Orthogonal Rational Functions: Quadrature, Recurrence and...

45
Orthogonal rational functions Quadrature Recurrence Rational Krylov Future research Publications Orthogonal Rational Functions: Quadrature, Recurrence and Rational Krylov Karl Deckers Department of Computer Science, Katholieke Universiteit Leuven, Heverlee, Belgium. Supervisor: Adhemar Bultheel. February 4, 2009 Karl Deckers ORFs: Quadrature, Recurrence and Rational Krylov 1/40

Transcript of Orthogonal Rational Functions: Quadrature, Recurrence and...

Page 1: Orthogonal Rational Functions: Quadrature, Recurrence and …math.univ-lille1.fr/~deckers/public.pdf · 2009-02-05 · Orthogonal rational functions Quadrature Recurrence Rational

Orthogonal rational functions Quadrature Recurrence Rational Krylov Future research Publications

Orthogonal Rational Functions: Quadrature,

Recurrence and Rational Krylov

Karl Deckers

Department of Computer Science, Katholieke Universiteit Leuven,Heverlee, Belgium.

Supervisor: Adhemar Bultheel.

February 4, 2009

Karl Deckers ORFs: Quadrature, Recurrence and Rational Krylov 1/40

Page 2: Orthogonal Rational Functions: Quadrature, Recurrence and …math.univ-lille1.fr/~deckers/public.pdf · 2009-02-05 · Orthogonal rational functions Quadrature Recurrence Rational

Orthogonal rational functions Quadrature Recurrence Rational Krylov Future research Publications

Outline

1 Orthogonal rational functions

2 Quadrature

3 Recurrence

4 Rational Krylov

5 Future research

Karl Deckers ORFs: Quadrature, Recurrence and Rational Krylov 2/40

Page 3: Orthogonal Rational Functions: Quadrature, Recurrence and …math.univ-lille1.fr/~deckers/public.pdf · 2009-02-05 · Orthogonal rational functions Quadrature Recurrence Rational

Orthogonal rational functions Quadrature Recurrence Rational Krylov Future research Publications

Outline

1 Orthogonal rational functions

2 Quadrature

3 Recurrence

4 Rational Krylov

5 Future research

Karl Deckers ORFs: Quadrature, Recurrence and Rational Krylov 3/40

Page 4: Orthogonal Rational Functions: Quadrature, Recurrence and …math.univ-lille1.fr/~deckers/public.pdf · 2009-02-05 · Orthogonal rational functions Quadrature Recurrence Rational

Orthogonal rational functions Quadrature Recurrence Rational Krylov Future research Publications

Rational functions

rational function = numerator polynomialdenominator polynomial

–200

–100

0

100

200

–15 –10 –5 5 10 15x

Figure: r3(x)=(x−0)(x−3)(x−(−2))

(1− x(−10) )(1−

x(−3) )(1−

x1 )

.

polynomial case results when all the poles are at infinity.

Karl Deckers ORFs: Quadrature, Recurrence and Rational Krylov 4/40

Page 5: Orthogonal Rational Functions: Quadrature, Recurrence and …math.univ-lille1.fr/~deckers/public.pdf · 2009-02-05 · Orthogonal rational functions Quadrature Recurrence Rational

Orthogonal rational functions Quadrature Recurrence Rational Krylov Future research Publications

Rational functions

–15–10 –5 0 5 10 15–10–5

05

10–200

–100

0

100

200

ℜ{x}ℑ{x}

–15–10 –5 0 5 10 15–10–5

05

10–800–600–400–200

0200400600800

ℜ{x}ℑ{x}

Figure: Left: ℜ{r3(x)}. Right: ℑ{r3(x)}.

Karl Deckers ORFs: Quadrature, Recurrence and Rational Krylov 5/40

Page 6: Orthogonal Rational Functions: Quadrature, Recurrence and …math.univ-lille1.fr/~deckers/public.pdf · 2009-02-05 · Orthogonal rational functions Quadrature Recurrence Rational

Orthogonal rational functions Quadrature Recurrence Rational Krylov Future research Publications

The case of the interval [−1, 1]

[−1, 1]

–3

–2

–1

0

1

2

3

–4 –3 –2 –1 1 2 3 4ℜ{x}

ℑ{x}

Polesα1, α2, α3, . . .

Arbitrary complex or infinite,but outside [−1, 1]

Fixed in advance

Function spaces

Ln = space of rational functions with poles among{α1, α2, . . . , αn}C =: L0 ⊂ L1 ⊂ L2 ⊂ . . . ⊂ Ln ⊂ . . . ⊂ L :=

⋃∞n=0 Ln

Karl Deckers ORFs: Quadrature, Recurrence and Rational Krylov 6/40

Page 7: Orthogonal Rational Functions: Quadrature, Recurrence and …math.univ-lille1.fr/~deckers/public.pdf · 2009-02-05 · Orthogonal rational functions Quadrature Recurrence Rational

Orthogonal rational functions Quadrature Recurrence Rational Krylov Future research Publications

The case of the complex unit circle

Complex unit circle

–3

–2

–1

0

1

2

3

–4 –3 –2 –1 1 2 3 4ℜ{z}

ℑ{z}

Complex numbers

β1, β2, β3, . . .

|βk | < 1

Fixed in advance

Function spaces

Ln = space of rational functions with poles among{1/β1, 1/β2, . . . , 1/βn}C =: L0 ⊂ L1 ⊂ L2 ⊂ . . . ⊂ Ln ⊂ . . . ⊂ L :=

⋃∞n=0 Ln

Karl Deckers ORFs: Quadrature, Recurrence and Rational Krylov 7/40

Page 8: Orthogonal Rational Functions: Quadrature, Recurrence and …math.univ-lille1.fr/~deckers/public.pdf · 2009-02-05 · Orthogonal rational functions Quadrature Recurrence Rational

Orthogonal rational functions Quadrature Recurrence Rational Krylov Future research Publications

Orthonormality

A weight function w(·) or w(·) defines an inner product 〈· , ·〉Orthonormalize canonical basis for L or L with respect to 〈· , ·〉,

Figure: canonical basis (left) and orthonormal basis (right)

we obtain an orthonormal basis:

{ϕ0(x), ϕ1(x), ϕ2(x), . . .} on L,with ϕk ∈ Lk \ Lk−1 and ϕk ⊥ Lk−1

{φ0(z), φ1(z), φ2(z), . . .} on L,

with φk ∈ Lk \ Lk−1 and φk ⊥ Lk−1

Karl Deckers ORFs: Quadrature, Recurrence and Rational Krylov 8/40

Page 9: Orthogonal Rational Functions: Quadrature, Recurrence and …math.univ-lille1.fr/~deckers/public.pdf · 2009-02-05 · Orthogonal rational functions Quadrature Recurrence Rational

Orthogonal rational functions Quadrature Recurrence Rational Krylov Future research Publications

Orthonormal rational functions (ORFs)

ORFs on [−1, 1]

〈f , g〉 =

∫ 1

−1f (x)g(x)w(x)dx , f , g ∈ L.

〈ϕk , ϕl 〉 =

{

0, k 6= l1, k = l

.

–0.2

–0.1

0

0.1

0.2

0.3

0.4

0.5

–1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

2.5

–1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1

Figure: Left: 〈ϕk , ϕl〉 = 0. Right: 〈ϕk , ϕk 〉 = 1.

Karl Deckers ORFs: Quadrature, Recurrence and Rational Krylov 9/40

Page 10: Orthogonal Rational Functions: Quadrature, Recurrence and …math.univ-lille1.fr/~deckers/public.pdf · 2009-02-05 · Orthogonal rational functions Quadrature Recurrence Rational

Orthogonal rational functions Quadrature Recurrence Rational Krylov Future research Publications

Orthonormal rational functions (ORFs)

ORFs on the complex unit circle

〈f , g〉 =

∫ π

−π

f (z)g(1/z)w(θ)dθ, f , g ∈ L, z = e iθ, i2 = −1.

〈φk , φl〉 =

{

0, k 6= l1, k = l

.

–1.5

–1

–0.5

0

0.5

1

1.5

–2 –1 1 2

Karl Deckers ORFs: Quadrature, Recurrence and Rational Krylov 10/40

Page 11: Orthogonal Rational Functions: Quadrature, Recurrence and …math.univ-lille1.fr/~deckers/public.pdf · 2009-02-05 · Orthogonal rational functions Quadrature Recurrence Rational

Orthogonal rational functions Quadrature Recurrence Rational Krylov Future research Publications

Outline

1 Orthogonal rational functions

2 Quadrature

3 Recurrence

4 Rational Krylov

5 Future research

Karl Deckers ORFs: Quadrature, Recurrence and Rational Krylov 11/40

Page 12: Orthogonal Rational Functions: Quadrature, Recurrence and …math.univ-lille1.fr/~deckers/public.pdf · 2009-02-05 · Orthogonal rational functions Quadrature Recurrence Rational

Orthogonal rational functions Quadrature Recurrence Rational Krylov Future research Publications

Quadrature

Quadrature formulas on [−1, 1]

Numerical approximation of theform:

∫ 1

−1f (x)w(x)dx ≈

n∑

k=1

λn,k f (xn,k)

{xn,k}nk=1 ⊂ [−1, 1] are called the

interpolation points or nodes

{λn,k}nk=1 are called the weights

Karl Deckers ORFs: Quadrature, Recurrence and Rational Krylov 12/40

Page 13: Orthogonal Rational Functions: Quadrature, Recurrence and …math.univ-lille1.fr/~deckers/public.pdf · 2009-02-05 · Orthogonal rational functions Quadrature Recurrence Rational

Orthogonal rational functions Quadrature Recurrence Rational Krylov Future research Publications

Quadrature

Rational interpolatory quadrature formulas on [−1, 1]

Determine the weights so that the approximation is exact forevery gn−1 ∈ Ln−1, i.e.,

∫ 1

−1gn−1(x)w(x)dx =

n∑

k=1

λn,kgn−1 (xn,k)

Find gn−1 ∈ Ln−1 so that gn−1(xn,k) = f (xn,k) fork = 1, . . . , n

Approximate f (x) by gn−1(x):

∫ 1

−1f (x)w(x)dx ≈

∫ 1

−1gn−1(x)w(x)dx

Karl Deckers ORFs: Quadrature, Recurrence and Rational Krylov 13/40

Page 14: Orthogonal Rational Functions: Quadrature, Recurrence and …math.univ-lille1.fr/~deckers/public.pdf · 2009-02-05 · Orthogonal rational functions Quadrature Recurrence Rational

Orthogonal rational functions Quadrature Recurrence Rational Krylov Future research Publications

Rational interpolatory quadrature formulas on the interval

Example

Karl Deckers ORFs: Quadrature, Recurrence and Rational Krylov 14/40

Page 15: Orthogonal Rational Functions: Quadrature, Recurrence and …math.univ-lille1.fr/~deckers/public.pdf · 2009-02-05 · Orthogonal rational functions Quadrature Recurrence Rational

Orthogonal rational functions Quadrature Recurrence Rational Krylov Future research Publications

Rational interpolatory quadrature formulas on the interval

Example

Karl Deckers ORFs: Quadrature, Recurrence and Rational Krylov 15/40

Page 16: Orthogonal Rational Functions: Quadrature, Recurrence and …math.univ-lille1.fr/~deckers/public.pdf · 2009-02-05 · Orthogonal rational functions Quadrature Recurrence Rational

Orthogonal rational functions Quadrature Recurrence Rational Krylov Future research Publications

Rational interpolatory quadrature formulas on the interval

Para-orthogonal rational functions (para-ORFs)

Generally, the zeros of ORFs are not all real,therefore we use para-ORFs Qn,τ (x):

Qn,τ ⊥ Ln−1(αn) = {f ∈ Ln−1 : f (αn) = 0}not unique → parameter τ ∈ C

if |τ | = 1, then zeros of Qn,τ (x) are all real

for certain values of τ , the zeros are all in [−1, 1]⇒ zeros can be used as nodes in quadrature formula

if αn real, then Qn,τ ⊥ Ln−1

Karl Deckers ORFs: Quadrature, Recurrence and Rational Krylov 16/40

Page 17: Orthogonal Rational Functions: Quadrature, Recurrence and …math.univ-lille1.fr/~deckers/public.pdf · 2009-02-05 · Orthogonal rational functions Quadrature Recurrence Rational

Orthogonal rational functions Quadrature Recurrence Rational Krylov Future research Publications

Rational Gaussian quadrature formulas

Increasing the accuracy without increasing n

Let the

nodes xn,k be the zeros of the para-ORF Qn,τ (x)

weights be given by λn,k = 1/∑n−1

j=0 |ϕj (xn,k)|2.→ rational Gaussian quadrature formulas:

are exact for every f ∈ Ln−1 · Lcn−1, i.e., the space of rational

functions with poles among {α1, α1, α2, α2, . . . , αn−1, αn−1}have maximal domain of validity

Karl Deckers ORFs: Quadrature, Recurrence and Rational Krylov 17/40

Page 18: Orthogonal Rational Functions: Quadrature, Recurrence and …math.univ-lille1.fr/~deckers/public.pdf · 2009-02-05 · Orthogonal rational functions Quadrature Recurrence Rational

Orthogonal rational functions Quadrature Recurrence Rational Krylov Future research Publications

Rational Gauss-Chebyshev quadrature

w(x) =

1/√

1 − x2√

(1 − x)/(1 + x)√1 − x2

Computing the nodes and weights

Approach:

derive explicit expressions for Chebyshev (para-)ORFs on[−1, 1]

obtain equations for the nodes→ have to be computed numerically

obtain equations for the weights→ computation is straightforward

[K. Deckers, J. Van Deun, and A. Bultheel, Math. Comp. 77(262)]

Karl Deckers ORFs: Quadrature, Recurrence and Rational Krylov 18/40

Page 19: Orthogonal Rational Functions: Quadrature, Recurrence and …math.univ-lille1.fr/~deckers/public.pdf · 2009-02-05 · Orthogonal rational functions Quadrature Recurrence Rational

Orthogonal rational functions Quadrature Recurrence Rational Krylov Future research Publications

Rational Gauss-Chebyshev quadrature

Equation for the nodes: Fn(θ) = (k − d/2)π, k = 1, . . . , n, withx = cos θ and θ ∈ [0, π]

Example

0

2

4

6

8

10

12

14

16

18

0.5 1 1.5 2 2.5 3θ

Karl Deckers ORFs: Quadrature, Recurrence and Rational Krylov 19/40

Page 20: Orthogonal Rational Functions: Quadrature, Recurrence and …math.univ-lille1.fr/~deckers/public.pdf · 2009-02-05 · Orthogonal rational functions Quadrature Recurrence Rational

Orthogonal rational functions Quadrature Recurrence Rational Krylov Future research Publications

Rational Gauss-Chebyshev quadrature

Newton’s method

Determine a set of initial values

based on thorough analysis of Fn(θ)[K. Deckers, J. Van Deun, and A. Bultheel, proc. ECT2006][K. Deckers, J. Van Deun, and A. Bultheel, Advances inEngineering Software]two methods based on whether exact solution is close to asteep gradient of Fn(θ)[J. Van Deun, K. Deckers, A. Bultheel and J.A.C. Weideman,ACM Trans. Math. Software 35(2)]

Use Newton iterations to obtain an accurate result

Implemented as MATLAB-function rcheb

Complexity = O(mn)

Karl Deckers ORFs: Quadrature, Recurrence and Rational Krylov 20/40

Page 21: Orthogonal Rational Functions: Quadrature, Recurrence and …math.univ-lille1.fr/~deckers/public.pdf · 2009-02-05 · Orthogonal rational functions Quadrature Recurrence Rational

Orthogonal rational functions Quadrature Recurrence Rational Krylov Future research Publications

Rational Szego quadrature

numerical approximation:∫ π

−πf (z)w(θ)dθ ≈ ∑n

k=1 λn,k f (zn,k) , z = e iθ

nodes zn,k are zeros of para-ORF Qn,τ (z), where

Qn,τ ⊥ Ln−1(βn) = {f ∈ Ln−1 : f (βn) = 0}weights λn,k = 1/

∑n−1j=0 |φj(zn,k)|2

maximal domain of validity: Ln−1 · L(n−1)∗, i.e., the space ofrational functions with poles among{β1, 1/β1, β2, 1/β2, . . . , βn−1, 1/βn−1}

Karl Deckers ORFs: Quadrature, Recurrence and Rational Krylov 21/40

Page 22: Orthogonal Rational Functions: Quadrature, Recurrence and …math.univ-lille1.fr/~deckers/public.pdf · 2009-02-05 · Orthogonal rational functions Quadrature Recurrence Rational

Orthogonal rational functions Quadrature Recurrence Rational Krylov Future research Publications

Rational Szego quadrature

w(θ) =

1 − cos θ1 + cos θsin2 θ

Computing the nodes and weights

Approach:

derive explicit expressions for Chebyshev (para-)ORFs on thecomplex unit circle

obtain equations for the nodes

obtain equations for the weights

[K. Deckers and A. Bultheel, J. Approx. Theory][A. Bultheel, R. Cruz-Barroso, K. Deckers, and P. Gonzalez-Vera,Math. Comp. 78(266)]

Karl Deckers ORFs: Quadrature, Recurrence and Rational Krylov 22/40

Page 23: Orthogonal Rational Functions: Quadrature, Recurrence and …math.univ-lille1.fr/~deckers/public.pdf · 2009-02-05 · Orthogonal rational functions Quadrature Recurrence Rational

Orthogonal rational functions Quadrature Recurrence Rational Krylov Future research Publications

Outline

1 Orthogonal rational functions

2 Quadrature

3 Recurrence

4 Rational Krylov

5 Future research

Karl Deckers ORFs: Quadrature, Recurrence and Rational Krylov 23/40

Page 24: Orthogonal Rational Functions: Quadrature, Recurrence and …math.univ-lille1.fr/~deckers/public.pdf · 2009-02-05 · Orthogonal rational functions Quadrature Recurrence Rational

Orthogonal rational functions Quadrature Recurrence Rational Krylov Future research Publications

Recurrence and the Favard theorem

Theorem (Recurrence)

ORFs on [−1, 1] with poles outside [−1, 1] satisfy a three-termrecurrence relation:

ϕn = fr (ϕn−2, ϕn−1, αn−2, αn−1, αn,Cn,Dn,En) , n ≥ 1. (1)

Initial values (for n = 1):

ϕ−1(x) ≡ 0, ϕ0(x) ≡ 1,α−1 ∈ (R ∪ {∞}) \ [−1, 1], α0 ∈ (C ∪ {∞}) \ [−1, 1].

Karl Deckers ORFs: Quadrature, Recurrence and Rational Krylov 24/40

Page 25: Orthogonal Rational Functions: Quadrature, Recurrence and …math.univ-lille1.fr/~deckers/public.pdf · 2009-02-05 · Orthogonal rational functions Quadrature Recurrence Rational

Orthogonal rational functions Quadrature Recurrence Rational Krylov Future research Publications

Recurrence and the Favard theorem

Theorem (Favard)

Let {fn}∞n=0, with fn ∈ Ln \ Ln−1, be a sequence of rationalfunctions generated by the 3-term recurrence (1). Under certainmild conditions, the fn form an orthonormal system with respect toa Hermitian positive-definite inner product.

Hermitian positive-definite

Hermitian: 〈f , g〉 = 〈g , f 〉 for every f , g ∈ LPositive-definite: 〈f , f 〉 > 0 for every f ∈ L with f 6= 0

Conditions

Cn = f (En,En−1,Dn,ℑ{αn−1})F (Dn, |En| , |En−1| ,ℑ{αn−2},ℑ{αn−1},ℑ{αn}) = 0

Karl Deckers ORFs: Quadrature, Recurrence and Rational Krylov 25/40

Page 26: Orthogonal Rational Functions: Quadrature, Recurrence and …math.univ-lille1.fr/~deckers/public.pdf · 2009-02-05 · Orthogonal rational functions Quadrature Recurrence Rational

Orthogonal rational functions Quadrature Recurrence Rational Krylov Future research Publications

Recurrence and the Favard theorem

Dn

–2

–1

1

2

3

–3 –2 –1 1 2 3ℜ{Dn}

ℑ{Dn}

Midpoint and radius depend on |En| , |En−1| ,ℑ{αn−2},ℑ{αn−1}and ℑ{αn}[K. Deckers and A. Bultheel, J. Math. Anal. Appl. (submitted)]

Karl Deckers ORFs: Quadrature, Recurrence and Rational Krylov 26/40

Page 27: Orthogonal Rational Functions: Quadrature, Recurrence and …math.univ-lille1.fr/~deckers/public.pdf · 2009-02-05 · Orthogonal rational functions Quadrature Recurrence Rational

Orthogonal rational functions Quadrature Recurrence Rational Krylov Future research Publications

Associated rational functions (ARFs)

ORFs:0 1 ϕ1(x) ϕ2(x) ϕ3(x) ϕ4(x) . . .

α−1 α0 α1 α2 α3 α4 . . .

C1,D1,E1 C2,D2,E2 C3,D3,E3 C4,D4,E4 . . .

ARFs of order 1:0 1 ϕ

(1)2\1(x) ϕ

(1)3\1(x) ϕ

(1)4\1(x) . . .

α0 α1 α2 α3 α4 . . .

C2,D2,E2 C3,D3,E3 C4,D4,E4 . . .

ARFs of order 2:0 1 ϕ

(2)3\2(x) ϕ

(2)4\2(x) . . .

α1 α2 α3 α4 . . .

C3,D3,E3 C4,D4,E4 . . .

Karl Deckers ORFs: Quadrature, Recurrence and Rational Krylov 27/40

Page 28: Orthogonal Rational Functions: Quadrature, Recurrence and …math.univ-lille1.fr/~deckers/public.pdf · 2009-02-05 · Orthogonal rational functions Quadrature Recurrence Rational

Orthogonal rational functions Quadrature Recurrence Rational Krylov Future research Publications

Associated rational functions (ARFs)

Favard theorem for ARFs of order k.

Relation ARFs of different order.

If all poles are real:

Representation in terms of functions of the second kind.ϕ′

n(x) in terms of ARFs of different order.

[K. Deckers and A. Bultheel, proc. WCE2008][K. Deckers and A. Bultheel, IAENG Internat. J. Appl. Math.38(4)]

Karl Deckers ORFs: Quadrature, Recurrence and Rational Krylov 28/40

Page 29: Orthogonal Rational Functions: Quadrature, Recurrence and …math.univ-lille1.fr/~deckers/public.pdf · 2009-02-05 · Orthogonal rational functions Quadrature Recurrence Rational

Orthogonal rational functions Quadrature Recurrence Rational Krylov Future research Publications

Asymptotic behavior

Relation ORFs on [−1, 1] and on the complex unit circle

Let

x = 12

(

z + 1z

)

,

αk = 12

(

βk + 1βk

)

for every k ≥ 1,

w(θ) = w(cos θ) |sin θ|.–1.5

–1

–0.5

0

0.5

1

1.5

–2 –1 1 2

Then, ϕn ∈ Ln is related with φ2n ∈ Ln · Lcn, i.e., the space of

rational functions with poles among{1/β1, 1/β1, 1/β2, 1/β2, . . . , 1/βn, 1/βn}.[K. Deckers, J. Van Deun, and A. Bultheel, J. Math. Anal. Appl.334(2)]

Karl Deckers ORFs: Quadrature, Recurrence and Rational Krylov 29/40

Page 30: Orthogonal Rational Functions: Quadrature, Recurrence and …math.univ-lille1.fr/~deckers/public.pdf · 2009-02-05 · Orthogonal rational functions Quadrature Recurrence Rational

Orthogonal rational functions Quadrature Recurrence Rational Krylov Future research Publications

Asymptotic behavior

Asymptotics for ORFs on [−1, 1] when n tends to infinity based onknown results for the case of ORFs on the complex unit circle:

Ratio asymptotics ϕn+1(x)ϕn(x) , under the conditions that the

sequence of poles is bounded away from [−1, 1] and w(x) > 0almost everywhere on [−1, 1].

Asymptotics for the recurrence coefficients.

Strong convergence result for ϕn(x), under the conditionsthat the sequence of poles is bounded away from [−1, 1] and

∫ 1

−1

log w(x)√1 − x2

dx > −∞.

[K. Deckers and A. Bultheel, IMA J. Numer. Anal. 29(1)]

Karl Deckers ORFs: Quadrature, Recurrence and Rational Krylov 30/40

Page 31: Orthogonal Rational Functions: Quadrature, Recurrence and …math.univ-lille1.fr/~deckers/public.pdf · 2009-02-05 · Orthogonal rational functions Quadrature Recurrence Rational

Orthogonal rational functions Quadrature Recurrence Rational Krylov Future research Publications

Outline

1 Orthogonal rational functions

2 Quadrature

3 Recurrence

4 Rational Krylov

5 Future research

Karl Deckers ORFs: Quadrature, Recurrence and Rational Krylov 31/40

Page 32: Orthogonal Rational Functions: Quadrature, Recurrence and …math.univ-lille1.fr/~deckers/public.pdf · 2009-02-05 · Orthogonal rational functions Quadrature Recurrence Rational

Orthogonal rational functions Quadrature Recurrence Rational Krylov Future research Publications

Rational Krylov subspaces

Suppose

A = n × n real symmetric positive-definite matrix with ndistinct eigenvalues xn,j , j = 1, . . . , n

q ∈ Rn \ {0}

{α1, . . . , αn} ⊂(

R−0 ∪ {∞}

)

rational Krylov subspace = space generated by the vectors bk(A)q,k = 0, . . . ,m − 1, with m ≤ n,

b0(A) = I and

bk(A) =Ak

(I − α−11 A)(I − α−1

2 A) · . . . · (I − α−1k A)

.

Karl Deckers ORFs: Quadrature, Recurrence and Rational Krylov 32/40

Page 33: Orthogonal Rational Functions: Quadrature, Recurrence and …math.univ-lille1.fr/~deckers/public.pdf · 2009-02-05 · Orthogonal rational functions Quadrature Recurrence Rational

Orthogonal rational functions Quadrature Recurrence Rational Krylov Future research Publications

Rational Krylov subspaces

Orthonormalize vectors bk(A)q with respect to

〈a , b〉 =n

j=1

ajbj ,

we obtain orthonormal vectors qk

= ϕk(A)q, with ϕk ∈ Lk .

The ϕk form an orthonormal system with respect to

〈f , g〉 =n

j=1

f (xn,j)g(xn,j )w(xn,j)

3-term recurrence and Favard theorem for the vectors qk

Link: zeros of mth ORF ↔ mth Ritz values

Karl Deckers ORFs: Quadrature, Recurrence and Rational Krylov 33/40

Page 34: Orthogonal Rational Functions: Quadrature, Recurrence and …math.univ-lille1.fr/~deckers/public.pdf · 2009-02-05 · Orthogonal rational functions Quadrature Recurrence Rational

Orthogonal rational functions Quadrature Recurrence Rational Krylov Future research Publications

Rational Krylov subspaces

Application: finding numerical approximations to u := f (A)q.

For large n, u is too expensive to compute. Therefore,

let xm,k denote the zeros of ϕm(x)find gm−1 ∈ Lm−1, with m ≪ n, so that gm−1(xm,k ) = f (xm,k )for k = 1, . . . , mu ≈ gm−1(A)q =: u(m)

We want an accurate approximation for u with m as small aspossible ⇒ need to determine an optimal set of poles.

Karl Deckers ORFs: Quadrature, Recurrence and Rational Krylov 34/40

Page 35: Orthogonal Rational Functions: Quadrature, Recurrence and …math.univ-lille1.fr/~deckers/public.pdf · 2009-02-05 · Orthogonal rational functions Quadrature Recurrence Rational

Orthogonal rational functions Quadrature Recurrence Rational Krylov Future research Publications

Rational Krylov subspaces

Example: Time-periodic linear differential problem

d

dtu(t) + (A + 0.6I)u(t) = e−0.4tq, t ∈ [0,T ],

u(0) = u(T ), T = 0.01 .

u := u(0) = f (A)q, with

f (x) =e−0.4T [1 − e−(x+0.2)T ]

(x + 0.2)[1 − e−(x+0.6)T ].

α ≈ −1/T = −100 is optimal value in case of a multiple pole.

f (x) has a singularity in x = −0.6.

Karl Deckers ORFs: Quadrature, Recurrence and Rational Krylov 35/40

Page 36: Orthogonal Rational Functions: Quadrature, Recurrence and …math.univ-lille1.fr/~deckers/public.pdf · 2009-02-05 · Orthogonal rational functions Quadrature Recurrence Rational

Orthogonal rational functions Quadrature Recurrence Rational Krylov Future research Publications

Rational Krylov subspaces

Relative error e = ‖u(m) − u‖/‖u‖ for the case of α = ∞ (solidline), respectively α = −100 (dashed line), with n = 2500.

0 20 40 60 80 100 12010

−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Karl Deckers ORFs: Quadrature, Recurrence and Rational Krylov 36/40

Page 37: Orthogonal Rational Functions: Quadrature, Recurrence and …math.univ-lille1.fr/~deckers/public.pdf · 2009-02-05 · Orthogonal rational functions Quadrature Recurrence Rational

Orthogonal rational functions Quadrature Recurrence Rational Krylov Future research Publications

Rational Krylov subspaces

Relative error e = ‖u(m) − u‖/‖u‖ for the case of α = −0.6 (solidline), respectively α = −100 (dashed line), with n = 2500.

0 5 10 15 20 25 3010

−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Karl Deckers ORFs: Quadrature, Recurrence and Rational Krylov 37/40

Page 38: Orthogonal Rational Functions: Quadrature, Recurrence and …math.univ-lille1.fr/~deckers/public.pdf · 2009-02-05 · Orthogonal rational functions Quadrature Recurrence Rational

Orthogonal rational functions Quadrature Recurrence Rational Krylov Future research Publications

Rational Krylov subspaces

Relative error e = ‖u(m) − u‖/‖u‖ for the case of α1 = −0.6 andα2 = . . . = α7 = −100 (solid line), respectively α = −100 orα = −0.6 (dashed line), with n = 2500.

0 5 10 15 20 25 3010

−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Karl Deckers ORFs: Quadrature, Recurrence and Rational Krylov 38/40

Page 39: Orthogonal Rational Functions: Quadrature, Recurrence and …math.univ-lille1.fr/~deckers/public.pdf · 2009-02-05 · Orthogonal rational functions Quadrature Recurrence Rational

Orthogonal rational functions Quadrature Recurrence Rational Krylov Future research Publications

Outline

1 Orthogonal rational functions

2 Quadrature

3 Recurrence

4 Rational Krylov

5 Future research

Karl Deckers ORFs: Quadrature, Recurrence and Rational Krylov 39/40

Page 40: Orthogonal Rational Functions: Quadrature, Recurrence and …math.univ-lille1.fr/~deckers/public.pdf · 2009-02-05 · Orthogonal rational functions Quadrature Recurrence Rational

Orthogonal rational functions Quadrature Recurrence Rational Krylov Future research Publications

Future research

Rational Gauss-Radau and Gauss-Lobatto quadrature withrespect to Chebyshev weights on [−1, 1]

Computation of the nodes and weights based on 3-termrecurrence relation

Characterization of rational interpolatory quadrature formulaswith positive weights

Weak-star convergence for ORFs on [−1, 1]

...

Karl Deckers ORFs: Quadrature, Recurrence and Rational Krylov 40/40

Page 41: Orthogonal Rational Functions: Quadrature, Recurrence and …math.univ-lille1.fr/~deckers/public.pdf · 2009-02-05 · Orthogonal rational functions Quadrature Recurrence Rational

Orthogonal rational functions Quadrature Recurrence Rational Krylov Future research Publications

Publications

Rational quadrature formulas

K. Deckers, J. Van Deun, and A. Bultheel. “RationalGauss-Chebyshev quadrature formulas for complex polesoutside [−1, 1],” Mathematics of Computation77(262):967–983, 2008.

K. Deckers, J. Van Deun, and A. Bultheel. “Computingrational Gauss-Chebyshev quadrature formulas with complexpoles,” in Proceedings of the Fifth International Conferenceon Engineering Computational Technology, B.H.V. Topping,G. Montero, and R. Montenegro, editors, paper 30,Civil-Comp Press, Stirlingshire, 2006.

K. Deckers, J. Van Deun, and A. Bultheel. “Computingrational Gauss-Chebyshev quadrature formulas with complexpoles: The algorithm,” Advances in Engineering Software,2008. (Accepted)

Karl Deckers ORFs: Quadrature, Recurrence and Rational Krylov 41/40

Page 42: Orthogonal Rational Functions: Quadrature, Recurrence and …math.univ-lille1.fr/~deckers/public.pdf · 2009-02-05 · Orthogonal rational functions Quadrature Recurrence Rational

Orthogonal rational functions Quadrature Recurrence Rational Krylov Future research Publications

Publications

Rational quadrature formulas

J. Van Deun, K. Deckers, A. Bultheel, and J.A.C. Weideman.“Algorithm 882: Near best fixed pole rational interpolationwith applications in spectral methods,” ACM Transactions onMathematical Software, 35(2):14:1–14:21, 2008.

K. Deckers and A. Bultheel. “Orthogonal rational functionsand rational modifications of a measure on the unit circle,”Journal of Approximation Theory, 2008. (Accepted)

A. Bultheel, R. Cruz-Barroso, K. Deckers, and P.Gonzalez-Vera. “Rational Szego quadratures associated withChebyshev weight functions,” Mathematics of Computation78(266):1031–1059, 2009.

Karl Deckers ORFs: Quadrature, Recurrence and Rational Krylov 42/40

Page 43: Orthogonal Rational Functions: Quadrature, Recurrence and …math.univ-lille1.fr/~deckers/public.pdf · 2009-02-05 · Orthogonal rational functions Quadrature Recurrence Rational

Orthogonal rational functions Quadrature Recurrence Rational Krylov Future research Publications

Publications

Three-term recurrence relation

K. Deckers and A. Bultheel. “Recurrence and asymptotics fororthogonal rational functions on an interval,” IMA Journal ofNumerical Analysis, 29(1):1–23, 2009.

K. Deckers and A. Bultheel. “Orthogonal rational functionswith complex poles: The Favard theorem,” Journal ofMathematical Analysis and Applications, 2008. (Submitted)

K. Deckers and A. Bultheel. “Orthogonal rational functions,associated rational functions and functions of the secondkind,” in Proceedings of the World Congress on Engineering2008, S.I. Ao, L. Gelman, D.W.L. Hukins, A. Hunter, andA.M. Korsunsky, editors, volume 2 of Lecture Notes inEngineering and Computer Science, pp. 838–843, NewswoodLimited, International Association of Engineers, London, 2008.

Karl Deckers ORFs: Quadrature, Recurrence and Rational Krylov 43/40

Page 44: Orthogonal Rational Functions: Quadrature, Recurrence and …math.univ-lille1.fr/~deckers/public.pdf · 2009-02-05 · Orthogonal rational functions Quadrature Recurrence Rational

Orthogonal rational functions Quadrature Recurrence Rational Krylov Future research Publications

Publications

Three-term recurrence relation

K. Deckers and A. Bultheel. “Associated rational functionsbased on a three-term recurrence relation for orthogonalrational functions,” IAENG International Journal of AppliedMathematics 38(4):214–222, 2008.

K. Deckers, J. Van Deun, and A. Bultheel. “An extendedrelation between orthogonal rational functions on the unitcircle and the interval [−1, 1],” Journal of MathematicalAnalysis and Applications 334(2):1260–1275, 2007.

Karl Deckers ORFs: Quadrature, Recurrence and Rational Krylov 44/40

Page 45: Orthogonal Rational Functions: Quadrature, Recurrence and …math.univ-lille1.fr/~deckers/public.pdf · 2009-02-05 · Orthogonal rational functions Quadrature Recurrence Rational

Orthogonal rational functions Quadrature Recurrence Rational Krylov Future research Publications

Publications

Rational Krylov sequences

K. Deckers and A. Bultheel. “Rational Krylov sequences andorthogonal rational functions,” Report TW499, Department ofComputer Science, K.U.Leuven, August 2007.

3iemes Journees Approximation 2008, Lille.

The 13th International Congress on Computational andApplied Mathematics 2008, Ghent.

Karl Deckers ORFs: Quadrature, Recurrence and Rational Krylov 45/40