Orbital Debris: Effect on Spacecraft Pressurized Structures

42
Orbital Debris: Effect on Spacecraft Pressurized Structures Igor Telichev UNIVERSITY OF MANITOBA

Transcript of Orbital Debris: Effect on Spacecraft Pressurized Structures

Page 1: Orbital Debris: Effect on Spacecraft Pressurized Structures

Orbital Debris: Effect on Spacecraft

Pressurized Structures

Igor Telichev

UNIVERSITY OF MANITOBA

Page 2: Orbital Debris: Effect on Spacecraft Pressurized Structures

Presentation outline

Introduction

Part I: HVI on unshielded PV

Part II: HVI on shielded PV

Current/Future research plans

Page 3: Orbital Debris: Effect on Spacecraft Pressurized Structures

o University of Manitoba • Bristol Aerospace

(Magellan), Winnipeg • Boeing, Winnipeg • Standard Aero,

Winnipeg

Canadian Space Agency

Page 4: Orbital Debris: Effect on Spacecraft Pressurized Structures

Space Debris Population 

• 17,300 objects   size > 10 cm  – detectable  

• 300,000 objects,  size 1‐10  cm  – non‐detectable  

• Millions objects,  size < 1  cm  – non‐detectable 

Space debris distribution in Low Earth Orbit © NASA

(by Secure World Foundation)

Av. V=11 km/s

Page 5: Orbital Debris: Effect on Spacecraft Pressurized Structures

Debris Source

• Rocket bodies • mission related

debris • fragmentation debris • dysfunctional

spacecraft

Page 6: Orbital Debris: Effect on Spacecraft Pressurized Structures

Debris Source

• Trackable • Non-trackable

Page 7: Orbital Debris: Effect on Spacecraft Pressurized Structures

• Orbital debris impacts are random events, and for the untrackable objects it is not possible to precisely determine exactly when or where an impact will occur on a spacecraft.

• The untrackable orbital debris has become a major design consideration in the development of spacecraft and vulnerability/survivability analysis.

Page 8: Orbital Debris: Effect on Spacecraft Pressurized Structures

• Spacecraft pressurized structures are identified as the most critical components exposed directly to the orbital debris environment

Page 9: Orbital Debris: Effect on Spacecraft Pressurized Structures

Types of Pressure Vessels 

• Spacecraft pressurized modules (low pressure) 

 • Onboard system 

pressure vessels (high pressure) 

Page 10: Orbital Debris: Effect on Spacecraft Pressurized Structures

Types of Pressure Vessels 

• Spacecraft pressurized modules (low pressure) 

 • Onboard system 

pressure vessels (high pressure) 

Low internal pressure (0.1 MPa) and a relatively large size (~4 x 7 m)

Page 11: Orbital Debris: Effect on Spacecraft Pressurized Structures

Types of Pressure Vessels 

• Spacecraft pressurized modules (low pressure)  

• Onboard system pressure vessels (high pressure) 

Smaller size (ID<1.0 m) and significantly higher internal pressure (up to 40 MPa)

Page 12: Orbital Debris: Effect on Spacecraft Pressurized Structures

Purpose of the study

The main purpose of the study is to define the border between simple perforation and catastrophic fracture of pressure vessels subjected to high-velocity impact

Page 13: Orbital Debris: Effect on Spacecraft Pressurized Structures

300

150 Dhole

Dcrack

Dhole

• Impact velocity: V=0.5…2.0 km/s • Projectiles: Al, steel spheres; d=4.5…17.5 mm • Target: Al 2024-0, AlMg6, steel; ts=0.5…5.0 mm

Impact and Tensile tests Parameters of damaged

zone Impact test setup

Page 14: Orbital Debris: Effect on Spacecraft Pressurized Structures

Residual Strength of Impacted Samples

Dcrack/d

Dhole/d

ts=3.0 mm

ts=5.0 mm

0.5 1.0 1.5 2.0 0 0.8

1.0

1.4

1.2

1.6

2.0

Impact velocity [km/s]

Dcrack/d , Dhole/d

20%

Impact velocity, [km/s] 0.5 1.0 1.5 2.0

0.45 0

0.55

0.65

0.75

0.50

0.60

0.70

0.80 Sc/Rm

ts=3.0 mm

ts=4.0 mm

ts=5.0 mm

Target: Al 2024-0 Projectile: steel, d=10.3 mm

Parameters of damaged zone

Dhole

Dcrack

Dhole

Page 15: Orbital Debris: Effect on Spacecraft Pressurized Structures

Models of Impact Hole

L

H

Dhole

Dcrack

H

Dhole

Dcrack

H

H

L

Model of front impact hole

L

H

H

Dcrack

H

H

L Dcrack

Model of rear impact (petal) hole

Page 16: Orbital Debris: Effect on Spacecraft Pressurized Structures

y y1

y2

y3 y4

x1 x2

x3 x4

L0 L1

L2 L3

L4

1 2 3

4

1

O O1 O2 O3 O4 y1 y2 y

y4

x1, x2 x3, x4

y3 2l4 2l3 2l0 2l1 2l2

5 4 3 2 1

KH KH 0 0

Model of Crack Initiation and Propagation

The crack will grow if the crack tip opening displacement (CTOD) exceeds its critical value (CTOD-criterion)

Page 17: Orbital Debris: Effect on Spacecraft Pressurized Structures

y y1

y2

y3 y4

x1 x2

x3 x4

L0 L1

L2 L3

L4

1 2 3

4

1

O O1 O2 O3 O4 y1 y2 y

y4

x1, x2 x3, x4

y3 2l4 2l3 2l0 2l1 2l2

5 4 3 2 1

KH KH 0 0

Model of Crack Initiation and Propagation

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15

Time [s]

CTO

D, C

OD

[mm

]

COD [mm]

CTOD [ mm]

Evolution of CTOD (crack tip opening displacement )

CTOD

Page 18: Orbital Debris: Effect on Spacecraft Pressurized Structures

y y1

y2

y3 y4

x1 x2

x3 x4

L0 L1

L2 L3

L4

1 2 3

4

1

O O1 O2 O3 O4 y1 y2 y

y4

x1, x2 x3, x4

y3 2l4 2l3 2l0 2l1 2l2

5 4 3 2 1

KH KH 0 0

Model of Crack Initiation and Propagation

0.95

1

1.05

1.1

1.15

1.2

0 1 2 3 4 5

L rad /R hole

Hm

ax(h

ole+

crac

ks) /

Hmax

(cra

ck) Drilled hole

Impact hole

Crack

Lcrack=6.1 mmDdr.hole=6.1 mm2(Rhole+Lrad)=6.1 mm

Page 19: Orbital Debris: Effect on Spacecraft Pressurized Structures

• Survivability analysis (burst/no burst) • Residual strength analysis (critical

pressure) • Simulation of crack propagation

Code for impact-damaged Pressure Vessels

Page 20: Orbital Debris: Effect on Spacecraft Pressurized Structures

f.s.

r.s.

Failure analysis of pressure vessels onboard International Space Station-module Columbus

Pressure vessels failure © ESA

Page 21: Orbital Debris: Effect on Spacecraft Pressurized Structures

Pressure Vessels Failures

a) Rear side rupture

b) Front side fracture

a) b)

Page 22: Orbital Debris: Effect on Spacecraft Pressurized Structures

Fracture of the damaged pressure vessels under quasi-static inflation

• Test: inflation until burst occurred

• Goal: burst pressure

Test sample (AlMg3)

150

350

1

Impact hole

Rubber-sheet

Calculation/test variation < 5%

Page 23: Orbital Debris: Effect on Spacecraft Pressurized Structures

Computed values of critical hoop stress (fracture from the front side)

Page 24: Orbital Debris: Effect on Spacecraft Pressurized Structures

II

Basic stages of pressure vessel fracture

Reflected shock wave

Total stress: h+shock

I

Debris cloud

Shock wave

Critical stress: c(p0, Ekin)

I. Ye. Telitchev, D. Eskin, “Engineering model for simulation of debris cloud propagation inside gas-filled pressure vessels”, International Journal of Impact Engineering, Elsevier Science, Vol. 29, pp. 703-712, 2003.

Page 25: Orbital Debris: Effect on Spacecraft Pressurized Structures

Debris Cloud

Impact of al. sphere on a titanium shield at 5.7 km/s (Fhg-EMI)

Page 26: Orbital Debris: Effect on Spacecraft Pressurized Structures

Model of Debris Cloud

Vf

Vc Vr

Vc

Vr

Vr

Vr

Vc

III

II

I

Vc

Vc

Central element

I. Ye. Telitchev, D. Eskin, “Engineering model for simulation of debris cloud propagation inside gas-filled pressure vessels”, International Journal of Impact Engineering, Elsevier Science, Vol. 29, pp. 703-712, 2003.

Page 27: Orbital Debris: Effect on Spacecraft Pressurized Structures

Debris Cloud/Gas Interaction

• Two-phase flow model

• Dual role of the density of gas inside the vessel:

a) protection of pressure vessel back wall due to fragments deceleration;

b) generation of the strong shock wave which can cause failure of structure.

Page 28: Orbital Debris: Effect on Spacecraft Pressurized Structures

Model of Debris Cloud –Gas Interaction

0.0E+00

5.0E+06

1.0E+07

1.5E+07

2.0E+07

2.5E+07

3.0E+07

3.5E+07

0 20 40 60 80 100 120 140

Distance from front side, mm

Pres

sure

Am

plitu

de, P

a

0.5 mcs

2.5 mcs

5 mcs 10 mcs 15 mcs20 mcs

25 mcs

30 mcs

Front Wall Rear Wall

a)

0

100

200

300

400

500

600

0 1 2 3 4 5 6

Particle diameter, (mm)

P1 ,

(b

ar)

P0=5 barP0=10 barP0=15 barP0=20 bar

b)

Page 29: Orbital Debris: Effect on Spacecraft Pressurized Structures

Borders between smple perforation and catastrophic facture

0

40

80

120

160

200

240

280

0 1 2 3 4

Ekin [kJ]

Hoo

p st

ress

[MPa

]

Bursting

No bursting

h,max (K cstat )

f.s.

f.s

f.s

f.s.

r.s.

r.s

f.s. - front sider.s. - rear side

h,max (K cdyn )

border 1

border 2

border 3

I. Ye. Telitchev, F. Schaefer, E. Schneider, and M. Lambert, “Analysis of the fracture of gas-filled pressure vessels under hypervelocity impact”, International Journal of Impact Engineering, Elsevier Science, Vol. 23, pp. 905-919, 1999.

Page 30: Orbital Debris: Effect on Spacecraft Pressurized Structures

Effect of Shield on Damage Pattern

Pressure vessels failure © ESA

Page 31: Orbital Debris: Effect on Spacecraft Pressurized Structures

Whipple Shield Concept

Page 32: Orbital Debris: Effect on Spacecraft Pressurized Structures

Debris Cloud

Impact of al. sphere on a titanium shield at 5.7 km/s (Fhg-EMI)

Page 33: Orbital Debris: Effect on Spacecraft Pressurized Structures

Ballistic Limit Curves

© NASA

Page 34: Orbital Debris: Effect on Spacecraft Pressurized Structures

Effect of Shield on Damage Pattern

Page 35: Orbital Debris: Effect on Spacecraft Pressurized Structures

Effect of Shield on Damage Pattern

traces of shield fragments

a) Oblique impact

Impact angle traces of projectile  fragments

b) Normal impact

Page 36: Orbital Debris: Effect on Spacecraft Pressurized Structures

Classification of post-impact scenarios

Case 1: Shallow craters on the surface of structure. No perforation of primary wall. No unstable crack propagation. The spacecraft is capable to continue its mission.

Case 2: Surface of primary wall is densely cratered and has few small perforations. No unstable crack propagation. Possible pressure decay. Under normal conditions the spacecraft is capable to continue its mission.

Case 3: Perforation, bulging and petalling at the pressurized wall. Possible unstable crack propagation. Possible termination of the mission.

Case 4: Large impact hole with rough rim surrounded by a densely cratered ring with small perforations in the pressurized wall. Possible unstable crack propagation. Possible termination of the mission .

Page 37: Orbital Debris: Effect on Spacecraft Pressurized Structures

Model of shielded+damaged structure

Page 38: Orbital Debris: Effect on Spacecraft Pressurized Structures

Exp. #20  Exp. #21 Hoop stress, MPa  80.3  83.3 Secondary impact hole, mm  36  33 Impact test result  No crack propagation  No crack propagation Numerical test result  No crack propagation  No crack propagation 

Model of shielded+damaged structure

Page 39: Orbital Debris: Effect on Spacecraft Pressurized Structures

y y1

y2

y3 y4

x1 x2

x3 x4

L0 L1

L2 L3

L4

1 2 3

4

1

O O1 O2 O3 O4 y1 y2 y

y4

x1, x2 x3, x4

y3 2l4 2l3 2l0 2l1 2l2

5 4 3 2 1

KH KH 0 0

Model of Crack Initiation and Propagation

• deviation of crack from the original path due to the structural irregularities

• Effect of stiffeners on crack propagation/arrest

Page 40: Orbital Debris: Effect on Spacecraft Pressurized Structures

Survivability Driven Design Approach 

• Traditional safety requirements only look at the “probability of no penetration”  

• Survivability driven design is based on the practice of assuming the hazard has occurred 

Page 41: Orbital Debris: Effect on Spacecraft Pressurized Structures

Space Debris Study at the University of Manitoba 

• The long‐term objective is to develop a strong scientific basis for design of spacecraft working in orbital debris environment  

• The short‐term objective is to advance the understanding and modeling techniques of spacecraft pressurized structures response to hypervelocity impact  

Page 42: Orbital Debris: Effect on Spacecraft Pressurized Structures

Acknowledgement

• Dr. M. Lambert, ESA/ESTEC • Dr. E. Schneider, Ernst-Mach-Institute • Dr. Frank Schaefer, Ernst-Mach-Institute • Dr. Robert Sierakowski, AFRL/MN • Dr. John Rogacki, Univ. of Florida-REEF