Orbital energies in DFT - Kyoto U...No conventional theory including DFT satisfies this theorem....

32
Orbital energies in DFT Orbital energies in DFT Orbital energies in DFT Orbital energies in DFT Takao Tsuneda Takao Tsuneda (F lC ll (F lC ll N t il N t il C t C t (FuelCell (FuelCell Nanomat erials Nanomat erials Cent er, Cent er, Univ Yamanashi Japan) Univ Yamanashi Japan) Univ . Yamanashi, Japan) Univ . Yamanashi, Japan) Sep. 26, 2011 Sep. 26, 2011 DCEN2011@Kyoto Univ. DCEN2011@Kyoto Univ.

Transcript of Orbital energies in DFT - Kyoto U...No conventional theory including DFT satisfies this theorem....

  • Orbital energies in DFTOrbital energies in DFTOrbital energies in DFTOrbital energies in DFT

    Takao TsunedaTakao Tsuneda(F l C ll(F l C ll N t i lN t i l C tC t(Fuel Cell (Fuel Cell NanomaterialsNanomaterials Center, Center, 

    Univ Yamanashi Japan)Univ Yamanashi Japan)Univ. Yamanashi, Japan)Univ. Yamanashi, Japan)Sep. 26, 2011Sep. 26, 2011

    DCEN2011@Kyoto Univ.DCEN2011@Kyoto Univ.

  • ContentsContents1. DFT in Quantum Chemistry

    Present status of DFT in Quantum ChemistryKohn‐Sham equation & its problems

    2. Long‐range corrected (LC) DFTProblems that LC‐DFT has solvedLC‐DFT & its derivativesChemical reaction calculations

    d l l lVan der Waals calculationsNonlinear optical property calculationsExcited state calculations

    3. Orbital energiesMolecular orbitalsOrbital energiesOrbital energiesOrbital energy calculations by LC‐DFTWhy LC‐DFT reproduces orbital energies?Chemical reactions vs orbital energiesChemical reactions vs orbital energies

  • 1. DFT in Quantum Chemistry1. DFT in Quantum Chemistry

  • DFT in Quantum ChemistryDFT in Quantum Chemistry

    5000ers

    In the field of QC, DFT studies are hardly found in the beginning of 1990’s but rapidly increases to become the main stream at present.

    3000 3500 4000 4500 5000

    emistry pa

    pe TotalDFTHF and Post‐HF

    Number of related papers published in electric journals of chemistry

    1000 1500 2000 2500

    uantum

     che

    DFT‐related papers pull up the number of QC papers.

    0 500

    9192939495969798990001020304050607080910

    # of q

    Year 100 

    The percentage of DFT‐related papers in QC papers

    60 

    80 

    DFT stud

    ies

    At 2010, DFT‐related papers are more than 80% of QC papers, and 

    20 

    40 % of D

    WorldJapan

    are supposed to be more than 90% as far as applications go.

    0 9192939495969798990001020304050607080910

    Year

  • DFT & its problemsDFT & its problemsKohn‐Sham equation

    ˆˆ ˆ2 [ ]xcE

    F h J

    Orbital (band) energy2 [ ]

    2 [ ]

    xc

    xc

    i i i iF h J

    E h J E

    Orbital (band)

    Walter KohnNovel prize winner

    The exchange‐correlation energy is expressed as a functional of density Exc[].This simple method reproduces accurate properties with Novel prize winner

    for chemistry in 1998s s p e et od ep oduces accu ate p ope t es t

    much less computational time than conventional ones.

    Significant problems that DFTs have faced in QC calculations

    Large systems Photochemical reactions High‐spin systems

    VdW bonds Charge transfersT iti t

    Magnetic propertiesOptical properties 

    of long‐chain molecules

    f

    Transition momentsNonadiabatic &Spin‐forbiddentransitions

    propertiesSpin‐orbitsplittingsDiradicalsBand gaps of semi‐

    conductors &insulators

    transitionsState crossingsBond dissociations

    Diradicals

  • 2. Long2. Long‐‐range corrected (LC) DFTrange corrected (LC) DFT

  • DFT problems which LC has solvedDFT problems which LC has solved

    Hydrogen bond complexes

    Dipole‐dipole complexes

    Excited state calculations

    Charge transfersRydberg

    excitations

    Excited state calculationsVan der Waals calculations

    Long‐range correctioncomplexes complexes excitations

    H

    H

    C C

    H

    H

    F

    F

    C C

    F

    F

    correction (LC) scheme

    Stacking complexes Photochemistries of large systemsPhotocatalysisPhotosynthesis

    LC scheme has solved or improved 

    serious DFTDispersion complexes

    Dipole‐induced dipole complexes

    serious DFT problems in various chemical property 

    calculations.

    Optical property calculations

    Orbital energy calculations

    Solid state calculations

    Cluster calculations

    Chemical reaction calculations

    Long‐chain polyenes

    Water cluster anions

    Band gaps of insulators

    Reaction barrier heightsOrbital energies

  • The status of LCThe status of LC‐‐DFT in ScienceDFT in Science

    Citations of LC‐related papers (TT)Brain & Heart & blood vessel diseases

    Core paper density

    >60

    1270 citations/21 papers (ISI Web of Science, Sep. 10, 2011)

    p p ( )neurological 

    scienceInfection & Immunity

    i

    Obesity 0

    Scientific impact of LC‐related papersNanosciencePost‐genome

    Regenerative medicine

    According to “ScienceMap 2008” (Ministry of Education, Culture, Sports, Science and Technology, Japan, 2010), LC l d f hChemistry

    Plant science

    LC‐related papers form a new research area of highest 1% citations in science. 

    LC DFT is a ailable on the official ersion

    Chemistry

    Solid physics

    LC‐DFT is available on the official version of Gaussian09 & GAMESS programs.

    Environmental Science

    Elementary particle & cosmological physics

  • LongLong‐‐range correction (LC) schemerange correction (LC) schemeThe correction for the long‐range part of general exchange functionals.

    [H. Iikura, T. Tsuneda, T. Yanai and K. Hirao, J. Chem. Phys. 115, 3540, 2001; A. Savin, in ‘Recent Developments and Applications of Modern Density Functional Theory’ (Elsevier, 1996)]Developments and Applications of Modern Density Functional Theory  (Elsevier, 1996)]

    1 f( ) f( )1

    General exchange functionals for the short‐range part

    i h l

    Hartree‐Fock exchange intergral 

    12 12

    12 12 12

    1 erf( ) erf( )1

    r rr r r

    is the only parameter

    for the long‐range part

    CAM i [T Y i D P T & N C H d Ch Ph L 91 551 2004 ]Functionals base on LC scheme

    CAM‐series [T. Yanai, D.P. Tew, & N.C. Handy, Chem. Phys. Lett. 91, 551, 2004.]LC‐PBE [O. A. Vydrov, J. Heyd, A. V. Krukau, & G. E. Scuseria, J. Chem. Phys. 125, 074206, 2006.]LCgau‐series [J.‐W. Song et al., J. Chem. Phys. 127, 154109, 2007.]MCY series [A J Cohen P Mori Sanchez & W Yang J Chem Phys 126 191109 2007 ]MCY‐series [A. J. Cohen, P. Mori‐Sanchez, & W. Yang, J. Chem. Phys. 126, 191109, 2007.]BNL [E. Livshits & R. Baer, Phys. Chem. Chem. Phys., 9, 2937, 2007.]B97‐series [J.‐D. Chai & M. Head‐Gordon, J. Chem. Phys. 128, 084106, 2008.]

  • Chemical reactions of small moleculesChemical reactions of small molecules

    Figs. Mean absolute deviations in calculated reaction barriers & reaction enthalpies for Reaction barrier

    Transition state

    10

    rrie

    r ol

    ) Hydrogen transfer reactionsN h d t f ti

    reaction barriers & reaction enthalpies for Truhlar’s benchmark set (78 chemical reactions).

    Reaction barrier

    Reaction enthalpy

    Reactant Product

    6

    8

    eact

    ion

    bar

    s(kc

    al/m

    o Nonhydrogen-transfer reactions

    d

    Reaction barrier energies

    Reactant Product

    2

    4

    MA

    E of

    reen

    ergi

    e [J. Song, T. Hirosawa, T. Tsuneda, and K. Hirao, J. Chem. Phys. 126, 154105, 2007; O. A. Vydrov and G. E. Scuseria, J. Chem. Phys.

    0BOP PBE PBE0 B3LYP M05-2X LC-BOPLC-ωPBE

    G. E. Scuseria, J. Chem. Phys. 125, 234109, 2006.]

    8on Hydrogen transfer reactions

    4

    6

    8

    E of

    reac

    tioen

    thal

    pies

    (k

    cal/m

    ol) Nonhydrogen transfer reactions

    LC scheme drastically improves ti b i ith l

    Reaction enthalpies

    0

    2

    BOP B3LYP LC-BOP

    MA

    E e (reaction barriers with also modifying reaction enthalpies.

  • Van Van derder Waals bondsWaals bonds

    Combining LC‐DFT with a dispersion functional ALL was applied to the calculations of van der Waals bonds.

    [M. Kamiya, T. Tsuneda and K. Hirao, J. Chem. Phys. 117, 6010, 2002.]

    0.75 SOPBOP

    0.75 LC-BOP+ALL

    0 30

    0.45

    0.60

    mol

    )

    BOPPBEOPLC-SOPLC-BOPLC-PBEOPLC BLYP 0 30

    0.45

    0.60

    ol)

    LC BOP ALLmPWPW91mPW1PW91B3LYP+vdW

    0.00

    0.15

    0.30

    rgy

    (kca

    l/m LC-BLYPExact

    0.00

    0.15

    0.30

    gy (k

    cal/m

    B3LYP vdWMP2Exact.

    0 45

    -0.30

    -0.15

    Bond

    Ene

    -0.30

    -0.15

    Bon

    d En

    erg

    ArAr

    -0.75

    -0.60

    -0.45

    -0 75

    -0.60

    -0.45B Ar2Ar2

    3.0 4.0 5.0 6.0

    Bond distance (Å)

    0.753.0 4.0 5.0 6.0

    Bond distance (Å)

  • [T. Sato, T. Tsuneda, and K. Hirao, JCP,

    126, 234114, 2007.][T Sato T Tsuneda and K Hirao J Chem Phys 126

    Van Van derder Waals and weak hydrogen bondsWaals and weak hydrogen bonds[T. Sato, T. Tsuneda and K. Hirao, J. Chem. Phys. 126, 234114, 2007.]

    By combining with van der Waals correlation, LC DFT i t

    Dispersioncomplexes

    LC-DFT gives accurate bonding energies equivalently for weak bonds.

    Stackingcomplexes

    bonds.

    Dipole-induceddipole complexes

    Dipole-dipolecomplexes

    MP2 considerably overestimates stacking energies due to the

    d

    p p

    complexes near-degeneracy.

    Hydrogen-bonded

    Fig. Percent errors in binding energies.

    complexes

  • Optical response properties of longOptical response properties of long‐‐chain chain polyenespolyenes

    H[M. Kamiya, H. Sekino, T. Tsuneda, and K. Hirao, 

    Longitudinal polarizabilityzz / unit cell

    O2NNH2

    H n

    , ,J. Chem. Phys. 122, 234111, 2005.]

    ‐nitro,amino‐polyacetylene

    zzn Longitudinal 

    hyperpolarizability zzz/unit cell

    zzn

    n

    # of unit cells n

    z

    zzz/n

    LC scheme solve the overestimations of 

    Longitudinal dipole moment /unit cell

    optical properties in conventional DFTs.

    # of unit cells n# of unit cells n

  • Second Second hyperpolarizabilitieshyperpolarizabilities of of diradicalsdiradicals[R. Kishi, S. Bonness, K. Yoneda, H. Takahashi, M. Nakano, E. Botek, B. Champagne, T. Kubo, K. Kamada, K. Ohta, and T. Tsuneda, J. Chem. Phys. 132, 094107, 2010.]

    Fig. Diradical character dependence of second hyperpolarizability

    LC‐UBLYP quantitatively reproduces second hyperpolarizabilities of diradicals.

    hyperpolarizability

    Table. Second hyperpolarizabilities of 1,4‐bis‐imidazol‐2 ylidenecyclohexa 2 5 diene (BI2Y) (x102 a u )

    Method 6‐31G 6‐31G*+p

    UHF 1736 2002

    2‐ylidenecyclohexa‐2,5‐diene (BI2Y) (x102 a.u.).

    UHF 1736 2002

    UMP2 9387 9962

    UCCSD 4474 ‐

    21 HOMO LUMOn nTy T

    UCCSD(T) 5244 ‐

    UBLYP ‐129 ‐29821 , 21

    y TT

    Closed shell→y=0, Diradical→y=1

    UB3LYP ‐377 ‐472

    LC‐UBLYP 4310 6019

  • Electronic spectra in TDDFTElectronic spectra in TDDFTRydberg excitation energies Valence & Rydberg excitation energies

    Oscillator strengths

    100

    150 LC-TDBOPBOPB3LYP

    SAC‐CI results are set as 100%. LC scheme drastically improves Rydberg excitation energies & oscillator strengths

    Oscillator strengths

    50

    100%

    [Y Tawada T Tsuneda S Yanagisawa T Yanai and

    excitation energies & oscillator strengths underestimated in time‐dependent DFT.

    0

    1Pu 1P 1A1 1B3u 1E1uN2 CO H2CO C2H4 C6H6

    1u 1u+ 1 1B2 1A1 1B21B3u 1B1u 1E1u

    [Y. Tawada, T. Tsuneda, S. Yanagisawa, T. Yanai and K. Hirao, J. Chem. Phys. 120, 8425, 2004.] 

  • Charge transfer excitations in TDDFTCharge transfer excitations in TDDFT2.0

    LC-BOP

    BOP

    H

    C C

    HF

    C C

    F

    1.5

    AC-BOP

    B3LYP

    HF

    SAC CI

    CT(

    5.0Å

    ) (eV

    ) H HF F

    4

    4.5

    (eV

    )CT energies

    1.0

    SAC-CI

    -1/R

    C

    T(R

    ) -

    C

    2.5

    3

    3.5

    atio

    n E

    nerg

    y (

    CT (ZnBC→BC)Q (ZnBC)Q (BC)Q (ZnBC)Q (BC)

    LC‐TDBOPFig. CT energies of ethylene‐tetrafluoroethylene.

    0.5

    1.5

    2

    5.5 6 6.5 7 7.5 8

    Exc

    ita

    Fig. The lowest excitation energies of Zn‐bacteriochlorin‐

    0.0

    5 6 7 8 9 10

    Intramolecule distance R (Å)

    3 5

    4

    4.5

    gy (

    eV) Q (BC)

    Q (BC)Q (ZnBC)

    Distance (Å)

    TDB3LYP

    Zn bacteriochlorinbacteriochlorin.

    Dissociation limit

    Exp. LC‐TDBOP TDB3LYP SAC‐CI

    ECT (R=∞) 12.5 12.43 7.42 14.43 2

    2.5

    3

    3.5

    cita

    tion

    Ene

    rg

    ( )CT (BC→ZnBC)CT (ZnBC→BC)

    (R=∞)1.5

    5.5 6 6.5 7 7.5 8

    Dis tance (Å)

    Exc

    [Y. Tawada, T. Tsuneda, S. Yanagisawa, T. Yanai and K. Hirao, J. Chem. Phys. 120, 8425, 2004.] 

  • 3. Orbital energies3. Orbital energies

  • Molecular Molecular orbitalsorbitals

    MOs are expressed as a linear

    Molecular orbitals

    MOs are expressed as a linear combination of atomic orbitals.

    MOs have been taken as unobservable (unphysical) due to the free orbital rotation (unitary transformation) in HF calculations.

    Molecular orbital imagingBy experimental

    MO imaging of N2 molecule.(a) experimental, (b) QC calculation. [Itatani et al., 

    By experimental observations, MOs take increasing attentions in the field of QC. [ ,

    Nature, 432, 867, 2004.]Q

  • Reaction analyses on molecular Reaction analyses on molecular orbitalsorbitals

    Substitution reactions of aromatic compounds :

    Electronic distribution of frontier orbitals of nitrobenzene.Frontier orbital theory (1952)

    Substitution reactions of aromatic compounds :(1) Electrophilic reactions target HOMO density.(2) Nucleophilic reactions target LUMO density.(3) Radical reactions proceed as the sum of (1) & (2).(3) Radical reactions proceed as the sum of (1) & (2).

    K. FukuiCyclization(Ring‐closing)

    HOMO LUMO

    Woodward‐Hoffmann rule (1965) ( g g)reactions

    Con-rotatory

    Dis-rotatory

    R. B. Woodward R. Hoffmann

    W d d & H ff d d t

    rotatory rotatory

    Woodward‐Hoffmann ruleWoodward & Hoffmann succeeded to explain experimental results by MO symmetry.

    MOs are usually used in experiments to analyze and design chemical reactions.

  • Reaction analyses on orbital energiesReaction analyses on orbital energies

    Koopmans’ theorem

    Without SCF (orbital rotation), Hartree‐Fock calculations give occupied orbital energies as minus corresponding IP & unoccupied orbital energies as minus corresponding EA.g p g

    No conventional theory including DFT satisfies this theorem.

    Maximum hardness rule

    Fukui function: HOMO & LUMO densities

    Fukui functions of p‐Cl‐benzonitrile oxide.[A. Ponti & G. Molteni, Chem. Eur. J., 1156, 2006.]

    A reaction index using orbital energies.As HOMO‐LUMO gaps increasing, molecules become stabilized.

    [A. Ponti & G. Molteni, Chem. Eur. J., 1156, 2006.]

    E 11 2 LUMO HOMO

    ⇒Reactions proceed to increase HOMO‐LUMO gaps.Global hardness:

    NN 22 2 2

  • Conditions for reproducing orbital energiesConditions for reproducing orbital energies

    Many studies have been reported to identify the cause why orbital energy gaps are usually underestimated especially on the context of band gapsusually underestimated especially on the context of band gaps.

    Kohn‐Sham equation: ˆ ˆ xc i i ih J v Poor orbital energy gaps are originated from the discontinuity of exchange‐correlation potentials [Perdew, Parr, Levy, & Balduz, Phys. Rev. Lett. 49, 1691, 1982.]

    xc i i i

    p [ , , y, , y , , ]

    0xc xc xc const.n n n nv v 1( ) ( )n nn n xc IP EA

    ⇒ For xc=0, HOMO & LUMO energies correspond to minus IP & EA, respectively.[Perdew & Levy, Phys. Rev. B 56, 1602, 1997; Casida, Phys. Rev. B 59, 4694, 1999.]

    xc is attributed to the energy deviation of outermost orbital energies.[Sham & Schlüter, Phys. Rev. B 32, 3883, 1985.]

    1 1( 1) ( )n n Orbital energies are not varied for outermost orbitals.

    1 1( 1) ( )xc n nn n

  • Koopmans’ Ionization PotentialsKoopmans’ Ionization PotentialsFig. Deviations of HOMO energies from the minus vertical IPs (HOMO + ) i h Q b i

    HF SiH4CH IP) with aug‐cc‐pVQZ basis set.

    LC‐DFT  calculations give HOMO close t IP t f H H & N t

    BOPB3LYPM05-2XLCgau-BOP

    CH4PH3NH3HCOOHH2S to IP except for H, He & Ne atoms.

    The HOMO of other functionals are significantly lower than IP

    LCgau-BOPLC-BOP

    H2SH2OCH2OC2H4C2H2 significantly lower than IP. 2 2CO2ClFCSCO

    M th d MAE

    LC‐DFT approximately satisfies Koopmans’ 

    HClHFCl2P2F

    Method MAE

    LC‐BOP 0.266

    LCgau 0.332

    theorem.

    The HOMO of HF are F2N2NeHeH

    LCgau 0.332

    M05‐2X 1.600

    B3LYP 3.087

    larger than IP.⇒ HF does not obey Koopmans’ theorem h th bit l

    -10.0 -9.0 -8.0 -7.0 -6.0 -5.0 -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 HOMO IP (eV)

    HBOP 4.580

    HF 1.823

    when the orbital relaxation is not neglected.

  • Koopmans’ Electron AffinitiesKoopmans’ Electron AffinitiesFig. Deviations of LUMO energies from the minus vertical EAs (LUMO + EA) with 

    Q b i

    HFBOP

    SiH4CH4PH aug‐cc‐pVQZ basis set. 

    The LUMO of LC‐DFT calculations are l t EA f ll t

    B3LYPM05-2XLCgau-BOPLC BOP

    PH3NH3HCOOHH2SH O very close to EA for all systems.

    The LUMO of other functionals are considerably lower than EA

    LC-BOP H2OCH2OC2H4C2H2CO2 considerably lower than EA.

    LC functionals satisfyKoopmans’ theorem

    CO2ClFCSCOHCl Method MAEKoopmans   theorem 

    even for LUMO.HFCl2P2F2

    Method MAE

    LC‐BOP 0.142

    LCgau 0.115N2NeHeH

    M05‐2X 0.618

    B3LYP 1.370

    -6.0 -5.0 -4.0 -3.0 -2.0 -1.0 0.0 1.0

    LUMO + EA (eV)

    BOP 2.116

    HF 0.287

  • HOMOHOMO‐‐LUMOLUMO gapsgapsFig. Deviations of HOMO‐LUMO gaps from the IP – EA values given by CCSD(T)/CCSD/aug cc pVQZ

    SiH4CH4PH3

    HFBOP CCSD(T)/CCSD/aug‐cc‐pVQZ.

    The gaps of LC functionals are very close to IP – EA of CCSD(T) except for

    3NH3HCOOHH2SH2O

    B3LYPM05-2XLCgau-BOP

    close to IP EA of CCSD(T) except for H, He & Ne atoms.

    For other functionals,

    CH2OC2H4C2H2CO2ClF

    LC-BOP

    For other functionals,the HOMO‐LUMO gaps are significantly underestimated for most molecules.

    ClFCSCOHClHF Method MAE

    LC functionalsquantitatively 

    HFCl2P2F2N2

    Method MAE

    LC‐BOP 0.282

    LCgau 0.447reproduces orbital energies except for H, He & Ne atoms.

    2NeHeH

    M05‐2X 0.997

    B3LYP 1.4398 0 7 0 6 0 5 0 4 0 3 0 2 0 1 0 0 0 1 0 2 0 BOP 2.514

    HF 0.727

    -8.0 -7.0 -6.0 -5.0 -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 (LUMO – HOMO) – (IP – EA)CCSD(T) (eV)

  • Fractional occupations to Fractional occupations to cationcation

    10

    12

    ns fr

    om

    (eV)

    HFBOPB3LYPM05 2X

    Fig. Total energies of C2H4 calculated for varying occupation numbers of HOMO

    Energies of fractionally‐occupied systems

    6

    8

    gy v

    aria

    tion

    ral e

    nerg

    y M05-2XLC-BOPLCgau-BOP

    varying occupation numbers of HOMO to C2H4+ cation.

    Only LC functionals give total energies HOMOLC-BOP

    2

    4

    Tota

    l ene

    rgth

    e ne

    ut

    Only LC functionals give total energies very close to a straight line, while other functionals give curved lines. 

    IP=10.6eVHOMO=10.2eV

    0-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

    T

    Shift of occupation numbers n

    Table. Orbital energies of C2H4 & C2H4+ compared to the total energy gradients.

    C2H4+ C2H4MethodC2H4 C2H4

    LUMO ∂E/∂n(1) ∂E/∂n(0) HOMO

    LC-BOP 10.22 10.17 10.71 10.68All functionals nearly satisfy Janak’s theorem:

    i iE n

    Janak’s theorem

    B3LYP 13.48 13.46 7.59 7.60BOP 14.40 14.39 6.43 6.45HF 7 71 7 61 10 11 10 22

    To make ∂E/∂n(0) identical to –IP, a straight line should be given for the energy.

    f h l h ld b id i l HF 7.71 7.61 10.11 10.22M05-2X 11.92 11.67 9.17 9.16LCgau 10.37 10.33 10.53 10.56

    HOMO of the neutrals should be identical to LUMO of the cations.= Sham‐Schlüter’s argument

  • Fractional occupations to anionFractional occupations to anion

    3

    3.5

    om th

    e )

    HFBOPB3LYP

    Fig. Total energies of C2H4 calculated for varying occupations of HOMO to C2H4 anion.

    1

    2

    2.5

    aria

    tions

    fren

    ergy

    (eV) M05-2X

    LC-BOPLCgau-BOP

    2 4

    For anions, similar curves are given.

    LC functionals always give ∂2E/∂n2

    0 5

    1

    1.5

    ene

    rgy

    vane

    utra

    l e

    EA=2.3eV

    LUMOLC-BOP=2.6eV

    LC functionals always give ∂2E/∂n2close to zero.

    Table. Orbital energies of C2H4 & C2H4

    0 5

    0

    0.5

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    Tota

    l

    C2H4 C2H4

    2 4 2 4compared to the total energy gradients.

    -0.5Shift of occupation numbers n Method

    C2H4 C2H4LUMO ∂E/∂n(0) ∂E/∂n(1) HOMO

    LC-BOP 2.60 2.62 1.97 1.94This also backs up that LC functionals satisfy Koopmans’ theorem approximately.

    B3LYP 0.22 0.20 4.69 4.66BOP 0.78 0.72 5.74 5.68HF 3 56 3 95 2 23 2 11

    y p pp y

    Hybrid B3LYP & pure GGA BOP provide negative orbital energies for C2H4. HF 3.56 3.95 2.23 2.11

    M05-2X 1.12 1.15 3.49 3.47LCgau 2.54 2.56 1.97 2.10

    LUMO of neutrals should also be identical to HOMO of the anions.

  • Orbital energies for fractional occupationsOrbital energies for fractional occupations

    Fig. Orbital energies of C2H4 calculated for varying occupation numbers of HOMO to C2H4 for -1 < n < 0 (left) and for 0 < n < 1 (right).

    -8

    -7

    -6

    /mol

    )

    4

    5

    6

    l/mol

    )

    -11

    -10

    -9

    rgie

    s (k

    cal

    2

    3

    4

    ergi

    es (k

    ca

    -13

    -12

    -11

    Orb

    ital e

    ner

    HFBOPB3LYPM05-2xLC BOP

    0

    1

    2

    Orb

    ital e

    ne HFBOPB3LYPM05-2xLC BOP

    -15

    -14

    -1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

    O

    Shift of occupation number n

    LC-BOPLCgau-BOP -1

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    OShift of occupation number n

    LC-BOPLCgau-BOP

    LC functionals give almost constant orbital energies for fractional occupations.Other functionals provide positive gradients raising  as increasing electrons.

    Shift of occupation number n p

    p p g g gHF gives negative gradients lowering  due to the lack of electron correlation.

  • Orbital energy derivativesOrbital energy derivatives

    The derivative of the orbital energy in terms of the fractional occupation: 

    Orbital energy derivative

    * * 3 31( ) ( ') ( ) ( ') ''

    xcii i i i

    i

    vd d

    n

    r r r r r rr r

    Only the discrepancy in the self‐interaction through the sum of Coulomb and exchange‐correlation potential derivative dvxc/d directly affects the dependence of b l f lorbital energies on fractional occupations.

    Coulomb self‐interaction potential

    A normalized Gaussian‐type function:

    The Coulomb self interaction potential approximated:

    2( ) expii i r r

    The Coulomb self‐interaction potential approximated: 2 212 12 3

    1212

    exp 2 2 cosˆSI ii

    r r rrJ d

    r

    r

    This form gives the accurate Coulomb energy for H atom.

    1 2 1 212 12 12 120exp 2 exp 2 sinh 4i i ir r r r rr dr

  • SelfSelf‐‐interaction energiesinteraction energiesDistance from the nuclear

    Exchange self‐interaction energy

    Fig. The integral kernels of the exchange functional SI energies of HOMO of H atom.

    The exchange functional SI energies are cancelled out with the Coulomb SI energy for all functionals but LDA

    Distance from the nuclear

    energy for all functionals but LDA.

    Fi Th i t l k l f th h SI

    Exchange self‐interaction energy through potential derivative

    Fig. The integral kernels of the exchange SI energies through the  dvx/d of HOMO of H atom.

    Only LC‐DFT gives a reasonable exchange SI energy even through dvx/d .

  • Why orbital energy Why orbital energy reproduciblitiesreproduciblities are different?are different?

    Poorly‐given HOMO or He atomDistance from the nuclear

    Fig. The integral kernels of the exchange SI energies through the dvx/d for the HOMO of He atom.

    Even LC‐BOP slightly underestimates the exchange SI energy through dvx/d

    Accurately‐given LUMO or He atomDistance from the nuclear

    for the HOMO of He atom. 

    Distance from the nuclearFig. The integral kernels of the exchange SI energies through the dvx/d of the LUMO of He atom.x

    LUMO = ‐ EA= 2.653 eV

    Only for LC‐BOP, the SI error is cancelled out even for the exchange SI through the potential derivative.

  • ConclusionsConclusions

    L d (LC) DFTLong‐range corrected (LC) DFT

    Applicabilities of LC‐DFT are reviewed. LC DFT has solved or improved various chemical properties that conventional DFTsLC‐DFT has solved or improved various chemical properties that conventional DFTs have poorly given: van der Waals bonds, charge transfers, optical properties, reaction barriers and enthalpies, and so on.

    Orbital energies

    LC‐DFT also enables us to calculate orbital energies quantitatively for the first timeLC DFT also enables us to calculate orbital energies quantitatively for the first time.To reproduce orbital energies quantitatively by DFT, self‐interaction energies through the potential derivatives should be excluded in exchange functionals. LC may be the best strategy to remove the self‐interaction energies.LC may be the best strategy to remove the self interaction energies.LC‐DFT suggests a new reaction analysis based on orbital energies.

  • AcknowledgmentsAcknowledgmentsgg

    Prof. Kimihiko Hirao (RIKEN, Japan)

    Long‐range corrected (LC) DFT

    Hisayoshi IikuraDr. Muneaki Kamiya (Gifu Univ., Japan)Yoshihiro TawadaD T k hi S t (U i T k J )Dr. Takeshi Sato (Univ. Tokyo, Japan)

    Orbital energies

    Dr. Jong‐Won Song (RIKEN, Japan)Dr. Raman Kumar Singh (Yamanashi Univ.)Satoshi Suzuki (Kyushu Univ )Satoshi Suzuki (Kyushu Univ.)

    Financial Support

    Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT)