Optoelectronic Devices Re-edited_p

download Optoelectronic Devices Re-edited_p

of 32

Transcript of Optoelectronic Devices Re-edited_p

  • 7/23/2019 Optoelectronic Devices Re-edited_p

    1/32

    UETTAXILA

    OptoelectronicDevicesMakingVisible

    BY

    MUHAMMADRASHID

    14MSENC15

    Presentedto:

    Dr.YaseerDurrani

    UETTaxila

    17TH

    December,2014

    [Thephysical interactionsbetweenphotonsandsemiconductordeviceshavetobeexploitedto

    designandoptimizeavarietyofinformationprocessingdevices.]

  • 7/23/2019 Optoelectronic Devices Re-edited_p

    2/32

    2|P a g e

    Thispageisintentionallyleftblank

  • 7/23/2019 Optoelectronic Devices Re-edited_p

    3/32

    3|P a g e

    To my parents, who showed me the

    path of intellectual pursuits

    To my wife for her continuing

    guidance and support along the way

  • 7/23/2019 Optoelectronic Devices Re-edited_p

    4/32

    4|P a g e

    TableofContents

    1 WHATISOPTOELECTRONICS?.......................................................................................6

    2 PHOTODIODES[1]...........................................................................................................6

    2.1 SolarCells................................................................................................................7

    2.1.1 OperatingPrinciple[12]

    ....................................................................................7

    2.1.2 Applications[2]...............................................................................................10

    2.1.3 Materials........................................................................................................10

    2.1.4 NewResearch................................................................................................10

    2.2 PhotoDetectors[1]................................................................................................11

    2.2.1 Applications...................................................................................................13

    2.2.2 NewResearch................................................................................................13

    3 LIGHTEMITTINGDIODES.............................................................................................14

    3.1 Applications..........................................................................................................15

    3.1.1 Indicatorsandsigns.......................................................................................15

    3.1.2 Lighting..........................................................................................................16

    3.2 NewResearches....................................................................................................17

    3.2.1 WhitelightLEDs[2].........................................................................................17

    3.2.2 Organiclightemittingdiodes(OLEDs)[2]......................................................18

    3.2.3 OptimizationofLightExtractionEfficiencyofIIINitrideLEDsWithSelf

    AssembledColloidalBasedMicrolenses[8].................................................................18

    3.2.4 LightExtractionEfficiencyEnhancementofIIINitrideLightEmittingDiodes

    byUsing2DClosePackedTiO2MicrosphereArrays[9]..............................................20

    3.3 FiberOpticCommunications................................................................................20

    3.3.1 Applications...................................................................................................22

  • 7/23/2019 Optoelectronic Devices Re-edited_p

    5/32

    5|P a g e

    3.3.2 Sensors..........................................................................................................24

    3.3.3 Powertransmission.......................................................................................24

    4 LASERS.........................................................................................................................24

    4.1 Specialpropertiesoflasers...................................................................................24

    4.2 Applications..........................................................................................................25

    4.3 Laserphysics.........................................................................................................25

    4.3.1 Stimulatedemission[2]..................................................................................25

    4.3.2 Gainmedium.................................................................................................27

    4.3.3 Populationinversion......................................................................................28

    4.4 Someconditions...................................................................................................28

    5 SEMICONDUCTORLASERS...........................................................................................28

    5.1 PopulationInversion.............................................................................................28

    5.2 TheBasicSemiconductorLaser............................................................................29

    5.3 MaterialsforSemiconductorLasers.....................................................................29

    5.4 LatestResearches.................................................................................................30

    5.4.1 ENERGYEFFICIENTANDENERGYPROPORTIONALOPTICALINTERCONNECTSFORMULTICOREPROCESSORS:DRIVINGTHENEEDFORONCHIPSOURCES

    [7].......30

    6 REFERENCES................................................................................................................32

  • 7/23/2019 Optoelectronic Devices Re-edited_p

    6/32

    6|P a g e

    OPTOELECTRONICDEVICES

    1 WHATISOPTOELECTRONICS?

    Optoelectronicsisthestudyandapplicationofelectronicdevicesthatinteractwithlight,

    alsoreferredaselectroopticsorOptronics.

    Figure1:FieldofOptoelectronics

    The emission and absorption of light by semiconductors gives rise to useful

    optoelectronic devices.Carrier generation and recombination are processes by which

    mobilechargecarriers(electronsandelectronholes)arecreatedandeliminated.Carrier

    generation and recombination processes are fundamental to the operation of manyoptoelectronicsemiconductordevices,suchasphotodiodes,LEDsandlaserdiodes.

    2 PHOTODIODES[1]

    Aphotodiode isasemiconductordevicethatconverts light intocurrent.Thecurrent is

    generatedwhenphotonsareabsorbed inthephotodiode.Asmallamountofcurrent is

    alsoproducedwhenno light ispresent.Photodiodesmaycontainopticalfilters,builtin

    lenses, and may have large or small surface areas. The common, traditional solar cell

    usedtogenerateelectricsolarpowerisalargeareaphotodiode.

    The device is operated either in 3rd or 4

    th quadrant. Photo detectors are used in 3

    rd

    quadrantwhilesolarcell isoperated in4thquadrant (power isdelivered to loadby the

    junction)Figure2below

  • 7/23/2019 Optoelectronic Devices Re-edited_p

    7/32

    7|P a g e

    Figure2

    Figure:Operationofdeviceindifferentquadrants

    2.1 SolarCells

    Asolarcell,orphotovoltaiccell, isanelectricaldevicethatconvertstheenergyof light

    directly into electricity by the photovoltaic effect. It is a form of photoelectric cell,

    defined as a device whose electrical characteristics, such as current, voltage, or

    resistance,varywhenexposedtolight.Solarcellsarethebuildingblocksofphotovoltaic

    modules,otherwiseknownassolarpanels.

    2.1.1 OperatingPrinciple[12]

    Photovoltaiceffect:Theappearanceofaforwardvoltageacrossanilluminatedjunctionisknownasthephotovoltaiceffect.Figure3showsapnjunctionunderthermalequilibrium

    conditions.

    Figure3

  • 7/23/2019 Optoelectronic Devices Re-edited_p

    8/32

    8|P a g e

    ptypeSi ntypeSi

    Figure:pnjunctionatthermalequillibrium

    2.1.1.1 Photogenerationofchargecarriers

    Whenaphotonhitsapieceofsilicon,oneofthreethingscanhappen:

    1. Thephotoncanpassstraight through thesilicon this (generally)happens for

    lowerenergyphotons.

    2.

    Thephotoncanreflectoffthesurface.

    3.

    Thephotoncanbeabsorbedbythesiliconifthephotonenergyishigherthanthe

    silicon band gap value. This generates an electronhole pair and sometimes heat

    dependingonthebandstructureasshowninfigure4.

    (a) (b)

    Figure4:whenphotonsstrikethepnjunction

    Whenaphotonisabsorbed,itsenergyisgiventoanelectroninthecrystallattice.Usuallythis electron is in the valence band and is tightly bound in covalent bonds with

    neighboringatoms,andthereforeunabletomovefar.Theenergygiventotheelectron

    by the photon "excites" it into the conduction band where it is free to move around

    withinthesemiconductor.

    2.1.1.2 Chargecarrierseparation

    Therearetwomainmodesforchargecarrierseparationinasolarcell:

    1.

    driftofcarriers,drivenbyanelectricfieldestablishedacrossthedevice2. diffusionofcarriersduetotheirrandomthermalmotion,untiltheyarecaptured

    bytheelectricalfieldsexistingattheedgesoftheactiveregion

  • 7/23/2019 Optoelectronic Devices Re-edited_p

    9/32

    9|P a g e

    Figure5

    Figure:Movementofchargecarriers

    2.1.1.3 Connectiontoanexternalload

    Metalsemiconductorcontactsaremadetoboththentypeandptypesidesofthesolar

    cell,andtheelectrodesconnectedtoanexternalload.Electronsthatarecreatedonthe

    ntype side,orhavebeen "collected"by thejunctionand sweptonto the ntype side,

    may travelthrough thewire,power the load,andcontinue through thewireuntil they

    reach the ptype semiconductormetal contact as shown in figure 6 below. Here, they

    recombinewithaholethatwaseithercreatedasanelectronholepairontheptypeside

    ofthesolarcell,oraholethatwassweptacrossthejunctionfromthentypesideafter

    beingcreatedthere.

    Figure6

    Figure:currentpassingthroughaload

  • 7/23/2019 Optoelectronic Devices Re-edited_p

    10/32

    10|P a g e

    2.1.2

    Applications[2]

    Solarphotovoltaicenergyconversionisusedtodayforbothspaceandterrestrialenergy

    generation. The success of solar cells in space applications is well known (e.g.,

    communications satellites, manned and unmanned space exploration). On earth, solar

    cells have a myriad of applications varying from supplementing the grid to powering

    emergencycallboxes.However,theneedformuchmoreextensiveuseofsolarcells in

    terrestrialapplications isbecoming clearerwith thegrowingunderstandingof the true

    costoffossilfuelsandwiththewidespreaddemandforrenewableandenvironmentally

    acceptableterrestrialenergyresources.

    Itisimportantthattheseriesresistanceofthedevicebeverysmallsothatpowerisnot

    losttoheatduetoohmiclossesinthedeviceitself.Aseriesresistanceofonlyafewohms

    can seriously reduce the output power of a solar cell. Since the area is large, the

    resistanceoftheptypebodyofthedevicecanbemadesmall.However,contactstothe

    thinnregionrequirespecialdesign.Ifthisregion iscontactedattheedge,currentmustflow along the thin n region to the contact, resulting in a large series resistance. To

    preventthiseffect,thecontactcanbedistributedoverthensurfacebyprovidingsmall

    contact fingers. These narrow contacts serve to reduce the series resistance without

    interferingappreciablywiththeincominglight.

    2.1.3 Materials

    Monocrystalline silicon, Polycrystalline silicon, Ribbon silicon, Monolikemulti silicon

    (MLM), Cadmium telluride, Copper indium gallium selenide, Silicon thin film, Gallium

    arsenidethinfilmareusedforsolarcellmanufacturingaccordingtotheirpropertiesand

    application.

    2.1.4 NewResearch

    2.1.4.1DesignofPhotovoltaicSolarCellModelforStandaloneRenewable

    System[11]

    ThisresearchpaperpresentsasimulationmodelofsolarcellsinMatlab.Theinfluenceof

    temperatureandsolar irradiationonphotovoltaicmodule is investigatesandcompared

    toIVcharacteristicsofPVcell.

    As the resources of fossil fuels as coal, oil and gas are getting minimized, renewable

    energy is very much important to focus on. Inpast PVenergy was used only in space

    applicationsandincalculators.Itslimitedusewasduetoitssmallerefficiency.Research

    in last decades has increased the efficiency of solar cells. A new concept is thin film

    technology. In this technology thePV solarcell ismadebyoneormore thin layerson

  • 7/23/2019 Optoelectronic Devices Re-edited_p

    11/32

    11|P a g e

    substrate. Multiple layers allow higher usage of spectrum. The highest recorded

    efficiencyis44%.

    Nowadayssolarpower isusedastheenergysource inpowersystemsused forbattery

    chargers and in street lighting. The author has discussed different formulas for its

    computationsandhasdemonstrateddifferentequivalentcircuitsforaPVsolarcell.The

    PVModuleoutputvoltageisincreasedbyincreasethenumberofthecellsconnectionsin

    seriesandoutputcurrentisincreasedbyincreasethenumberofthecellsconnectionsin

    parallel.

    The authors have shared simulated IV characteristics of PV module under different

    conditions and concluded that the main disadvantage is the dependence on weather

    conditions.Thesolar irradiation influencewasbiggerthantemperatureespeciallywhen

    wefocusonthedecreaseofthesolar irradiation.The impactontheoutputpowerwas

    muchheavier.

    2.2

    PhotoDetectors[1]

    WhenaphotodiodeisusedinthirdquadrantofIVgraph,thecurrentisproportionalto

    theillumination.Thisisuseful inmeasurementoflightintensityorconversionofoptical

    pulsestoelectricalsignals.

    Indetection applications two parameters are important response time and detectable

    bandwidth. Photodiodes are similar to regular semiconductor diodes except that they

    maybeeitherexposed (todetectvacuumUVorXrays)orpackagedwithawindowor

    optical fiber connection to allow light to reach the sensitive part of the device. Many

    diodesdesignedforusespecificallyasaphotodiodeuseaPINjunctionratherthanapn

    junction, to increase the speed of response. A photodiode is designed to operate in

    reversebiasasshowninfigure7.

    IfwidthofdepletionregionWiswide,mostoftheincidentphotonswillbeabsorbedin

    the depletion region, leading to a high sensitivity. Also, a wide W results in a small

    junction, thereby reducing the RC time constant of the detector circuit. On the other

    hand,Wmustnotbesowidethatthetimerequiredfordriftofphotogeneratedcarriers

    outofthedepletionregionisexcessive,leadingtolowbandwidth.

    Oneconvenientmethodofcontrollingthewidthofthedepletionregionistobuildapin

    photodetector. The"i"regionneednotbetrulyintrinsic,aslongastheresistivityishigh.

    Itcanbegrownepitaxiallyonthentypesubstrate,andthepregioncanbeobtainedbyimplantation. When this device is reverse biased, the applied voltage appears almost

    entirelyacrosstheiregion.Ifthecarrier lifetimewithinthe iregion is longcompared

    withthedrifttime,mostofthephotogeneratedcarrierswillbecollectedbythenandp

    regions.

  • 7/23/2019 Optoelectronic Devices Re-edited_p

    12/32

    12|P a g e

    If lowlevel optical signals are to be detected, it is often desirable to operate the

    photodiode in the avalanche region of its characteristic. In this mode each photo

    generated carrier results in a significant change in the current because of avalanche

    multiplication, leading togainandexternalquantumefficienciesofgreater than100%.

    Avalanchephotodiodes(APDs)areusefulasdetectorsinfiberopticsystems.

    Figure7

    Figure:PINphotodetector

    IfhvislessthanEg,thephotonswillnotbeabsorbed;ontheotherhand,ifthephotons

    aremuchmoreenergeticthanEg,theywillbeabsorbedverynearthesurface,wherethe

    recombination rate ishigh. Therefore, it isnecessary to choose a photodiodematerial

    withabandgapcorrespondingtoaparticularregionofthespectrum.

    MaterialWavelength range

    (nm)

    Silicon(Si) 1901100

    Germanium(Ge) 4001700

    Indiumgalliumarsenide(InGaAs) 8002600

    Leadsulfide(PbS)

  • 7/23/2019 Optoelectronic Devices Re-edited_p

    13/32

    13|P a g e

    2.2.1

    Applications

    Photodetectors may be used to generate an output which is dependent upon the

    illumination (analog; formeasurementetc),or to change the state of circuitry (digital;

    eitherforcontrolandswitching,ordigitalsignalprocessing).

    Photodiodes are used in consumer electronics devices such as compact disc players,

    smokedetectors,and thereceivers for infrared remotecontroldevicesused tocontrol

    equipmentfromtelevisionstoairconditioners.Formanyapplicationseitherphotodiodes

    or photoconductors may be used. Either type of photosensor may be used for light

    measurement,asincameralightmeters,ortorespondtolightlevels,asinswitchingon

    streetlightingafterdark.

    Photosensorsofalltypesmaybeusedtorespondtoincidentlight,ortoasourceoflight

    whichispartofthesamecircuitorsystem.Aphotodiodeisoftencombinedintoasingle

    componentwithanemitteroflight,usuallyalightemittingdiode(LED),eithertodetect

    the presence of a mechanical obstruction to the beam (slotted optical switch), or to

    coupletwodigitaloranalogcircuitswhilemaintainingextremelyhighelectricalisolation

    betweenthem,oftenforsafety(optocoupler).

    Photodiodesareoftenused foraccuratemeasurementof light intensity inscienceand

    industry.Theygenerallyhaveamorelinearresponsethanphotoconductors.

    PINdiodesaremuchfasterandmoresensitivethanpnjunctiondiodes,andhenceare

    oftenusedforopticalcommunicationsandinlightingregulation.

    Pnphotodiodesarenotusedtomeasureextremelylowlightintensities.Instead,ifhigh

    sensitivity is needed, avalanche photodiodes, intensified chargecoupled devices or

    photomultiplier tubesareused forapplicationssuchasastronomy,spectroscopy,night

    visionequipmentandlaserrangefinding.

    2.2.2 NewResearch

    2.2.2.1HighPowerSiliconGermaniumPhotodiodesforMicrowave

    PhotonicApplications[10]

    This research paper introduces the concept of photo detectors developed on SiGeplatformformicrowaveapplications.Thesedetectorsaredesiredtogivehighdatarate

    and wide bandwidth along with better quantum efficiency. The majority of work on

    powermicrowavephotodiodes ison InPplatform.Thermaleffectsposeabigchallenge

    for achieving high current operation. In surface illuminated InGaAsInP devices, the

    thermal conductivity of the InP substrate is 0.68 W/cm K. thermal conductivity for

    waveguidephotodiodesonInPplatformis0.05W/cmK.whichis30timeslessthanthat

  • 7/23/2019 Optoelectronic Devices Re-edited_p

    14/32

    14|P a g e

    ofsilicon.Heatflowoutof it isverymuchrestrictedwhichresults inthermal failure.Si

    hasthermalconductivityof1.5W/cmKisovertwotimesofInP(0.68W/cmK).

    The author has shown the device structure, DC characteristics as well as thermal and

    microwave measurements. A 7.4 um x 500 um device was able to dissipate 1W of

    electricalpower.Thermalsimulations indicateheattrapped intheabsorbercontributes

    to device failure. Since Ge has nearly 12x higher thermal conductivity than an InGaAsabsorber,wepredictandexperimentallyverifythethermalperformanceoftheseSiGe

    waveguidedevicestobesignificantlybetterthancomparableInPdevices.

    3 LIGHTEMITTINGDIODES

    TheLEDconsistsofachipofsemiconductingmaterialdopedwithimpuritiestocreatea

    pnjunction.Asinotherdiodes,currentflowseasilyfromthepside,oranode,tothen

    side,orcathode,butnotinthereversedirection.Chargecarrierselectronsandholes

    flowintothejunctionfromelectrodeswithdifferentvoltages.Whenanelectronmeetsa

    hole, it falls into a lowerenergy level and releases energy in the form of a photonas

    showninthefigure8.[6]

    Figure8

    Figure:LightEmittingDiodebanddiagram

    Thewavelengthofthelightemitted,andthusitscolor,dependsonthebandgapenergy

    ofthematerialsformingthepnjunction.

  • 7/23/2019 Optoelectronic Devices Re-edited_p

    15/32

    15|P a g e

    LED development began with infrared and red devices made with gallium arsenide.

    Advances in materials science have enabled making devices with evershorter

    wavelengths,emittinglightinavarietyofcolors.

    LEDsareusuallybuiltonanntypesubstrate,withanelectrodeattachedtotheptype

    layerdepositedonitssurface.Ptypesubstrates,whilelesscommon,occuraswell.

    Recently,OnOctober7,2014,theNobelPrizeinPhysicswasawardedtoIsamuAkasaki,

    Hiroshi Amano and Shuji Nakamura for "the invention of efficient blue lightemitting

    diodeswhichhasenabledbrightandenergysavingwhitelightsources"or,lessformally,

    LEDlamps.[2]

    3.1 Applications

    3.1.1

    Indicatorsandsigns

    Thelowenergyconsumption,lowmaintenanceandsmallsizeofLEDshasledtousesas

    statusindicatorsanddisplaysonavarietyofequipmentandinstallations.LargeareaLED

    displays are used as stadium displays and as dynamic decorative displays. Thin,

    lightweightmessagedisplaysareusedatairportsandrailwaystations,andasdestination

    displaysfortrains,buses,trams,andferries.

    Figure9

    Figure:Redandgreentrafficsignals

    Onecolor light iswellsuited for traffic lightsandsignals,exitsigns,emergencyvehicle

    lighting,ships'navigation lightsor lanterns (chromacityand luminancestandardsbeing

    set under the Convention on the International Regulations for Preventing Collisions at

    Sea 1972, Annex I and the CIE) and LEDbased Christmas lights. In cold climates, LED

    traffic lights may remain snow covered. Red or yellow LEDs are used in indicator and

  • 7/23/2019 Optoelectronic Devices Re-edited_p

    16/32

    16|P a g e

    alphanumeric displays in environments where night vision must be retained: aircraft

    cockpits,submarineandshipbridges,astronomyobservatories,andinthefield,e.g.night

    timeanimalwatchingandmilitaryfielduse.

    Figure10

    Figure:LEDsusedintaillightsofanAudicar

    Because of their long life, fast switching times, and their ability to be seen in broad

    daylightduetotheirhighoutputandfocus,LEDshavebeenusedinbrakelightsforcars'

    highmountedbrakelights,trucks,andbuses,andinturnsignalsforsometime,butmany

    vehiclesnowuseLEDsfortheirrearlightclusters.WhiteLEDheadlampsarestartingtobe

    used.UsingLEDshasstylingadvantagesbecauseLEDscanformmuchthinnerlightsthan

    incandescentlampswithparabolicreflectors.

    3.1.2

    Lighting

    WiththedevelopmentofhighefficiencyandhighpowerLEDs,ithasbecomepossibletouseLEDsinlightingandillumination.Replacementlightbulbshavebeenmade,aswellas

    dedicatedfixturesandLEDlamps.

    LEDsareusedasstreet lightsand inotherarchitectural lightingwherecolorchanging is

    used.Themechanicalrobustnessandlonglifetimeisusedinautomotivelightingoncars,

    motorcycles,andbicyclelights.

    LEDstreetlightsareemployedonpolesandinparkinggarages.LEDsareusedinaviation

    lighting. Airbus has used LED lighting in their Airbus A320 Enhanced since 2007, and

    Boeing plans its use in the 787. LEDs are also being used now in airport and heliportlighting. LED airport fixtures currently include mediumintensity runway lights, runway

    centerline lights, taxiway centerline and edge lights, guidance signs, and obstruction

    lighting.

  • 7/23/2019 Optoelectronic Devices Re-edited_p

    17/32

    17|P a g e

    LEDsarealsosuitableforbacklightingforLCDtelevisionsandlightweightlaptopdisplays

    andlightsourceforDLPprojectors(LEDTV).RGBLEDsraisethecolorgamutbyasmuch

    as 45%. Screens for TV and computer displays can be made thinner using LEDs for

    backlighting.

    LEDsaresmall,durableandneedlittlepower,sotheyareusedinhandhelddevicessuchasflashlights.LEDstrobe lightsorcameraflashesoperateatasafe,lowvoltage,instead

    of the250+voltscommonly found inxenon flashlampbased lighting.This isespecially

    useful in camerason mobile phones, where space isat apremium andbulky voltage

    raisingcircuitryisundesirable.

    LEDsareusedfor infrared illumination innightvisionuses includingsecuritycameras.A

    ringofLEDsaroundavideocamera,aimedforwardintoareflectivebackground.

    LEDsarenowusedcommonlyinallmarketareasfromcommercialtohomeuse:standard

    lighting, AV, stage, theatrical, architectural, and public installations, and whereverartificiallightisused.

    3.2 NewResearches

    3.2.1

    WhitelightLEDs[2]

    Asweknowthatwhite lightconsistsofmanycolors (minimumthree)andLEDgivesus

    lightofaspecificwavelengththenhowwhiteLEDproduceswhitelight

    Therearetwoprimarywaysofproducingwhitelightemittingdiodes(WLEDs),LEDsthat

    generatehighintensitywhitelight.OneistouseindividualLEDsthatemitthreeprimarycolors

    red,green,andblueandthenmixallthecolorstoformwhitelight.Theotheris

    touseaphosphormaterial to convertmonochromatic light fromablue orUV LED to

    broadspectrumwhitelight,muchinthesamewayafluorescentlightbulbworks.

    TherearethreemainmethodsofmixingcolorstoproducewhitelightfromanLED:

    blue LED + green LED + red LED (color mixing; can be used as backlighting for

    displays)

    nearUVorUV LED+RGBphosphor (an LEDproducing lightwithawavelength

    shorterthanblue'sisusedtoexciteanRGBphosphor) blueLED+yellowphosphor (twocomplementarycolorscombine to formwhite

    light;moreefficientthanfirsttwomethodsandmorecommonlyused)

  • 7/23/2019 Optoelectronic Devices Re-edited_p

    18/32

    18|P a g e

    3.2.2

    Organiclightemittingdiodes(OLEDs)[2]

    Inanorganiclightemittingdiode(OLED),theelectroluminescentmaterialcomprisingthe

    emissive layerof thediode isanorganiccompound.Theorganicmaterial iselectrically

    conductiveduetothedelocalizationofelectrons,andthematerialthereforefunctionsas

    an organic semiconductor. The organic materials can be small organic molecules in acrystallinephase,orpolymers.

    The potential advantages of OLEDs include thin, lowcost displays with a low driving

    voltage,wideviewingangleasshown in figure11,andhigh contrastandcolorgamut.

    PolymerLEDshavetheaddedbenefitofprintableandflexibledisplays.OLEDshavebeen

    used tomakevisualdisplays forportableelectronicdevicessuchascellphones,digital

    cameras,andMP3playerswhilepossiblefutureusesincludelightingandtelevisions.

    Figure11

    Figure:wideviewangleof170o

    3.2.3 OptimizationofLightExtractionEfficiencyofIIINitrideLEDsWith

    SelfAssembledColloidalBasedMicrolenses[8]

    ThisresearchpublicationfocusesonmethodoflightextractionfromIIINitrideLEDusing

    SiO2 /polystyrene (PS) microlens arrays. Most of the light generated by the activeregionsoftheLEDsistrappedinthehigherrefractiveindexsemiconductormaterial.The

    largerefractiveindexdifferenceofGaN(n=2.5)andair(n=1)attheinterfaceresultsin

    totalinternalreflectionthatleadstolowlightextractionefficiency.

  • 7/23/2019 Optoelectronic Devices Re-edited_p

    19/32

    19|P a g e

    Figure12

    Theescapecone inGaNmaterial isonly23.5 withaphotonescapeprobabilityofonly

    4%asshowninfigure12.

    Theauthorsdemonstratedanovelapproachtosignificantlyenhancethelightextraction

    efficiency of IIInitride LEDs by fabricating SiO2/polystyrene (PS) microlens arrays as

    showninfigure13

    Figure13

    This publication also shares the experimental results as well as deposition process of

    thesemicrolenses.TheauthorsconcludefromtheirexperimentsthattheuseofSiO2/PS

    microlensarraysledtoimprovementoflightextractionefficiencyintherangeof1.8up

    to 2.7 times, depending on the thickness of the PS layer. The increase in the light

    extractionefficiencyforwavelengthsof420525nmdependsstronglyonthediameterof

    SiO2microspheres(dSiO2)andthicknessofPSlayer(hPS).

    TheSiO2/PS microlensarrayswere also depositedon InGaN LEDsemitting in480 nm

    spectralrange.Theuseof1.0mdiameterSiO2/0.5mPSmicrolensarraysontheLEDs

    ledtoa2.49timesimprovementinthelightextractionefficiencyincomparisonwiththat

    ofplanarLEDs.

    Theauthorsaysthatthey foundthattheuseofSiO2/PSmicrolensarraysontopof III

    nitride LED device leads to a low cost and practical approach to increase its light

    extractionefficiency.

  • 7/23/2019 Optoelectronic Devices Re-edited_p

    20/32

    20|P a g e

    3.2.4 LightExtractionEfficiencyEnhancementofIIINitrideLight

    EmittingDiodesbyUsing2DClosePackedTiO2Microsphere

    Arrays[9]

    This research publication shows TiO2 microspheres arrays used for light extraction

    efficiencyenhancement.TheauthorshaveexperimentedonLEDswithandwithoutTiO2

    microspheres arrays. The results show that this process increases the light extractionefficiencyupto1.9times.Thisprocessislowcostandhighlyefficientaswellasitcanbe

    doneonlargescale.

    Furtherenhancementofextractionefficiency isexpectedwithmicrolensstructuresby

    introducingplanarmaterials (i.e.,polystyrene)which results in semiburiedTiO2micro

    lensarrays,which isexpectedtoresult inhigher lightcoupling fromGaNLEDs intothe

    TiO2/PSmicrolensarraysincomparisontotheSiO2/PS microlensarrays.

    3.3 FiberOpticCommunications

    Fiberoptic communication isa methodof transmitting information fromone place to

    another by sending pulses of light through an optical fiber. Optical fiber is pipe or a

    waveguidefortransmissionoflight.Thelightformsanelectromagneticcarrierwavethat

    is modulated to carry information. As LEDs can cycle on and off millions of times per

    second,veryhighdatabandwidthcanbeachieved.

    The process of communicating using fiberoptics involves the following basic steps:

    Creatingtheopticalsignalinvolvingtheuseofatransmitter,relayingthesignalalongthe

    fiber, ensuring that the signal does not become too distorted or weak, receiving the

    opticalsignal,andconvertingitintoanelectricalsignal.

    Figure14

    Figure:fiberopticsystem

  • 7/23/2019 Optoelectronic Devices Re-edited_p

    21/32

    21|P a g e

    Optical fiberstypically includeatransparentcoresurroundedbyatransparentcladding

    material with a lower index of refraction. Light is kept in the core by total internal

    reflection.Total internalreflection isaphenomenonthathappenswhenapropagating

    wavestrikesamediumboundaryatanangle largerthanaparticularcriticalanglewith

    respecttothenormaltothesurface.Iftherefractiveindexislowerontheothersideof

    theboundaryandthe incidentangle isgreaterthanthecriticalangle,thewavecannot

    passthroughandisentirelyreflected.Forexamplelightrayfromwaterpassingintoairat

    certainangleisreflectedbackintothewater.[2][4]

    Figure15

    Figure:Totalinternalreflection

    Figure16

    Figure:Thestructureofatypicalsinglemodefiber.

    1.Core:8mdiameter

    2.Cladding:125mdia.3.Buffer:250mdia.

    4.Jacket:400mdia.

    Core has high refractive index than that of cladding. Difference in refractive indices

    causes total internal reflection to takeplace.Wecanobservedifferentkindsofoptical

    fiber in the figure. Single mode fiber has much thin core and used for single mode

  • 7/23/2019 Optoelectronic Devices Re-edited_p

    22/32

    22|P a g e

    transmissionandhasvery lessattenuation.Step index fiberormultimode fiber isused

    for multimode transmission. It has larger core so that multiple light signals can be

    entered within the limitsof its allowed aperture. As different light rays have different

    pathlengths,lightatoutputisreceivedwithdifferentdelays.Oneofthetypesisgraded

    indexfiber.Itsrefractiveindexgraduallydecreasesoutwardswhichcausesthelightrays

    to smoothly bend back towards the centre of the fiber. This curved path reduces the

    multipathdispersions.Choiceoflightwavelengthisverynecessaryaseverywavelength

    will not be very efficient for transmissions. Proper wavelength is calculated for best

    performanceandlessattenuation.

    Figure17

    Figure:differenttypesofopticalfibers

    3.3.1 Applications

    3.3.1.1Communication

    Opticalfibercanbeusedasamediumfortelecommunicationandcomputernetworking

    becauseitisflexibleandcanbebundledascables.Itisespeciallyadvantageousforlong

    distance communications, because light propagates through the fiber with little

    attenuationcomparedtoelectricalcables.Thisallowslongdistancestobespannedwith

    fewrepeaters.

    Theperchannel light signalspropagating in the fiberhavebeenmodulatedat ratesas

    highas111gigabitspersecond (Gbit/s),although10or40Gbit/s istypical indeployed

    systems.

    In June 2013, researchers demonstrated transmission of 400 Gbit/s over a

    singlechannelusing4modeorbitalangularmomentummultiplexing.

  • 7/23/2019 Optoelectronic Devices Re-edited_p

    23/32

    23|P a g e

    Forshortdistanceapplication,suchasanetworkinanofficebuilding,fiberopticcabling

    cansavespace incableducts.This isbecausea single fibercancarrymuchmoredata

    thanelectricalcablessuchasstandardcategory5Ethernetcabling,whichtypicallyruns

    at100Mbit/sor1Gbit/sspeeds.Fiberisalsoimmunetoelectricalinterference;thereis

    nocrosstalkbetweensignalsindifferentcables,andnopickupofenvironmentalnoise.

    Nonarmoredfibercablesdonotconductelectricity,whichmakesfiberagoodsolution

    forprotectingcommunicationsequipment inhighvoltageenvironments,suchaspower

    generationfacilities,ormetalcommunicationstructuresproneto lightningstrikes.They

    canalsobeusedinenvironmentswhereexplosivefumesarepresent,withoutdangerof

    ignition.Wiretapping(inthiscase,fibertapping) ismoredifficultcomparedtoelectrical

    connections,andthereareconcentricdualcorefibersthataresaidtobetapproof.

    3.3.1.1.1Advantagesovercopperwiring

    Theadvantagesofopticalfibercommunicationwithrespecttocopperwiresystemsare:

    Broadbandwidth

    Asingleopticalfibercancarry3,000,000fullduplexvoicecallsor90,000TVchannels.

    Immunitytoelectromagneticinterference

    Lighttransmissionthroughopticalfibersisunaffectedbyotherelectromagneticradiation

    nearby.Theopticalfiberiselectricallynonconductive,soitdoesnotactasanantennato

    pickupelectromagneticsignals.Informationtraveling insidetheopticalfiber is immune

    to electromagnetic interference, even electromagnetic pulses generated by nuclear

    devices.

    Lowattenuationlossoverlongdistances

    Attenuationlosscanbeaslowas0.2dB/kminopticalfibercables,allowingtransmission

    overlongdistanceswithouttheneedforrepeaters.

    Electricalinsulator

    Optical fibers do not conduct electricity, preventing problems with ground loops and

    conduction of lightning. Optical fibers can be strung on poles alongside high voltage

    powercables.

    Materialcostandtheftprevention

    Conventionalcablesystemsuselargeamountsofcopper.Insomeplaces,thiscopperisa

    targetfortheftduetoitsvalueonthescrapmarket.

  • 7/23/2019 Optoelectronic Devices Re-edited_p

    24/32

    24|P a g e

    3.3.2

    Sensors

    Opticalfiberscanbeusedassensorstomeasurestrain,temperature,pressureandother

    quantitiesbymodifyingafibersothatthepropertytomeasuremodulatestheintensity,

    phase,polarization,wavelength,ortransittimeoflightinthefiber.Sensorsthatvarythe

    intensityoflightarethesimplest,sinceonlyasimplesourceanddetectorarerequired.Aparticularlyusefulfeatureofsuchfiberopticsensorsisthattheycan,ifrequired,provide

    distributed sensing over distances of up to one meter. In contrast, highly localized

    measurementscanbeprovidedbyintegratingminiaturizedsensingelementswiththetip

    of the fiber. These can be implemented by various micro and nanofabrication

    technologies, such that they do not exceed the microscopic boundary of the fiber tip,

    allowingsuchapplicationsasinsertionintobloodvesselsviahypodermicneedle.

    Extrinsicsensorscanbeused in thesameway tomeasure the internal temperatureof

    electrical transformers, where the extreme electromagnetic fields present make other

    measurement techniques impossible. Extrinsic sensors measure vibration, rotation,

    displacement, velocity, acceleration, torque, and twisting. A solid state version of the

    gyroscope,usingtheinterferenceoflight,hasbeendeveloped.Thefiberopticgyroscope

    (FOG)hasnomovingparts,andexploitstheSagnaceffecttodetectmechanicalrotation.

    3.3.3 Powertransmission

    Opticalfibercanbeusedtotransmitpowerusingaphotovoltaiccelltoconvertthelight

    into electricity.

    While this method of power transmission is not as efficient as

    conventionalones, it isespeciallyuseful insituationswhere it isdesirablenottohavea

    metallic conductor as in the case of use near MRI machines, which produce strong

    magnetic fields.Otherexamplesare forpoweringelectronics inhighpoweredantenna

    elementsandmeasurementdevicesusedinhighvoltagetransmissionequipment.

    4 LASERS

    Alaserisadevicethatemitslightthroughaprocessofopticalamplificationbasedonthe

    stimulated emission of electromagnetic radiation. The term "laser" originated as an

    acronymfor"lightamplificationbystimulatedemissionofradiation".

    4.1

    Specialproperties

    of

    lasers

    Coherent light: Coherence can be defined as an ideal property of waves that enables

    stationary(i.e.temporallyandspatiallyconstant)interference.Alaserdiffersfromother

    sourcesof lightbecause itemits lightcoherently.Spatialcoherenceallowsa lasertobe

    focused toa tight spot,enablingapplications like laser cuttingand lithography.Spatial

  • 7/23/2019 Optoelectronic Devices Re-edited_p

    25/32

    25|P a g e

    coherence also allows a laser beam to stay narrow over long distances (collimation),

    enablingapplicationssuchaslaserpointers.

    Monochromatic: As obvious from the word having single color. Lasers are

    monochromaticsinceeachphotonhaveanenergyofpreciselyhv=E2 E1

    4.2

    Applications

    Someofitsapplicationsare:

    Medicine: Bloodless surgery, laser healing, surgical treatment, kidney stone

    treatment,eyetreatment,dentistry

    Industry: Cutting, welding, material heat treatment, marking parts, noncontact

    measurementofparts

    Military: Marking targets, guiding munitions, missile defence, electrooptical

    countermeasures(EOCM),alternativetoradar,blindingtroops.

    Law enforcement: used for latent fingerprint detection in the forensic

    identificationfield

    Research: Spectroscopy, laser ablation, laser annealing, laser scattering, laser

    interferometry,LIDAR,lasercapturemicrodissection,fluorescencemicroscopy

    Productdevelopment/commercial: laserprinters,opticaldiscs (e.g.CDsand the

    like),barcodescanners,thermometers,laserpointers,holograms.

    Laserlightingdisplays:Laserlightshows

    Cosmeticskintreatments:acnetreatment,celluliteandstriaereduction,andhair

    removal.

    4.3 Laserphysics

    4.3.1

    Stimulatedemission[2]

    Theenergyofanelectronorbitinganatomicnucleusislargerfororbitsfurtherfromthe

    nucleus of an atom. However, quantum mechanical effects force electrons to take on

    discrete positions in orbitals. Thus, electrons are found in specific energy levels of an

    atom,twoofwhichareshownbelowinfigure18:

  • 7/23/2019 Optoelectronic Devices Re-edited_p

    26/32

    26|P a g e

    Figure18

    Figure:Stimulatedemission

    When an electron absorbs energy either from light or heat, it receives that incident

    quantumofenergy.But transitionsareonlyallowed inbetweendiscreteenergy levels

    suchasthetwoshownabove.

    Whenanelectronisexcitedfromalowertoahigherenergylevel,itwillnotstaythatway

    forever.Anelectron inanexcitedstatemaydecaytoa lowerenergystatewhich isnot

    occupied.Whensuchanelectrondecayswithoutexternalinfluence,emittingaphotonis

    called"spontaneousemission".

    The stimulus isprovidedby thepresenceofphotonsof theproperwavelength. Letus

    visualizeanelectroninstateE2waitingtodropspontaneouslytoE1withtheemissionof

    aphotonofenergyhv12=E2E1.Nowweassumethatthiselectronintheupperstateis

    immersed inan intensefieldofphotons,eachhavingenergyhv=E2E1,and inphase

    with the other photons. The electron is induced to drop in energy from E2 to E1,

    contributingaphotonwhosewaveisinphasewiththeradiationfield.Atransitionfrom

    thehighertoa lowerenergystate,however,producesanadditionalphoton;this isthe

    processofstimulatedemission.

  • 7/23/2019 Optoelectronic Devices Re-edited_p

    27/32

    27|P a g e

    Figure19

    Figure:Componentsofatypicallaser:

    1.Gainmedium

    2.Laserpumpingenergy

    3.Highreflector

    4.Outputcoupler

    5.Laserbeam

    4.3.2 Gainmedium

    Thegainmediumisexcitedbyanexternalsourceofenergyintoanexcitedstate.Inmost

    lasersthismediumconsistsofpopulationofatomswhichhavebeenexcited intosuchastatebymeansofanoutsidelightsource,oranelectricalfieldwhichsuppliesenergyfor

    atomstoabsorbandbetransformedintotheirexcitedstates.

    Thegainmediumofalaserisnormallyamaterialofcontrolledpurity,size,concentration,

    and shape,which amplifies thebeam by theprocessof stimulatedemissiondescribed

    above.Thismaterialcanbeofanystate:gas, liquid,solid,orplasma.Thegainmedium

    absorbs pump energy, which raises some electrons into higherenergy ("excited")

    quantumstates.Particlescaninteractwithlightbyeitherabsorbingoremittingphotons.

    Emissioncanbespontaneousorstimulated. Inthe lattercase,thephoton isemitted in

    thesamedirectionasthe lightthat ispassingby.Whenthenumberofparticles inone

    excited state exceeds the number of particles in some lowerenergy state, population

    inversion is achieved and the amount of stimulated emission due to light that passes

    through is largerthantheamountofabsorption.Hence,the light isamplified.By itself,

    this makes an optical amplifier. When an optical amplifier is placed inside a resonant

    opticalcavity,oneobtainsalaseroscillator.

  • 7/23/2019 Optoelectronic Devices Re-edited_p

    28/32

    28|P a g e

    4.3.3

    Populationinversion

    Apopulation inversionoccurswhenasystem (suchasagroupofatomsormolecules)

    existsinastatewithmoremembersinanexcitedstatethaninlowerenergystates.The

    productionofapopulation inversion isanecessary step in theworkingsofa standard

    laser.

    4.4 Someconditions

    1.

    Overall lightgain (amplification) shouldbegreater than1. Thegain inphotons

    per pass between the end plates must be larger than the transmission at the ends,

    scatteringfromimpurities,absorption,andotherlosses.

    2.

    Reflectorandoutputcouplershouldbeexactlyparalleltoeachother

    3.

    Distancebetweenreflectorandoutputcouplershouldbeintegralmultipleofhalf

    ofthewavelengthtohavecoherenceasmentionedinfigure20.

    Figure20

    Figure:resonantmodes

    5 SEMICONDUCTORLASERS

    Semiconductor lasers or laser diodes play an important part in our everyday lives by

    providingcheapandcompactsize lasers.Theyconsistofcomplexmultilayerstructures

    requiringnanometerscaleaccuracyandanelaboratedesign.

    5.1 PopulationInversion

    Whenpnjunctiondiodeisforwardbiased,thentherewillbeinjectionofelectronsinto

    theconductionbandalongnsideandproductionofmoreholesinvalencebandalongp

    sideofthejunction.Ifthereishighnumberofelectronsinconductionbandcomparable

  • 7/23/2019 Optoelectronic Devices Re-edited_p

    29/32

    29|P a g e

    tovalenceband, thenpopulation inversion isachieved.This isachieved throughheavy

    doping.

    5.2

    TheBasicSemiconductorLaser

    Tobuildabasicsemiconductorlaseritisrequiredtohaveheavilydopedpandnregions.

    Thefrontandbacksidesshouldbecompletelyflatandparalleltoeachother.ThefirstpnjunctionlaserswerebuiltinGaAs(infrared)andGaAsP(visible)materials.

    In choosing a material forjunction laser fabrication, it is necessary that electronhole

    recombination occur directly, rather than through trapping processes such as are

    dominantinSiorGe.Galliumarsenideisanexampleofsucha"direct"semiconductor.

    Figure21

    Figure:simplesemiconductorlaser

    5.3

    MaterialsforSemiconductorLasers

    In principle, a diode laser can be produced from any directbandgap semiconductor.

    However,efficient,electrically injectedlasersrequirepreciselydopedlayeredstructures

    ofvaryingalloys that areall latticematched tooneanotherand toa substrate.These

    requirements place some limitations on the available materials. Commercial

    semiconductorlasersareallIIIVcompoundsalloysofGroupIIIandGroupVelements

    intheperiodictable.Therearetwomajorcommercialfamiliesofsemiconductorlasers

    those grown on GaAs substrates and those grown on InP substrates.

    GaAsbasedlasersareformedfromalloysofGa,Al,InandAs,P,grown incompositions

    latticematchedtoGaAs.Theycanemitatanywavelengthfromabout630toabout1100

    nm,themostcommoncommercialonesbeing635,650,680and780nm,whichareused

    inopticalstorageanddisplays;785,808,830,920and940nm,whichareusedforvarious

  • 7/23/2019 Optoelectronic Devices Re-edited_p

    30/32

    30|P a g e

    pumping and printing applications; and 980 nm, which is used for pumping fiber

    amplifiersintelecommunications.[3]

    InPbasedlasersareformedfromalloysofthesameconstituents,Ga,Al,InandAs,P,but

    incompositionsthatarelatticematchedtoInP.Theyrangefromabout1100to2000nm,

    butbyfarthemostcommonareemittersat1300,1480and1550nm,whichareusedinfiberopticcommunications.

    Longer wavelengths out to about 10 m are possible by incorporating other

    materials (e.g., Sb) into the alloy and/or by using different substrates. Shorter

    wavelengths, down to about 400 nm, have been demonstrated by growing GaN and

    relatedalloys,andcommerciallasersinthenearUVareunderdevelopment.

    5.4

    LatestResearches

    5.4.1 ENERGYEFFICIENTANDENERGYPROPORTIONALOPTICALINTERCONNECTSFOR

    MULTICORE

    PROCESSORS:

    DRIVING

    THE

    NEED

    FOR

    ON

    CHIP

    SOURCES

    [7]

    Thispublication focusesontheenergyefficiencyofoptical interconnects formulticore

    processorsandthenumberofcoresare increasingtoovercometheheatingdissipation

    and data synchronization. It allows more efficient parallel processing. Quadcore

    processors are common in market and processors having 80 cores are high end. It is

    expectedthatnumberofcoreswillincreaseinfuture.Theglobalonchipcommunication

    betweenprocessorcoresconsumesalargeportionofthetotalpowerbudget.

    Opticallinkshaveallbutreplacedelectricallinksfortelecommunicationsapplicationsand

    are replacing thedatacommunications interconnect links. It isexpected that toenable

    high speed data communications within the chips, optics will penetrate into these

    modules. This is only possible when optical interconnects will outperform electricalinterconnectsintermsofbandwidthdensity,energyefficiencyandlatency.

    Studiesbasedonthecurrentstateofthetechnologyconcludethatopticalinterconnects

    arenotafeasibleoptionforonchipcommunications,dueto lackoflatencyandenergy

    consumption improvements, or not even offer enough bandwidth for offchip

    communications,when memorybandwidth is included. Looking forward,however, the

    22nm technology node seems promising for optical interconnects. In this node the

    circuittransistorcapacitancesaresmallenoughtobedrivendirectlybyaphotodetector,

    thereby eliminating power hungry transimpedance amplifiers and hence greatly

    reducingthepowerconsumptionofthelink.

    Thispublicationcomparesanoffchipcomb laser, fibercoupledtothechipwithanon

    chipsinglewavelengthdistributedfeedback(DFB)laserarray.Byuseofsomegraphsand

    simulationsitconcludes:

    Coupling lossesofoffchipcomb lasersaregenerallyunderestimated, improving

    thecaseforonchiplasers;

  • 7/23/2019 Optoelectronic Devices Re-edited_p

    31/32

    31|P a g e

    Multipleonchiplasersallowforbetterenergyproportionality;

    Makingtheonchiplaserspartofthearchitecturedesignequationandpartofthe

    loaddistributiondesign,additionalpowersavingscanbeachieved;

    TheflexibilityofplacingonchipsourcesatanydesiredpositionintheNoClayout

    leadstoimprovedenergyefficiency.

  • 7/23/2019 Optoelectronic Devices Re-edited_p

    32/32

    32 | P a g e

    6 REFERENCES

    1.

    SOLID STATE ELECTRONIC DEVICES by Ben G. Streetman and Sanjay Kumar

    BanerjeetheUniversityofTexasatAustin

    2.

    wikipedia.org

    3. OPTOELECTRONIC SEMICONDUCTOR DEVICES Principals and Characteristics by

    IrinaStateikina

    4. howstuffworks.com

    5. INTRODUCTION TO OPTOELECTRONIC DEVICES (Lecture notes) by Dr. Jing Bai

    UniversityofMinnesotaDuluth

    6. ecee.colorado.edu

    7.

    MartijnJ.R.Heck,Member,IEEE,andJohnE.Bowers,Fellow,IEEE.Energy

    EfficientandEnergyProportionalOpticalInterconnectsforMultiCoreProcessors:

    DrivingtheNeedforOnChipSourcesIEEEJournalofSelectedTopicsInQuantum

    Electronics,Vol.20,no.4,July/August20148201012

    8.

    YikKhoonEe,StudentMember,IEEE,PisistKumnorkaew,RonaldA.Arif,Hua

    Tong,HongpingZhao,JamesF.Gilchrist,andNelsonTansu,Member,IEEE

    OptimizationofLightExtractionEfficiencyofIIINitrideLEDsWithSelfAssembled

    ColloidalBasedMicrolensesIEEEJournalofSelectedTopicsInQuantum

    Electronics,Vol.15,No.4,July/August2009

    9.

    XiaoHangLi,PeifenZhu,GuangyuLiu,JingZhang,RenboSong,YikKhoonEe,PisistKumnorkaew,JamesF.Gilchrist,andNelsonTansuLightExtraction

    EfficiencyEnhancementofIIINitrideLightEmittingDiodesbyUsing2DClose

    PackedTiO2MicrosphereArraysJournalofDisplayTechnology,Vol.9,NO.5,

    May2013

    10.

    AnandRamaswamy,StudentMember,IEEE,MollyPiels,StudentMember,IEEE,

    NobuhiroNunoya,Member,IEEE,TaoYin,Member,IEEE,andJohnE.Bowers,

    Fellow,IEEEHighPowerSiliconGermaniumPhotodiodesforMicrowavePhotonic

    ApplicationsIEEETransactionsonMicrowaveTheoryAndTechniques,Vol.58,

    NO.11,November2010

    11.

    DesignofPhotovoltaicSolarCellModelforStandaloneRenewableSystem,

    publishedinELEKTRO,2014,DateofConference:1920May2014.Link:

    http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6848903

    12.http://ocw.tudelft.nl/fileadmin/ocw/courses/SolarCells/res00018/!3620504e206a

    756e6374696f6e.pdf