Orbital Aspects

download Orbital Aspects

of 49

Transcript of Orbital Aspects

  • 8/12/2019 Orbital Aspects

    1/49

    Sat Com : Obital Mechanics 1

    Orbital Aspects of SatelliteCommunication

  • 8/12/2019 Orbital Aspects

    2/49

    Sat Com : Obital Mechanics 2

    The Equation of the Orbit

    xy

    z

    Satellite

    Earth rotation

    235 s/km104=

    constantsKepler'=GM

    Gravitational force on the satellite F is:

    r

    N ew ton ' s second L aw :

    F = md r

    dt

    2

    2

    ...( )2

    equating:

    -

    r

    r

    d r

    dt3

    2

    2

    d r

    dt+

    r

    r

    2

    2 3

    0

    ( Equation of motion )

    (3)

    3r

    rmGMF E

  • 8/12/2019 Orbital Aspects

    3/49

    Sat Com : Obital Mechanics 3

    r d r

    dt

    2

    20 4......( )

    Taking of each term

    Since =0 r r

    also d

    dt r dr

    dt

    dr

    dt

    dr

    dt r d r

    dt[ ]

    2

    2

    = 0 ( from def,)=0 (from(4))

    r

    r drdt

    h = orbital angular momentum of the satellite

    =constant

    therefore, orbit is on a plane

  • 8/12/2019 Orbital Aspects

    4/49

    Sat Com : Obital Mechanics 4

    To solve (3), we use the orbital plane to define a

    second rectangular coordinates (x0,y0,z0)

    (3) in (x0,y0,z0) becomes

    ( )

    ( )x

    d x

    dty

    d y

    dt

    x x y y

    x y0

    0

    0

    0 0 0 0 02

    2

    2

    2

    0

    2

    0

    20

    (2.10)

    z

    y0

    x0

    z0

    Satellite

  • 8/12/2019 Orbital Aspects

    5/49

    Sat Com : Obital Mechanics 5

    Change to polar coordinate:

    Substitute into (2.10) and equate thecomponents:

    x ry r

    x r

    y r

    0 0 0

    0 0 0

    0 0 0 0 0

    0 0 0 0 0

    cossin cos sin cos sin

    0

    r0

    z0 x0

    y0

    d r

    dtr d

    dt r

    2

    2

    200

    0

    0

    (2.12)

    r0

  • 8/12/2019 Orbital Aspects

    6/49

    Sat Com : Obital Mechanics 6

    Equate the component:

    (2.13) can be written as

    or ( a constant) angular momentum. (2.15)

    r d

    dt

    dr

    dt

    d

    dt0

    20

    2

    0 0

    2 0

    0

    (2.13)

    10

    0

    02 0

    r

    d

    dtr

    d

    dt

    r ddt

    h02 0

  • 8/12/2019 Orbital Aspects

    7/49

    Sat Com : Obital Mechanics 7

    Squaring (2.15)

    Substitute into (2.12)

    to find the equation relating r0 and define

    r d

    d t

    h

    r0

    0

    3

    02 2

    (2.16)

    d r

    dt

    h

    r r

    2

    2

    2

    0

    3

    0

    0

    (2.17)

    ur

    1

    0

    p

  • 8/12/2019 Orbital Aspects

    8/49

    Sat Com : Obital Mechanics 8

    Then

    and

    differentiate again,

    so (2.17) becomes:

    00

    00

    0

    00

    20

    d

    duh

    r

    h

    d

    dr

    dt

    d

    d

    dr

    dt

    dr

    dr

    d u

    du

    d

    0

    0 0

    12

    From (2.16)

    d r

    dth u

    d u

    d

    2

    2

    2 22

    0

    02

    (2.22)d u

    du

    h

    2

    0

    2 2

  • 8/12/2019 Orbital Aspects

    9/49

    Sat Com : Obital Mechanics 9

    Solving

    or

    u

    h

    C

    2 0 0

    cos( )

    rh C

    h

    hC

    P

    e

    0 2

    0 0

    2

    2

    0 0

    0 0

    1

    1

    1

    / cos( )

    cos( )

    cos( ) (2.24)

    Semilatus rectum P h

    2

    (2.25)

  • 8/12/2019 Orbital Aspects

    10/49

    Sat Com : Obital Mechanics 10

    (2.24) is the equation of

    an ellipse for e < 1 a circle for e = 0 (limiting condition with

    Serve to orient the ellipse w.r.t. orbitalplane. We can always choose x0,y0 axis suchthat

    h C2

    0

    0

    0

    0

    0

    1

    .

    cosr p

    e(2.26)

  • 8/12/2019 Orbital Aspects

    11/49

    Sat Com : Obital Mechanics 11

    The differential area swept by r0 is

    dA r

    d r d

    dtdt

    hdt 0

    2

    00

    2

    0

    2 2 2

    a

    p

    e

    b a e

    1

    1

    2

    21

    2( )

    (2.27)

    Apogee Perigeec

    b r0

    ae

    a (1 + e) a (1 - e)

    d0 r d0 0

    r0

  • 8/12/2019 Orbital Aspects

    12/49

    Sat Com : Obital Mechanics 12

    By Keplers second law, radius vector sweeps

    out equal area in equal time. Orbital period T

    T = area of ellipse / area swept out in one time unit

    ab

    hdt

    ab

    h

    ab

    P

    ab

    a e

    a

    T a

    2 2

    2 2

    1

    2

    4

    0

    1

    2

    3

    2

    22 3

    ( )

    (2.31)

  • 8/12/2019 Orbital Aspects

    13/49

    Sat Com : Obital Mechanics 13

    Keplers third law:

    Radius of geo-synchronous orbit of earth:

    T = 24hr = 86400 sec.

    (2.31) givesa = 42242 km

    T a2 3

  • 8/12/2019 Orbital Aspects

    14/49

    Sat Com : Obital Mechanics 14

    Locating the Satellite in the Orbit The equation of the orbit is

    : true anomaly

    The average angular velocity is

    r a e

    eo

    o

    ( )

    cos

    1

    1

    2

    o

    x r

    y ro o o

    o o o

    cossin

    2 1

    T a a

    (2.32)

    (2.35)

  • 8/12/2019 Orbital Aspects

    15/49

    Sat Com : Obital Mechanics 15

    a

    OCE

    y

    x

    A

    xo axis

    yo axis

    Orbit

    o

    ro

    ae a(1-e)

    aFig. 1

    E = eccentric anomaly

    C O

    E M o

    Circumscribed circle

  • 8/12/2019 Orbital Aspects

    16/49

    Sat Com : Obital Mechanics 16

    The velocity of the satellite is

    It can be shown that

    Also from (2.16), (2.25) and (2.27)

    v dxdt

    dydt

    drdt

    r ddt

    o o o

    o

    o2

    2 2 2

    2

    2

    v

    a

    a

    ro

    2 2 1

    d

    dt

    h

    r

    a e

    r

    aa

    rdrdt

    ar

    e

    dr

    dt ar a e a r

    o

    o o

    o

    o

    o

    o

    o

    o

    2 2

    2

    2

    2

    2

    2

    2 2 2

    1

    2 1 1

    ( )

  • 8/12/2019 Orbital Aspects

    17/49

    Sat Com : Obital Mechanics 17

    Solve for dtand multiply by

    From Fig. 1 can show

    Sub. into the equation above

    20

    22

    00

    )()(

    raea

    dr

    a

    rdt

    Eaera cos0

    dEEedt )cos1( (2.43)

  • 8/12/2019 Orbital Aspects

    18/49

    Sat Com : Obital Mechanics 18

    Integrate (2.43) get:

    Lettpbe the time of perigee, the time thatthe earth is closest to the satellite, i.e. the

    time that the satellite is crossing the xo

    axis.Where M is the mean anomaly

    (2.44) t t E e E p sin

  • 8/12/2019 Orbital Aspects

    19/49

    Sat Com : Obital Mechanics 19

    So, given tp, e, and a, we can determine the

    orbital plane coordinates (ro,o) and (xo,yo) asfollow:

    calculate from (2.35)

    calculate M from (2.46) calculate E from (2.46)

    solve E from (2.46)

    find ro from (2.43)

    find o from (2.32)

    find (xo,yo) from (2.33 - 2.34)

  • 8/12/2019 Orbital Aspects

    20/49

    Sat Com : Obital Mechanics 20

    Locating the Satellite w.r.t. Earth Define geocentric equatorial coordinates

    (xi, yi, zi).

    RA: right ascension: declination

    : right ascension of theascending node

    i: inclination (angle betweenorbital and equatorial planes)

    : argument of perigee

    zi

    yi

    xi

    N. Pole

    RA

    Equatorial plane

  • 8/12/2019 Orbital Aspects

    21/49

    Sat Com : Obital Mechanics 21

    yi

    i

    Ascending nodexi

    zi

    PerigeeSun

    Earth (onMarch 21)

    xiyi

    (,i) together locates orbital plane w.r.t. the equatorial plane.Their relations are:

    x

    y

    z

    i

    i

    i

    c c s c i s

    s c c c i s

    s i s

    ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )

    c s s c i c

    s s s c i c

    s i c

    ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )

    ( ) ( )

    s s i

    c s i

    c i

    ( ) ( )( ) ( )

    ( )

    x

    y

    z

    o

    o

    o

    Equatorial Orbital

  • 8/12/2019 Orbital Aspects

    22/49

    Sat Com : Obital Mechanics 22

    Define: rotating coordinate: (xr, yr, zr)

    zr=zi, (xi,yi) plane is the same as

    (xr

    ,yr

    ) planexr axis intersects the primegeographic meridian.

    e: angular velocity

    Te: Time since xraxis coincidedwith xi axis

    zi / zr

    e

    xr

    xi

    yi

    yr

    xr

  • 8/12/2019 Orbital Aspects

    23/49

    Sat Com : Obital Mechanics 23

    x

    y

    z

    T T

    T T

    x

    y

    z

    r

    r

    r

    e e e e

    e e e e

    i

    i

    i

    cos sin

    sin cos

    0

    0

    0 0 1

  • 8/12/2019 Orbital Aspects

    24/49

    Sat Com : Obital Mechanics 24

    UT: universal time = Greenwich standard

    time Julian days: start at noon UT where noon

    Dec. 31, 1899 = J.D. 2415020

    So J.D. 2446066 = Dec. 31, 1984 Julian date: adding the time to Julian day bydecimal fraction

    e.g. 2446066.5 = Jan 1, 1985, 00:00:00 hr. in

    UT

    Angle between xi and xraxis is eTe

  • 8/12/2019 Orbital Aspects

    25/49

    Sat Com : Obital Mechanics 25

    define: Tc = Julian centuries = time between

    0 hr. UT on Julian day (JD) and noon UT onJan 1, 1900

    Tc = (JD - 2415020)/36525 Julian centuries

    eTe at any time t (in minutes) after midnightUT is

    e

    Te

    =g,o

    + 0.25068477t degrees degrees

  • 8/12/2019 Orbital Aspects

    26/49

    Sat Com : Obital Mechanics 26

    Orbital Elements

    Need 6 quantities to specify the absolute co-ordinate of the satellite at time t.

    For satellite communication, they are: 1. Eccentricity, e

    2. Semimajor axis, a

    3. Time of perigee, tp

    4. RA of ascending node 5. Inclination, i

    6. Argument of perigee,

  • 8/12/2019 Orbital Aspects

    27/49

    Sat Com : Obital Mechanics 27

    Look Angle Determination For positioning the

    earth station antenna

    Azimuth (Az) Elevation (El)

    other specifications:

    RA and declination

    (for radio astronomyantenna).

    Local vertical

    N

    E

    AzEl

  • 8/12/2019 Orbital Aspects

    28/49

  • 8/12/2019 Orbital Aspects

    29/49

    Sat Com : Obital Mechanics 29

    Lz

    x y z

    s

    o

    r r r

    r

    90 1

    2 2 2cos

    zr

    yr

    xr

    Equatorial plane

    Length = x y zr r r2 2 2

    S.S.P.

    Ls

    is given by (2.53)

    meridians: longitudial lines

    parallels: lantutude lines

    s

  • 8/12/2019 Orbital Aspects

    30/49

    Sat Com : Obital Mechanics 30

    Elevation (El)

    : Central angle between station and satellite

    given by cos cos cos cos sin sin L L l l L Le s s e e s

    reEarth station

    d

    rs

    re

    cos

    El

    (fig. 2)

    WhereLe and le are latitude andlongitude of the earth station

  • 8/12/2019 Orbital Aspects

    31/49

    Sat Com : Obital Mechanics 31

    By cosine rule

    sine rule:

    d r r

    r

    r

    rEl

    s

    e

    s

    e

    so

    1 2

    90

    2

    cos

    r d

    s

    sin sin

    cos( ) sin sin

    cos

    El rd r

    r

    r

    r

    r km

    s

    e

    s

    e

    s

    e

    1 2

    6370

    2

  • 8/12/2019 Orbital Aspects

    32/49

    Sat Com : Obital Mechanics 32

    Azimuth (Az)

    Equation depends on the relative locationsof s.s.p. and earth station

    e.g.

    S.S.P.

    Earth station

    Az

    Pole

    S.S.P.Az

    Pole

  • 8/12/2019 Orbital Aspects

    33/49

    Sat Com : Obital Mechanics 33

    El andAz for Synchronous Satellites

    cos cos cos

    cossin

    . . cos

    L l l

    El

    e s e

    102274 03616

    Central angle

  • 8/12/2019 Orbital Aspects

    34/49

    Sat Com : Obital Mechanics 34

    Az calculations: 4 cases:

    (a) SSP at southwest of ES

    S.S.P.

    c

    Ga

    E Az o 180

    Let s = (a+c+)/2

    then from spherical trigo.identity:

    tansin( )sin( )

    sin sin( )2

    2

    s s c

    s s a

    Wherea l l

    c L Ls e

    e s

    | || |

  • 8/12/2019 Orbital Aspects

    35/49

    Sat Com : Obital Mechanics 35

    Visibility

    From Fig.2, theoretically the satellite isvisible if

    or the central angle between E and S mustbe smaller than

    for syn. satellite,

    r r r

    rse e

    s

    coscos

    1

    cos

    1 r

    r

    e

    s

    81 3. o

  • 8/12/2019 Orbital Aspects

    36/49

    Sat Com : Obital Mechanics 36

    Orbital Perturbation

    Causes:

    asymmetry of the Earths gravitational field

    gravitational field of Sun and Moon solar radiation pressure

    atmosphere drag (negligible for synchronoussatellite)

  • 8/12/2019 Orbital Aspects

    37/49

    Sat Com : Obital Mechanics 37

    Treatment:

    osculating orbit: the orbit defined by Keplersequation with orbital elements (a,e,tp,,I,). Assume orbital elements vary linearly with time

    given by

    ...etc. satellite position at t, is calculated from

    elements ( )

    Satellite does not return to the same point in space define anomalistic period as the elapsed time

    between successive perigee passages

    da

    dt

    de

    dt

    ,

    a da

    dtt t e

    de

    dtt t

    o o ( ), ( ),1 0 1 0

  • 8/12/2019 Orbital Aspects

    38/49

  • 8/12/2019 Orbital Aspects

    39/49

    Sat Com : Obital Mechanics 39

    Effect of Sun and Moon

    Cause the orbital inclination to drift fromto in 26.6 years.

    / year for 1970 - 80.

    1467. o

    0 86. o

  • 8/12/2019 Orbital Aspects

    40/49

    Sat Com : Obital Mechanics 40

    Orbit Determination

    By classical method of Laplace and Guass

    3 measurements in 3 time instances

    2 measurements in 2 time instances using radarsince velocity can also be determined from eachobservation

    2 or more stations measure the position at the

    same time

  • 8/12/2019 Orbital Aspects

    41/49

    Sat Com : Obital Mechanics 41

    Launches and Launch Vehicles

    ELV: expendable launch vehicle. (Rocket)

    STS: space transportation system (Shuttle)

    Mechanics of launching for ELV

    no Payload Assist Module (PAM) is needed

    about 30 minutes to transfer orbit

  • 8/12/2019 Orbital Aspects

    42/49

    Sat Com : Obital Mechanics 42

    V1: velocity incrementto move satellite intotransfer orbit (byPAM).

    V2: velocity incrementto move from transferorbit togeosynchronous orbit(By Apogee KickMotor (AKM)).

    Apogee

    Perigee

    296km

    STS orbit

    Transfer orbit

    V1

    V2

  • 8/12/2019 Orbital Aspects

    43/49

    Sat Com : Obital Mechanics 43

    Expendable Launch Vehicles

    Delta

    1500kg, 2000kg, 2500kg $18M (1983)

    Titan 4000kg $ 40M.(1983)

    Ariane

    2 Satellites at the same time

    2100kg for A-2, 2580kg for A-3, 4300kg for A-4

    launch at French Guiana, only 5 degree inclination

    price: fixed

  • 8/12/2019 Orbital Aspects

    44/49

    Sat Com : Obital Mechanics 44

    STS

    payload 4000kg

    maximum price: beat estimate

  • 8/12/2019 Orbital Aspects

    45/49

    Sat Com : Obital Mechanics 45

    Orbital Effects in System Performance -

    Doppler Shift

    TT

    R fcvcf

    fRis the receive frequency

    c is the velocity of light

    vT is the component of transmitter

    velocity towards the receiver

    fT is the fixed frequency

    Pronounced for low-orbit satellites

    Negligible for synchronous satellites

  • 8/12/2019 Orbital Aspects

    46/49

    Sat Com : Obital Mechanics 46

    Range Variation

    Cyclic daily variation for synchronoussatellite

    Variable round-trip delay would require alarge guard time in TDMA

    Continuous satellite range monitoring is

    needed

  • 8/12/2019 Orbital Aspects

    47/49

    Sat Com : Obital Mechanics 47

    Eclipse

    Earths shadow

    Sun

    Satellite

    EarthSatellite

  • 8/12/2019 Orbital Aspects

    48/49

    Sat Com : Obital Mechanics 48

    2 periods

    ~21 March and ~23 September

    No power from solar array Solar power fluctuation

    Thermal stress ofsatellite

    1 21March April

    70min

    35minEclipsetime

    Date

    Full Shadow

    Half Shadow

  • 8/12/2019 Orbital Aspects

    49/49

    Sat Com : Obital Mechanics 49

    Sun Transit Outage

    The sun passes through the beam of an earthstation antenna

    raises the noise level occurs ~10 minutes a day for several days a

    year

    Very costly because of total outage duringthe daytime.