ORGANOHALIDES + Nucleophilic Reactions (S N 1/2, E1/E2/E1cB)

68
ORGANOHALIDES + Nucleophilic Reactions (S N 1/2, E1/E2/E1cB) CH21 PS CLASS

description

ORGANOHALIDES + Nucleophilic Reactions (S N 1/2, E1/E2/E1cB) . CH21 PS CLASS. Preparation of Organohalides. From ALKENES C=C [just review old lessons] FOR TERTIARY ALCOHOLS, we can simply use H-X (gas) X= Cl,Br in ether, 0°C . Preparation of Organohalides. - PowerPoint PPT Presentation

Transcript of ORGANOHALIDES + Nucleophilic Reactions (S N 1/2, E1/E2/E1cB)

Page 1: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

ORGANOHALIDES + Nucleophilic Reactions (SN1/2, E1/E2/E1cB)

CH21 PS CLASS

Page 2: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

Preparation of Organohalides

• From ALKENES C=C [just review old lessons]• FOR TERTIARY ALCOHOLS, we can simply use

H-X (gas) X=Cl,Br in ether, 0°C

Page 3: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

Preparation of Organohalides

• FOR TERTIARY ALCOHOLS, we can simply use H-X (gas) X=Cl,Br in ether, 0°C – Follows SN1 so a carbocation is formed, – be careful with rearrangements!

Page 4: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

Preparation of Organohalides

• FOR PRIMARY/SECONDARY ALCOHOLS: SOCl2 / PBr3

Page 5: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

Practice

Page 6: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

Alkyl Fluorides

• Also from ALCOHOLS + • HF / Pryidine • (CH3CH2)2NSF3

Page 7: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

Grignard Reagents

• Reaction of R-X with Mg over ether/THF to form R-Mg-X organometallic compound.

Page 8: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

Grignard Reagents: reduction of R-X

Page 9: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

More samples:

Page 10: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

Nucleophilic Reactions

• R-X, alkyl halides are ELECTROPHILES (positive or electron-poor)

• They react with NUCLEOPHILES/BASES (negative or electron-rich)

• Either substitution – C-C-X becomes C-C-blah + X-

• or elimination reactions– C-C-X becomes C=C + X-

Page 11: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

SUBSTITUTION REACTIONS

• S – substitution: R-X + Nu R-Nu + X- • N – Nucleophilic • 1 or 2 unimolecular or bimolecular rates• INVERSION (change of stereochemistry) CAN

HAPPEN!

Page 12: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

Try this first…

Page 13: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

SN2 BIMOLECULAR

• Bimolecular simply refers to the rate depending on BOTH reactants because of the nature of the mechanism

• Rate = k[RX][Nu]• Rate depends on both because there is

ONE SINGLE COLLISION BETWEEN RX and Nu to form a Nu-R-X transition state

Page 14: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

SN2 BIMOLECULAR

100% INVERSION OF STEREOCHEMISTRY OCCURS!

SUBSTRATE

LEAVING GROUP

Page 15: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

Factors that affect SN2 RXNS:

• STERIC EFFECTS TO INCOMING Nu:– C=C-X (vinylic) and Ar-X (aryl) TOTALL UNREACTIVE

Page 16: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

Factors that affect SN2 RXNS:• THE NUCLEOPHILE

Page 17: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

Factors that affect SN2 RXNS:• THE LEAVING GROUP

should be stable on its own as a free anion• Comparing halides, we go down the column

Page 18: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

Factors that affect SN2 RXNS:

• Alcohols and fluorides usually do not undergo SN2 because OH- and F- aren’t good leaving groups

• This is why we use SOCl2 and PBr3 … THEY CONVERT THE –OH INTO A BETTER LEAVING GROUP

Page 19: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

Factors that affect SN2 RXNS:• Reaction SOLVENT can also affect the reaction.• We prefer POLAR APROTIC SOLVENTS– POLAR but no –OH or –NH in the molecule (no

H2O, NH3, etc…)

• Polar protic solvents form a CAGE around Nu

Page 20: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

Practice

Page 21: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

Practice

Page 22: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

Practice

Page 23: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

Practice

Page 24: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

SN1 UNIMOLECULAR

• Unimolecular: rate depends only on the substrate (mechanism), almost opposite of SN2

• Rate = k[RX]• Rate is only dependent on the slowest step

which is the spontaneous dissociation of your leaving group. (molecules just don’t easily dissociate!)

Page 25: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

SN1 UNIMOLECULAR

Page 26: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

SN1 UNIMOLECULAR

Page 27: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

SN1 UNIMOLECULARSTEREOCHEM IS LOST, A RACEMATE FORM IS MADE, but usually not 50:50

Page 28: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

SN1 UNIMOLECULARSTEREOCHEM IS LOST, A RACEMATE FORM IS MADE, but usually not 50:50

An ION PAIR BLOCKS THE OTHER SIDE!

Page 29: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

Factors that affect SN1 RXNS:

• SUBSTRATE:

Page 30: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

Factors that affect SN1 RXNS:

• LEAVING GROUP:

An –OH in acidic medium can become –OH2+ and leave as H2O which is very favorable

Page 31: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

Factors that affect SN1 RXNS:

• NUCLEOPHILE: no effect, almost at all.

Page 32: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

Factors that affect SN1 RXNS:

• SOLVENT: rates increase if you stabilize carbocation transition state.

• POLAR PROTIC!

Page 33: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

Factors that affect SN1 RXNS:

• SOLVENT: rates increase if you stabilize carbocation transition state.

• POLAR PROTIC!

Page 34: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

PRACTICE

Page 35: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

PRACTICE

Page 36: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

PRACTICE

Page 37: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

PRACTICE

Page 38: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

PRACTICE

Page 39: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

PRACTICE

Page 40: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

PRACTICE

Page 41: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

Elimination Reactions

• More compliated (different mechanisms)• The loss of H-X can lead to a MIXTURE of

alkene products (C-C-X C=C + HX)• But we can predict the most stable/major

poduct• ZAITZEV’S RULE: base-induced eliminations

will form more stable alkene

Page 42: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

E2 elimination• Again, bimolecular so a single collision

between your Base B: and the alkyl halide.

Page 43: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

E2 elimination• Anti-periplanar is favored for transition state

Page 44: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

E2 elimination• Anti-periplanar is favored for transition state

Page 45: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

Practice

Page 46: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

Practice

Page 47: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

Practice

Page 48: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

Practice

Page 49: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

E1 reaction

• Unimolecular, ALSO spontaneously forms carbocation, but then followed by loss of H+ (taken by a base B: and not an attack by Nu:)

• COMPETES WITH SN1 reactions!

Page 50: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

E1 reaction

Page 51: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

E1 reactions

• No need for anti periplanar geometry

Page 52: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

PRACTICE

Page 53: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

PRACTICE

Page 54: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

E1cB

• Unimolecular, but this time CARBANION formed because a proton H+ is first removed by a base.

• cB stands for “conjugate base” because you deprotonate your carbon C-H into a C- and H+

• Usually favored for poor leaving groups (e.g. –OH)

• Carbanion can be stabilized with C=O groups nearby

Page 55: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

E1cB

Page 56: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

E1cB

PRESENCE OF C=O NEARBY CAN GIVE RESONANCE STABILIZATION!

Page 57: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

PREDICTING WHAT PREDOMINATES:

Page 58: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

Slight Clarifications: BASE vs. NUCLEOPHILE

BASE• Affinity for a PROTON• Strong base like R-O- or OH-

NUCLEOPHILE• Usually a LEWIS BASE• In this context, how

attracted to a CARBON

Page 59: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

PRACTICE

Page 60: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

PRACTICE

Page 61: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

PRACTICE

Page 62: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

PRACTICE

Page 63: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

PRACTICE

Page 64: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

PRACTICE

Page 65: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

PRACTICE

Page 66: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

PRACTICE

Page 67: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

PRACTICE

Page 68: ORGANOHALIDES +  Nucleophilic  Reactions (S N 1/2, E1/E2/E1cB)

PRACTICE