Organocatalyst Design and Implementation Aspects of...

34
Aspects of Asymmetric Nucleophilic Amine Catalysis: Organocatalyst Design and Implementation MacMillan Group Meeting Ian Storer February 28, 2005

Transcript of Organocatalyst Design and Implementation Aspects of...

Page 1: Organocatalyst Design and Implementation Aspects of …chemlabs.princeton.edu/macmillan/wp-content/uploads/... · 2016-12-24 · Ineffective bases: Nucleophilicity highly sensitive

Aspects of Asymmetric Nucleophilic Amine Catalysis: Organocatalyst Design and Implementation

MacMillan Group MeetingIan Storer

February 28, 2005

Page 2: Organocatalyst Design and Implementation Aspects of …chemlabs.princeton.edu/macmillan/wp-content/uploads/... · 2016-12-24 · Ineffective bases: Nucleophilicity highly sensitive

Asymmetric Nucleophilic CatalysisOutline

! Introduction to N-centred nucleophilic catalysts

! Design, development and application of asymmetric nucleophilic catalysts

! concepts and definitions

! origins and requirements

! Natural alkaloid catalysts - Precejus, Wynberg

! Biomimetic histidine containing peptide catalysts - Miller

! Synthetic alkaloid analogues - Lectka, Hatekeyama, Deng

Useful Reviews:

! Fance, S.; Guerin, D. J.; Miller, S. J.; Leckta, T., Nucleophilic Chiral Amines as Catalysts in Asymmetric Synthesis. Chem Rev. 2003, 103, 2985-3012.

! Fu, G. C. Asymmetric Catalysis with "Planar-Chiral" Derivatives of DMAP. Acc. Chem. Res. 2004, 37, 542-547.

! Asymmetric DMAP equivalents - Fuji / Fu

! Miller, S. J. In Search of Peptide-Based Catalysts for Asymmetric Organic Synthesis. Acc. Chem. Res. 2004, 37, 601-610.

Page 3: Organocatalyst Design and Implementation Aspects of …chemlabs.princeton.edu/macmillan/wp-content/uploads/... · 2016-12-24 · Ineffective bases: Nucleophilicity highly sensitive

Definitions

! Nucleophilic Catalysis

Catalysis by a Lewis base, involving formation of a Lewis adduct as a reaction intermediate. For example, the esterification of anhydrides catalysed by DMAP:

O

OR R

O

O R

O

Lewis base

Lewis base complex

N

Lewis base

! Lewis base

OH

R1 R3

R2N

NMe Me

N

NMe Me

O RO R

O

R3

R1

R2

IUPAC Compendium of Chemical Terminology

A molecular entity (and the corresponding chemical species) able to provide a pair of electrons and thus capable of coordination to a Lewis acid, thereby producing a Lewis adduct.

The catalyst has to be a very effective nucleophile and a good leaving group .

! Implication on Choice of catalyst

NMeMe

Page 4: Organocatalyst Design and Implementation Aspects of …chemlabs.princeton.edu/macmillan/wp-content/uploads/... · 2016-12-24 · Ineffective bases: Nucleophilicity highly sensitive

Useful Nucleophilic Catalysts

! Commonly applied 'everyday' nucleophilic catalysts

N

NMe Me

! Common applications

N

N

N N

HN

Nucleophilic Aromatic Amines nucleophilic teriary amines

! Ineffective bases: Nucleophilicity highly sensitive to steric and electronic factors

N

DABCOImidazolePyridineDMAP

good Bronsted bases, poor nucleophilic catalysts

Me N Me N MeMe Me

Me

picoline lutidine collidine

! O-acylation - electrophile activation (pyridine, DMAP)! O-silylation - electrophile activation (imidazole, DMAP)! Baylis-Hilman reaction - nucleophile activation (DABCO, DMAP)

N

N

PPY

N

N

Me

NMI

N

Et

EtEt

TEA

Page 5: Organocatalyst Design and Implementation Aspects of …chemlabs.princeton.edu/macmillan/wp-content/uploads/... · 2016-12-24 · Ineffective bases: Nucleophilicity highly sensitive

Cinchona Alkaloids: Earliest Successful Nucleophilic Asymmetric Catalysts

! First used for a resolution of a racemate in 1853 by Pasteur.

N

R1

HOH

H

N

H

Cinchonidine (CD)Quinine (QN)

R1 = H

R1 = OMe

pseudoenantiomers

N

R1

HHO

N

H

Cinchonine (CN)Quinidine (QD)

R1 = H

R1 = OMe

H

! Asymmetric Bronsted bases! Asymmetric phase transfer reagents (as salts)! Asymmetric bifunctional catalysts (acid / base)! Asymmetric nucleophilic catalysts

! Several modes of application

Moncure, R. MacMillan Group Meeting, 2003, web. – contains a more fully discussion of cinchona alkaloids

Page 6: Organocatalyst Design and Implementation Aspects of …chemlabs.princeton.edu/macmillan/wp-content/uploads/... · 2016-12-24 · Ineffective bases: Nucleophilicity highly sensitive

QuinidinePracejus (1964)Wynberg (1983)Simpkins (2001)

site of quaternary saltformation, nucleophilic addition or basicity

site of modification

site of modification:ether/ ester formation

site of inversion of configuration (epi alkaloids)-pseudoenantiomers

Alkaloids and Derivatives as Nucleophilic Catalysts

! Natural alkaloids

N

OMe

H

N

OH H

O O

O O

N OMe

N

Et

H

N

Et

NMeO

(DHQD)2AQNDeng

N

Me

O

N

OH

Hatakeyama

N

OMe

N

O H

benzoylquinineLectka (2000)

O

! Synthetically modified analogues

Page 7: Organocatalyst Design and Implementation Aspects of …chemlabs.princeton.edu/macmillan/wp-content/uploads/... · 2016-12-24 · Ineffective bases: Nucleophilicity highly sensitive

Seminal Findings: Pracejus Methanolysis of Ketenes

! Pracejus proposed a mechanism involving QN activation of methanol.

N

OMe

H

N

OH H

QuinidineMe Ph

O1–2 mol % quinidine

MeOH, –110 °C

up to 76% ee

Precejus, H.; Mätje, H. J. Prakt. Chem. 4. Reihe. 1964, 24, 195.Precejus, H.; Santleben, R. J. Prakt. Chem. 1972, 314, 157.

O

OMePh

Me

NHR3

O

OMePh

Me

NMeO

H

N

HO

H

selectiveprotonation

H

OMe

+MeOH

H-bond activation

! Simpkins proposes alternative nucleophilic mechanism

Me3Si Bn

O

10 mol % quinidine

benzene, –78 °C 79-93% ee

O

SPhBn

SiMe3

NMeO

H

N

HO

H

PhSH

O

NR3

Bn

SiMe3

selectiveprotonation

Blake, A. J.; Friend, C. L.; Outram, R. J.; Simpkins, N. S.; Whitehead, A. J. Tetrahedron Lett. 2001, 42, 2877.

SPh

Page 8: Organocatalyst Design and Implementation Aspects of …chemlabs.princeton.edu/macmillan/wp-content/uploads/... · 2016-12-24 · Ineffective bases: Nucleophilicity highly sensitive

Catalytic Asymmetric Cycloadditions: Synthesis of !"Lactones

! An early example of asymmetric nucleophilic catalysis using an alkaloid.

N

OMe

H

N

OH H

Quinidine

up to 95 % yield45-98 % ee

Wynberg, H. J. Am. Chem. Soc. 1982, 104, 166.Wynberg, H. J. Org. Chem. 1985, 50, 1977.

H H

O

R1

O

CCl2R2

2.5 mol % Amine

Toluene, –50 °C, 1 h

O

O

R1CCl2R2

R1 = H, alkyl, aryl

R2 = Cl, alkyl

! Unprotected quinidine also catalyses its own acylation at OH

NR3

OH

H

catalyst(nucleophile)

zwitterionicintermediate

R1

O

CCl2R2

! Wynberg's proposed this stereoselectivity model

H H

O

N

Me

Me

Me

HCH2

O

Me

O

CCl3

H Me

HO

HC

Me

O

CCl3

H O

O

Cl3C

! In the left TS, the ketene oxygen faces the methylene of the catalyst ring .The chloral approaches the catalyst with the trichloromethyl group facing away from the methyl group of the catalyst to avoid steric strain.

! In the bottom TS, the ring is the dominant form of stereocontrol, and the CCl3 orients itself away from the ring methylene protons.

OR

O

H CCl3

Page 9: Organocatalyst Design and Implementation Aspects of …chemlabs.princeton.edu/macmillan/wp-content/uploads/... · 2016-12-24 · Ineffective bases: Nucleophilicity highly sensitive

Development of Functionalised Alkaloid Analogues:Catalytic Asymmetric Cycloadditions

! !-lactone synthesis: Romo's expansion of Wynberg's method

N

OMe

H

N

O H

Acyl-quinidine

H

O

CCl2R2 O

O

R2Cl2C

R1 = H, alkyl, arylR2 = Cl, alkyl

O

Me

R1

O

ClR1

O

NR3

R1

Base: iPr2NEt

PhMe, –25 ˚C

>90% ee

! The use of pre-acylated catalyst stops unwanted acylation of the catalyst during the reaction.

! Applies a stoichiometric, non-nucleophilic base to turn over the catalyst.

! In situ ketene generation

! Solubility of the Hunigs salt may be crucial to catalyst turnover.

Tennyson, R.; Romo, D. J. Org. Chem. 2000, 65, 7248.

2 mol% cat.

R3Ncat.

Page 10: Organocatalyst Design and Implementation Aspects of …chemlabs.princeton.edu/macmillan/wp-content/uploads/... · 2016-12-24 · Ineffective bases: Nucleophilicity highly sensitive

Development of Functionalised Alkaloid Analogues:Catalytic Asymmetric Cycloadditions

N

OMe

H

N

O H

Benzoyl-quinidine

O

! !-lactam synthesis: Lectka

NO

EtO2C R1

O

ClR1

O

NR3

R1

N

CO2EtH

Ts

N

CO2EtH

Ts

O

NR3

R1

EtO2C

NTs

R3Ncat.

10 mol% cat.

PhMe, –78 ˚C

Base: proton sponge or K2CO3 or NaH

Ts 45-65% yield95-99% ee25-99:1 dr

Taggi, A. E.; Hafez, A. M.; Wack, H.; Young, B.; Drury, W. J.; Lectka, T. J.. J. Am. Chem. Soc. 2000, 122, 7831.Taggi, A. E.; Hafez, A. M.; Wack, H.; Young, B.; Ferraris, D.; Lectka, T. J.. J. Am. Chem. Soc. 2002, 124, 6626.

cat.

! 'Shuttle deprotonation' using excess of a thermodynamic, non-nucleophilic base.! Concomitant Lewis acid activation of the imine later provided better yields

! Proposed transition state

Page 11: Organocatalyst Design and Implementation Aspects of …chemlabs.princeton.edu/macmillan/wp-content/uploads/... · 2016-12-24 · Ineffective bases: Nucleophilicity highly sensitive

Development of Functionalised Alkaloid Analogues:Catalytic Asymmetric Halogenation

N

OMe

H

N

O H

Benzoyl-quinidine

O

! Halogenation: Lectka

O

ClR1

10 mol% cat.

THF, –78 ˚C

Base: BEMP or K2CO3 or NaH

Wack, H.; Taggi, A. E.; Hafez, A. M.; Drury, W. J.; Lectka, T. J. J. Am. Chem. Soc. 2001, 123, 1531.Hafez, A. M.; Taggi, A. E.; Wack, H.; Esterbrook, J.; Lectka, T. J. Org. Lett. 2001, 3, 2049.

Taggi, A. E.; Wack, H.; Hafez, A. M.; France, S.; Lectka, T. J. Org. Lett. 2002, 4, 627.

OCl

ClCl

Cl

Cl

Cl

O

BrBr

Br Br

MeN NMeP

NEt2NBut

10 mol% cat.

THF, –78 ˚C

Base: BEMP or K2CO3 or NaH

O

ClR1

O

OR1

Br

Br

Br

Br

O

OR1

Cl

Cl

Cl

Cl

Cl

Cl

65-85% yield99% ee

55-80% yield>90% ee

Page 12: Organocatalyst Design and Implementation Aspects of …chemlabs.princeton.edu/macmillan/wp-content/uploads/... · 2016-12-24 · Ineffective bases: Nucleophilicity highly sensitive

N

Me

O

N

OH

Development of Functionalised Alkaloid Analogues:Catalytic Asymmetric Baylis-Hillman Reaction

! Natural alkaloid - poor enantioselectivity

N

OMe

H

N

OH H

quinidine

Marko, I. E.; Giles, P. R.; Hindley, N. J. Tetrahedron 1997, 53, 1015.

Iwabuchi, Y.; Nakatani, M.; Yokoyama, N.; Hatekeyama, S. J. Am. Chem. Soc. 1999, 121, 10219.

quinidine analogue

O

R1 H

O

R2

O

R2

OH

R1

O

R2

R3N

O

R2

NR3

15 mol% catalyst

THF, 30 ˚C, 34 h

cat.

O

R2

R3N

O

R1

O

R1 H

up to45% ee

! Synthetic analogue - better results

O

R1 H

O

O

OH

R1

O

O15 mol% catalyst

THF, 30 ˚C, 34 h

31-58% yield91-99% ee

CF3

CF3

CF3

CF3

N

OH

O Ph

O CF3

CF3ONO

Me

H! Mechanism of asymmetric induction not well understood! Hatekayama proposes a 13-membered ring transistion state! Limited substrate scope

Page 13: Organocatalyst Design and Implementation Aspects of …chemlabs.princeton.edu/macmillan/wp-content/uploads/... · 2016-12-24 · Ineffective bases: Nucleophilicity highly sensitive

Deng's Application of bis-quinuclidines

N

MeO

O

H

N

H

Et

N N

Ph

Ph

O

N

OMeH

H

N

Et

catalyst

! Mechanism of asymmetric induction not well understood

! Cyanation

O

OEtR3N

CN NC

R1

R2

OO

OEtR3N

Deng, L. et al. J. Am. Chem. Soc. 2001, 123, 7475.

R1

O

R2 NC

O

OEt

10-35 mol% catalyst

CHCl3, –12 to –24 °C

0.5 - 7 days

NC

R1 R2

O

O

OEt

R1

O

R2

R3Ncat.

O

O

O

R

R

MeOH5-30 mol% catalyst

Et2OOMe

OH

O

O

R

R

( )n( )n

Deng, L. et al. J. Am. Chem. Soc. 2000, 122, 9542.

! Desymmmetrization of meso anhydrides

52-78% yield87-97% ee

70-99% yield90-98% ee

Page 14: Organocatalyst Design and Implementation Aspects of …chemlabs.princeton.edu/macmillan/wp-content/uploads/... · 2016-12-24 · Ineffective bases: Nucleophilicity highly sensitive

Designing Asymmetric Variants of Known Nucleophilic Amine Catalysts

! Considerations

! Synthetic chiral analogues of common nucleophilic heterocycles

! Must be nucleophilc, but maintain good leaving group ability! Must have a valid chiral pocket to transfer asymmetry to product.

FeN

NMe Me

Ph

Ph

Ph

Ph

Ph N

N

H

H

OH

Synthetic chiral DMAP equivalents

Fu (1998-current)N

N

BocHNO

O

NH

NH

Me

Me Me

O

Synthetic chiral imidazole equivalents

Miller

O O

O O

N OMe

N

Et

H

N

Et

NMeO

(DHQD)2AQNDeng

N

OMe

H

N

OH H

QuinineWynberg

N

Me

O

N

OH

Hatakeyama

! Alkaloids and analogues

Page 15: Organocatalyst Design and Implementation Aspects of …chemlabs.princeton.edu/macmillan/wp-content/uploads/... · 2016-12-24 · Ineffective bases: Nucleophilicity highly sensitive

Biological Role of Nucleophilic Catalysis

Admiraal, S. J.; Herschlag, D.; J. Am. Chem. Soc., 1999, 121, 5837-5845

! Phosphorylation transfer from ATP is ubiquitous in biological chemistry.! Histidine often serves as in vivo acceptors of the !-phosphate of ATP.! Proposed mechanism of ATPases and nucleoside diphosphate kinase (NDPK).

O

OH OH

AOPO

O

O

P

O

O

OP

O

O

OO

OH OH

AOPO

O

O

P

O

O

OP

O

O

E

NH

N

O

E

NH

N

ATP

! Mechanism of some kinases - role of histidine

ADP

NDP3–E

NH

N

NTP4–fast

! First in vitro example of imidazole participating in phosphoryl transfer from ATP analogues.! N-nucleophiles found to react 30-100 fold faster than O-nucleophiles at physiological temperatures.! Carried out in vitro experiments on ATP.! Supports proposed enzymatic mechanism.

OP

O

O

O P

O

O

NH

N

O

NH

NH2O

NH

N

HOPO32–

fast

NO2 O NO2

! In vitro phosphorylation of imidazole

Page 16: Organocatalyst Design and Implementation Aspects of …chemlabs.princeton.edu/macmillan/wp-content/uploads/... · 2016-12-24 · Ineffective bases: Nucleophilicity highly sensitive

Miller N-Methyl Imidazole-Containing Tripeptide

! Synthesis of a nucleophilic tripeptide

Miller, S. J.; Copeland, G. T.; Papaioannou, N.; Horstmann, T. E.; Ruel, E. M. J. Am. Chem. Soc. 1998, 120, 1629-1630.

N

N

BocHNO

O

NH

NH

Me

Me Me

O

N

N

H2N

OH

O

N

N

BocHNO

O

NH

NH

Me

Me Me

O

MeO

Ac2O

OAc

acyl imidazolium

! Peptide-substrate interactions are crucial for the fidelity by which an enzyme imparts its selectivity.

! Incorporating an amino acid residue as an analogue of known nucleophilic catalyst N-methyl imidazolium (NMI).

! Work focused on peptides that had propensity to form stable secondary structures (!-turn) in solution.

! Modularity of peptide-based systems allows for the rapid synthesis and screening of many analogues.

! Initial designs drew heavily from the peptide design literature in order to generate a relatively rigid !-turn structure

Page 17: Organocatalyst Design and Implementation Aspects of …chemlabs.princeton.edu/macmillan/wp-content/uploads/... · 2016-12-24 · Ineffective bases: Nucleophilicity highly sensitive

Miller Chiral Imidazole Tripeptide:Kinetic Resolution of Alcohols

! Kinetic resolution of amino-alcoholscatalyst

anti, racemic10 equiv

O

Me O Me

O

5 mol% catalyst0 ˚C

Miller, S. J.; Copeland, G. T.; Papaioannou, N.; Horstmann, T. E.; Ruel, E. M. J. Am. Chem. Soc. 1998, 120, 1629-1630.

NHAc

OH

NHAc

OH

NHAc

O Me

O1.0 equiv CH3CN = 12% eeCH2Cl2 = 40% eePhMe = 84% ee (S = 12.6)

! Amide in amino-alcohols necessary for good levels of stereoinduction

! Non-polar solvents which favour H-bonding work best

! Replacement of the amide with an ester provides only poor selectivity

N

N

BocHNO

O

NH

NH

Me

Me Me

O

! Kinetic resolution of mono-acylated diols

anti, racemic10 equiv

O

Me O Me

O

5 mol% catalyst0 ˚C

OAc

OH

OAc

OH

OAc

O Me

O1.0 equivPhMe = 14% ee

Page 18: Organocatalyst Design and Implementation Aspects of …chemlabs.princeton.edu/macmillan/wp-content/uploads/... · 2016-12-24 · Ineffective bases: Nucleophilicity highly sensitive

Probing Origins of Selectivity

! Diastereomeric catalysts display enantiodivergence

Copeland, G. T.; Miller, S. J. J. Am. Chem. Soc. 1999, 121, 4306.Harris, R. F.; Nation, A. J.; Copeland, G. T.; Miller, S. J. J. Am. Chem. Soc. 2000, 122, 11270.

NN

BocHNO

O

NH

NH

Bn

O

OMe

Me Me

O

! Changing a single stereocentre in the catalyst causes a change in secondary structure.

! Changing a single stereocentre in the catalyst causes a complete switch in enantioselectivity.

! What is the mechanism of binding and role of the peptide backbone structure?

H

Me

N

O

O

NH

NH

Bn

O

OMe

Me Me

OH

HN

N

Me

Boc

S = kSS / kRR = 3.1 S = kRR / kSS = 28

L-Pro D-Pro

anti, racemic10 equiv

O

Me O Me

O

5 mol% catalyst0 ˚C

NHAc

OH

NHAc

OH

NHAc

O Me

O1.0 equiv

! Test System: Kinetic resolution

Page 19: Organocatalyst Design and Implementation Aspects of …chemlabs.princeton.edu/macmillan/wp-content/uploads/... · 2016-12-24 · Ineffective bases: Nucleophilicity highly sensitive

Miller "Biomimetic" Strategy

! Kinetic resolution of amino-alcohols

Vasbinder, M. M.; Jarvo, E. R.; Miller, S. J. Angew. Chem. Int. Ed. 2001, 40, 2824-2827.

OO

N

N

O

OMe

OH N H

O

OtBu

H

HPh

Me

MeH

NNMe

Me

O

H

Me

O

N

OH

H

OH

NMe

O

H

N

O

N

N

N

O

NHH

O

N

O OMe

PhH

Me

Me

HBoc

H

Me

N

O

N

N

N

HO

N

O OMe

PhH

Me

Me

HBoc

H

Me

O

Me O Me

O

5 mol% catalyst0 ˚C

NHAc

OH

NHAc

OH

NHAc

O Me

O1.0 equiv

krel = 28 krel = 1

! Mechanistic postulate

Larger rate acceleration than using DMAP - NMI is usually less activating?

Page 20: Organocatalyst Design and Implementation Aspects of …chemlabs.princeton.edu/macmillan/wp-content/uploads/... · 2016-12-24 · Ineffective bases: Nucleophilicity highly sensitive

Miller: Development of a Fluorescence Assay

Copeland, G. T.; Miller, S. J. J. Am. Chem. Soc.. 1999, 121, 4306.Harris, R. F.; Nation, A. J.; Copeland, G. T.; Miller, S. J. J. Am. Chem. Soc.. 2000, 122, 11270.

! Development of a fluorescence probe for rapid reaction conversion analysis

N

O

OMe

H

–OAc

N

O

OMe

Non-Fluorescent Fluorescent

! Fluorescence intensity is a function of acetic acid concentration

! Assisted rapid catalyst discovery.

AcOH

! Kinetic resolution of amino-alcohols

O

Me O Me

O

catalyst

NHAc

OH

NHAc

OH

NHAc

O Me

O1.0 equivAcOH

reaction byproduct

Page 21: Organocatalyst Design and Implementation Aspects of …chemlabs.princeton.edu/macmillan/wp-content/uploads/... · 2016-12-24 · Ineffective bases: Nucleophilicity highly sensitive

Miller Histidine-Containing Peptide Catalysts

Jarvo, E. R.; Evans, C. A.; Copeland, G. T.; Miller, S. J. J. Org. Chem. 2001, 66, 5522.

N

O

N

N

N

O

NHH

O

N

O NH

H

HBoc

H

Me

krel = >50

! Catalyst for the kinetic resolution of tertiary alcohols

OMe

Me

NHAcMe

OH NHAcMe

OH

krel = 40

! Kinetic resolution acetylation of unfunctionalised alcohols

BocHN

HN

NH

HN

NH

HN

NH

O

O

O

O

O

OHN

O

OMe

O

Me

Me

MeMe

BuOt MePhMeMe

Me

Me NNTrt

NN

Me

nucleophilic

The conformation / contribution of the peptide backbone is not known

Me

OH

OH

Ph

krel = >50 krel = >50

H-bonding

Page 22: Organocatalyst Design and Implementation Aspects of …chemlabs.princeton.edu/macmillan/wp-content/uploads/... · 2016-12-24 · Ineffective bases: Nucleophilicity highly sensitive

Miller: Development of a Desymmetrising Phosphorylation

Sculimbrene, B. R.; Miller, S. J. J. Am. Chem. Soc.. 2001, 123, 10125.

! Two very different peptides give very highly enantioselective phosphorylation in opposite enantioseries

! Asymmetric phosphorylation of meso triols

N

NN

HBoc

O

HN

O N

NPh

HN O

O

O

O NH

Me

OMe

O

O

NHPh

PhPh

But

Me

N

O

N

N

N

O

NH O

N

O NH

H

HBoc

H

Me

OMe

O

Ph

OBu

HO

OBn

OH

OH

BnO OBn

O

OBn

OH

OH

BnO OBn

P

O

PhO

PhO

O

PClPhO

PhO

Et3N, PhMe

2 mol% catalyst

>98% ee

HO

OBn

OH

OH

BnO OBn

HO

OBn

O

OH

BnO OBn

O

PClPhO

PhO

Et3N, PhMe

2 mol% catalyst

>98% ee

P

O

OPh

OPh

Page 23: Organocatalyst Design and Implementation Aspects of …chemlabs.princeton.edu/macmillan/wp-content/uploads/... · 2016-12-24 · Ineffective bases: Nucleophilicity highly sensitive

Designing Asymmetric Variants of Known Nucleophilic Amine Catalysts

! Considerations

! Synthetic chiral analogues of common nucleophilic heterocycles

! Must be nucleophilc, but maintain good leaving group ability! Must have a valid chiral pocket to transfer asymmetry to product.

FeN

NMe Me

Ph

Ph

Ph

Ph

Ph N

N

H

H

OH

Synthetic chiral DMAP equivalents

Fu (1998-current)N

N

BocHNO

O

NH

NH

Me

Me Me

O

Synthetic chiral imidazole equivalents

Miller

O O

O O

N OMe

N

Et

H

N

Et

NMeO

(DHQD)2AQNDeng

N

OMe

H

N

OH H

QuinineWynberg

N

Me

O

N

OH

Hatakeyama

! Alkaloids and analogues

Page 24: Organocatalyst Design and Implementation Aspects of …chemlabs.princeton.edu/macmillan/wp-content/uploads/... · 2016-12-24 · Ineffective bases: Nucleophilicity highly sensitive

Early Attempts to Make Chiral DMAP Equivalents

! Vedejs pioneering contribution: kinetic resolution

Lewis Base Complex

OH

R1 R2

racemic

O

Me O Me

O

100 mol% base complex

OH

R1 R2

O

R1 R2

O

Me

Vedejs, E.; Chen, X. J. Am. Chem. Soc. 1996, 118, 1809.Vedejs, E.; Chen, X. J. Am. Chem. Soc. 1997, 119, 2584.

N

NMeMe

OMe

tBu

O OCl3C

MeMe Cl–

! Spivey: C2 symmetric DMAP

! This DMAP equivalent is not nucleophilic enough to permit catalytic turnover! A variety of substrates gave good levels of enantioselectivity

S = 11-53

N

N

OBn OBn

Catalyst

OH

Me

OH

Me

O

Me

Me

O

S = 1.8

O

Me O Me

O

2 mol% catalystEt3N, THF, –78 ˚C

! Spivey: axially chiral symmetric DMAP

OH

Me

OH

Me

O

Me

Pr

O

cat. aS = 7.6

cat. bS = 29

O

Pr O Pr

O

2 mol% catalystEt3N, THF, –78 ˚C

N

NEt2

N

MeN

Catalyst a Catalyst b

Spivey, A. C et. al.. J. C. S. Perkin 1 2000, 14, 3460.

Spivey, A. C et. al.. J. Org. Chem. 2000, 65, 3154.Spivey, A. C et. al.. J. C. S. Perkin 1 2001, 15, 1785.

Page 25: Organocatalyst Design and Implementation Aspects of …chemlabs.princeton.edu/macmillan/wp-content/uploads/... · 2016-12-24 · Ineffective bases: Nucleophilicity highly sensitive

Fuji Chiral DMAP Equivalent:Kinetic Resolution of Alcohols

! Kinetic Resolution of Alcohols catalyst

syn, racemic

O

Bui O iBu

O

5 mol% catalysttoluene, rt, 2-5 h

Kawabata, T.; Nagato, M.; Takasu, K.; Fuji, K. J. Am. Chem. Soc. 1997, 119, 3169-3170.

! Induced-fit Mechanism

N

N

H

H

OH

OCOR

OH

OCOR

OH

OCOR

O iBu

O0.7 equiv81->94% ee

68-72% conv.

NN

H H

HO

H

H

open conformation

NN

H H

reactive, closed conformation

OH

O

H

Me

Me

Nu

! First non-enzymatic chiral resolution of alcohols

! Take advantage of charged Lewis adduct! Cation-p interaction holds transition state rigid

O

Bui O iBu

O

Page 26: Organocatalyst Design and Implementation Aspects of …chemlabs.princeton.edu/macmillan/wp-content/uploads/... · 2016-12-24 · Ineffective bases: Nucleophilicity highly sensitive

Fu Planar Chirality: Designing an Alternative Chiral DMAP

! Fu built a variety of Sandwich complex derived chiral nucleophilic amines

France, F.; Guerin, D. J.; Miller, S. J.; Lectka, T. Chem. Rev. 2003, 103, 2985-3012.Fu, Gregory C. Acc. Chem. Res. 2004, 37, 542-547.

! In general best results were obtained with DMAP and PPY derivatives

FeN

Me

Me

Me

Me

Me

N

FeMe

Me

Me

Me

Me

OSiR3

FeN

NMe Me

Me

Me

Me

Me

Me

FeN

NMe Me

Ph

Ph

Ph

Ph

Ph

FeN

Me

Me

Me

Me

Me

N

FeN

Ph

Ph

Ph

Ph

Ph

N

pyrrolesanalogues

pyridineanalogues

DMAPanalogues

PPYanalogues

Page 27: Organocatalyst Design and Implementation Aspects of …chemlabs.princeton.edu/macmillan/wp-content/uploads/... · 2016-12-24 · Ineffective bases: Nucleophilicity highly sensitive

Fu - Planar Chirality: Kinetic Resolution of Alcohols

! Kinetic Resolution of Alcohols

FeN

NMe Me

Ph

Ph

Ph

Ph

Ph

catalyst

OH

R1 R2

racemic

O

Me O Me

O

2 mol% catalystEt3N, t-amyl alcohol

OH

R1 R2

O

R1 R2

O

Me

Me

OH

tBu

OH OH

Cl

Me

OH

F

Me

OH

Me

OH

Me

OH

Me

99% ee55% conv.

99% ee55% conv.

99% ee55% conv.

99% ee55% conv.

99% ee55% conv.

99% ee55% conv.

99% ee55% conv.

Ruble, J. C.; Latham, H. A.; Fu, G. C. J. Am. Chem. Soc. 1997, 119, 1492-1493.Ruble, J. C.;Tweddell, J.; Fu, G. C. J. Org. Chem. 1998, 63, 2794-2795.

! Very high enantioselectivities for Aryl and Cinnamyl alcohols

Page 28: Organocatalyst Design and Implementation Aspects of …chemlabs.princeton.edu/macmillan/wp-content/uploads/... · 2016-12-24 · Ineffective bases: Nucleophilicity highly sensitive

Fu Chiral DMAP: Origins of Enantioselectivity

! Acetyl rotamer consistent with minimization of sterics between the methyl R group and ferrocene.

! Selectivity increases as the size of the alkyl group R increases.

! Nucleophile approaches from the top face of the DMAP catalyst.

! Geometry of acyl rotamers

FeN

NMe Me

Ph

Ph

Ph

Ph

PhO

Me

FeN

NMe Me

Ph

Ph

Ph

Ph

PhMe

O

HH

Favoured rotamer Disfavoured rotamer

! Crystal Structure of Acyl salt

FeN

NMe Me

Ph

Ph

Ph

Ph

PhO

Me

Nu

Nu

Page 29: Organocatalyst Design and Implementation Aspects of …chemlabs.princeton.edu/macmillan/wp-content/uploads/... · 2016-12-24 · Ineffective bases: Nucleophilicity highly sensitive

! The substrate amine is nucleophilic enough to add directly to most acylating agents – careful selection of acylating reagent proved necessary to render no background reaction

Kinetic Resolution of Amines

! First non-enzymatic acylation catalyst for kinetic resolution of amines

FeN

Ph

Ph

Ph

Ph

Ph

catalyst

NH2

Ar Me

racemicCHCl3, –50 ˚C

NH2

Ar Me

HN

Ar Me

O

Me

Me

NH2

Me

NH2

s=12 s=27

Arai, S.; Laponnaz-Bellemin, S.; Fu, G. C. Angew. Chem. Int. Ed., 2001, 40, 234-236.

! Very high enantioselectivities for Aryl and Cinnamyl alcohols

NO

OMeO

N

O

!-naph

But

Me

NH2

s=22

MeO

NH2

s=16

Me

10 mol% catalyst

reacts faster with catalystthan substrate amine

Page 30: Organocatalyst Design and Implementation Aspects of …chemlabs.princeton.edu/macmillan/wp-content/uploads/... · 2016-12-24 · Ineffective bases: Nucleophilicity highly sensitive

Rearrangement of O-Acylated Azalactones

! First non-enzymatic acylation catalyst for kinetic resolution of amines

FeN

Ph

Ph

Ph

Ph

Ph

catalyst

0 ˚C, t-amyl alcohol2-6 h

Ruble, J. C.; Fu, G. C. J. Am. Chem. Soc., 1998, 120, 11532-11533.

! Direct synthesis of dipeptides

NO

XO

N

O

R2

R1

10 mol% catalyst O

!

N

O

R2

R1

O

X

X = OMe, OBnR1 = Me, Et, BnR2 = Me, Ph, PMP

54-90% ee

0 ˚C, t-amyl alcohol2-6 h

O

OBnO

N

OMe 10 mol% catalyst

O

N

OMe

O

BnO

0 ˚C, t-amyl alcohol2-6 h

10 mol% catalyst

OMe OMe

91% ee91% yield

Me NH

NH

O Me

OMe

O

O

BnO

O

OMe

95% yielddipeptide

Page 31: Organocatalyst Design and Implementation Aspects of …chemlabs.princeton.edu/macmillan/wp-content/uploads/... · 2016-12-24 · Ineffective bases: Nucleophilicity highly sensitive

Chiral Planar DMAP Analogues: Rearrangements

! Intramolecular rearrangement of O-acylated oxindoles and benzofurans

FeN

Ph

Ph

Ph

Ph

Ph

catalyst

CH2Cl2, 35 ˚C

Hills, I. D.; Fu, G. C. Angew. Chem. Int. Ed., 2003, 42, 3921-3924.

! A crystal structure was obtained

N

5 mol% catalyst

X = NMe, OR1 = alkyl, aryl

72-95% yield88-99% ee

X

R1

O

OR2

O

X

O

O

OR2

R1

FeN

N

Ph

Ph

Ph

Ph

PhO

O

R2

OPh

O

endo (cation-!)

Page 32: Organocatalyst Design and Implementation Aspects of …chemlabs.princeton.edu/macmillan/wp-content/uploads/... · 2016-12-24 · Ineffective bases: Nucleophilicity highly sensitive

Chiral Planar DMAP Analogues: Rearrangements

! Intermolecular C-acylation of silyl ketene acetals

FeN

Ph

Ph

Ph

Ph

Ph

catalyst

Et2O, CH2Cl2, 23 ˚C

Mermerian, A. H.; Fu, G. C. J. Am. Chem. Soc., 2003, 125, 4050-4051.

N

5 mol% catalyst

R1 = arylR2 = H, Me

73-92% yield80-99% eeO

R2

R2

OTMS

R1O

R2

R2

O

R1Me

O

O

OMe Me

O

! Currently limited to !-aryl substrates

O

NR3Me O Me

O

O

R2

R2

OTMS

R1

O

NR3Me

O

R2

R2

O

R1

cat.cat.

TMSOAc

Page 33: Organocatalyst Design and Implementation Aspects of …chemlabs.princeton.edu/macmillan/wp-content/uploads/... · 2016-12-24 · Ineffective bases: Nucleophilicity highly sensitive

Chiral Planar DMAP Analogues: Reactions with Ketenes

! !-lactam Staudinger synthesis

NO

R1

O

NR3

R1

N

R2H

Ts

N

CO2EtH

Ts

O

NR3

R1

EtO2C

NTs

R3Ncat.

10 mol% cat.

PhMe, –78 ˚C

Ts

45-65% yield95-99% ee8:1-15:1 dr

Hodous, B. L.; Fu, G. C. J. Am. Chem. Soc. 2002, 124, 1578-1579.

cat.

! Reaction successful for both symmetrical and unsymmetrical ketenes

FeN

Me

Me

Me

Me

Me

catalyst

N

Ph R1

O

Ph

zwitterion A zwitterion B

R1 = alkyl, R2 = alkyl, aryl

Ph

R2

Page 34: Organocatalyst Design and Implementation Aspects of …chemlabs.princeton.edu/macmillan/wp-content/uploads/... · 2016-12-24 · Ineffective bases: Nucleophilicity highly sensitive

Summary and Conclusions

! Miller's combinatorial approach has successfully obtained catalysts that show high selectivity

! Natural and synthetic alkaloids continue to have success across a variety of reaction types, although definitive stereochemical rationale is not always possible

! Fu has developed the first truly general synthetic DMAP analogue catalyst system. Led the way in showing that nucleophilic catalysis is a general and useful concept.

! Chiral amines have become functional nucleophilic catalysts, having been largly overlooked until recently.