Optoelectronics Ch1 KASOP

download Optoelectronics Ch1 KASOP

of 53

Transcript of Optoelectronics Ch1 KASOP

  • 8/13/2019 Optoelectronics Ch1 KASOP

    1/53

    OptoelectronicsEE/OPE451,OPT444

    Fall2009Section1:T/Th 9:3010:55PM

    JohnD.Williams,Ph.D.

    DepartmentofElectricalandComputerEngineering

    406OpticsBuilding UAHuntsville,Huntsville,AL35899Ph.(256)8242898 email:[email protected]

    OfficeHours:Tues/Thurs23PM

    JDW,ECEFall2009

    1

    mailto:[email protected]:[email protected]
  • 8/13/2019 Optoelectronics Ch1 KASOP

    2/53

    CourseTextbookandTopicsCovered

    Ch.1:WaveNatureofLight

    Ch.2:DielectricWaveguides Sections2.1and2.2only

    Ch.3:SemiconductorScienceandLight

    EmittingDiodes

    Ch.4:StimulatedEmissionDevices

    Sections4.94.14only

    Ch.5:Photodetectors

    Ch.7:PhotovoltaicDevices

    Ch.8:PolarizationandModulationofLight

    PrenticeHallInc.

    2001S.O.Kasap

    ISBN:

    0

    201

    61087

    6http://photonics.usask.ca/

    2

    JDW,ECEFall2009

    http://photonics.usask.ca/http://photonics.usask.ca/
  • 8/13/2019 Optoelectronics Ch1 KASOP

    3/53

    AdditionalSupportiveMaterial

    Thebreadthofthiscourseislargerthanasingletextbook

    Certainsectionswillhaveaddedmaterialpresentedinclassfromthefollowingtwo

    textbooks

    Photonicsreadsmorelikeanencyclopediathanatextbookbuthassomeniceapplicationsanddiagrams

    Optoelectronicscoverscurrentdeviceconceptsbutlacksontheory

    StudentswillbetestedonmaterialfromKasap

    FundamentalsofPhotonics

    ISBN13: 9780471358329

    JohnWiley&Sons

    Optoelectroncics:infraredVisibleUV

    DevicesandApplications2nded.

    ISBN: 9781420067804CRCPress

    3

    JDW ECEFall2009

  • 8/13/2019 Optoelectronics Ch1 KASOP

    4/53

    CourseProgrammatics

    CoursewillbetaughtonslidespostedonAngelaftereachclass Studentsareexpectedtotaketheirownnotesbasedonclasspresentation

    Figuresandkeypointswillbeprovidedafteronslides

    AdditionalmaterialfromeachsubjecttopicwillbepostedonAngelasoptionalreadingforanyoneinterested

    Coursewillfocusonkeyconceptsandequationsthatdescribethem FirstprinciplederivationswillNOTberequiredunlesstheyarecriticalforstudent

    development

    Mosthomeworkandtestassignmentswillcanbeansweredbyunderstandingthequestionandapplyingaformula

    Classproject(25%ofthetotalgrade)

    Studentswillbeaskedtoworkinteamstoresearchaparticulartopicinoptoelectronics

    Teamswillturninatermpapernolessthan10pages(1space)

    Teamswillpresentthetopicin8minpresentations

    HomeworkwillbedueatthebeginningofclasseveryTuesday (15%)

    Twoinclassexamsand1comprehensivefinal(60%)

    4

    JDW,ECEFall2009

  • 8/13/2019 Optoelectronics Ch1 KASOP

    5/53

    DefinitionofOptoelectronics

    Subfieldofphotonicsinwhich

    voltagedrivendevicesareused

    tocreate,detect,ormodulate

    opticalsignalsusingquantum

    mechanicaleffectsoflighton

    semiconductorsmaterials

    Examplesofoptoelectronic

    devices

    Photodiode LED

    DFBLASER

    VSCEL

    SemiconductorPhotomultipliers

    IntegratedOpticalCircuit

    IntroductiontoOptoelectronics

    240Opticalcomponentsonachip

    InfineraWavelengthMultiplexer2007

    JDW,ECEFall2009

    siliconphotmultiplier.com

    Opticis.com

    http://www.fi.isc.cnr.it/users/giovanni.giacomelli/Semic/Samples/samples.html

    http://spie.org/x27589.xml?ArticleID=x27589

    www.udt.com

    http://www.led.scale

    train.com/blue0603led.php

    5

    http://www.fi.isc.cnr.it/users/giovanni.giacomelli/Semic/Samples/samples.htmlhttp://spie.org/x27589.xml?ArticleID=x27589http://www.udt.com/http://www.led.scale-train.com/blue0603led.phphttp://www.led.scale-train.com/blue0603led.phphttp://www.led.scale-train.com/blue0603led.phphttp://www.led.scale-train.com/blue0603led.phphttp://www.led.scale-train.com/blue0603led.phphttp://www.udt.com/http://spie.org/x27589.xml?ArticleID=x27589http://www.fi.isc.cnr.it/users/giovanni.giacomelli/Semic/Samples/samples.html
  • 8/13/2019 Optoelectronics Ch1 KASOP

    6/53

    WhatisPhotonics? BroadertopicthanOptoelectronicsalone

    Studyofwave/particledualitydevicesin

    optics.

    Studyofopticaldevicesthatutilizephotonsinstead

    oftheclassicalelectromagneticwavesolution.

    emision,detection,modulation,signalprocessing,

    transmissionandamplificationoflightbasedon

    QMandSolidStateprinciples

    Stateoftheartisthedevelopmentoflight

    modulationthroughperiodicstructure

    JDW,ECEFall2009

    L.H.Gabrielli,NaturePhotonics3,461463(2009).

    A.D.Dinsmore,UmassAmherst2009

    J.Obrien,USCPhotonicsGroup2009

    6

  • 8/13/2019 Optoelectronics Ch1 KASOP

    7/53

    Ch.1:WaveNatureofLight

    1.1LightWavesinaHomogeneousMedium A.PlaneElectromagneticWave

    B.Maxwell'sWaveEquationandDivergingWaves

    1.2RefractiveIndex

    1.3GroupVelocityandGroupIndex

    1.4MagneticField,IrradianceandPoynting Vector

    1.5Snell'sLawandTotalInternalReflection(TIR)

    1.6Fresnel'sEquations A.AmplitudeReflectionandTransmissionCoefficients

    B.Intensity,ReflectanceandTransmittance

    1.7MultipleInterferenceandOpticalResonators

    1.8GoosHnchen ShiftandOpticalTunneling

    1.9TemporalandSpatialCoherence

    1.10DiffractionPrinciples A.Fraunhofer Diffraction

    B.Diffractiongrating

    Chapter1HomeworkProblems:1,2,417

    PrenticeHallInc.

    2001S.O.Kasap

    ISBN:

    0

    201

    61087

    6http://photonics.usask.ca/

    7

    JDW,ECEFall2009

    http://photonics.usask.ca/http://photonics.usask.ca/
  • 8/13/2019 Optoelectronics Ch1 KASOP

    8/53

    WaveNatureofLight PlaneElectromagneticWave

    TreatedastimevaryingelectricExandmagnetic,By,fields

    EandBarealwaysperpendiculartoeachother

    Propagatethroughspaceinthezdirection

    Simplestrepresentationisasinusoidalwave(oraMonochromaticplanewave)

    WhereEx=electricfieldatpositionzattimet,

    Eo=amplitudeoftheelectricfield

    k=wavenumber(k=2/)

    =wavelength

    =angularfrequency

    o=phaseconstant

    = =phaseofthewave

    Ex

    z

    Direction of Propagation

    By

    z

    x

    y

    k

    An electromagnetic wave is a travelling wave which has timevarying electric and magnetic fields which are perpendicular to eacother and the direction of propagation,z.

    1999 S.O. Kasap, Optoelectronics (Prentice Hall)

    )cos( oox kztEE +=

    )( okzt +

    Aplanersurfaceoverwhichthephase

    ofthewaveisconstantiscalleda

    wavefront

    8

    JDW,ECEFall2009

  • 8/13/2019 Optoelectronics Ch1 KASOP

    9/53

    WaveFronts

    )cos( oox kztEE +=

    Aplanersurfaceoverwhichthephaseofthewaveisconstantiscalledawavefront

    z

    Ex=E

    osin(tkz)

    Ex

    z

    Propagation

    E

    B

    k

    E andB have constant phasein thisxyplane; a wavefront

    E

    A plane EM wave travelling alongz, has the same Ex(orBy) at any point in agivenxyplane. All electric field vectors in a givenxyplane are therefore in phase.

    Thexyplanes are of infinite extent in thexandydirections.

    1999 S.O. Kasap, Optoelectronics (Prentice Hall)

    9

    JDW,ECEFall2009

  • 8/13/2019 Optoelectronics Ch1 KASOP

    10/53

    OpticalField

    UseofEfieldstodescribelight

    WeknowfromElectrodynamicsthatatimevaryingBfield

    resultsintimevaryingEfieldsandviseversa ThusalloscillatingEfieldshaveamutuallyoscillatingBfield

    perpendiculartoboththeEfieldandthedirectionofpropagation

    However,oneusestheEfieldratherthantheBfieldtodescribethesystem

    ItistheEfieldthatdisplaceselectronsinmoleculesandionsinthecrystalsatopticalfrequenciesandtherebygivesrisetothepolarizationofmatter

    Notethatthefieldsareindeedsymmetricallylinked,butitistheEfieldthatismostoftenusedtocharacterizethesystem

    10

    JDW,ECEFall2009

  • 8/13/2019 Optoelectronics Ch1 KASOP

    11/53

    OptionalPlaneWaveRepresentations

    1Dsolution

    ]Re[),(

    ]Re[),(

    )cos(),()cos(

    )(

    )(

    kztj

    c

    kztjj

    o

    oox

    oox

    eEtzE

    eeEtzE

    kztEtzEE

    kztEE

    o

    =

    =

    +==+=

    ]Re[)cos( ie=Since

    Generalsolution

    ]Re[),(

    ]Re[),()cos(),(

    )(

    )(

    rktj

    c

    rktjj

    o

    oo

    eEtrE

    eeEtrE

    kztEtrEEo

    r

    r

    r

    r

    r

    r

    =

    =+==

    zkykxkrk zyx ++=r

    r

    Where

    y

    z

    k

    Direction of propagation

    r

    O

    E(r,t)r

    A travelling plane EM wave along a direction 1999 S.O. Kasap, Optoelectronics (Prentice Hall)

    k=wavevectorwhosemagnitudeis2/

    11

    JDW,ECEFall2009

  • 8/13/2019 Optoelectronics Ch1 KASOP

    12/53

    PhaseVelocity

    Foraplanewave,therelationshipbetweentimeandspaceforanygive

    phase,,isconstant

    = =constant)( okzt + Duringanytimeinterval,t,thisconstantphase(andhencemaximum

    valueofE)movesadistancer.

    Thephasevelocityofthewaveis

    Thephase

    difference,

    at

    any

    given

    time

    between

    two

    points

    on

    awave

    thatareseparatedbyadistancezis

    Thefieldsaresaidtobeinphaseifhephasedifferenceiszeroif=0or2multiplesofkzwithregardstotheinitialvalue.

    v

    v

    kdt

    dr

    t

    r=====

    /2

    2v

    zzk

    ==

    2Sincetisthesameforeachpoint

    12

    JDW,ECEFall2009

  • 8/13/2019 Optoelectronics Ch1 KASOP

    13/53

    MaxwellsWaveEqn.andDivergingWaves

    Planewavesemanatefromsurfaceofrelativelyinfinitesize

    Wavefrontsareplanes AsphericalwaveemanatesfromaEMpointsourcewhoseamplitude

    decayswithdistance

    Wavefrontsarespherescenteredatthepointsource

    Adivergentbeamemanatesfromadefinedsurface Theopticaldivergencereferstotheangularseparationofthewavevectorsonagiven

    wavefront

    k

    Wave fronts

    r

    E

    k

    Wave fronts(constant phase surfaces)

    z

    Wave fronts

    PO

    P

    A perfect spherical waveA perfect plane wave A divergent beam

    (a) (b) (c)

    Examples of possible EM waves

    1999 S.O. Kasap, Optoelectronics (Prentice Hall)

    2

    2

    2

    22

    t

    E

    t

    EE oor

    =

    = )cos( krt

    r

    AE =

    13

    JDW,ECEFall2009

  • 8/13/2019 Optoelectronics Ch1 KASOP

    14/53

    BeamDivergence ConsideraGaussianlaseremittingfromaslaboffiniteradius(orwaistradius)2wo Wedefinetheinitialwaistofthebeamaswo Asthebeammovesfarenoughfromthesurfacesuchthatsourcenolongerlookslike

    aninfiniteplane,thenthewavefrontsbegintodivergeataconstantangle Thehalfangleofthedivergenceis

    Thebeamdiameter,2w,atanydistancezfromtheoriginisdefinedsuchthatthecrosssectionalareaofthebeam(w2)contains85%ofthetotalbeampower.

    Thebeam

    divergence

    isthe

    angle

    2which

    iscalculated

    from

    the

    waist

    radiusy

    x

    Wave fronts

    z Beam axis

    r

    Intensity

    (a)

    (b)

    (c)

    2wo

    O

    Gaussian

    2w

    (a) Wavefronts of a Gaussian light beam. (b) Light intensity across beam crosssection. (c) Light irradiance (intensity) vs. radial distance rfrom beam axis (z).

    1999 S.O. Kasap, Optoelectronics (Prentice Hall)

    Beamdivergence

    )2(

    42

    ow

    =

    Inradians!!!!!!

    14

    JDW,ECEFall2009

  • 8/13/2019 Optoelectronics Ch1 KASOP

    15/53

    Example1

    ConsideraHeNelaserbeamat633nmwithaspotsizeof10

    mm. AssumingaGaussianbeam,whatisthedivergenceof

    thebeam?

    Atwhatdistanceisthespotsizeofthedivergedbeamequal

    to

    1

    m?

    Beamdivergence

    )2(

    42

    ow

    = orad

    m

    m

    0046.01006.8)1010(

    )10633(4 53

    9

    ==

    =

    0.5m0.0046o

    z

    mmz o 62272

    1)0046.0(tan 1 =

    15

    JDW,ECEFall2009

  • 8/13/2019 Optoelectronics Ch1 KASOP

    16/53

    RefractiveIndex

    AssumeanEMwavetravelinginadielectricmediumwithpermittivity=ro

    EMpropagationisequaltothepropagationofthepolarizationinthemedium

    Duringpropagation,theinducedmoleculardipolesbecomecoupledandthepolarizationdecaysthepropagationoftheEMwave

    ie THEWAVESLOWSDOWNandthevelocityofthewavedependsdirectlyonthe

    permittivityand permeabilityofthematerialitistravelingthrough

    ForanEMwavetravelingthroughanonmagneticdielectric,thephasevelocityofthewaveis:

    Inavacuum,v=c=speedoflight=3x108 m/s wherec

    Therefractiveindex,n, istherelativeratioofc/v

    2

    2

    2

    2

    2

    2

    2

    2 1

    1

    t

    E

    t

    E

    t

    E

    vE oor

    oor

    =

    =

    =

    =

    Fromthewaveeqn.v

    oo

    1=

    r=

    16

    JDW,ECEFall2009

  • 8/13/2019 Optoelectronics Ch1 KASOP

    17/53

    OpticalConstantsinamedium

    Indexofrefraction,n=c/v

    Wavevector,kmedium=nk

    Wavelength,medium=n Innoncrystallinematerialssuchasglassesandliquids,thematerialstructureis

    statisticallythesameinaldirections,andthusndoesnotdependondirection.

    Therefractiveindexisthensaidtobeisotropic

    Incrystalstheatomicarrangementsbetweenatomsoftendemonstratedifferentpermittivitiesindifferentdirections. Suchmaterialsaresaidtobeanisotropic

    IngeneralthepropagationofanEMfieldinasolidwilldependonthepermittivity

    ofthesolidalongthekdirection.

    Anisotropicpermittivitiesthatintroducearelativephaseshiftalongthedirectionofpropagationhavecomplextermsintheoffdiagonalstermsofthepermittivity

    matrixandwillbethediscussionofvariousdeviceconceptsdescribedinCh.7

    17

    JDW,ECEFall2009

  • 8/13/2019 Optoelectronics Ch1 KASOP

    18/53

    FrequencyDependentPermittivity Materialsdonotoftendemonstrateasingledegreeofpolarizationalonganyonedirection

    acrosstheentirefrequencyrange.

    Infactthefrequencydependenceofpermittivityiswhatgivesrisetopropertiessuchas

    absorptionwithinasolidandallowsonetoseeobjectsincolor.

    Mostmaterialsofopticalinteresthaveabsorptionbandsinwhichthepermittivity,andthus

    therefractiveindex,changesdrastically. Shiftingoftheseconstantsbydopingthematerial,

    (oraddinglargemagneticfields)hasallowedforthedevelopmentofbandgap

    semiconductorswithspecificopticalpropertiesforopticalgenerationanddetection.

    Considerthe

    simplest

    expression

    used

    tocalculate

    the

    permittivity

    WhereNisthenumberofpolarizablemoleculesperunitvolume, and isthe

    polarizabilitypermolecule.

    IfIcaninjectorremovetherelativeNvalueinasolid,thenonecanchangethepermittivity

    ofthatsolidandthereforeitselectronicandopticalproperties.

    IfthesolidisastackofsemiconductormaterialswithdifferentNvaluesthatrespond

    opticallywhenbiased,thenonecancreateanoptoelectronicdevice!!!

    Ifthepolarizability,,isfrequencydependent(anditis),thenouroptoelectronicdevicewillworkoveraparticularfrequencyrangewhichcanbeengineeredforthespectralbandof

    interest!!!!

    or N /1 +=

    18

    JDW,ECEFall2009

  • 8/13/2019 Optoelectronics Ch1 KASOP

    19/53

    GroupVelocity Firstandforemost: THEREARENOPERFECT

    MONOCHROMATICWAVESinpractice

    Therearealwaysbundlesofwaveswithslightlydifferentfrequenciesandwavevectors

    Assumethewavestravelwithslightlydifferentfrequencies, +and

    ThewavevectorsarethereforerepresentedbyK+ kandk k

    Thecombinedtransformgeneratesawave

    packet

    oscillating

    at

    a

    mean

    beat

    frequency

    thatisamplitudemodulatedbyaslowlytimevaryingfieldat

    Themaximumamplitudemoveswithawavevectork

    Thevelocityofthepacketiscalledthegroup

    velocityandisdefinedas

    Thegroupvelocitydefinesthespeedatwhich

    theenergyispropagatedsinceitdefinesthespeedoftheenvelopeoftheamplitudevariation

    d

    dvg =

    +

    kEmax Emax

    Wave packet

    Two slightly different wavelength waves travelling in the samdirection result in a wave packet that has an amplitude variatiowhich travels at the group velocity.

    1999 S.O. Kasap,Optoelectronics (Prentice Hall)

    http://newton.ex.ac.uk/tea

    ching/resources/au/phy11

    06/animationpages/

    For

    video

    of

    wave

    packetswithandwithoutv=vg:

    19

    JDW,ECEFall2009

    http://newton.ex.ac.uk/teaching/resources/au/phy1106/animationpages/http://newton.ex.ac.uk/teaching/resources/au/phy1106/animationpages/http://newton.ex.ac.uk/teaching/resources/au/phy1106/animationpages/http://newton.ex.ac.uk/teaching/resources/au/phy1106/animationpages/http://newton.ex.ac.uk/teaching/resources/au/phy1106/animationpages/http://newton.ex.ac.uk/teaching/resources/au/phy1106/animationpages/
  • 8/13/2019 Optoelectronics Ch1 KASOP

    20/53

    Example:GroupVelocity

    Resultingwaveis:

    UsingtheTrigidentity:

    Weget:

    Maximumfieldoccurswhen:

    Yieldsvelocity:

    +

    kEmax Emax

    Wave packet

    Two slightly different wavelength waves travelling in the samdirection result in a wave packet that has an amplitude variatiowhich travels at the group velocity.

    1999 S.O. Kasap,Optoelectronics (Prentice Hall)

    ( ) ( )[ ] ( ) ( )[ ]zkktEzkktEtzE oox +++= coscos),(

    ( )[ ] ( )[ ]BABABA +=+ 2/1cos2/1cos2coscos

    ( ) ( )[ ] [ ]kztzktEtzE ox = coscos2),(

    ( ) ( )[ ] mzkt 2=

    gvd

    d

    dt

    dz==

    20

    JDW,ECEFall2009

  • 8/13/2019 Optoelectronics Ch1 KASOP

    21/53

    GroupIndex

    SupposevdependsontheorK

    Bydefinition,thegroupvelocityisthen

    WedefineNgasthegroupindexofthemedium.

    Wenowhaveawaytodeterminetheeffectofthemediumonthegroupvelocityatdifferentwavelengths(frequency

    dependence!!!) Therefractiveindex,n,andgroupindex,Ng,

    dependonthepermittivityofthematerial,r Wedefineadispersivemediumisamedium

    inwhichboththegroupandphasevelocities

    dependon

    the

    wavelength.

    Allmaterialsaresaidtobedispersiveoverparticularfrequencyranges

    ==

    2

    n

    cvk wheren=n()

    g

    gN

    c

    d

    dnn

    c

    dk

    dv =

    ==

    Refractive index nand the group indexNgof pureSiO2(silica) glass as a function of wavelength.

    Ng

    n

    500 700 900 1100 1300 1500 1700 1900

    1.44

    1.45

    1.46

    1.47

    1.48

    1.49

    Wavelength (nm)

    1999 S.O. Kasap, Optoelectronics (Prentice Hall)

    Ngandnarefrequency(wavelength)dependent

    NoticetheminimaforNgat1300nm.

    Ngiswavelengthindependentnear1300

    nm Lightat1300nmtravelsthroughSiO2atthesamegroupvelocitywithoutdispersion

    Dispersivemediumexample:SiO2

    21

    JDW,ECEFall2009

  • 8/13/2019 Optoelectronics Ch1 KASOP

    22/53

    Example:EffectsofaDispersiveMedium

    Consider1umwavelengthlightpropagatingthroughSiO2 Atthiswavelength,Ngandnarebothfrequencydependentwithno

    localminima

    Thusthemediumisdispersive Nowwemustaskthequestion,arethegroupandphasevelocitiesof

    thepropagatingwavepacketthesame?

    PhaseVelocity

    GroupVelocity

    Answer:NO!!!!

    Thegroupvelocityis0.9%slowerthanthephasevelocity Refractive index nand the group indexNgof pure

    SiO2(silica) glass as a function of wavelength.

    Ng

    n

    500 700 900 1100 1300 1500 1700 1900

    1.44

    1.45

    1.46

    1.47

    1.48

    1.49

    Wavelength (nm)

    1999 S.O. Kasap, Optoelectronics (Prentice Hall)

    s

    mx

    s

    mx

    n

    c

    dt

    dzv

    88 10069.2450.1/103 =

    ===

    s

    mx

    s

    mx

    N

    c

    dk

    dv

    g

    g

    88 10051.2463.1/103 =

    ===

    22

    JDW,ECEFall2009

  • 8/13/2019 Optoelectronics Ch1 KASOP

    23/53

    EnergyFlowinEMWaves

    LetusrecallthatthereisindeedaBfieldintheEMwave.

    Recallfromelectrostaticsthat

    where

    AstheEMwavepropagatesalongthedirectionk,thereisanenergyflowinthatdirection

    Electrostaticenergydensity

    Magnetostatic energydensity

    TheEnergyflowperunittimeperunitarea,S,isdefinedasthePoynting Vector

    ( )

    r

    oor

    yyx

    n

    v

    BncvBE

    =

    =

    ==1

    2

    2

    2

    1

    2

    1

    yo

    xor

    B

    E

    Whereboththesevaluesareequal

    ( )( ) ( )

    BEvS

    BEvEv

    tA

    EtAvS

    or

    yxorxorxor

    vrv

    =

    ==

    =

    2

    222

    23

    JDW,ECEFall2009

  • 8/13/2019 Optoelectronics Ch1 KASOP

    24/53

    Irradiance

    MagnitudeofthePointingVectoriscalledtheirradiance

    Notethatbecausewearediscussingsinusoidalwaveforms,thattheinstantaneousirradiance

    oflightpropagatinginphaseistakenfromtheinstantaneousamplitudeofEandB

    respectively

    Instantaneousirradiancecanonlybemeasuredifthepowermeterrespondsmorequickly

    thantheelectricfieldoscillations.

    Asonemightimagine,atopticalfrequencies,allpracticemeasurementsaremadeusingthe

    averageirradiance.

    Theaverageirradianceis

    yxor BEvS 2=

    2822

    2

    1033.12

    1

    2

    1

    21

    ooooor

    ooravg

    nEs

    mEcnE

    n

    c

    EvSI

    ===

    ==

    24

    JDW,ECEFall2009

  • 8/13/2019 Optoelectronics Ch1 KASOP

    25/53

    Example: ElectricandMagneticFieldsinLight

    Theintensity(irradiance)oftheredlaserfromaHeNelaseratacertainlocationwas

    measuredtoabout1mW/cm2.

    Whatarethemagnitudesoftheelectricandmagneticfields?

    Whatarethemagnitudesifthisbeamisinaglassmediumwithrefractiveindex1.45?

    ( )

    TcEB

    m

    V

    n

    s

    m

    Wm

    cn

    IE

    oo

    o

    o

    29.0/

    87

    11033.1

    )10101(22

    8

    243

    ==

    =

    =

    ==

    ( )

    TcnEB

    m

    V

    s

    m

    Wm

    cn

    IE

    oo

    o

    o

    35.0/

    72

    45.11033.1

    )10101(22

    8

    243

    ==

    =

    ==

    Note: therelativeamplitudeof

    Edecreased,

    and

    Bincreasedandthusthepolarizedwave

    becamemoreellipsoidal 25JDW,ECEFall2009

  • 8/13/2019 Optoelectronics Ch1 KASOP

    26/53

    SnellsLaw Neglectabsorptionandemission

    Lightinterfacingwithasurfaceboundarywill

    reflectbackintothemediumandtransmit

    throughthesecondmedium

    Transmittedwaveiscalledrefractedlight

    Theanglesi,r,andtdefinethedirectionof

    thewavenormaltotheinterface.

    Thewavevectorsaredefinedaski,kr,andkt

    Atanyinterface,I=r

    SnellsLawStates

    n2

    z

    y

    O

    i

    n1

    Ai

    ri

    Incident Light BiA

    r

    Br

    t t

    t

    Refracted Light

    Reflected Light

    kt

    At

    Bt

    BA

    B

    A

    A

    r

    ki

    kr

    A light wave travelling in a medium with a greater refractive index (n1> n2) suffersreflection and refraction at the boundary.

    1999 S.O. Kasap,Optoelectronics(Prentice Hall)

    ( )

    ( ) 12

    2

    1

    sin

    sin

    n

    n

    v

    v

    t

    i ==

    26

    JDW,ECEFall2009

  • 8/13/2019 Optoelectronics Ch1 KASOP

    27/53

    TotalInternalReflection

    Ifn1>n2thentransmittedangle>incidenceangle.

    Whent=90o,thentheincidenceangleiscalledthecriticalangle

    Wheni>cthereis

    notransmittedwaveinmedium

    Totalinternalreflectionoccurs

    anevanescentwavepropagatesalongtheboundary(i.e.highlosselectricfield

    propagatingalongthesurface)

    n2

    i

    n1 > n2

    i

    Incidentlight

    t

    Transmitted(refracted) light

    Reflectedlight

    kt

    i>cc

    TIRc

    Evanescent wave

    k i k r

    (a) (b) (c)

    Light wave travelling in a more dense medium strikes a less dense medium. Depending othe incidence angle with respect to c, which is determined by the ratio of the refractive

    indices, the wave may be transmitted (refracted) or reflected. (a) i< c (b) i= c (c) i> cand total internal reflection (TIR).

    1999 S.O. Kasap, Optoelectronics (Prentice Hall)

    ( )1

    2sin n

    nc =

    27

    JDW,ECEFall2009

  • 8/13/2019 Optoelectronics Ch1 KASOP

    28/53

    FresnelsEquations(1)

    AmplitudeReflectionandTransmissionCoefficients

    TransverseElectricField(TE)wavesifEi,Er,andEt

    TransverseMagnetic

    Field

    (TM)

    waves

    ifEi//,

    Er//,

    and

    Et//

    Incidentwave

    ReflectedWave

    TransmittedWave

    BoundaryConditions

    Etangential(1)=Etangential(2)

    Btangential(1)=Btangential(2)

    Applyingtheboundaryconditions tothe

    equationsaboveyieldsamplitudesof

    reflectedandtransmittedwaves. TheseequationswerefirstderivedbyFresnel

    )(

    )(

    )(

    rktj

    tot

    rktj

    ror

    rktj

    ioi

    t

    r

    i

    eEE

    eEE

    eEE

    r

    r

    r

    r

    r

    r

    =

    =

    =

    k i

    n2

    n1 > n

    t=90 Evanescent wave

    Reflected

    waveIncident

    wave

    i r

    Er,//

    Er,Ei,

    Ei,//

    Et,

    (b) i> cthen the incident wave

    suffers total internal reflection.However, there is an evanescentwave at the surface of the medium.

    z

    y

    xinto paperi r

    Incidentwave

    t

    Transmitted wave

    Ei,//

    Ei,Er,//

    Et,//

    Et,

    Er,

    Reflected

    wave

    k t

    k r

    Light wave travelling in a more dense medium strikes a less dense medium. The plane ofincidence is the plane of the paper and is perpendicular to the flat interface between thetwo media. The electric field is normal to the direction of propagation . It can be resolvedinto perpendicular () and parallel (//) components

    (a) i< cthen some of the waveis transmitted into the less densemedium. Some of the wave isreflected.

    Ei,

    1999 S.O. Kasap, Optoelectronics (Prentice Hall)

    28

    JDW,ECEFall2009

  • 8/13/2019 Optoelectronics Ch1 KASOP

    29/53

    Definen=n2/n1astherelativerefractiveindexofthesystem

    RefectionandtransmissioncoefficientsforE are

    RefectionandtransmissioncoefficientsforEIIare

    Thesecoefficientsarerelatedbythefollowingtwoequations

    FresnelsEquations(2)

    ii

    i

    io

    to

    ii

    ii

    io

    ro

    nE

    Et

    n

    n

    E

    Er

    22

    22

    22

    sincos

    cos2

    sincos

    sincos

    +==

    +

    ==

    ii

    i

    io

    to

    ii

    ii

    io

    ro

    nn

    n

    E

    Et

    nn

    nn

    E

    Er

    cossin

    cos2

    cossin

    cossin

    222

    222

    222

    +==

    +

    ==

    1=+ ntr =+ tr 1

    Theseequationsallowonetocalculate

    theamplitudeandphasesoflight

    propagatingthroughdifferentmedia

    IfweletEiobereal,thenthephaseangles

    ofrandt correspondtothephase

    changesmeasuredwithrespecttothe

    incidentwave

    29

    JDW,ECEFall2009

  • 8/13/2019 Optoelectronics Ch1 KASOP

    30/53

    InternalReflection

    Lighttravelingfromamoredensemedium

    intoalessdenseone (n2

  • 8/13/2019 Optoelectronics Ch1 KASOP

    31/53

    PhaseChangeinTIR

    Forp

  • 8/13/2019 Optoelectronics Ch1 KASOP

    32/53

    EvanescentWaves

    Whenictheremuststillbeanelectricfield inmedium2ortheboundaryconditionswill

    notbesatisfied

    Thefieldinmedium2isanevanescentwavethattravelsalongtheboundaryedgeatthe

    samespeedastheincidentwaveanddissipatesintothe2nd medium

    Thepenetrationdepthoftheelectricfieldintomedium2is

    2

    2

    2

    2

    122

    )(

    1

    1sin2

    sin

    ),,( 2

    =

    =

    =

    =

    i

    iiiz

    zktjy

    t

    n

    nn

    kk

    eetzyE iz

    attenuationcoefficient

    evanescentwavevector

    Et =e1

    32

    JDW,ECEFall2009

  • 8/13/2019 Optoelectronics Ch1 KASOP

    33/53

    ExternalReflection

    Lighttravelingfromalessdensemedium

    intoamoredenseone (n2>n1)

    Atnormalincidence,bothFresnel

    coefficientsforr//andr arenegative

    ExternalreflectionforTMandTEat

    normalincidencegeneratesa180degree

    phaseshift. Thisphaseshiftisobserved

    atall

    angles

    for

    TE

    waves

    and

    up

    top for

    TMwaves

    Also,r// goesthroughzeroatthe

    Brewsterangle,p

    Atpthereflectedwaveispolarizedin

    theEcomponentonly. ThusLightincidentatporhigherinangledoesnot

    generateaphaseshiftinreflectionfor

    TMwaves.

    Transmittedlightinbothinternaland

    externalreflectiondoesNOTexperience

    aphaseshift

    The reflection coefficients r//and rvs. angle

    of incidence i for n1= 1.00 and n2= 1.44.

    -1

    -0.8

    -0.6-0.4

    -0.2

    0

    0.2

    0.40.6

    0.8

    1

    0 10 20 30 40 50 60 70 80 90

    p r//

    r

    Incidence angle, i

    External reflection

    1999 S.O. Kasap, Optoelectronics (Prentice Hall)

    33

    JDW,ECEFall2009

  • 8/13/2019 Optoelectronics Ch1 KASOP

    34/53

    Example: EvanescentWave

    TIRfromaboundaryn1>n2generatesanevanescentwaveinmedium2neartheboundary

    Describetheevanescentwavecharacteristicsanditspenetrationintomedium2

    =

    +

    ==

    j

    o

    ii

    i

    io

    to

    ett

    nnE

    Et

    2

    2

    1

    2 sincos

    cos2

    )(2

    sinsinzktjAyk

    iot

    ziitt

    zt eeEtE

    kkk

    ===

    )sin(

    )sin(

    2

    2

    ttt

    ttt

    zktjAyk

    iot

    Ajykzktj

    iot

    eeEtE

    eEtE

    +

    =

    =

    ttttt

    rktj

    iot

    zkykrk

    eEtE t

    sincos

    )(

    +=

    =

    22

    2

    1

    sin1cos

    1sinsin

    jA

    nn

    tt

    it

    ==

    >

    =

    ApplySnellsLawat c>i

    ForTIR

    Additionally,TIRallowsustocalculatet

    2

    2

    2

    2

    1222

    1

    1sin2

    =

    == it

    n

    nnAk

    Penetrationdepth

    Complextransmissionvaluewith

    imaginaryphaseconstant

    34

    JDW,ECEFall2009

  • 8/13/2019 Optoelectronics Ch1 KASOP

    35/53

    Example: InternalReflection

    Reflectionoflightfromalessdensemedium

    Waveistravelinginaglassofindexn1=1.450

    Wavebecomesincidentonalessdensemediumofindexn2=1.430

    WhatistheminimumincidenceangleforTIR?

    Whatisthephasechangeinthereflectedwaveatanincidenceangleof85degrees?

    Whatisthepenetrationdepthoftheevanescentwaveintomedium2whentheincidence

    angleis85o?

    ( )450.1

    430.1sin

    1

    2 ==n

    nc

    o

    c 47.80=

    ( )

    ( )61447.1

    85cos

    45.1

    43.185sin

    cos

    sin

    2tan

    22

    22

    =

    =

    =

    o

    o

    i

    i n

    o

    1.62||=

    =

    =

    + 2tan

    1

    cos

    sin

    2tan 22

    22||

    nn

    n

    i

    i

    o45.116=

    m

    mn

    nni

    7

    2

    62

    2

    2

    122

    108.71

    /1028.11sin2

    ==

    =

    =

    35

    JDW,ECEFall2009

  • 8/13/2019 Optoelectronics Ch1 KASOP

    36/53

    Intensity,Reflectance,andTransmittance

    Relative(%)intensityofthereflectedlighttravelingthroughthemediaReflectance

    Relative(%)intensityofthetransmittedlighttravelingthroughthemediaTransmittance

    Sumofthetransmittanceandreflectanceinanyconservedsystemmustequal1

    2

    2

    2

    == rE

    E

    Rio

    ro

    2

    ||

    1

    22

    ||1

    2

    ||2

    || tn

    n

    En

    EnT

    io

    to

    ==

    2

    ||2||

    2

    ||

    || rE

    E

    Rio

    ro==

    2

    1

    22

    1

    2

    2

    == t

    n

    n

    En

    EnT

    io

    to

    2

    21

    21||

    +

    ===

    nn

    nnRRR

    ( )22121

    ||

    4

    nn

    nnTTT

    +===

    1=+TR36

    JDW,ECEFall2009

  • 8/13/2019 Optoelectronics Ch1 KASOP

    37/53

    Example:InternalandExternalReflection

    Lightpropagatesatnormalincidencefromair,n=1,toglasswitharefractiveindexof1.5.

    Whatisthereflectioncoefficientandthereflectancew.r.t totheincidentbeam?

    Lightpropagatesatnormalincidencefromglass,n=1.5,toairwitharefractiveindexof1.0.

    Whatisthe

    reflection

    coefficient

    and

    the

    reflectance

    w.r.t to

    the

    incident

    beam?

    Whatisthepolarizationangleoftheintheexternalreflectionfortheairtoglassinterface

    describedbythefirstquestionabove? Howwouldonemakeapolaroid device(devicethat

    polarizeslightbasedonthepolarizationangle)?

    2.05.11

    5.11

    21

    21

    =+

    =+

    == nn

    nn

    rr 04.02

    |||| ==rR or4%

    2.015.1

    15.1

    21

    21 =+

    =

    +

    ==

    nn

    nnrr 04.0

    2

    |||| ==rR or4%

    ( )

    o

    p

    pn

    n

    3.56

    5.1tan1

    2

    =

    ==

    Atanincidenceangleof56.3o thereflectedlightwillbepolarizedwith

    anEtotheplaneofincidence. Transmittedlightwillbepartially

    polarized. Byusingastackof Nglassplates,onecanincreasethepolarizationofthetransmittedlightbyafactorofN

    37

    JDW,ECEFall2009

  • 8/13/2019 Optoelectronics Ch1 KASOP

    38/53

    ReflectanceatDifferentAnglesofIncidence

    Lightpropagatesat30o incidencefromair,n=1,toglasswitharefractiveindexof1.5. What

    isthereflectioncoefficientandthereflectancew.r.ttotheincidentbeam?

    24.0414.1866.0

    414.1866.0

    21

    21 =+

    =

    +

    ==

    nn

    nnrr 058.0

    2

    |||| ==rR or5.8%

    943.0cos

    866.0cos

    cos

    cos

    sinsin

    22

    11

    2

    1

    =

    =

    =

    =

    =

    t

    i

    t

    i

    ti

    nn

    nn

    n

    n

    Snells Law

    replace

    t=19.5o

    ii

    ii

    io

    ro

    n

    n

    E

    Er

    22

    22

    sincos

    sincos

    +

    ==

    38

    JDW,ECEFall2009

  • 8/13/2019 Optoelectronics Ch1 KASOP

    39/53

    Example:AntireflectionCoatingsonSolarCells

    Whenlightisincidentonasemiconductoritbecomespartiallyreflected

    Thisisimportantbecauseitthetransmittedlighttravelingintothesolarcellisabsorbedand

    convertedtoelectricalenergy

    AssumetherefractiveindexofSiliconis3.5between700 800nm

    Calculatethereflectanceofthesiliconsurfaceinair

    Thismeansthereisa30.9%lossinefficiencyevenbeforethelightentersthesiliconsolarcell

    IfonecoatsthesolarcellwithathinlayerofelectricmaterialsuchasSi3N4(siliconnitride)

    thathasanintermediaterefractiveindexof1.9,thenwecanreducetheloss

    or30.9%309.05.31

    5.312

    =

    +

    =R

    d

    Semiconductor of

    photovoltaic device

    Antireflection

    coating

    Surface

    Illustration of how an antireflection coating reduces thereflected light intensity

    n1 n2 n3

    AB

    1999 S.O. Kasap, Optoelectronics (Prentice Hall)

    39

    JDW,ECEFall2009

  • 8/13/2019 Optoelectronics Ch1 KASOP

    40/53

    Example:AntireflectionCoatingsonSolarCells

    Notethatinorderforthisconcepttoworkthethicknessoftheantireflectivelayermustbe

    matchedtothewavelengthofthelighttransmitted

    Wearedealingwithexternalreflection,thusreflectedlightoffofallnormalinterfacesis

    180o outofphasewithincidentlight

    Phasematchingmustbeaccomplishedbetweenthelightreflectingfromtheair/coating

    interfaceandthelightreflectedfromcoating/siliconinterface

    Thephasedifferenceinthesystemisequivalenttok2(2d) wherek2=n2k=2n2/

    Phasematchingoccurswhenk2(2d)=m

    Thusthethicknessofthecoatingmustbemultiplesofthequarterwavelengthoflight

    propagatingthroughit.

    Also,toobtainagooddegreeofdestructiveinterference,theamplitudesoftheAandB

    wavesmustbecomparable. Thusweneed

    This

    yields

    a

    reflection

    coefficient

    between

    the

    air

    and

    coating

    that

    is

    equal

    to

    that

    betweenthecoatingandthesemiconductor. Inourcasen2shouldequal1.87whichis

    closetothatofSi3N4at1.9.

    md

    n=

    2

    2 2

    =

    24nmd

    312 nnn =

    40

    JDW,ECEFall2009

  • 8/13/2019 Optoelectronics Ch1 KASOP

    41/53

    Example:AntireflectionCoatingsonSolarCells

    Also,toobtainagooddegreeofdestructive

    interference,theamplitudesoftheAandBwaves

    mustbecomparable. Thusweneed

    Thisyieldsareflectioncoefficientbetweentheairand

    coatingthatisequaltothatbetweenthecoatingand

    thesemiconductor. Inourcasen2shouldequal1.87whichisclosetothatofSi3N4at1.9.

    Thusabout10%oflightisnowreflectedoffofthe

    coatingsurfaceandanother10%isreflectedfromthe

    silicon. Ofthesecond10%,about10%ofthatis

    reflectedbackfromtheair/nitrideinterfaceontothe

    siliconagain. Sothetotalgainopticalgainacquiredthroughuseoftheantireflectivecoatingisabout10%.

    312 nnn =

    096.09.11

    9.112

    =

    +

    =AR 0877.0

    5.39.1

    5.39.12

    =

    +

    =BR

    d

    Semiconductor ofphotovoltaic device

    Antireflectioncoating

    Surface

    Illustration of how an antireflection coating reduces thereflected light intensity

    n1 n2 n3

    AB

    1999 S.O. Kasap, Optoelectronics (Prentice Hall)

    41

    JDW,ECEFall2009

  • 8/13/2019 Optoelectronics Ch1 KASOP

    42/53

    Example: DielectricMirrors

    Dielectricmirror stackofdielectricswithalternatingrefractiveindices

    Thethicknessofeachlayeris aquarterwavelength: /(4ni)=i /4

    Reflectedwavesfromtheinterfacesinterfereconstructivelytogenerateahighlyreflective

    coatingoveraopticalwavelengthrangecenteredato

    Thereflectioncoefficientforaparticularboundaryissimilartothatcalculatedpreviously

    Thusthereflectioncoefficientsusingvaluesofi andjalternatethroughoutthemirror Afterseveralalternatingreflectances,thetransmissionbecomesexceedinglysmallandlight

    isreflectedbackfromthesurfaceatvaluesnearunity(1).

    n1 n2

    AB

    n1 n2

    C

    Schematic illustration of the principle of the dielectric mirror with many low and highrefractive index layers and its reflectance.

    Reflectance

    (nm)0

    1

    330 550 770

    1 2 21

    o

    1/4 2/4

    1999 S.O. Kasap, Optoelectronics (Prentice Hall)

    1,

    2

    =

    +

    = ij

    nn

    nnR

    ji

    ji

    ij

    42

    JDW,ECEFall2009

  • 8/13/2019 Optoelectronics Ch1 KASOP

    43/53

    MultipleInterferenceandOpticalResonators

    Opticalresonatorstoresenergyorfilterslightonlyatcertainfrequencies

    Builtbyaligningtwoflatmirrorsparalleltooneanotherwithfreespaceinbetweenthem

    ReflectionsbetweenmirrorsurfacesM1andM2leadtoconstructiveanddestructive

    interferencethecavity

    Thisleadstostationary(orstanding)EMwavesinthecavity

    A

    B

    L

    M1 M2 m= 1

    m= 2

    m= 8

    Relative intensity

    m

    m m + 1m - 1

    (a) (b) (c)

    R~ 0.4R~ 0.81 f

    Schematic illustration of the Fabry-Perot optical cavity and its properties. (a) Reflectedwaves interfere. (b) Only standing EM waves, modes, of certain wavelengths are allowedin the cavity. (c) Intensity vs. frequency for various modes. Ris mirror reflectance and

    lower Rmeans higher loss from the cavity.

    1999 S.O. Kasap, Optoelectronics (Prentice Hall)43

    JDW,ECEFall2009

  • 8/13/2019 Optoelectronics Ch1 KASOP

    44/53

    MultipleInterferenceandOpticalResonators

    Sincetheelectricfieldatthemirrorsmustbezero,wecanonlyfitintegermultiplesof

    halfwavelengthsintothecavityoflengthL

    Eachcavitymodeisdefinedbythemvalue,orthenumberofthehalfwavelengthsthat

    constructivelyinterferingwithinthecavity.

    Resonantfrequenciesarethebeatoscillationfrequenciesresonantinthecavity

    Freespectralrange

    Lm =2

    ...3,2,1=m

    fm mvL

    cmv ==

    2

    L

    cvf

    2

    =

    fmmm

    vvvv == +1

    A

    B

    L

    M1 M2 m= 1

    m= 2

    m= 8

    Relative intensity

    m

    m m + 1m - 1

    (a) (b) (c)

    R~ 0.4

    R~ 0.81 f

    Schematic illustration of the Fabry-Perot optical cavity and its properties. (a) Reflectedwaves interfere. (b) Only standing EM waves, modes, of certain wavelengths are allowed

    in the cavity. (c) Intensity vs. frequency for various modes. Ris mirror reflectance andlower Rmeans higher loss from the cavity.

    1999 S.O. Kasap, Optoelectronics (Prentice Hall) 44

    JDW,ECEFall2009

  • 8/13/2019 Optoelectronics Ch1 KASOP

    45/53

    FabryPerotOpticalResonator

    Simpleopticalcavitythatstoresradiationenergyonlyatcertainfrequencies

    AssumeawaveAtravelswithinthecavityandisreflectedbackandforthaswaveB.

    Thefieldandintensityofthecavityare:

    Spectralwidthofthecavity:

    WhereFiscalledtheFinesseofthecavitywhichistheratioofmodeseparationtospectralwidth. Thusaslossesdecrease,finesseincreases. Alsolargerfinessesleadtosharper

    modepeaks

    L

    m

    m - 1

    Fabry-Perot etalon

    Partially reflecting plates

    Output lightInput light

    Transmitted light

    Transmitted light through a Fabry-Perot optical cavity.

    1999 S.O. Kasap, Optoelectronics (Prentice Hall)

    R

    RF

    =

    1

    )(sin4)( 222

    kLRRI

    IEI ocavity

    +==

    2max )( RI

    II o

    =

    jkLcavity

    er

    AE

    =

    2

    1

    ...664422 ++++= kLkLjkLcavity eArjAreArAE

    F

    vv

    f

    m=

    )(sin4)(

    )1(22

    2

    kLRRI

    RII incidenttrans

    +

    =

    45

    JDW,ECEFall2009

  • 8/13/2019 Optoelectronics Ch1 KASOP

    46/53

    ResonatorModeswithSpectralWidth

    ConsideraFabryPerotopticalcavityofairlength=100micronswithmirrorsthathavea0.9

    reflectance.

    Calculatethecavitymodenearestto900nm.

    Calculatetheseparationofthemodesandthespectralwidthofeachmode.

    ( )( )

    ( )nm

    m

    m

    L

    m

    mLm

    m 90.900222

    1010022

    22.22210900

    1010022

    6

    9

    6

    =

    ==

    =

    ==

    ( )

    nmvc

    vv

    c

    HzF

    vv

    R

    RF

    Hzm

    sm

    L

    cvv

    m

    m

    mm

    m

    f

    m

    fm

    136.0

    1003.5

    8.299.019.0

    1

    105.1101002

    /103

    2

    2

    10

    12

    6

    8

    ===

    ==

    =

    =

    =

    =

    ===

    bandwidth of resonator output

    46

    JDW,ECEFall2009

  • 8/13/2019 Optoelectronics Ch1 KASOP

    47/53

    OpticalTuning

    Useconceptofpenetrationdepth

    associatedwithevanescentwaves

    FrustratedTotalInternalReflection(FTIR)

    occurswhenthethicknessofthen2

    mediumisthinnerthanthepenetration

    depthallowingthewavetopartially

    transmitthroughmedium

    YieldspartialtransmissionintoaTIR

    interface Transmittedbeamcontainssomeintensity,

    thusRisreducedbelow1

    i

    n2

    n1 > n2

    Incidentlight

    Reflectedlight

    r

    z

    Virtual reflecting plane

    Penetration depth,

    z

    y

    The reflected light beam in total internal reflection appears to have been laterally shifted byan amount zat the interface.

    A

    B

    1999 S.O. Kasap, Optoelectronics (Prentice Hall)

    i

    n2

    n1 > n2

    Incident

    light

    Reflected

    light

    r

    When medium B is thin (thickness d is small), the field penetrates tothe BC interface and gives rise to an attenuated wave in medium C.The effect is the tunnelling of the incident beam in A through B to C.

    z

    y

    d

    n1

    A

    B

    C

    1999 S.O. Kasap, Optoelectronics (Prentice Hall)

    Incidentlight

    Reflectedlight

    i> c

    TIR

    (a)

    Glass prism

    i> c

    FTIR

    (b)

    n1

    n1n

    2 n1

    B= Low refractive indextransparent film (n

    2)

    ACA

    Reflected

    Transmitted

    (a) A light incident at the long face of a glass prism suffers TIR; the prism deflects thelight.(b) Two prisms separated by a thin low refractive index film forming a beam-splitter cube.The incident beam is split into two beams by FTIR.

    Incidentlight

    1999 S.O. Kasap, Optoelectronics (Prentice Hall)

    47

    JDW,ECEFall2009

  • 8/13/2019 Optoelectronics Ch1 KASOP

    48/53

    TemporalandSpatialCoherence

    Partialcoherenceisdefinedbytheability

    topredictthephaseofanyportionofthe

    wavefromanyotherportion

    Temporalcoherencemeasurestheextentatwhichtwopointsonthewaveare

    separatedintime

    Coherencetime:

    Spatialcoherencemeasurestheextentat

    whichtwopointsareseparatedonthe

    waveinspace

    Coherencelength:

    Spectralwidth:

    Example:589nmlaserwithspectralwidth

    of5x1011

    Hz

    TimePQ

    Field

    Amplitude

    Time

    (a)

    Amplitude

    =1/t

    Time

    (b)

    P Q

    l = ct

    Space

    t

    (c)

    Amplitude

    (a) A sine wave is perfectly coherent and contains a well-defined frequencyo. (b) A finitewave train lasts for a duration t and has a length l. Its frequency spectrum extends over= 1/t. It has a coherence time tand a coherence length l. (c) White light exhibitspractically no coherence.

    1999 S.O. Kasap, Optoelectronics (Prentice Hall)

    c

    lt=

    tcl =

    t

    lv

    =

    mml

    st

    6.0

    102 12

    =

    =

    48

    JDW,ECEFall2009

  • 8/13/2019 Optoelectronics Ch1 KASOP

    49/53

    IntroductiontoDiffraction

    Airyringsareadiffractionpatternclearlyvisiblewhenlightpassesthroughacircular

    aperture

    ThediffractedbeamdoesNOTcorrespondtotheshadowoftheaperture

    Insteadthelightimagedpassedtheapertureistheresultofbothlightpassing

    throughtheapertureandlightscatteredofftheedges. Thescatteredlight

    generatesaninterferencepatternintheimage

    Diffractedlightfromadistancegeneratestheimageinaplanerwavefront:

    Fraunhofer Diffraction Diffractedlightfromanearbyapertureimagesthesurfacewithsignificant

    wavefront curvature: FresnelDiffractionLight intensity pattern

    Incident light wave

    Diffracted beam

    Circular aperture

    A light beam incident on a small circular aperture becomes diffracted and its light

    intensity pattern after passing through the aperture is a diffraction pattern with circularbright rings (called Airy rings). If the screen is far away from the aperture, this would be aFraunhofer diffraction pattern.

    1999 S.O. Kasap, Optoelectronics (Prentice Hall) 49

    JDW,ECEFall2009

  • 8/13/2019 Optoelectronics Ch1 KASOP

    50/53

    Incident plane wave

    New

    wavefront

    A secondarywave source

    (a) (b)

    Another new

    wavefront (diffracted)

    z

    (a) Huygens-Fresnel principles states that each point in the aperture becomes a source ofsecondary waves (spherical waves). The spherical wavefronts are separated by.The newwavefront is the envelope of the all these spherical wavefronts. (b) Another possiblewavefront occurs at an angle to thez-direction which is a diffracted wave.

    1999 S.O. Kasap, Optoelectronics (Prentice Hall)

    IntroductiontoDiffraction

    _______________

    50

    JDW,ECEFall2009

  • 8/13/2019 Optoelectronics Ch1 KASOP

    51/53

    IntroductiontoDiffraction

    Lightemittedfromapointsource

    Thesingleslitdiffractionequationyieldsan

    intensity

    Withzerointensitypointsat

    ( )

    ( )

    sin2

    1

    sin2

    1sin

    )(

    )(

    sin

    0sin

    sin

    ka

    kaaCe

    E

    eyCE

    eyE

    jk

    ay

    yjk

    jk

    =

    =

    =

    =

    ,...2,1

    sin

    =

    =

    m

    a

    m

    D

    22.1sin =

    =

    =

    sin2

    1sin)0(

    sin2

    1

    sin2

    1sin

    )(

    2

    kacI

    ka

    kaCa

    I

    where D is the diameter of the aperture51

    JDW,ECEFall2009

  • 8/13/2019 Optoelectronics Ch1 KASOP

    52/53

    ImageResolution

    Consider2nearbycoherentsourcesare

    imagedthroughanapertureofdiameterD

    Thetwosourceshaveanangular

    separationof.

    Asthepointsgetclosertogether angularseparationbecomesnarrower

    diffractionpatternsoverlapmore

    AccordingtotheRayleighcriterion,thetwo

    spotsarejustobservablewhenthe

    principlemaximumofonediffraction

    patterncoincideswiththeminimumof

    another

    ThisminimumisobtainedbytheangularradiusoftheAirydisk

    S1

    S2

    S1

    S2

    A1

    A2

    I

    y

    Screen

    s

    L

    Resolution of imaging systems is limited by diffraction effects. As points S1and S2get closer, eventually the Airy disks overlap so much that the resolution is lost.

    1999 S.O. Kasap, Optoelectronics (Prentice Hall)

    The rectangular aperture of dimensions a b on the leftgives the diffraction pattern on the right.

    a

    b

    1999 S.O. Kasap, Optoelectronics (Prentice Hall)

    D

    22.1sin =

    whereDisthediameteroftheaperture

    52

    JDW,ECEFall2009

  • 8/13/2019 Optoelectronics Ch1 KASOP

    53/53

    DiffractionGratings

    BraggDiffractionCondition

    Forlightincidentatanangle

    Incidentlight wave

    m= 0

    m= -1

    m= 1

    Zero-order

    First-orde

    First-order

    (a) Transmission grating (b) Reflection grating

    Incidentlight wave

    Zero-order

    First-order

    First-order

    (a) Ruled periodic parallel scratches on a glass serve as a transmission grating. (b) Areflection grating. An incident light beam results in various "diffracted" beams. Thezero-order diffracted beam is the normal reflected beam with an angle of reflection equal

    to the angle of incidence.

    1999 S.O. Kasap, Optoelectronics (Prentice Hall)

    First order

    Normal tograting planeNormal to

    face

    d

    Bl d ( h l tt ) ti

    d

    z

    y

    Incident

    light wave

    Diffraction grating

    One possiblediffracted beam

    a

    Intensity

    y

    m= 0

    m= 1

    m= -1

    m= 2

    m= -2

    Zero-order

    First-order

    First-order

    Second-order

    Second-order

    Single slitdiffraction

    envelope

    dsin

    (a) (b )

    (a) A diffraction grating withNslits in an opaque scree. (b) The diffracted lightpattern There are distinct beams in certain directions (schematic)

    ,...3,2,1,0

    sin

    =

    =

    m

    md

    ,...3,2,1,0

    )sin(sin

    =

    =+

    m

    md im