................................................................................................................45  A.  Deepak  and  M.  Schoeberl  –  The  CAPE  GEOScan  Concept .................................................................46  William  Heaps  –  High  Spatial  resolution  Greenhouse  Gas  column  Sensor ....................................47  

Space  Environment ................................................................................................................................................49  David  Byers  –  Chip  Dosimeter,  Charge  Plate  Analyzer,  Micrometeoroid  Acoustic  Sensor ......49  Rick  Doe  –  GEOScan  Thermosphere  Ionosphere  Photometer  -­  GTIP ................................................51  

Page 4: OSGC-000-000-007-127

  4  

Alan  Marchant  –  DISC ...........................................................................................................................................53  John  Noto  –  Fabry  Perot  Sensor  for  GEOScan .............................................................................................54  Steve  Watchorn  &  John  Noto  –  Spatial  Heterodyne  Spectrometer ....................................................55  Qian  Wu  –  SANDI  Hosted  Sensor  Overview..................................................................................................57  Tom  Woods  –  FUVI..................................................................................................................................................58  Tom  Woods  –  RePTile ............................................................................................................................................59  Luke  Goembel  –  SCM  Sensor ...............................................................................................................................59  Sven  Bilén  –  Hybrid  Plasma  Probe  for  Space  Weather  Measurements............................................60  Marcin  Pilinski  and  Scott  Palo  –  Thermospheric  Ionospheric  Velocity  Energy  Analyzer  (TIVEA).........................................................................................................................................................................61  Ted  Fritz    –  Mini-­Imagine  Electron  Spectrometer  (MIES).....................................................................63  Steve  Cummer    –  Lighting-­Upper  Atmospheric  Coupling ......................................................................64  R.  Lin  –  Stein-­X ..........................................................................................................................................................65  Gerald  Fishman  –  Gamma-­ray  Detector  Constellation  for  Earth  and  Sky  Observations .........66  Andrew  Stephan  –  Miniature  UV  Spectrographic  Experiment  (MUSE)...........................................67  Greg  Earle  –  UT  Dallas  Thermal  Ion  Instruments .....................................................................................68  Mihaly  Horanyi  –  GEOScan  Cosmic  Dust  and  Debris  Experiment ......................................................70  Michael  Kiedar  –  GEOScan  Micro-­Vaccum  Arc  Thruster  for  Nanosatellites .................................71  

Appendix  I  –  Workshop  Abstract  Titles  and  Authors...................................................72  

Appendix  II  –  Workshop  Attendees ............................................................................75      

Page 5: OSGC-000-000-007-127

  5  

Introduction   Iridium Communications Inc. is launching Iridium NEXT, a new-generation of low-Earth orbiting (LEO) polar communication satellites in 2015-2017. Iridium NEXT's 66+ global satellites have each been designed to accommodate a standard payload, which provides a unique capability to host scientific sensors with 24/7 real-time visibility over the entire Earth's surface and atmosphere. We plan to take advantage of this opportunity through a program we are calling GEOScan. Four primary factors make this an unprecedented opportunity for geoscience discovery, while holding the potential to affect a paradigm shift in the way we conduct science from space:

• Truly global coverage provided by the constellation allows us to address open scientific questions never before possible! These grand challenges will likely not be addressed without GEOScan for the next 15-20 years.

• Massively dense space-based measurements enable revolutionary new techniques such as tomographic imaging and provides truly novel datasets for the community to investigate.

• Because Iridium is a the world's farthest reaching network, the logistical and cost barrier of transmitting massive amounts of data from 66+ satellites is REMOVED!

• Because we plan to build nearly 70 uniform GEOScan SensorPODs, we can take advantage of the cost savings of scale for science from space instead of the extremely costly "one of a kind" methods of the past.

GEOScan is pursuing this opportunity via a grass-roots effort to propose a geoscience facility from space to the National Science Foundation that will benefit a broad cross-section of the scientific community and society in general. But, in order to increase community awareness and support as well as gather ideas, proposals and feedback from the geoscience (Solid Earth, Atmosphere, Ocean, and Geospace) community for the purposes of selecting overarching scientific goals and the sensors and measurements needed to accomplish these goals we held a planning workshop in Annapolis, MD from March 28-30th. The workshop was extremely well attended and allowed the community to advance this ongoing effort is to mature the GEOScan concept to the next stage of NSF MREFC planning and implementation. Below we summarize the workshop and provide a number of examples and outcomes gleaned from the productive sessions that were held over the course of two and a half days. We conclude with remarks about future planning and time lines that resulted due to community feedback during the workshop.  The  GEOScan  program  can  be  broken  down  into  two  highly  complementary  themes  (see  Figure  1  for  a  high  level  outline  of  program  theme  goals):  the  System  Sensor  program  and  the  Hosted  PI  Sensor  program.  In  total  we  expect  two  or  three  System  

Page 6: OSGC-000-000-007-127

  6  

Sensors  and  one  Hosted  PI  Sensor  to  be  accommodated  by  each  GEOScan  SensorPod.  The  engineering  extent  of  GEOScan  involves  producing  66+  GEOScan  SensorPods,  integrating  two  SS,  one  PI  provided  HS  together  with  the  GEOScan  SensorPod  bus  and  associated  data  and  power  handling  electronics.  Because  we  expect  to  build  66+  GEOScan  SensorPods,  we  can,  for  the  first  time,  finally  utilize  the  advantage  scale  in  production  and  realize  a  dramatic  cost  savings.  

GEOScan  Program  Themes   The GEOScan program can be broken down into two highly complementary themes (see for a high level outline of program theme goals): the System Sensor program and the Hosted PI Sensor program. In total we expect two or three System Sensors and one Hosted PI Sensor to be accommodated by each GEOScan SensorPod. The engineering extent of GEOScan involves producing 66+ GEOScan SensorPods, integrating two SS, one PI provided HS together with the GEOScan SensorPod bus and associated data and power handling electronics. Because we expect to build 66+ GEOScan SensorPods, we can, for the first time, finally utilize the advantage scale in production and realize a dramatic cost savings.

 Figure 1: Outline of the main themes of the GEOScan program components.  System  Sensors   The overarching goal of the System Sensor Program is to enable revolutionary science by making dense and global measurements that enable new techniques for imaging the Earth environment. While one of the primary tasks of both the Steering Committee and the Working groups is the selection of the three System Sensors, we can at this time identify the necessary characteristics that the sensors must possess. The sensors must be

Page 7: OSGC-000-000-007-127

  7  

comparatively low cost (~100k per sensor or less), they must be readily available in large quantities for delivery within 2 years, and they must reliably operate in the radiation and thermal environment of low earth orbit. This leads us primarily, but not exclusively, to COTS sensors that have been adapted for space use, two clear examples are GPS and white light or visible color imaging. Further these System Sensors must also enable dramatic new scientific capabilities and provide data that is of highest level of interest to a broad range of Geoscience disciplines.  Hosted  PI  Sensors   The overarching goal of the Hosted Sensor program is to provide an unprecedented opportunity to expand educational and small business involvement in science and space engineering by dramatically reducing the barriers to entry. Within each GEOScan SensorPod, we plan to have approximately 1U (10x10x10 cm) of available volume with either a ram or nadir face opening available. This presents the opportunity to offer community involvement with a "cube-sat like" program with significant differences and advantages over traditional cube-sat missions. Primarily, the overhead, risk, and cost of producing a space craft bus and acquiring ground systems for data transfer are eliminated. This will free the scientists and students to focus on the engineering of the instrument and the science of the acquired data. We expect the Hosted Sensor PI's to be funded independently with integration costs and guidance provided by JHU/APL and other team members.

Iridium  NEXT  &  GEOScan    Iridium  is  a  mobile  satellite  services  (MSS)  provider  -­‐  the  only  network  provider  offering  100%  worldwide  coverage.  The  network  is  a  very  unique,  resilient  Low-­‐Earth  Orbiting  (LEO)  satellite  constellation  of  66  satellites  plus  in-­‐orbit  spares.  A  comprehensive  plan  to  replenish  the  Iridium  constellation,  known  as  Iridium  NEXT  will  launch  66  new  satellites  to  replace  the  current  constellation,  with  launches  expected  to  begin  in  2015.  Also  planned  are  6  in-­‐orbit  spare  satellites  and  9  ground  spares.  Iridium  NEXT  features  increased  subscriber  capacity,  higher  data  speeds,  and  capacity  for  hosting  payloads.  Each  Iridium  NEXT  satellite  has  an  allocation  of  50  kg  in  mass,  30  x  40  x  70  cm  in  volume,  50  watts  of  average  power,  and  100  Kbps  average data rate for each hosted payload. Thales Alenia Space (TAS) has been awarded a $2.2B contract by Iridium to build 81 satellites for this next-generation constellation. Space Exploration Technologies (SpaceX) has been contracted as primary launch provider. Iridium has also closed on loans by a consortium of banks to fund the NEXT system development. Coface, the France's export credit agency (ECA), has guaranteed 95% of $1.8B credit facility. Thales is expected to select a US company to be the satellite integrator and to manage hosted payload integration.

Page 8: OSGC-000-000-007-127

  8  

Iridium has developed a schedule milestone that provides an enhanced support for the hosted payload integration. The initial hosted payload Interface Control Document (ICD) is available. Payloads conforming to the ICD have until Satellite CDR to (1Q 2013) to make first launch with delivery happening as late as 6 months prior to each launch. Non-conforming payloads must begin commitment by Satellite PDR (1Q 2012).

   Figure  2:  Iridium  NEXT  Schematic  including  their  entire  hosted  payload  bay.  

NEXT  SensorPOD  for  GEOScan    A  portion  of  the  hosted  payload  allocation  has  been  assigned  for  a  new  concept  called  SensorPOD  for  the  Cubesat  class  payloads.  This  concept  leverages  the  popular  Cubesat  form  factor,  and  is  able  to  accommodate  5.6U  volumes.  These  can  however  not  be  more  than  4-­‐5  kg  total  mass,  and  the  power  is  limited  to  ~5  Watt  average.  The  design  supports  hosting  multiple  SensorPODs  on  a  single  SV  depending  on  the  mass  and  volume  available  out  of  primary  hosted  payload  allocation.  The  NEXT  bus  provides  a  three-­‐axis  stabilized  platform,  providing  power,  and  data  communication,  allowing  the  entire  volume  and  up  to  5  Kg  mass  to  be  dedicated  to  the  scientific  payload.  NEXT  satellites  have  a  design  life  of  10  years  +,  making  longer  term  scientific  missions  viable.     The GEOScan program plan uses a single 5.6U SensorPOD slot on each of the 66 NEXT satellites as depicted in Figure 3. The following section describes the proposed plan for the GEOScan SensorPods and resulting GEOScan program.

Page 9: OSGC-000-000-007-127

  9  

 Figure  3:  Iridium  NEXT  SensorPod  Schematic.  The  GEOScan  SensorPod  will  consist  of  1  of  these  5.6U  boxes  shown  in  the  diagram.  The  SensorPod  will  have  access  to  both  ram  and  nadir  facing  directions.  

Workshop  Summary  &  Next  Steps    We  had  over  100  registered  participants  with  peak  attendance  approaching  120  in  the  conference  room.  The  planning  workshop  attracted  a  diverse  cross  section  of  the  community,  which  included:  individual  PIs  and  scientists,  students,  small  business  owners  or  representatives  from  small  business,  industry  representatives,  and  sponsors  [i.e.  program  managers  or  those  representing  major  sponsor  organizations].    There  were  more  than  50  presentations  made  on  a  wide  array  of  science  and  sensor  topics  with  excellent  question  and  answer  sessions  during  presentation  and  planning  sessions.    The  planning  workshop’s  main  goals  were  defining  science/measurement  objectives  and  instrumentation  to  support  those  objectives  that  would  provide  the  highest  level  of  intellectual  merit  and  broader  impacts  for  the  geoscience  community  as  a  whole.          

Page 10: OSGC-000-000-007-127

  10  

GEOScan  Working  Groups    Pursuant  to  the  workshop  completion  working  groups  and  a  steering  committee  formed  to  follow  up  on  these  necessary  items  prior  to  program  proposal.  The  following  items  are  in  preparation  and  GEOScan  working  groups  are  tasked  with  making  recommendations  to  the  steering  committee:    

• Evaluate,  in  detail,  the  potential  scientific  value  of  the  proposed  GEOScan  program  for  each  of  the  Geosciences  disciplines.    

• Help  select  three  baselined  system  sensors  that  will  fly  on  all  66+  satellites.    • Define  System  Sensor  Science  goals  based  up  on  the  baselined  sensor's  

capabilities.    • Define  hosted  sensor  program,  estimate  participant  readiness,  numbers  of  

capable  PI  and  candidate  science  based  on  relevant  launch  timeline  and  feasibility  requirements.    

• Establish  GEOScan  SensorPod  science  and  engineering  requirements  and  conduct  flow  down  analysis  for  each.    

• Make  final  recommendations  to  steering  committee  for  the  NSF  program  proposal.    

Science  Themes  and  Instrumentation    The  primary  goal  of  the  workshop  was  to  identify  the  most  compelling  geoscience  themes  that  required  simultaneous  global  measurement  for  major  progress,  and  to  identify  if  sensors  existed  that  fit  the  stringent  volume,  mass  and  power  requirements  of  the  GEOScan  program.    While  some  presented  sensors  did  not  meet  these  requirements,  many  did,  and  they  largely  fell  into  three  main  measurement/scientific  themes:  GPS/Geodesy,  Climate  and  Atmosphere,  and  Space  Environment.    The  remainder  of  this  document  continues  with  a  summary  of  the  presentations  and  reports  from  the  meeting  participants  grouped  into  these  themes.    For  full  resolution  versions  of  the  included  charts  and  figures  see  the  website  geoscan.jhuapl.edu        

Page 11: OSGC-000-000-007-127

  11  

GPS/Geodesy  

Brian  Gunter  –  Using  Iridium  NEXT  to  observe  global  time-­‐variable  gravity    The   proposed   Iridium  NEXT   constellation  will   be   the   next   generation   of   the  well-­‐known   satellite   communication   network.     It   will   consist   of   66   satellites   spread  across   six   orbit   planes,   with   the   initial   launches   set   to   begin   in   2015.    While   the  primary   mission   goal   is   devoted   to   communications,   each   satellite   has   been  designed  to  host  a  secondary  payload  capable  of  carrying  a  suite  of  remote  sensing  instruments.    One  of  the  instruments  under  consideration  for  this  hosted  payload  is  a   multi-­‐channel,   dual-­‐frequency   GPS   receiver   that   can   be   used   for   both   radio  occultation   experiments,   as   well   as   precise   orbit   determination   (POD).     Another  sensor  under  investigation  is  a  DORIS  receiver,  which  would  generate  similar  high-­‐quality  orbits,  as  well  as  complementary  space  weather  data  [4].    Earlier   studies   [1,3]   have   shown   that   if   the   POD   of   the   Iridium   satellites   is  sufficiently  accurate,  i.e.  at  the  2-­‐3  cm  3D  RMS  level,  then  you  have  the  opportunity  to   observe   short   term   (<   1   month),   large   scale   (>   1000   km)   global   gravity   field  variations.    This   is  possible  because   the  positions   and/or  velocities   that  would  be  derived   from   the   GPS/DORIS   receivers   can   be   used   to   compute   a   time   series   of  accelerations   acting   on   each   spacecraft   [2].       If   knowledge   of   the   spacecraft  orientation  (attitude)  and  environment  (i.e.,  atmospheric  drag,  etc.)  are  known,  then  the  non-­‐gravitational  accelerations  acting  on  the  spacecraft  can  be  removed,  leaving  only  those  accelerations  due  to  gravity  remaining.    These  gravitational  accelerations  can  then  be  used  to  infer  “snapshots”  of  Earth’s  global  gravity  at  a  particular  epoch,  and  to  ultimately  observe  the  evolution  of  the  gravity  field  over  time.  Temporal   gravity   field   variations   are   of   great   interest   to   the   Earth   sciences,   and  provide   a   unique   source   of   information   about   Earth’s   mass   transport   processes.    These   processes   involve   everything   from   ocean   currents,   sea-­‐level   change,  atmospheric   variations,   continental   hydrology,  movements   of   the   solid   earth,   and  the  melting  of   ice   in   the  cryosphere.    Dedicated  gravity   field  missions,   such  as   the  Gravity   Recovery   and   Climate   Experiment   (GRACE),   have   demonstrated   how  valuable  this  time-­‐variable  gravity  data  can  be  [5];  however,  as  a  single  instrument  pair,  the  spatial  and  temporal  resolution  of  the  GRACE  mission  is  inherently  limited  by  its  ground  track  coverage.    As  a  general  rule  of  thumb,  it  takes  approximately  one  month  for  the  ground  track  coverage  of  a  single  satellite  (or  satellite  pair  in  the  case  of   GRACE)   to   become   sufficiently   dense   enough   to   observe   relatively   small  (~350km)   spatial   variations   in   Earth’s   gravity.     There   are   many   mass   transport  processes   (e.g.,   atmospheres,   continental   hydrology,   tides,   etc.),   that   have   cycles  much  shorter  than  one  month,  which  GRACE  cannot  observe  and  which  need  to  be  removed  with  models  in  the  data  processing.    This  highlights  the  fact  that,  with  only  one   satellite   pair,   to   get   higher   spatial   resolution,   you   must   sacrifice   temporal  resolution,  and  vice-­‐versa;  the  only  way  to  improve  both  is  to  increase  the  number  of  satellites  involved.  The  Iridium  NEXT  constellation  could  help  with  this  by  providing  a  continuous  set  of  globally   distributed   gravity   measurements.   The   measurements   from   the  

Page 12: OSGC-000-000-007-127

  12  

constellation  would  not   be  nearly   as   accurate   as   those   collected   from  GRACE,   but  would  be  sufficient  to  observe  the  large  scale  gravity  variations.    More  importantly,  these  variations  would  be  observed  at  time  scales  as  short  as  six  hours,  covering  a  spectrum  of   the  gravity   field  not  possible   from  dedicated  gravity  missions  such  as  GRACE.     In   this   context,   the   Iridium   NEXT   gravity   data   would   provide   new  information   about   Earth’s   global   gravity   field   that   would   fully   complement   those  from  dedicated  gravity  missions.    Furthermore,  the  gravity  data  from  Iridium  NEXT  might  serve  as  the  only  time-­‐variable  gravity  measurements  available   in  the  event  there  is  a  gap  between  the  end  of  the  current  GRACE  mission  (est.  2015-­‐2016)  and  the  proposed  GRACE  follow-­‐on  mission.  While   the   general   concept   of   the   gravity   measurements   outlined   above   is  straightforward,   the   technical   implementation   of   such   a   setup   does   have   certain  instrument  requirements.  The  underlying  principle  relies  on  accurate  orbits,  and  as  communication  satellites,  the  default  POD  requirements  of  the  Iridium  satellites  are  not  as  strict  as  those  from  dedicated  gravity   field  missions.    As  a  result,  additional  sensors  or  spacecraft  data  might  be  needed  to  ensure  that  the  necessary  POD  can  be  achieved.    For  example,  the  Iridium  satellites  have  complex  shapes,  with  articulating  solar  panel  arms,  creating  complications  both  in  terms  of  tracking  the  location  of  the  center   of   mass   (CoM)   of   the   spacecraft,   but   also   creating   potential   multi-­‐path  interference   for   the   GPS   receivers.     The   GPS/DORIS   antenna   would   also   not   be  located  near  the  spacecraft  CoM,  requiring  accurate  satellite  attitude  information  to  correct   for   this   offset   (i.e.,   rotational   accelerations).     The   Iridium   satellites   are  currently  designed  to  have  star-­‐trackers  installed  for  this  attitude  information,  but  it  is   unclear  whether   the   precision   of   these   instruments   is   sufficient   to   achieve   the  necessary  POD  required.    Finally,  the  broadcast  frequency  of  the  GPS  system  is  close  to   that  used  by   the   Iridium  satellites   for   their  primary  communication  tasks  (both  are  L-­‐band),  which  may  cause   interference  and  errors   in  the  GPS  positioning.    The  DORIS  receiver  would  not  suffer  from  this  potential  interference,  but  the  advantages  and  disadvantages  of  both  positioning  systems  would  need  to  be  studied  further  to  determine   which   option   is   best   suited   for   the   Iridium   NEXT   constellation.     The  potential   use   of   inter-­‐satellite   ranges   generated   from   time-­‐tagged   communication  packets   may   help   resolve   some   of   these   POD   issues,   and   is   currently   being  investigated.     In   short,   while   the   potential   is   there   for   the   Iridium   NEXT  constellation  to  provide  valuable   information  on  Earth’s  time  varying  gravity   field,  the  instrumentation  on-­‐board  would  have  to  enable  accurate  orbits  in  order  for  this  to  be  realized.    References    1) Ditmar, P., Bezdek, A., Liu, X., and Zhao, Q., (2009). On a feasibility of high-precision gravity field modeling based on data from non-dedicated satellite missions. In: M.G. Sideris (Ed.), Observing our changing Earth. International Association of Geodesy Symposia, volume 133. Springer, Berlin. pp. 307-313. 2) Ditmar, P. and van Eck van der Sluijs, A. A. (2004), “A technique for modeling the Earth's gravity field on the basis of satellite accelerations” Journal of Geodesy, 78, 12-33

Page 13: OSGC-000-000-007-127

  13  

3) Gunter, B.C., Encarnação, J., Ditmar, P., Klees, R.(2011), “Using satellite constellations for improved determination of Earth's time-variable gravity,” Journal of Spacecraft and Rockets, Vol 48 (2), pp. 368-377. 4) Rainwater, D., and Gaussiran, T. (2011), “DORIS sensor package for Iridium-NEXT,” GEOScan Workshop, Annapolis, MD, March 28-30, 2011. 5) Tapley, B.D., Bettadpur, S., Ries, J.C., Thompson, P.F., and Watkins, M.M. (2004), “GRACE measurements of mass variability in the Earth system,” Science, 294, pp. 2342-2345.

 

Kerri  Cahoy   – GPS  Radio  Occultation  for  GEOScan    A  modified  GPS  receiver  easily  fits  within  the  GEOScan  payload  volume,  mass,  data  rate,  and  power  constraints  of  Iridium/NEXT  and  can  be  used  to  perform  radio  occultation  experiments.  Signals  from  the  22,000  km  altitude  GPS  constellation  are  regularly  occulted  by  the  Earth  from  the  perspective  of  a  GPS  receiver  on  board  the  low-­‐Earth  orbiting  Iridium/NEXT  platform.  Before  they  disappear  below  the  horizon,  these  signals  capture  the  vertical  density  structure  of  the  neutral  atmosphere  as  well  as  the  ionosphere,  since  radio  waves  interact  with  both  ionized  and  neutral  gases.  The  raw  measurements  of  ionospheric  and  atmospheric  density  are  “excess  phase”  at  the  receiver,  and  can  be  transmitted  to  the  ground  at  a  very  low  data  rate.  The  raw  measurements  can  be  converted  into  profiles  of  electron  

Page 14: OSGC-000-000-007-127

  14  

density,  neutral  density,  temperature,  and  pressure.  From  the  66+  satellite  Iridium/NEXT  constellation,  GPS  radio  occultation  would  be  able  to  provide  global,  real-­‐time  coverage  of  temperature,  pressure,  and  electron  density  in  Earth’s  atmosphere  and  ionosphere.    Space-­‐qualified,  inexpensive  GPS  receivers  exist  that  fit  within  the  Iridium/NEXT  payload  constraints  that  can  easily  be  modified  to  act  as  a  GPS  receiver.  The  ability  of  GPS  radio  occultation  experiments  to  correctly  sample  the  troposphere  is  a  function  of  the  signal  to  noise  and  antenna  surface  area  of  the  GPS  receiver  and  should  be  quantified  given  the  constraints  of  the  Iridium/NEXT  noise  levels  and  the  surface  area  available  on  the  Iridium/NEXT  spacecraft  for  antennas  (e.g.,  in  the  zenith  and  ram  directions).  The  GPS  Radio  Occultation  experiment  is  an  excellent  candidate  for  a  system  sensor  not  only  because  it  is  clearly  achievable  in  a  very  short  time  frame,  but  also  because  these  measurements  are  synergistic  with  other  experiments  such  as  spectrometers  and  sounders.  In  fact,  there  would  be  a  benefit  to  not  only  having  GPS  radio  occultation  receivers  as  the  GEOScan  system  sensor,  but  also  as  a  hosted  sensor  that  can  take  input  from  an  antenna  at  a  different  location  and  give  other  collaborators  the  opportunity  to  test  new  GPS  receiver  designs  in  tandem  with  the  system  sensor.  A  GPS  radio  occultation  system  sensor  for  GEOScan  would  result  in  a  revolutionary  real-­‐time  capability  of  monitoring  Earth’s  space  weather,  weather,  and  climate.  

 

Gary  Bust  –  Ionospheric  Measurements  and  Ionospheric  Data  Assimilation    

Page 15: OSGC-000-000-007-127

  15  

Upper  Left:  Overarching  Science  Theme  and  Goals  The  most  important  goal  is  to  improve  our  first  principle,  theoretical  and  numerical  models  of  the  ionosphere-­‐thermosphere  systems.    When  we  are  honest  about  our  modeling,  we  realize  that  despite  our  best  efforts,  the  best  minds  and  computational  abilities  around,  our  models  very  rarely  reproduce  experimental  results  within  error  bars,  nor  are  they  capable  of  quantitatively  predicting  observations.  This  simply  demonstrates  the  complexity  inherent  quantitatively  understanding  our  own  Earth  system.  This  is  a  very  hard  problem,  with  non-­‐linear  coupled  systems  from  the  Sun  to  the  Earth,  each  with  multiple  species  of  energy  and  momentum  equations.    It  is  tremendously  exciting  and  challenging  to  me  personally  that  here  in  2011  we  cannot  realistically  model  nor  predict  our  own  system  we  live  in!!  It  should  be  a  major  challenge  and  goal  for  the  community  to  understand  what  the  weaknesses  and  limitations  in  the  models  are,  and  what  we  need  to  do  (measurements,  model  improvements)  to  improve  the  modeling  to  the  point  where  we  can  show  model  results  fitting  within  experimental  errors  on  a  routine  basis.    I  would  argue  that  for  us  to  move  forward  as  a  high-­‐tech  society,  with  increased  satellite  communications  etc,  it  is  critical  for  us  to  be  able  to  know  we  understand  the  complex  environment  we  live  in.  Upper  Right:  Measurement/Sensor  Feasibility  Based  on  the  above,  then,  we  can  ask  what  instruments  can  we  employ  that  will  best  allow  us  to  improve  our  models  and  theoretical  knowledge.  Such  instruments  will  most  likely  remotely  sense  electron  density,  but  instruments  that  sense  electric  fields,  winds,  temperatures  and  precipitation  are  all  necessary  if  we  want  to  truly  understand  the  dynamics  and  inputs  to  the  models.  These  instruments  can  provide  observations  to  data  assimilative  models,  which  in  turn,  can  evaluate  the  different  data  sources  and  help  to  constrain  and  improve  understanding  of  the  importance  of  the  various  data  sets  to  first  principle  models.  Lower  Left:  This  provides  a  concept  plot  of  ground  GPS  data.  Its  purpose  is  to  illustrate  that  when  good  data  coverage  is  available,  accurate  retrieval  of  electron  densities  (or  other  state  variables)  is  possible.    The  point  is,  combine  good  ground  GPS  data  coverage  with  66  radio  occultations  –  and  we  will  be  able  to  accurately  retrieve  electron  density  globally.    Lower  Right:    The  lower  right  panel,  “instrument  and  science  team”,  is  left  blank  by  design,  since  this  presentation  focused  on  overall  goals  and  instruments  for  the  community,  not  a  particular  team.

Page 16: OSGC-000-000-007-127

  16  

Anthea  Coster  –  GEOScan  Overarching  Science  Themes  and  Goals   There are two “overarching” scientific areas that require the need for global measurements of ionospheric parameters. These fall into the general category of space weather and furthering our understanding of the coupling between different regions of the atmosphere. Space weather has the further constraint that it requires real-time observations.   In our technological society, the recognition of space weather is growing. Space weather can pose serious threats to many space-based and land-based systems. Many of the serious space weather effects are produced by ionospheric storms. To monitor the development of these space weather events, a global distribution of ionospheric sensors is needed. Currently, the distribution of ionospheric sensors is severely limited over the oceans and in remote, difficult to access areas (Africa, some parts of Australia and South America.) Many questions remain about influence of longitude, the offset of the geomagnetic and geographic poles, and the South American Anomaly on the development of total electron content (TEC) gradients, enhancements, and depletions. A major goal in solar-terrestrial science now is to explain how energy is transferred between different atmospheric regions. A comprehensive observational program combined with theoretical and empirical modeling efforts is necessary to achieve this

Page 17: OSGC-000-000-007-127

  17  

goal. To do this accurately, however, requires an understanding of the Earth’s global behavior as it exists, rather than in an idealized representation. The current distribution of sensors, as shown in Figure 1 for a two-hour period, makes it difficult to infer connections or to separate out one effect from another (for example the changes in winds versus electric fields). Data assimilation models and models of the thermosphere-ionosphere general circulation need to be developed using data sets that cover the entire system.

Figure  1.    A  plot  of    TEC  data  from  ground-­based  GPS  sensors  and  from  the  GPS  occultation  

sensors  on  COSMIC.    Data  shown  is  of  a  two  hour  average  from  27  January  2009.

 

Page 18: OSGC-000-000-007-127

  18  

Rebecca  Bishop    –  Compact  Total  Electron  Content  Sensor   The Aerospace Corporations Compact Total Electron Content Sensor (CTECS) is a GPS occultation sensor comprising of a commercial NovAtel receiver with modified software and a custom designed antenna. Currently, CTECS is manifested on the MTV picosat that will be deployed from the last space shuttle mission, STS-135, this summer. Thus, by August the TRL for CTECS will be 8. Currently the mass of the combined receiver and antenna is <200g, power consumption is <1.5 W, and the volume is ~120 cm3. With the current antenna design and modified software, CTECS tracks and processes only GPS satellites. However, the receiver is capable of tracking GLONASS satellites and only minor software modifications are required along with an appropriate antenna to utilize this capability. CTECS can track 16 satellites simultaneously and can be programmed to sample at varying rates (up to 50 Hz) as a function of time and/or GPS satellite elevation. The cost per CTECS sensor is dependent on the level of reliability assurance and testing which depends on the specific mission. The initial cost estimate is $85K per sensor. In its current state, CTECS provides slant TEC and scintillation data for the ionosphere. It may also provide plasmaspheric measurements with an appropriate antenna. The relatively low cost of the sensor enables hosting the sensor on multiple satellites, which will provide tomographic inversion data to produce an “ionospheric map” of TEC. CTECS can be used to investigate global ionospheric changes resulting from geomagnetic disturbances as well as characterize horizontal structure of density depletions and enhancements.  

Page 19: OSGC-000-000-007-127

  19  

Thomas  Gaussiran  &  David  Rainwater  –  DORIS  on  Iridium-­‐NEXT:  Ionospheric  &  Tropospheric  Science  and  Precise  Orbit  Determination   We  propose  a  DORIS  receiver  for  Iridium-­‐NEXT  to  make  ionospheric  TEC  and  tropospheric  TWV  measurements.  The  DORIS  frequency  lever  arm  is  superior  to  that  of  GPS  for  ionospheric  purposes,  and  DORIS  data  is  now  being  used  to  generate  TWV  data  sets  of  comparable  precision  to  GPS  and  VLBI  data.  This  instrument  would  also  allow  one  to  obtain  precise  orbits,  to  the  2  cm  level,  adding  a  vast  data  set  to  Earth  gravity  science  and  geodesy.    Study  of  the  upper  and  lower  atmosphere  has  advanced  to  the  point  where  a  compelling  need  has  emerged  for  global  real-­‐time  specification  of  the  most  important  observations  as  inputs  to  climate  models.  For  the  ionosphere,  plasmasphere  and  magnetosphere  this  is  the  local  free  electron  density,  while  for  the  troposphere  it  is  the  local  water  vapor  content.  We  propose  an  instrument  for  Iridium-­‐NEXT  that  would  provide  precise  measurements  of  both,  as  well  as  orbit  determination  with  such  precision  as  to  be  valuable  to  the  Earth  gravity  science  community.    DORIS  is  a  Doppler-­‐based  radio  navigation  system  developed  and  operated  by  France.  It  consists  of  about  60  stations  distributed  approximately  evenly  across  the  

Page 20: OSGC-000-000-007-127

  20  

globe,  including  the  oceans.;  cf.  Fig.  1.  It’s  dual-­‐band  nature,  at  401  and  2036  MHz,  allows  for  extremely  precise  ionospheric  TEC  measurement  along  a  ray  path  –  more  accurate  than  GPS,  in  fact,  owing  to  the  larger  frequency  lever  arm.  Instrument  error  is  in  the  milli-­‐TEC  range.  Representativeness  error  for  bulk  ionospheric  measurement  from  LEO  is  also  smaller  than  from  ground-­‐based  GPS  measurement,  because  LEO  observations  separate  the  F  layer  from  the  topside.  Additionally,  as  there  are  no  GPS  stations  at  sea,  DORIS  observations  from  LEO  can  cover  the  remaining  70%  of  Earth’s  bulk  ionosphere  that  GPS  stations  cannot.    Scientists  began  using  DORIS  for  both  ionosphere  electron  content  and  troposphere  water  vapor  content  measurement  in  the  1990s.  In  spite  of  the  popularity  of  GPS,  France  committed  to  a  system-­‐wide  upgrade  of  the  transmitter  stations  to  geodesy-­‐grade:  monumented,  surveyed  precision  antennas  with  phase-­‐center  calibration,  etc.  DORIS  stations  and  LEO  observations  have  become  an  integral  part  of  the  IGA  global  fit  analysis  for  Earth  orientation  and  absolute  station  position  determination,  on  par  with  GPS  data  [1,  2].    Science  of  the  ionosphere  began  over  a  century  ago,  in  1901,  with  its  discovery  by  Marconi  at  the  dawn  of  radio.  Only  at  the  turn  of  this  century  did  a  true  three-­‐dimensional  (3D)  picture  begin  to  emerge,  with  the  use  of  3DVAR  data-­‐assimilative  techniques.  Radio  navigation  system  data  sets  from  GPS,  DORIS  and  TRANSIT  have  become  rich  enough  to  enable  longitudinal  study  of  ionospheric  dynamics  on  a  local  level.  Modern  ionospheric  physics  is  now  a  mature  field,  focused  on  the  detailed  dynamics,  including:  

• Structure:  bubbles,  profile  shape,  auroral  ovals  and  other  anomalies,  sporadic  E    

• Ionospheric  reponse  to  solar  input  •  Global  ionospheric  response  to  magnetic  storms    

• Traveling  ionospheric  disturbances  (TIDs)  • Connection  to  lower  atmospheric  climate  science:  temperature  profiles,  

winds    However,  while  data  sources  such  as  GPS  or  ionosonde  observations  have  become  much  richer,  they  are  of  varying  quality  (sometimes  useless,  in  the  case  of  GPS,  depending  on  reporting  station),  sparse,  not  over  the  oceans  (i.e.  most  of  the  Earth),  and  not  always  delivered  reliably.  The  best  global  3DVAR  ionosphere  specifications  achievable  with  these  data  sets  are  only  about  4! (400  km)  horizontally,  but  many  ionospheric  structures  and  dynamics  are  known  to  be  smaller  scale.  The  need  for  higher  resolution  is  best  met  by  trans-­‐ionospheric  data,  i.e.  pierces  the  F  layer  at  a  single  horizontal  cell.    A  DORIS  receiver  as  part  of  the  Iridium-­‐NEXT  constellation  would  provide  an  incredibly  dense  horizontal  data  set,  directly  imaging  about  13%  of  the  F-­‐layer  every  15  minutes.  Thus,  the  entire  F-­‐layer  would  be  re-­‐imaged  solely  by  Iridium  every  two  hours.  Including  standard  data  sets  from  other  sources  (ground-­‐based  

Page 21: OSGC-000-000-007-127

  21  

GPS,  ionosondes,  etc.)  in  a  3DVAR  data  assimilation  program,  dense  global  re-­‐imaging  could  realistically  be  made  sub-­‐hour.  Tropospheric  Science    Tropospheric  water  vapor  content  (WVC)  is  one  of  the  critical  inputs  to  climate  models,  and  techniques  for  measuring  it  with  radio  signals  are  long-­‐established.  In  recent  years,  upgrades  of  the  DORIS  stations  to  geodesy  grade  has  enabled  DORIS  data  to  be  on  par  with  GPS  and  VLBI  data  for  WVC  [3,  4].  In  fact,  bias  shifts  in  GPS  data  due  to  antenna  or  radome  replacement  indicate  that  GPS  errors  have  been  underquoted  [4].  The  more  important  observation  is  that  DORIS,  GPS  and  VLBI  data  all  agree  within  a  couple  sigma  of  each  other’s  uncertainties,  which  are  of  comparable  size  [4].  A  DORIS  LEO  measurement  would  vastly  increase  the  number  of  ground  locales  for  which  data  is  available,  and  for  which  updates  would  be  available  sub-­‐hour.    Precise  Orbit  Determination  (POD)  can  be  performed  numerous  ways,  and  often  is  obtained  using  multiple  techniques  simultaneously.  GPS  has  been  used  for  many  LEO  satellites  quite  suc-­‐  cessfully,  and  can  achieve  sub-­‐decimeter  precision  fairly  straightforwardly.  DORIS  has  similarly  been  demonstrated  to  provide  such  accuracy  on  numerous  LEO  satellites,  even  achieving  1–3  cm  on  Jason-­‐2  this  past  decade  [2].  Our  preliminary  analysis  shows  that  comparable  resolution  should  also  be  achievable  with  a  DORIS  instrument  on  Iridium-­‐NEXT.  This  would  meet  the  need  called  for  by  the  Earth  gravity  community  [5].    The  existing  CNES  space-­‐qualified  DORIS  instrument  for  navigation  and  ionospheric  mea-­‐  surement  is  far  too  large,  massive  and  power-­‐hungry  to  be  used  on  Iridium-­‐NEXT.  As  there  is  no  other  COTS  solution,  we  propose  to  modify  ARL’s  existing  software-­‐defined  receiver,  proven  in  several  different  applications  (cf.  e.g.  Ref.  [6])  and  currently  being  delivered  to  the  GPS  Direc-­‐  torate  as  a  monitor-­‐grade  instrument.  Modifications  include  switching  to  the  DORIS  frequencies,  lowering  the  power  required,  and  adding  software  for  radiation  soft-­‐fault  tolerance.    Ionospheric  science  has  a  compelling  need  for  vastly  increased  data  density,  ideally  specifi-­‐  cation  on  a  1! (100  km)  grid  in  latitude  and  longitude.  It  also  needs  to  be  of  uniformly  high  quality,  truly  global,  persistent,  and  updated  on  a  very  short  timescale.  Climate  science  has  a  similar  need  for  tropospheric  water  vapor  measurement.  DORIS  receivers  on  board  the  LEO  polar-­‐orbiting  Iridium-­‐NEXT  satellite  constellation  can  provide  both  of  these  at  the  accuracies  required,  at  a  density  and  temporal  update  that  cannot  be  matched  by  any  other  measurement,  and  at  a  higher  precision  for  the  ionosphere  than  GPS  data,  due  to  the  superior  frequency  lever  arm  of  DORIS.  It  is  also  a  comparatively  low-­‐risk  instrument,  since  unlike  GPS  it  wouldn’t  suffer  interference  from  Iridium’s  L-­‐band  communication  antenna  [7].  Ionospheric  measurement  would  be  phase-­‐difference-­‐based,  while  WVC  data  would  come  out  of  the  precise  orbit  determination,  which  itself  would  be  of  such  high  quality  that  it  would  be  valuable  to  the  Earth  gravity  measure-­‐  ment  community  in  support  of  other  geodesy.  There  is  a  clear  path  to  evolve  an  existing  

Page 22: OSGC-000-000-007-127

  22  

ARL:UT  radio  instrument  to  fulfill  this  role  in  the  short  timeframe  of  the  Iridium-­‐NEXT  program.  

References [1]  P.  Willis,  Y.  E.  Bar-­‐Sever  and  G.  Tavernier,  J.  Geodyn.  40  (4-­‐5),  494-­‐501  (2005).  [2]  N.  P.  Zelensky  et  al.  ,  Adv.  Space  Res.  46,  1541-­‐1558  (2010).  [3]  M.  Flouzat  et  al.  ,  Geophys.  J.  Int.  bf  178,  1246-­‐1259  (2009).  [4]  O.  Block,  P.  Willis,  M.  Lacarra  and  P.  Bosser,  Adv.  Space  Res.  46,  1648-­‐1660  (2010).  [5]  Talk  by  B.  Gunter  at  the  GEOScan  2011  Workshop.  [6]  J.  York,  J.  Little,  D.  Munton  and  K.  Barrientos,  Navigation  57  (4),  297  (2010).  [7]  UNAVCO   Study   of   Iridum  &   GPS/GNSS   Interference,   Feb.   9,  2011,  http://facility.unavco.org/kb/questions/675/Update    

Page 23: OSGC-000-000-007-127

  23  

 

 

 

Glenn  Lightsey  –  FOTON  Software  Defined  GPS  Receiver    FOTON  is  a  low  cost,  dual  frequency  (L1CA  and  L2C),  software  defined  GPS  receiver  that  is  well  positioned  to  fly  as  an  instrument  on  GEOScan  and  other  CubeSat  applications.  FOTON  fits  within  0.5U  CubeSat  form  factor  (8.3  cm  x  9.6  cm  x  3.8  cm)  and  is  space  capable.  The  current  demonstrated  performance  is  better  than  0.5  mm  carrier  phase  tracking  on  both  frequencies.  The  receiver  has  60  channels  and  is  completely  reconfigurable  downstream  of  signal  analog  to  digital  conversion.  FOTON’s  software  can  be  modified  on-­‐orbit  to  support  multiple  autonomous  radio  occultation  and  space  weather  sensing  science  objectives,  including:  ionospheric  scintillation  event  triggering,  open-­‐loop  tracking  of  rising  satellites  for  tropospheric  sounding,  raw  capture  of  IF  samples,  and  tracking  of  new  radio  navigation  signals  as  they  become  available.  FOTON  uses  5  W  power  when  operating  continuously,  which  is  acceptable  for  CubeSat  applications.  We  are  currently  pursuing  ways  to  reduce  the  operating  power  in  addition  to  duty-­‐cycling.  The  current  hardware,  which  is  based  on  COTS  parts,  is  expected  to  be  radiation  hardened  to  5-­‐10  krad  total  dose;  although  at  only  350  grams,  shielding  is  an  option  to  increase  radiation  hardness  if  needed.  A  radiation-­‐hardened  version  of  FOTON  is  being  planned  as  part  of  the  product  development.  As  of  May  2011,  FOTON  is  operating  at  TRL  4  in  a  Low  Earth  

Page 24: OSGC-000-000-007-127

  24  

Orbit  dynamic  environment  simulation  on  a  Spirent  GPS  Signal  Simulator  at  The  University  of  Texas  Center  for  Space  Research.  UT-­‐Austin  is  planning  to  fly  the  FOTON  on  a  3U  CubeSat  mission  in  2013-­‐14,  raising  its  TRL  to  6  or  7  prior  to  flight  on  the  first  GEOScan  opportunity.  FOTON  is  being  commercialized  for  CubeSat  applications  under  a  separately  funded  Phase  1  SBIR.  The  COTS  version  of  FOTON  is  expected  to  cost  between  $10k  and  $50k  based  on  quantity  delivered.

   

Page 25: OSGC-000-000-007-127

  25  

Sam  Yee    –  COTS  GPS  System  Science  Sensor  Overview  

 

Tom  Meehan  –  Synoptic  Tropo-­‐ionospheric  Occulations  via  NEtworked  Sensors  (STONES)    Going  forward,  compelling  GNSSRO  science  will  most  benefit  from  a  large  number  of  profiles  (10000+/day),  with  lower  latency  and  greater  accuracy  in  the  lowest  5  km  altitude.  For  weather,  latencies  below  90  mins  are  required,  30  mins  desired.  Space  weather  latency  requirements  are  more  stringent,  with  30  secs  being  a  long  sought  goal.  Climate  measurements  benefit  from  the  averaging  of  many  millions  of  points  over  a  decade  with  local  time  sampling  errors  minimized  by  dense  coverage  or  well  designed  orbits.  There’s  much  more  of  course,  because  space  GNSS  science  is  still  nascent  but  with  gathering  momentum  among  the  international  community.    The  GEOScan-­‐Iridium  opportunity  is  tantalizing  for  its  promise  to  meet  much  of  the  above  needs  and  yet  challenging  from  the  limitations  of  the  very  tight  schedule  and  minimal  accommodations.  Current  and  upcoming  JPL/NASA  RO  instruments  do  not  fit  within  the  very  small  power  and  volume  envelope  allocated  to  GEOScan.  As  a  further  complication,  only  a  ram  facing  RF  antenna  is  allowed.  This  diminishes  the  accuracy  of  the  orbit  solution  and  requires  the  RO  instrument  be  capable  of  modeling  the  refracted  path  of  the  GPS  signal  accurately  enough  to  observe  the  very  weak  signals  rising  through  the  lower  troposphere.  JPL’s  RO  instruments  perform  

Page 26: OSGC-000-000-007-127

  26  

this  modeling  in  real-­‐time  and  consistently  produce  open-­‐loop  high-­‐rate  RO  measurements  from  ram  facing  antennas.  But,  it  is  a  CPU  intensive  process  coupled  with  special  DSP  logic  not  well  suited  for  an  extremely  low  power  situation.    The  proposed  STONES  sensor  adapts  the  TriG  RO  instrument  and  leverages  the  Iridium  real  time  communications  feature.  Key  features  of  the  STONES  sensor:  

• All-­‐in-­‐view  capable,  GPS,  Galileo,  GLONASS.  Simple,  low  cost  components  (<  $3k  est.).  

• Minimal  flight  HW  complexity  for  fast  V&V  on  tight  schedule/budget.  • Not  autonomous  because  there’s  no  need  with  R/T  comm.  Most  of  TriG  

processing  (and  mass,  power,  volume)  moved  to  ground  computer.  Sensors  are  fairly  “dumb”  individually  but  become  powerful  when  activated;  i.e.  the  “hive  mind”  from  the  Star  Trek  Borg.  

• Open,  reconfigurable  architecture  (both  flight  and  ground  HW/SW)  provides  greatest  access  to  science  community.  

• Two,  digitally  beam  formed  antennas  yield  wide  FOV  for  POD  and  iono  science  as  well  as  higher  gain  for  tropical  soundings  

 Despite  challenges,  the  GEOSCan-­‐Iridium  proposal  offers  a  tremendous  opportunity  for  capturing  globally  distributed,  dense,  calibrated,  vertical  profiles  of  the  ionosphere  and  neutral  atmosphere  in  real-­‐time.  We  believe  the  STONES  technical  approach  maximizes  this  opportunity.  

Page 27: OSGC-000-000-007-127

  27  

 

Bill  Schreiner  –  Use  of  NASA’s  TriG  (Tri-­‐GNSS)  RO  receiver  as  a  GEOScan  Hosted  Sensor    

Measurements  from  low  Earth  orbiting  (LEO)  Global  Navigation  Satellite  System  (GNSS)  radio  occultation  (RO)  receivers  have  proven  extremely  useful  for  weather,  space  weather,  and  climate  change  research  and  operational  applications.  The  success  of  the  COSMIC  radio  occultation  mission  has  prompted  the  NOAA  to  initiate  plans  for  a  follow-­‐on  mission  (called  COSMIC-­‐2)  with  twelve  satellites  that  is  due  to  launch  in  the  2015  time  frame.  The  COSMIC-­‐2  satellites  will  fly  a  high  performance  GNSS  RO  instrument  capable  of  tracking  rising  and  setting  RO  signals  from  multiple  GNSS  systems.  This  receiver,  called  TriG  (Tri-­‐GNSS),  is  currently  being  developed  by  JPL  and  will  track  GNSS  signals  from  GPS,  Galileo,  and  GLONASS.    NOAA  plans  to  procure  an  additional  flight  spare  TriG  instrument  and  fly  it  as  a  pathfinder  mission  on an upcoming communication constellation to evaluate RF interference issues and potential real-time communication architectures.  For  the  mission  concept  being  presented  here,  NOAA  would  provide  the  spare  TriG  instrument  to  NSF  at  no  cost  to  be  used  as  a  GEOScan  Hosted  Sensor.  NSF  or  other  agencies  would  have  to  provide  funding  to  integrate  and  test  the  TriG  instrument  on  the  Iridium  spacecraft  and  to  make  necessary  firmware  modifications.  The  operation  of  the  TriG  payload,  data  processing,  open  dissemination,  and  archiving  of  these  data  could  be  performed  at  minimal  cost  by  the  UCAR  COSMIC  Data  Analysis  and  Archive  Center.    

Page 28: OSGC-000-000-007-127

  28  

This  GEOScan  TriG  concept  would  not  only  provide  valuable  RO  datasets  for  science  studies  and  observational  campaigns,  but  would  also  give  NSF  a  space-­‐based  laboratory  for  the  community  to  investigate  innovative  GNSS  technology  and  science  applications  such  as  receiver  firmware  tracking  loop  improvements,  wide-­‐band  buffering  of  high-­‐rate  (20  MHz)  data  for  on-­‐board  post-­‐processing  or  downlink,  use  of  digital  antenna  beam-­‐forming  for  high-­‐gain  lower  tropospheric  studies,  tracking  of  new  GNSS  signals  from  Japan’s  QZSS  or  China’s  COMPASS,  ice/ocean  GNSS  surface  reflections,  and  heavy  precipitation  events  if  a  dual  polarization  antenna  is  used.  These  investigations  are  made  possible  by  fully  reconfigurable  firmware  architecture  of  the  TriG  Navigation  and  Science  processors.    

Page 29: OSGC-000-000-007-127

  29  

Kenn  Gold  –  Global  Broadband  Operationally  Responsive  Navigator    The  Global  Broadband  Operationally  Responsive  Navigator  (GBORN)  is  a  unique  multi-­‐frequency  GPS  receiver  which  utilizes  a  Software  Defined  Radio  (SDR)  implementation.    The  instrument  is  able  to  acquire  and  track  GNSS  and  other  broadband  RF  signals  from  both  ground  and  space  based  sources,  without  explicit  knowledge  of  any  code  structure  imposed  on  the  signal,  and  to  utilize  this  data  for  both  position  velocity  and  time  calculation  and  for  atmospheric  profiling  (Radio  Occultation)  studies.    If  combined  with  an  onboard  accelerometer,  the  receiver  has  the  potential  to  enable  neutral  density  measurements  with  a  commercial  grade  IMU.  The  receiver  design  and  methodology  has  a  common  heritage  with  the  JPL  Blackjack  receiver  and  uses  identical  multi-­‐frequency  cross  correlation  techniques  to  recover  ionosphere  delay  values.    The  system  is  capable  of  extracting  the  fundamental  sinusoids  from  all  existing  GPS  and  other  GNSS  system  transmissions  and  all  planned  modernized  code  types,  and  can  be  modified  via  software  update  to  handle  future  and  unanticipated  code  types.    The  only  limiting  physical  hardware  requirement  involves  the  RF  front  end  which  must  be  capable  of  receiving  signals  at  the  frequency  of  interest,  and  down  converting  to  a  manageable  RF  frequency.    Multiple  vendors  have  produced  space  qualified  radios  which  would  allow  direct  porting  of  the  software  functionality  to  achieve  the  operation  of  the  receiver.    The  resulting  form  factor  is  small  and  light  and  is  suitable  for  inclusion  into  a  cubesat  

Page 30: OSGC-000-000-007-127

  30  

architecture,  with  low  power  requirements  (less  than  1  Watt  for  PVT,  and  less  than  3Watts  for  basic  RO).    Significant  simulation  testing  has  occurred  with  a  Spirent  GPS  simulator  and  a  terrestrial  prototype  of  the  receiver  system,  which  has  demonstrated  an  ability  to  produce  highly  accurate  positioning  in  even  the  most  hostile  GPS  environments  (GEO,  high  Earth  Orbit)  with  accuracy  rivaling  the  state  of  the  art.    The  nature  of  the  codeless  system  allows  for  acquisition  at  low  power  levels,  which  enables  the  ability  to  track  all  GNSS  satellites  geometrically  in  view  with  either  direct  or  side  lobe  transmissions.    The  spectral  compression  capabilities  of  the  GBORN  also  enable  Radio  Occultation  studies  with  a  significant  reduction  in  required  data  bandwidth  and  power  over  state  of  the  art  RO  and  POD  receivers.  

   

Page 31: OSGC-000-000-007-127

  31  

Climate/Atmosphere  

Warren  Wiscombe  &  Steven  Lorentz  –  Earth  Radation  Budget  Bolometer  The  Earth  Radiation  Budget  (ERB)  represents  the  difference  between  incoming  radiation  from  the  Sun  and  the  sum  of  (1)  outgoing  reflected  solar  radiation  and  (2)  outgoing  longwave  thermal  radiation  emitted  by  the  Earth’s  surface  and  atmosphere.  All  climate  models  are  tuned  using  ERB  as  an  input,  making  this  the  most  fundamental  dataset  for  understanding  climate  change.  This  is  conceptually  very  simple,  but  has  proven  to  be  a  difficult  experimental  measurement  to  achieve  at  the  levels  required  for  climate  trending.  How  ERB  changes  both  regionally  and  globally  is  critical  to  the  understanding  of  climate  change.    Iridium  NEXT  provides  a  unique  opportunity  to  contribute  to  the  understanding  of  ERB  and  climate.  Through  the  use  of  a  large  number  of  simple  bolometric  radiometers  (qualitatively  similar  to  those  flown  on  previous  ERB  satellites),  a  complete  map  of  ERB  with  high  temporal  and  moderate  spatial  resolution  can  be  created,  providing  critical  data  for  climate  modeling  and  prediction.    The  ERB  instrument  consists  of  two  radiometers,  one  total  channel  (0.2  to  200  μm)  and  one  shortwave  channel  (0.2  to  5  μm).  The  difference  between  the  channels  provides  the  longwave  thermal  emission  from  the  Earth.  The  radiometers  have  no  complex  optics  or  moving  parts.  The  only  moving  part  is  a  single  use  contamination  door,  which  is  opened  after  the  spacecraft  finishes  outgasing  in  orbit.    The  data  product  will  be  the  shortwave  and  longwave  outgoing  irradiances  every  5  seconds,  which  are  later  averaged  to  an  hourly  mean  with  roughly  500  km  resolution,  using  proven  mathematical  methods  developed  for  representing  the  Earth’s  gravity  field.  The  impact  of  this  experiment  will  be  to  demonstrate  that  such  a  system  can  measure  the  Earth’s  energy  exchange  with  space  to  the  accuracy  required  for  climate  (0.1  Wm-­‐2).    If  so,  it  would  be  revolutionary  in  terms  of  the  way  ERB  is  measured  in  the  future.    A  minimum  of  10  years  of  flight  will  be  necessary  to  extract  the  very  small  trends  that  are  expected  as  a  result  of  global  warming.  Our  ERB  instrument  is  perfectly  suited  in  terms  of  power,  mass  and  impact  on  a  critically  important  Earth  observation  for  inclusion  as  a  system  level  instrument  in  the  GEOScan  SensorPODs.  

Page 32: OSGC-000-000-007-127

  32  

 

Page 33: OSGC-000-000-007-127

  33  

Sebastian  Schmidt  –  Tracking  the  Global  Radiative  Energy  Budget  with  GEOScan  

 

Page 34: OSGC-000-000-007-127

  34  

Larry  Paxton  –  Novel  Integrated  Applications  

   

Earle  Williams  –  Scientific  Interest  in  Global  Lightning  from  IRIDIUM  Satellite  Measurements    Lightning  is  responsive  to  local  air  temperature,  but  its  global  response  to  temperature  is  yet  to  be  established.    It  is  a  matter  of  common  experience  that  lightning  is  more  frequent  in  the  warm  afternoon  than  in  the  cool  of  night,  and  more  frequent  in  the  hot  summer  than  in  winter.    The  water  vapor  source  for  thunderstorm  convection  is  controlled  in  part  by  the  strong  temperature  dependence  in  the  Clausius  Clapeyron  relation.    Yet  the  response  of  the  global  totality  of  lightning  to  global  temperature  change  is  still  out  of  reach.    On  the  basis  of  local  measurements,  it  has  now  been  established  that  lightning  is  responsive  to  temperature  on  the  diurnal,  the  5-­‐day,  the  intraannual,  the  semiannual,  the  annual  and  the  interannual  (ENSO)  time  scales.    Yet  we  lack  measurements  on  the  global  totality  of  lightning  on  any  of  these  time  scales.    From  a  climatological  standpoint,  we  know  that  lightning  waxes  and  wanes  systematically  in  response  to  warming  and  cooling  of  continental  land  masses  exposed  to  the  Sun.    Indeed,  the  systematic  UT  time  variation  of  the  global  electrical  

Page 35: OSGC-000-000-007-127

  35  

circuit  is  a  cornerstone  of  atmospheric  electricity.    Yet  we  lack  quantitative  documentation  of  this  behavior  on  any  single  day,  toward  seeing  the  day-­‐to-­‐day  variability,  and  understanding  the  feedbacks  of  water  vapor  and  cloud  on  surface  air  temperature.    The  so-­‐called  tropical  ‘chimneys’—the  Maritime  Continent,  Africa  and  South  America—are  fundamental  players  in  the  overturn  of  the  global  atmosphere  and  mediation  of  global  water  vapor,  the  primary  greenhouse  gas.    Yet  these  chimneys  are  in  remote  regions  and  are  poorly  measured  at  the  surface,  where  1C  of  temperature  difference  makes  a  substantially  greater  difference  in  behavior  than  at  mid-­‐  and  high-­‐latitude.      Lightning  is  a  sensitive  indicator  of  surface  conditions  in  these  regions.    On  all  time  scales  on  planet  Earth,  air  is  rising  one  place  and  sinking  in  another,  warming  in  one  place  and  cooling  in  another.    The  global  totality  of  lightning  is  needed  to  assess  real  global  change  on  all  time  scales.    The  global  electrical  circuit  provides  a  natural  framework  for  the  measurement  of  global  change,  but  unfortunately,  the  ionospheric  potential  (the  primary  measure  of  the  DC  global  circuit)  is  difficult  to  measure  continuously,  and  the  Earth’s  Schumann  resonances  (the  primary  measure  of  the  AC  global  circuit)  requires  multi-­‐station  measurements  and  are  challenging  to  interpret.    The  constellation  of  IRIDIUM  satellites,  equipped  with  optical  sensors  for  lightning  of  a  kind  that  are  tried  and  true,  would  provide  for  this  measurement  on  a  continuous  basis.      The  global  warming  now  underway  is  most  pronounced  at  high  latitudes—northern  Siberia  and  Alaska—where  lightning  is  known  to  occur  but  is  out  of  reach  of  the  Lightning  Imaging  Sensor  on  the  TRMM  satellite.    The  polar  orbits  of  the  IRIDIUM  satellites  would  serve  to  document  thoroughly  the  regions  of  greatest  temperature  increase.    The  tropics  maintains  quasi-­‐thermal  equilibrium  by  cooling  itself  by  moist  convection.    One  important  component  of  the  moist  convection  is  thunderstorms.    The  responsiveness  of  moist  convection  and  lightning  to  warming  on  the  diurnal  time  scale  is  without  question.    The  responsiveness  on  the  interannual  (ENSO)  time  scale  is  increasingly  evident.    The  responsiveness  to  warming  on  time  scales  longer  than  the  interannual  one  is  subtle  and  deserving  of  further  study.    The  evolution  of  global  convective  adjustment  is  involved,  with  temperature  changes  both  at  the  surface  and  throughout  the  atmosphere,  and  is  largely  unknown.  

Bob  Erlandson-­‐  GEOScan  Multi-­‐Purpose  Imager  (MPI)    We  are  pursuing  a  multi-­‐purpose  imaging  approach  for  GEOScan.    The  concept  involves  placing  the  camera  system  on  all  of  the  Iridium  Next  satellites.    The  camera  concept  is  a  dual  band  imager.    One  band  uses  a  narrow-­‐band  (0.02  nm)  potassium  line  imager  and  the  second  band  is  a  770-­‐780  nm  imager.    Both  imagers  would  use  the  same  camera  and  share  the  camera  controller.    We  propose  to  use  the  custom  potassium  line  filter  on  six  satellites  (one  per  plane)  and  standard  dielectric  filter  (band  TBD)  on  the  other  satellites.    Band  1  (770-­‐780  nm)  would  be  used  on  all  66  

Page 36: OSGC-000-000-007-127

  36  

satellites  and  would  enable  observations  of  clouds  during  the  daytime  and  aurora,  lightning  and  forest  fires  at  night.    The  specialized  potassium  line  imager  would  be  used  on  six  satellites,  one  in  each  plane  and  would  enable  the  measurement  of  chlorophyll  fluorescence  (F).    The  measurement  of  F  is  described  in  detail  by  Joiner  et  al.  (Biogeosciences  Discuss.,  7,  8281-­‐8318,  2010.).    Basically,  the  potassium  line  imager  measures  F  by  taking  the  ratio  of  the  fluorescence  in  the  potassium  Fraunhoffer  line  and  the  guard  band  from  770-­‐7890  nm.    The  F  fills  in  part  of  the  Fraunhoffer  absorption  line.    This  Is  measured  using  the  ratio  of  769  to  770-­‐780  nm,  allowing  the  determination  of  F  to  depend  on  the  ratio  of  the  two  bands  rather  than  an  absolute  measurement  of  F  in  the  Fraunhoffer  line.    The  measurement  of  F  occurs  only  during  the  daytime.    The  guard-­‐band  at  770-­‐780  nm  is  used  to  determine  the  cloud  “mask”  so  that  the  vegetation  observations  can  be  made  only  in  pixels  without  clouds.    The  placement  of  the  potassium  line  filter  on  6  satellites  will  provide  global  coverage  in  a  time  period  of  3  days.    The  measurement  of  F  from  space  has  been  performed  using  MODIS,  however  the  use  of  a  dedicated  filter  with  an  imaging  sensor;  use  of  the  potassium  band,  and  use  of  the  Iridium  Next  constellation  provides  unprecedented  coverage  and  measurement  frequency  of  F  and  the  ability  to  measure  stressed  vegetation.        This  same  dual  band  imager  can  be  used  to  detect  the  aurora  at  777.4  nm  using  the  Band-­‐1  imager  from  770-­‐780  nm  at  night.    A  field  of  view  of  15x15  degrees  from  the  iridium  satellite  will  provide  continuous  nighttime  polar  coverage  of  the  aurora  in  both  hemispheres.    Comparisons  with  the  on-­‐going  AMPERE  program  will  provide  unprecedented  sampling  of  both  the  electrodynamics  and  auroral  emissions.    Lightning  can  also  be  detected  in  the  770-­‐780  nm  at  night.    Lightning  is  a  transient  phenomenon  that  is  very  bright.    We  are  currently  evaluating  whether  additional  software  would  be  required  to  detect  lightning.    For  example,  using  a  Time  Delay  Integration  (TDI)  mode  may  not  be  appropriate  for  this  application.    Biomass  burning  (forest  fires)  can  be  detected  using  the  potassium  line  imager  and  the  770-­‐780  nm  imager  at  night.        The  MPI  is  proposed  to  use  a  15  x15  degree  FOV  with  a  pixel  array  of  1024x1024  pixels.    Pixel  binning  capability  of  4x4  is  needed  to  reduce  the  data  rate  to  fit  within  the  Iridium  Next  bandwidth.    The  total  data  rate  for  MPI  (two  imagers)  is  67  kbps.    The  spatial  resolution  at  nadir  is  200x200m  (800x800m  with  pixel  binning).    A  quick  radiometric  analysis  has  been  conducted  to  determine  the  required  aperture  size  and  integration  time  needed  for  these  applications.    We  have  focused  on  the  fluorescence  and  auroral  measurements  so  far.    Our  estimates  suggest  that  a  2  inch  aperture  is  required  and  that  use  of  Time  Delay  Integration  (TDI)  will  significantly  improve  the  signal  to  noise  ratio  for  the  auroral  and  vegetation  measurements.    This  is  also  true  for  observations  of  forest  fires  at  night.    Estimates  of  lightning  signatures  is  still  pending.    

Page 37: OSGC-000-000-007-127

  37  

The  baseline  camera  for  this  is  the  MicroCam.    John  Boldt  has  submitted  a  quad  chart  describing  this  camera.    John  and  I  will  be  evaluating  the  measurement  requirements  in  order  to  determine,  if  indeed,  this  camera  will  work.    The  potassium  filter  is  shown  below:    

 

 

Shawn  Murphy  –  Compact  Hyperspectral  Imaging  Module  for  Earth  Science  (CHIMES)    

Page 38: OSGC-000-000-007-127

  38  

 

William  J.  Blackwell    –  Minature  Microwave  Atmospheric  Sounder  (MiniMAS)    The  need  for  low-­‐cost,  mission-­‐flexible,  and  rapidly  deployable  spaceborne  sensors  that  meet  stringent  performance  requirements  pervades  Earth  Science  measurement  programs,  including  especially  the  recommended  NRC  Earth  Science  Decadal  Survey  missions.  The  importance  of  millimeter  wave  sounding  has  been  highlighted  demonstrated  for  studying  the  hydrologic  cycle  in  the  atmosphere,  with  applications  from  weather  forecasting  to  climate  research.  New  technologies  have  enabled  a  novel  approach  toward  this  science  observational  goal  that  would  substantially  improve  both  the  performance  and  cost  of  multiple  NRC  Earth  Science  Decadal  Survey  missions  related  to  weather  and  climate  study.  The  MiniMAS  system,  hosted  on  Iridium/NEXT,  profoundly  exploits  new  technology  to  reduce  size  and  power  consumption,  while  providing  complementary  observations  to  GPS  radio  occultation  sensors,  which  are  largely  blind  in  the  critically  important  atmospheric  boundary  layer.  The  MiniMAS  sounding  system  comprises  a  compact  passive  millimeter  wave  radiometer  system  with  integrated  high-­‐efficiency  antennas  that  are  scanned  cross-­‐track  +/-­‐  50  degrees.  MiniMAS  nominally  employs  two  receivers,  one  operating  near  the  118.75-­‐GHz  oxygen  line  for  temperature  sounding  and  one  operating  near  the  183.31-­‐GHz  water  vapor  line  for  moisture  sounding.  Each  receiver  comprises  a  scalar  feedhorn  antenna  with  an  integrated  MMIC  superheterodyne  receiver  illuminating  a  compact  parabolic  reflector.  MiniMAS  fits  

Page 39: OSGC-000-000-007-127

  39  

within  the  SensorPod  size,  weight,  and  power  requirements  and  provides  spatial  resolutions  as  fine  as  15km.    

   

John  Boldt  –  MicroCam    

Page 40: OSGC-000-000-007-127

  40  

   

Hugh  Christian  –  Global  Lightning  Imaging  Sensor  (GLIS)    

Page 41: OSGC-000-000-007-127

  41  

 

Page 42: OSGC-000-000-007-127

  42  

Steve  Jaskeluk  –  SmartCam  

 

Andrew  Kalman    –  GHVCam    The  General-­‐Purpose  High-­‐Resolution  VIS  Camera  (GHVCam)  is  an  open  imaging  platform  intended  for  applications  like  imaging  clouds,  surfaces  and  wildfires;  terrain  relative  navigation;  and  real-­‐time  disaster  monitoring,  all  from  LEO.  It  is  based  on  a  CubeSat  payload  design  from  Pumpkin,  Inc.  coupled  with  software  from  Stanford’s  Space  &  Systems  Design  Laboratory  (SSDL).  GHVCam’s  architecture  supports  multiple  post-­‐capture  image  processing  threads,  for  on-­‐orbit  data  reduction  to  match  downlink  options,  via  a  16MP  full-­‐frame  (24x36mm)  VIS  sensor  controlled  by  a  1.6GHz  x86  Linux-­‐based  SBC.  GHVCam’s  ability  to  support  additional  USB-­‐based  mini-­‐experiments  can  be  used  to  add  multispectral  capability  and  to  support  additional  student-­‐built  mini-­‐experiments  (e.g.,  Flash  Memory  Reliability  experiment,  UV  LED  testing).  GSD  is  8-­‐75m  depending  on  optics  fitted.  It  is  ideally  suited  for  NSF-­‐sponsored  student-­‐executed  projects  at  Stanford  University  with  sponsor(s)  providing  image  processing  algorithms.    

Page 43: OSGC-000-000-007-127

  43  

   Larry  Gordley  –  Doppler  Wind  and  Temperature  Sounder  (DWTS)  

Page 44: OSGC-000-000-007-127

  44  

 

 

Page 45: OSGC-000-000-007-127

  45  

Alan  Marchant  –  DISC  

 

 

Page 46: OSGC-000-000-007-127

  46  

 

A.  Deepak  and  M.  Schoeberl  –  The  CAPE  GEOScan  Concept    Coronagraph  Aerosol  Photogrammetric  Experiment  (CAPE)  is  a  concept  that  will  make  solar  aureole  measurements  from  the  Iridium  platform.    CAPE  is  basically  a  coronograph.    Using  a  blocking  element  –  a  Lyot  stop  –  the  CAPE  instrument  looks  at  the  glow  around  the  sun  –  the  solar  aurole.    The  aureole  is  formed  by  forward  Mie  scattering  of  aerosols.    The  aureole  earth-­‐limb  measurement  is  made  during  sunrise  and  sunset.    The  instrument  uses  a  mirror  to  lock  on  the  sun  during  these  periods.    Solar  corona  measurements  are  made  when  the  sun  is  above  the  limb.      CAPE  data  is  taken  twice  per  orbit.    From  the  aureole  measurement,  size  distribution  of  aerosols  and  thin  clouds  in  the  upper  troposphere  can  be  determined.  This  measurement  will  provide  new  science  about  the  pervasiveness  of  thin  cirrus  and  the  amount  of  smoke  and  dust  in  the  upper  troposphere.    The  thin  clouds  and  aerosols  are  key  elements  of  overall  atmospheric  radiative  forcing  and  thus  relevant  to  climate  change.    

Page 47: OSGC-000-000-007-127

  47  

 

William  Heaps  –  High  Spatial  resolution  Greenhouse  Gas  column  Sensor    Detection  of  greenhouse  gas  emissions  will  become  increasingly  important  as  we  face  the  continuing  global  warming  process  driven  to  some  extent  by  anthropogenic  emissions  of  these  gases.  Although  Water  vapor  is  the  dominant  greenhouse  gas  in  the  atmosphere  most  of  the  expected  change  comes  from  increases  in  carbon  dioxide  and  methane  arising  from  a  number  of  sources.  The  possibility  of  sudden  large  increases  in  methane  released  from  the  permafrost  as  warming  causes  melting  in  this  region  is  particularly  worrying  as  it  represents  a  very  large  positive  “feedback”  in  the  modeling  of  global  warming.    We  propose  a  small  yet  sensitive  complement  of  instruments  based  upon  the  Fabry-­‐Perot  interferometer  to  map  the  column  content  of  these  greenhouse  gases  with  high  spatial  resolution  enabling  the  rapid  discovery  of  the  sudden  appearance  of  new  sources.  Modest  mass,  power  and  data  rate  are  possible  at  modest  cost  using  largely  off  the  shelf  components.    This  work  is  part  of  an  ongoing  effort  at  Goddard  Space  Flight  Center  by  William    Heaps,  Elena  Georgieva  and  Wen  Huang  and  supported  in  sporadic  bursts  by  NASA’s  Earth  Science  Technology  Office  as  well  as  Goddard  Internal  Research  and  Development  funds.  

Page 48: OSGC-000-000-007-127

  48  

   

Page 49: OSGC-000-000-007-127

  49  

Space  Environment  

David  Byers  –  Chip  Dosimeter,  Charge  Plate  Analyzer,  Micrometeoroid  Acoustic  Sensor  

     

Page 50: OSGC-000-000-007-127

  50  

   

 

Page 51: OSGC-000-000-007-127

  51  

Rick  Doe  –  GEOScan  Thermosphere  Ionosphere  Photometer  -­‐  GTIP   GTIP was presented at the GEOScan workshop as an evolutionary dual-channel UV photometer, based on the CubeSat Tiny Ionospheric Photometer (CTIP) currently on schedule for delivery to the US Air Force SENSE mission. GTIP provides common volume measurements at 135.6-nm (atomic oxygen) and at the 170 nm region of the Lyman-Birge-Hopfield band of molecular nitrogen (LBH-L) in a compact package to address global nightside investigation of ionospheric morphology, high-latitude studies of auroral energetics and conductance, and dayside assessment of thermospheric O/N2 response to magnetic storms. GTIP

thus addresses a wide-ranging core of heliophysics and space weather science topics including global M-I coupling, evolution of scintillation producing ionospheric structures (i.e. polar patches and equatorial bubbles), and thermospheric compositional response to stormtime heating and enhanced winds. GTIP was designed by incorporating low size-weight-power elements from the prior CTIP sensor with flight heritage multi-reflection filters from the POLAR satellite UVI sensor into a dual channel photometer.

GTIP has sufficient photometric sensitivity, wide dynamic range, and assured flight heritage to provide high fidelity data products at every node of the GEOScan constellation and at all local time phases of the Iridium satellite orbit. GTIP is fully compliant with the GEOScan Sensor Pod baseline for system sensor form factor, mass, power, and costs and is at a high state of design maturity and delivery readiness.  

GTIP occupies ¼ of a Sensor Pod.

Page 52: OSGC-000-000-007-127

  52  

 

Page 53: OSGC-000-000-007-127

  53  

Alan  Marchant  –  DISC  

 

 

Page 54: OSGC-000-000-007-127

  54  

 

John  Noto  –  Fabry  Perot  Sensor  for  GEOScan    Predictive  Space  Weather  models  must  be  physics  based,  and  these  models  will  require  realistic  state  parameters,  temperatures,  winds,  and  densities,  measured  with  high  temporal  resolution  and  global  coverage  for  effective  operation.    Emissions  in  the  mesosphere,  lower  thermosphere,  and  upper  thermosphere  that  can  be  exploited  for  stand-­‐off  wind  and  temperature  measurements  include  the  O2  A-­‐band  at  763  nm,  the  OI  green  and  red  lines  (lower  thermosphere  and  F-­‐region,  respectively),  the  OI  844.6  nm  emission  (topside),  and  the  He  1083  nm  emission.      The  first  three  of  these  have  been  measured  on  orbit  by  Fabry-­‐Perot  interferometers  (HRDI  on  UARS,  and  TIDI  on  TIMED),  and  by  the  WINDII  instrument  aboard  UARS.    Previous  incarnations  of  Doppler  capable  optical  interferometers  on  satellites  are  too  large,  too  heavy,  and  consume  too  much  power  for  the  smaller  payloads  envisioned  for  future  space  research  missions.    Fortunately,  Fabry-­‐Perot  technology  has  evolved  to  permit  robust  performance  in  significantly  lighter,  lower  power  configurations.    We  have  developed  and  patented  a  solid-­‐state  Fabry-­‐Perot  interferometer  that  uses  liquid  crystal  in  the  resonant  cavity,  which  permits  tuning  through  the  application  of  an  electric  field  that  is  generated  by  applying  very  low  current  to  an  Indium  Tin  Oxide  substrate  coating.    This  coating  may  be  etched,  to  

Page 55: OSGC-000-000-007-127

  55  

allow  multiple,  independently  tunable  cavities  within  a  single  substrate.    This  allows  simultaneous  viewing  of  multiple  emissions,  and  simultaneous  acquisition  of  the  horizontal  wind  field,  and  temperatures  at  multiple  altitudes.    The  liquid  crystal  Fabry-­‐Perot  (LCFP)  technology  has  been  successfully  radiation  tested  in  an  environment  consistent  with  low  earth  orbit,  and  a  successful  Pegasus  level  shake  test  has  demonstrated  its  robust  mechanical  nature.    To  examine  the  effects  of  long-­‐term  exposure  of  the  LCFP  materials,  an  LCFP  etalon  is  currently  aboard  the  International  Space  Station  in  a  Getaway  Special  package.    The  LCFP  instrument  that  we  envision  of  GEOScan  weights  less  than  a  kilogram,  and  consumes  less  than  5  watts  of  power.  

 

Steve  Watchorn  &  John  Noto  –  Spatial  Heterodyne  Spectrometer    

Page 56: OSGC-000-000-007-127

  56  

 

Page 57: OSGC-000-000-007-127

  57  

Qian  Wu  –  SANDI  Hosted  Sensor  Overview  

 

Page 58: OSGC-000-000-007-127

  58  

Tom  Woods  –  FUVI

 

Page 59: OSGC-000-000-007-127

  59  

Tom  Woods  –  RePTile

 

Luke  Goembel  –  SCM  Sensor      High  energy-­‐resolution  charged  particle  spectrometers  are  needed  for  some  applications  in  space.  Useful  applications  for  such  devices  include:  1)  accurate  spacecraft  floating  potential  measurement  without  the  need  for  booms  or  probes,  and  2)  the  remote  sensing  of  upper  atmosphere  plasma  densities  (the  transparency  of  the  plasma  along  the  flux  tube  from  250  km  to  satellite  altitude).  Neither  measurement  can  be  made  with  spaceborne  spectrometers  that  are  now  flown.  High  quality  spectra  collected  by  the  SCM  would  prove  valuable  in  gauging  space  weather  conditions  in  the  region  of  the  spacecraft  and  may  prove  synergistic  with  other  GEOScan  measurements.      Goembel  Instruments  proposes  the  flight  of  either  the  SCM-­‐1  or  the  SCM-­‐2  on  GEOScan.  The  SCM-­‐1  sensor  is  a  breakthrough  high  energy-­‐resolution  electron  spectrometer.  The  sensor  includes  patented  charged  particle  optics  that  enable  an  order  of  magnitude  better  performance  (geometric  factor  and/or  energy  resolution)  than  any  comparable  instruments  flown  today.  The  construction  of  the  SCM-­‐1,  a  flight-­‐ready  650-­‐gram  instrument,  was  funded  through  NASA  SBIR  contracts.  For  a  cost  of  $99k,  the  SCM-­‐1  could  be  flown  as-­‐is.  If  needed,  the  chassis  could  be  custom-­‐built  to  fit  optimally  within  the  GEOScan  pod  for  no  additional  cost.    

Page 60: OSGC-000-000-007-127

  60  

 For  additional  cost  the  SCM-­‐2,  a  vastly  improved  version  of  the  SCM-­‐1,  could  be  custom  built  for  GEOScan.  The  SCM-­‐2  was  developed  for  the  DoD  Transitional  Satellite  Communications  System  (TSAT)  but  has  not  yet  been  built.  The  SCM-­‐2  would  energy  analyze  ions  as  well  as  electrons.  Ion  energy  analysis  would  enable  full  orbit  spacecraft  charge  determinations  over  a  greater  voltage  range  and  would  return  ion  as  well  as  electron  energy  spectra  of  unprecedented  quality.  A  SCM-­‐2  of  slightly  larger  size  and  mass  of  the  SCM-­‐1  could  be  built  for  $299k,  or  ten  could  be  built  for  $99k  each.  For  $599k  a  miniaturized,  1U  version  of  the  SCM-­‐2  could  be  built.  The  flight  of  any  version  of  the  Goembel  Instruments  SCM  would  advance  the  state  of  the  art  in  spaceborne  charged  particle  spectroscopy  and  advance  our  knowledge  of  spacecraft  charging  and  the  low  energy  plasma  environment  of  the  upper  atmosphere.  Further  information  is  available  upon  request  from  Goembel  Instruments.  

 

Sven  Bilén  –  Hybrid  Plasma  Probe  for  Space  Weather  Measurements    The  Hybrid  Plasma  Probe  (HPP)  is  a  unique  combination  of  instruments  to  provide  in  situ  measurements  of  the  ionosphere.    In  particular,  the  HPP  provides  an  ability  to  simultaneously  take  high  resolution  and  high  accuracy  absolute  density  and  ∆ne/ne  measurements  by  combining  a  fixed  biased  Langmuir  probe  and  the  Plasma  Frequency  probe.    Additionally,  introducing  a  Fast  Temperature  Probe  (FTP)  based  on  a  Druyvesteyn  probe,  the  HPP  can  provide  high  resolution  temperate  data  as  an  alternative  operating  mode.    

Page 61: OSGC-000-000-007-127

  61  

 This  combination  of  instruments  allows  the  probe  to  be  used  to  address  a  number  of  different  space  weather  research  and  provide  space  weather  critical  measurements.    These  include  observations  at  conjugates  points,  and  a  space-­‐based  platform  could  provide  simultaneous  in  situ  measurements  that  will  help  the  understanding  of  plasma  transport  through  the  magnetic  field  lines.  Additionally,  this  instrument  will  allow  observations  of  natural  phenomenon  such  as  naturally  occurring  space  weather  and  mesoscale  convective  systems.  For  all  mentioned  experiments,  multipoint  measurements  will  resolve  spatial  and  temporal  ambiguities  and  help  to  create  a  more  holistic  picture  of  the  current  state  of  the  ionosphere.    This  instrument  is  built  on  the  experience  Penn  State’s  Communications  and  Space  Systems  Laboratory  has  gained  from  over  50  Langmuir  probes  launched  on  sounding  rocket  platforms  and  further  research  by  faculty  and  students  into  plasma  frequency  measurement  techniques.    

 

Marcin  Pilinski  and  Scott  Palo  –  Thermospheric  Ionospheric  Velocity  Energy  Analyzer  (TIVEA)    Observations  of  ion  drifts  (and  electric  fields)  are  crucial  to  assimilative  modeling  of  the  ionosphere  as  well  as  to  the  understanding  of  the  coupled  ITM  system.    Without  this  information,  there  is  little  hope  of  understanding  the  energy  flow  within  the  system.    The  TIVEA  instrument  addresses  the  need  to  provide  in  situ  measurements  of  ion-­‐drifts  while  fitting  within  the  SWaP  envelope  of  10c10x10  cm,  1W  of  power  consumption  and  1kg.    The  TIVEA  instrument  is  an  energy  spectrometer  using  a  Small  Deflection  Energy  Analyzer  (SDEA)  as  the  energy  selection  device.  The  

Page 62: OSGC-000-000-007-127

  62  

instrument  concept  was  developed  by  Dr.  Fred  Herrero  at  NASA  GSFC  and  adapted  by  CU  students  for  use  on  Drag  and  Neutral  Density  Explorer  (DANDE)  satellite,  a  spin-­‐stabilized  spacecraft.  For  the  purpose  of  GEOScan,  we  intend  to  update  the  DANDE  instrument  design  for  a  3-­‐axis  stabilized  platform  and  reduce  the  SWaP  from  11.5x6.4x18.1cm,  2W  of  power  and  1.8  kg.    The  existing  laboratory  sensor  head  is  at  a  TRL  level  of  5  but  will  undergo  vibration  and  thermal  vacuum  testing  in  the  summer  of  2011  to  bring  the  TRL  level  to  7.    The  DANDE  version  of  this  instrument  is  anticipated  to  fly  in  the  first  quarter  of  2012.    It  is  important  to  note  that  deflection  energy  analyzers  such  as  the  one  on  TIVEA  provide  information  complementary  to  retarding  potential  analyzers  by  measuring  the  kinetic  energy  directly  rather  than  the  integral  thereof.    In  order  to  turn  TIVEA  measurements  into  meaningful  electric  field  estimates  the  spacecraft  attitude  must  be  known  to  within  0.03  degrees  and  the  instrument  aperture  must  point  within  5  degrees  of  RAM.    Furthermore  the  spacecraft  velocity  must  be  known  to  within  5  m/s  and  its  position  within  1000  m.    Other  requirements  include  pre-­‐launch  nitrogen  purge  of  the  sensor  heads  and  a  10-­‐20  inch  radius  equipotential  surface  surrounding  the  sensor  head.    The  data  products  are  expected  to  total  ~9  Mbytes  per  day  and  will  be  comprised  of  three  dimensional  velocity  distribution  once  every  2-­‐5  seconds  along  orbit.    This  will  lead  to  a  post  processed  mean  drift  velocity  vector,  “temperature”  and  number  densities  at  the  same  cadence.    The  estimated  cost  per  unit  is  $0.3M.    The  development  cost  to  miniaturize  and  prepare  the  instrument  for  the  radiation  and  thermal  environment  of  GEOScan  is  approximately  $2.0M.        

 

Page 63: OSGC-000-000-007-127

  63  

 

Ted  Fritz    –  Mini-­‐Imagine  Electron  Spectrometer  (MIES)    The  Energetic  Particle  Group  from  Boston  University’s  Center  for  Space  Physics  has  proposed  a  1U  Mini-­‐Imagine  Electron  Spectrometer  (MIES)  with  an  energy  range  E    =  20-­‐500  keV  and  multiple  look  directions  for  the  GEOScan  program.    The  instrument  would  be  ready  for  production  and  comes  from  a  long  heritage  of  the  energetic  electron  instrument  flown  successfully  on  the  Polar,  Cluster,  and  soon  to  be  launched  on  DSX.    In  the  polar  GEOScan  orbit,  this  detector  would  allow  for  a  number  of  magnetospheric  and  ionospheric  problems  to  be  studied.    In  the  realm  of  lightning  induced  precipitation  tt  would  be  able  to  help  solve  questions  such  as:  how  are  VLF  wave  from  lightning  transmitted  through  the  ionosphere,  what  role  do  ionspheric  waves  from  lightning  play  in  emptying  the  radiation  belt,  and  how  does  lightning  induced  precipitation  change  seasonally?    Near  the  poles  the  energetic  measurements  from  the  detector  would  help  solve  the  problem  of  what  is  causing  the  isotropic  trapping  boundary?    There  has  never  been  more  than  one  spacecraft  observing  this  polar  boundary,  so  the  contribution  from  using  just  a  few  GEOScan  space  to  study  this  would  be  original  and  significant.    In  terms  of  instrumental  requirements,  the  detector  is  well  developed  and  low  impact.    The  estimated  cost  for  a  single  detector  is  10k.    It  requires  less  than  3  Watts,  weighs  ~0.3  kg,  and  would  require  a  data  rate  of  <1.5kb/s.    In  order  to  make  the  necessary  directional  measurements,  the  detector  would  need  to  have  open  exposure  to  the  zenith  and  ram  directions.    As  the  GEOScan  payload  overhangs  by  ~10cm  from  the  rest  of  the  spacecraft,  this  orientation  in  the  spacecraft  is  possible  in  that  position.    For  more  details  on  the  detector  and  it’s  capabilities,  please  contact  Ted  Fritz  at  [email protected].  

Page 64: OSGC-000-000-007-127

  64  

 

Steve  Cummer    –  Lighting-­‐Upper  Atmospheric  Coupling    Lightning-­‐upper  atmosphere  coupling  occurs  in  many  spectacular  forms,  and  the  understanding  of  the  physics  behind  and  effects  of  this  coupling,  while  far  from  complete,  has  been  greatly  improved  by    satellite  optical,  radio,  and  high-­‐energy  particle  measurements.    At  present  the  science  in  this  field  is  observation-­‐limited,  and  could  be  advanced  tremendously  with  relatively  modest  instrumentation  on  multiple  satellite  platforms.    Flying  instruments  on  several  spacecraft  (but  not  all)  seems  like  the  best  balance  of  cost-­‐benefit  for  this  science  target.    The  kinds  of  instruments  that  could  conceivably  fly  on  the  GEOScan  platform  cover  the  range  of  radio,  optical,  and  high-­‐energy  particle  and  photon  observations  that  have  already  proven  valuable.    The  simplest  would  be  VLF-­‐bandwidth  electric  and  magnetic  field  sensors  that  would  measure  the  strength  and  characteristics  of  the  source  lightning  discharges.    Importantly,  they  would  also  probe  the  not-­‐understood  observations  of  unexpectedly  high  trans-­‐ionospheric  VLF  attenuation  that  has  been  highlighted  in  recent  literature  and  that  has  significant  implications  for  radiation  belt  particle  loss.    Such  instruments  can  be  designed  to  meet  the  space  and  power  constraints  of  the  GEOScan  platform.    

Page 65: OSGC-000-000-007-127

  65  

Optical  and  high-­‐energy  photon  instrumentation  for  detecting  lightning-­‐driven  mesospheric  optical  emissions  and  terrestrial  gamma  ray  flashes  are  also  scientifically  valuable  possible  GEOScan  instruments  for  lightning-­‐upper  atmosphere  coupling.    Gamma  ray  detectors  (which  will  also  detect  high  energy  electron  and  positron  beams  also  produced  by  lightning)  efficiency  is  proportional  to  mass,  making  design  a  challenge.    Optical  instruments  are  more  flexible,  and  designing  a  system  with  scientifically  valuable  capabilities  (imaging,  spectophotometry,  etc.)  that  meets  the  GEOSCan  constraints  seems  very  possible.    

   

R.  Lin  –  Stein-­‐X    Stein-­‐X  provides  imaging  (~1-­‐3  degrees  E-­‐W)  spectroscopy  (~1  keV  FWHM)  of  both  ~4-­‐200   keV   ENAs   and  ~2-­‐20   keV   auroral   X-­‐rays   in   a  ~1   kg,   1  Watt,   1   U   volume  instrument.  Stein-­‐X  on  every  Iridium  spacecraft  will  obtain  global  imaging  of  ENAs  (in   stereo)   and   of   auroral   X-­‐rays   every   <~9   minutes,   to   follow   the   dynamical  evolution   of   the   ring   current   and   electron   precipitation   -­‐   key   elements   of   space  weather.   Stein-­‐X   takes   advantage   of   a   breakthrough   in   thin-­‐window,   silicon  semiconductor   detectors   (SSDs),   recently   developed   for   the   STE   (SupraThermal  Electron)   instruments   on   the   STEREO   mission   to   detect   interplanetary   electrons  down  to  ~2  keV  with  ~50  times  higher  sensitivity  than  the  electrostatic  analyzers  used   previously.   STE   also   detects   ~4-­‐100   keV   ENAs   and   ions   with   very   high  

Page 66: OSGC-000-000-007-127

  66  

sensitivity,   as  well   as  ~2-­‐20   keV   X-­‐rays   from   galactic   sources.   These   are   the   first  SSDs   in   space   (still   operating  nominally   after  ~4.5   yrs)   to   detect   particles   to  well  below   ~20   keV   energy,   and   they   are   insensitive   to   the   geocoronal   UV/EUV  emissions   that   must   be   attenuated   by   a   factor   of   >~105   for   MCP-­‐based   ENA  instruments.   A   STEIN   (SupraThermal   Electron,   Ion,   Neutral)   instrument   is   being  developed  for  the  CINEMA  (Cubesat  for  Ions,  Neutrals,  Electrons,  &  Magnetic  fields)  mission   (June,   2012   launch)   with   an   electrostatic   deflector   to   separate   electrons  from  ions  from  ENAs,  and  a  single  ASIC  (developed  for  a  French-­‐Italian  astrophysics  mission)   providing   the   electronics   for   32   SSDs.   Stein-­‐X   has   1-­‐D   imagers   for   ENAs  and   for  X-­‐rays,  each  with  a  32  SSD  array  behind  a  coded  aperture  grid   (similar   to  solar  hard  X-­‐ray/gamma-­‐ray  imaging  systems).  Thus,  the  key  technologies  for  Stein-­‐X  have  already  been  developed  by  STEIN,  so  only  minor  modifications  are  needed.    

 

Gerald  Fishman  –  Gamma-­‐ray  Detector  Constellation  for  Earth  and  Sky  Observations   We propose to include a constellation of gamma-ray detectors in the Iridium-Next GEOScan program. There has never been an all-sky, full-Earth gamma-ray observational capability. The baseline system consists of 30, 2U-size instrument modules, each weighing about 2 kg and utilizing 3 w of power. The objectives would include continuous observations of gamma-ray emissions from Solar flares, transient high-energy astrophysical objects, terrestrial gamma-ray flashes, and the tracking of the propagation of radioactivity from man-made accidents (such as power plants) and terrorist acts (dirty

Page 67: OSGC-000-000-007-127

  67  

bombs and small nuclear devices). These observations would be of interest to NASA, DoD and the Dept. of Homeland Security. The Lead institution is NASA-Marshall Space Flight Center. Significant hardware collaborators include NASA-GSFC and NRL. Participation of perhaps as many as ten Universities is also expected.

 

Andrew  Stephan  –  Miniature  UV  Spectrographic  Experiment  (MUSE)    MUSE  is  a  compact,  high-­‐sensitivity  UV  spectral  imager  designed  to  measure  key  ion  and  neutral  species  in  the  ionosphere-­‐thermosphere  (IT)  system.    MUSE  has  a  passband  of  60-­‐140  nm  from  which  altitude  profiles  of  O,  N2,  O2,  O+,  as  well  as  other  minor  species  can  be  derived  using  mature  modeling  and  data  inversion  techniques.    MUSE  data  can  be  used  in  synergy  with  a  wide  variety  of  alternate  sensing  data  to  provide  a  comprehensive  view  of  structure,  dynamics,  chemistry,  and  coupling  that  occurs  throughout  the  IT  system.    MUSE  would  fill  the  data  gap  to  understanding  how  the  IT  system  responds  to  solar  and  geomagnetic  storms  –  a  need  suggested  in  the  Heliophysics  Roadmap  2005-­‐2035.    The  MUSE  sensor  would  be  designed  to  fit  in  a  3U  volume  with  mass  not  to  exceed  5  kg.    Power  consumption  is  5W,  orbit-­‐averaged.    The  expected  data  rate  is  estimated  at  100  kbps,  with  the  possibility  of  compression.    The  sensor  concept  has  significant  heritage  in  several  rocket  flights,  putting  the  current  TRL  at  6-­‐7.    During  operations,  the  MUSE  sensor  would  view  toward  the  limb  of  the  Earth,  imaging  altitude  profiles  of  emissions  from  terrestrial  ion  and  neutral  species.    MUSE  is  a  passive  sensor  that  does  not  contain  any  moving  

Page 68: OSGC-000-000-007-127

  68  

parts,  making  it  compatible  with  most  spacecraft  hosts.    If  the  line  of  sight  is  oriented  in  the  orbital  plane,  significant  advances  could  be  made  by  connecting  one  set  of  MUSE  measurements  to  others  made  simultaneously  by  another  MUSE  other  complementary  sensors  hosted  on  adjacent,  co-­‐planar  platforms.    Any  combination  of  2-­‐6  sensors,  however,  would  create  significant  advances  in  IT  research  over  current  single-­‐sensor  approaches,  with  each  additional  sensor  improving  temporal,  spatial,  and/or  local  time  resolution  over  these  historic  data  sets.    

   

Greg  Earle  –  UT  Dallas  Thermal  Ion  Instruments    The  University  of  Texas  at  Dallas  has  been  building  and  flying  state-­‐of-­‐the-­‐art  thermal  ion  instruments  for  more  than  40  years,  on  satellites  such  as  DMSP,  AE,  DE,  ROCSAT,  and  C/NOFS.      These  instruments  have  recently  been  repackaged  for  accommodation  on  micro-­‐  and  nano-­‐satellite  platforms.    Together  the  retarding  potential  analyzer  (RPA)  and  ion  drift  meter  (IDM)  measure  more  state  variables  of  the  ionosphere  than  any  other  single  instrument,  including  the  plasma  density,  temperature,  vector  velocity,  and  light/heavy  ion  composition  ratio.    All  such  measurements  are  made  in-situ,  so  there  is  no  ambiguity  regarding  spatial  location  of  irregularities.    The  Iridium-­‐Next  platform  provides  an  outstanding  opportunity  to  conduct  such  measurements  simultaneously  over  a  global  grid,  providing  high-­‐

Page 69: OSGC-000-000-007-127

  69  

resolution  data  on  the  plasma  medium,  and  resolving  spatial-­‐temporal  ambiguities  that  have  hampered  progress  in  space  science  since  the  dawn  of  the  space  age.    

   

Page 70: OSGC-000-000-007-127

  70  

Mihaly  Horanyi  –  GEOScan  Cosmic  Dust  and  Debris  Experiment  

 

Page 71: OSGC-000-000-007-127

  71  

 

Michael  Kiedar  –  GEOScan  Micro-­‐Vacuum  Arc  Thruster  for  Nanosatellites  

                         

Micro/Nano-satellite position control •  What measurements do you need conduct you

proposed science? o  Thruster duty cycle control measurement o  Thrust force test o  Power supply system testing for

cubsatellite.

GEOScan: Micro-Vacuum Arc Thruster for Nanosatellites

µCT for precision orbit maneuvers •  Cube-satellite latitude and attitude control •  Microthruster with extended life time is

developed and characterized •  Thruster is well suited for nanosatellites: •  20-30V, <1W power requirements •  2000-3500s Isp •  1-10 mN thrust during pulse (1-12x10-7 Ns) •  Small footprint and system mass •  Applied magnetic field leads to uniform cathode

erosion and ability to throttle the thrust

The George Washington University Micro-propulsion and Nanotechnology Lab •  Michael Keidar •  George Washington University, MpNL •  Taisen Zhuang, Alex Shashurin, Lubos Brieda, Tom

Denz, Samudra Haque •  Acknowledgment: NSF-DOE Partnership on Plasma

Science •  Air Force Office of Scientific Research •  DC NASA Space Grant

Page 72: OSGC-000-000-007-127

  72  

 

Appendix  I  –  Workshop  Abstract  Titles  and  Authors    

Name Affiliation Title

Sven Bilén The Pennsylvania State University

Hybrid Plasma Probe for Space Weather Measurements

Rebecca Bishop The Aerospace Corporation

The Compact Total Electron Content Sensor: CTECS Sensor on the MTV Mission and its Potential Use of Future Opportunities

Gary Bust ASTRA Ionospheric Measurements and Ionospheric Data Assimilation

David Byers Naval Research Laboratory

Targeted Space Weather Sensors and LF-HF Radio Telescope

Kerri Cahoy MIT GPS Radio Occultation Opportunities with Iridium/NEXT

Hugh Christian

University of Alabama in Huntsville Continous Lightning Observations from LEO

Anthea Coster MIT Haystack Observatory

Importance of Filling Data Gaps in Studies of Atmospheric Coupling

Geoff Crowley ASTRA The Scanning Imaging Photometer System (SIPS) for UV Ionospheric Remote Sensing

Steve Cummer Duke University Lightning-Upper Atmosphere Coupling Ann Darrin JHU/APL Intoduction

Adarsh Deepak Science and Technology Corp.

Space-Borne Solar-Aureole Method for Determining Atmospheric Aerosol Size Distributions

Matt Desch Iridium GEOScan Welcome - Iridium

Rick Doe SRI International Impact of Multipoint UV Photometry on Ionospheric System Science

Lars Dyrud JHU APL GEOScan Overview

Greg Earle University of Texas at Dallas

Thermal Plasma Measurements with Small Retarding Potential Analyzers

Bob Erlandson JHU/APL Detection of Biomass Burning Using a Potassium Line Image

Chad Fish Space Dynamics Laboratory Hosted SensorPOD Science

Gerald Fishman NASA - Marshall Space Flight Center

A Gamma-ray GeoScan Constellation for Earth Observation

Dave Fritts NWRA-CoRA Div.

Science Enabled by Continuous Measurements of Atmospheric Winds and Temperatures from 10 to 200 km Aboard Iridium

Luke Goembel Goembel Instruments

Spacecraft Charge Monitor / Electron Spectrometer

Page 73: OSGC-000-000-007-127

  73  

Kenn Gold Emergent Space Technologies

Global Broadband Operationally Responsive Navigator- Enabling Radio Occultation Studies With Signals of Opportunity

Larry Gordley GATS, Inc. Doppler Modulated Gas Correlation:A Breakthrough in Passive Sensing from LEO

Thomas Gaussiran ARL:UT Global, High-Res, Real-Time Ionosphere Specification

Brian Gunter Delft University of Technology

Using Iridium NEXT to observe global time-variable gravity

Om Prakash Gupta Iridium Iridium Hosted Payload Program

William Heaps NASA Goddard High Spatial Resolution Greenhouse Gas Column Sensor

Mihaly Horanyi LASP - U. of Colorado GEOScan Cosmic Dust and Debris Experiment

Steve Jaskulek JHU/APL Space-based Microcam Andrew Kalman Pumpkin, Inc. Multispectral Solid-State Imager

Michael Keidar George Washington University Micro-cathode thruster for nanosatellite propulsion

David M. Klumpar Montana State University

The Suitability of Small Space Weather Payloads on LEO Satellite Constellations: Research and Operations

Bill Kuo UCAR COSMIC Applications of GPS Radio Occultation Measurements to Hurricane Prediction

E. Glenn Lightsey The Univ. of Texas at Austin

FOTON: A software-defined, compact, low-cost, GPS radio occultation sensor

Steven Lorentz L-1 Standards and Technology, Inc.

Earth Radiation Budget Measurements Aboard Iridium Next

Alan Marchant Utah State University DISC technology for limb scanning and other compact imaging instruments

Shawn D. Murphy C.S.Draper Laboratory, Inc.

Compact Hyperspectral Imaging Module for Earth Science (CHIMES)

John Noto Scientific Solutions Inc.

Small Interferometers for Measuring Neutral Dynamics from Small(er) Satellites

Larry Paxton JHU/APL Novel Integrated Applications

Marcin Pilinski University of Colorado, Boulder In Situ Electrostatic Ion-Drift Sensor

Dave Rainwater ARL:UT DORIS Sensor package for Iridium-NEXT

Bill Schreiner UCAR

Use of NASA's TriG GNSS RO Receiver as a GEOScan Hosted Sensor & Data processing and science applications of space-based GNSS radio occultation data

Andrew Stephan NRL Miniature UV Spectrographic Experiment

Paul Straus The Aerospace Corporation

Opportunities for scientific collaborations cosmic/ssaem program and space weather sensors on iridium

Brian Walsh Boston University

Small scale energetic electron detector as a probe for multiple ionospheric and magnetopheric processes

Page 74: OSGC-000-000-007-127

  74  

Earle Williams MIT-Licoln Laboratories Scientific Interest in Global Lightning

Thomas Woods University of Colorado

Laboratory for Atmospheric and Space Physics Far UltraViolet Imager (FUVI) as Hosted Sensor Option for GEOScan

Dong Wu Climate and weather sensors on Iridium

Dong Wu Jet Propulsion Laboratory Thermospheric Wind Measurement

Qian Wu NCAR/HAO Space based COTS GPS

Eftyhia Zesta Air Force Research Laboratory

SESSAME (Scintillation and Energy input for Space Situational Awareness and Monitoring the Environment) Suite

   

Page 75: OSGC-000-000-007-127

  75  

Appendix  II  –  Workshop  Attendees    Name Affiliation Email Stephen Ambrose NASA [email protected] George Andrew NASA-GSFC [email protected] Steven Arnold JHU/APL [email protected]

Kultegin Aydin Penn. State University [email protected]

Ben Barnum JHU/APL [email protected]

Riccardo Bevilacqua Rensselaer Polytechnic Institute [email protected]

Sven Bilén The Pennsylvania State University [email protected]

Rebecca Bishop The Aerospace Corporation [email protected]

Richard Blakeslee NASA/MSFC [email protected]

Brian Bradford ITT Geospatial Systems [email protected]

Gary Bust ASTRA [email protected]

David Byers Naval Research Laboratory [email protected]

Kerri Cahoy MIT [email protected] John Carey NASA-GSFC [email protected]

Glen Cameron Orbital Sciences Corporation [email protected]

Peter Chi UCLA [email protected]

Hugh Christian University of Alabama in Huntsville [email protected]

Clark Cohen Coherent Navigation, Inc. [email protected]

Nathan Colvin USAF [email protected]

David COOKE Air Force Research Lab [email protected]

Anthea Coster MIT Haystack Observatory [email protected]

Geoff Crowley ASTRA [email protected] Steve Cummer Duke University [email protected] Ann Darrin JHU/APL [email protected]

Adarsh Deepak Science and Technology Corp. [email protected]

Matt Desch Iridium [email protected] Rick Doe SRI International [email protected] Lars Dyrud JHU APL [email protected] Greg Earle University of Texas at [email protected]

Page 76: OSGC-000-000-007-127

  76  

Dallas

Bob Erlandson JHU/APL [email protected] Jonathan T. Fentzke JHU/APL [email protected] Cassandra Fesen AFOSR [email protected]

Chad Fish Space Dynamics Laboratory [email protected]

Gerald Fishman NASA - Marshall Space Flight Center [email protected]

Dave Fritts NWRA-CoRA Div. [email protected] Anthony Galasso The Boeing Company [email protected] Thomas Gaussiran ARL:UT [email protected] Jesper W Gjerloev JHU-APL [email protected] Luke Goembel Goembel Instruments [email protected]

Kenn Gold Emergent Space Technologies

[email protected]

Larry Gordley GATS, Inc. [email protected] Michael Gregory ITT Corporation [email protected]

J. Eric Grove Naval Research Laboratory [email protected]

Brian Gunter Delft University of Technology [email protected]

Om Prakash Gupta Iridium Satellite LLC [email protected]

Samudra E. Haque George Washington University [email protected]

Philip Hattis Draper Laboratory [email protected] William Heaps NASA Goddard [email protected] Liang Heng Stanford University [email protected] Robert Holloway ITT Corp. [email protected]

Mihaly Horanyi LASP - U. of Colorado [email protected]

BJ Jaroux NASA Ames Research Center [email protected]

Steve Jaskulek JHU/APL [email protected]

Scott Jensen Space Dynamics Laboratory [email protected]

Farzad Kamalabadi NSF [email protected] Andrew Kalman Pumpkin, Inc. [email protected] Suk Jin Kang Drexel University [email protected]

Ashok Kaveeshwar

Science and Technology Corporation [email protected]

Michael Keidar George Washington University [email protected]

Larry Kepko NASA Goddard Space Flight Center [email protected]

Page 77: OSGC-000-000-007-127

  77  

Omid E. Kia ITT Geospatial Systems [email protected]

Haklin Kimm East Stroudsburng University [email protected]

David M. Klumpar Montana State University [email protected]

Satya Kotaru NASA Langley [email protected] Bill Kuo UCAR COSMIC [email protected]

E. Glenn Lightsey The Univ. of Texas at Austin [email protected]

Bryant Loomis SGT Inc [email protected]

Steven Lorentz L-1 Standards and Technology, Inc. [email protected]

Tim Maclay Celestial Insight, Inc. [email protected] Alan Marchant Utah State University [email protected] John McCarthy Orbital Sciences [email protected] Tom Meehan NASA/JPL [email protected]

Shawn D. Murphy C.S.Draper Laboratory, Inc. [email protected]

John Noto Scientific Solutions Inc. [email protected]

Corwin Olson a.i. solutions [email protected] Larry Paxton JHU/APL [email protected]

Marcin Pilinski University of Colorado, Boulder [email protected]

Amanda Preble USAF [email protected]

Dave Rainwater ARL:UT [email protected] Cheryl L. B. Reed JHU/APL [email protected]

Rex Ridenoure

CEO, Ecliptic Enterprises Corporation

[email protected]

Christopher T. Rodgers ITT Geospatial Systems [email protected]

Scott Schaire NASA-GSFC Wallops [email protected]

Sebastian Schmidt University of Colorado/LASP [email protected]

Mark Schoeberl

Science and Technology Corporation [email protected]

Bill Schreiner UCAR [email protected] Joshua Semeter Boston University [email protected] Susan Skone University of Calgary [email protected] Stefan Slagowski Draper Lab [email protected] Andrew Stephan NRL [email protected] Paul Straus The Aerospace [email protected]

Page 78: OSGC-000-000-007-127

  78  

Corporation

Elsayed Talaat JHU/APL [email protected] Don Thoma Iridium [email protected] Brian Walsh Boston University [email protected]

Earle Williams MIT-Licoln Laboratories [email protected]

Kirk Woellert Space Policy Institute [email protected] Thomas Woods University of Colorado [email protected]

Cinnamon Wright A.I. Solutions [email protected]

Chin-Chun Wu Naval Research Laboratory [email protected]

Dong Wu Jet Propulsion Laboratory [email protected]

Qian Wu NCAR/HAO [email protected] Sam Yee JHU/APL [email protected]

David Yoel American Aerospace [email protected]

Lawernce J. Zanetti JHU/APL [email protected]

Eftyhia Zesta Air Force Research Laboratory [email protected]

Taisen Zhuang

The George Washington University [email protected]