Optimizing irrigation systems: Design, Operation ...

12
1 DR. MALLIKA NOCCO LAND, AIR, AND WATER RESOURCES- UC DAVIS www.IrrigationLab.com Optimizing irrigation systems: Design, Operation, & Maintenance OUTLINE IRRIGATION EFFICIENCY PRINCIPLES 1 OPTIMIZING IRRIGATION EFFICIENCY FOR PISTACHIO 2 SYSTEM DESIGN OPTIONS, BENEFITS, AND DRAWBACKS 3 WATER APPLICATION REQUIREMENTS 4 IRRIGATION SYSTEM EVALUATION 5 CONSERVATION IRRIGATION LAB 3 MAINTENANCE RECOMMENDATIONS 6

Transcript of Optimizing irrigation systems: Design, Operation ...

1

D R . M A L L I K A N O C C O

L A N D , A I R , A N D W A T E R R E S O U R C E S - U C D A V I S

www.IrrigationLab.com

Optimizing irrigation systems: Design, Operation, & Maintenance

OU

TLIN

E

I R R I G A T I O N E F F I C I E N C Y P R I N C I P L E S

1

O P T I M I Z I N G I R R I G A T I O N E F F I C I E N C Y F O R P I S T A C H I O

2

S Y S T E M D E S I G N O P T I O N S , B E N E F I T S , A N D D R A W B A C K S

3

W A T E R A P P L I C A T I O N R E Q U I R E M E N T S4

I R R I G A T I O N S Y S T E M E V A L U A T I O N5

C O N S E R V A T I O N I R R I G A T I O N L A B

3

M A I N T E N A N C E R E C O M M E N D A T I O N S6

2

I R R I G A T I O N L A B . C O M 4

Precision management and monitoring

Deficit Optimized Irrigation for cobenefits

Regenerative irrigation

Irrigation Efficiency Principles

Key concepts, definitions, relationships, and

calculations related to irrigation

efficiency, application, and distribution

uniformity

I R R I G A T I O N E F F I C I E N C Y P R I N C I P L E S

What is irrigation efficiency (IE)

C O N S E R V A T I O N I R R I G A T I O N L A B

6

πΌπΈπ΅π‘’π‘›π‘’π‘“π‘–π‘π‘–π‘Žπ‘™ π‘Šπ‘Žπ‘‘π‘’π‘Ÿ π‘ˆπ‘ π‘’π‘‡π‘œπ‘‘π‘Žπ‘™ 𝐴𝑝𝑝𝑙𝑖𝑒𝑑 π‘Šπ‘Žπ‘‘π‘’π‘Ÿ

3

I R R I G A T I O N E F F I C I E N C Y P R I N C I P L E S

What is beneficial plant water use?

C O N S E R V A T I O N I R R I G A T I O N L A B

7

β€’ Transpirationβ€’ Nutrients, amendments, pest, weed inputsβ€’ Leaching saltsβ€’ Frost protection β€’ Canopy cooling

I R R I G A T I O N E F F I C I E N C Y P R I N C I P L E S

Where are the inefficiencies in the system?

C O N S E R V A T I O N I R R I G A T I O N L A B

8

β€’ Leakage from pipes, canals, ditches, valves/gatesβ€’ Operational losses, over‐running irrigationβ€’ Soil evaporation, percolation, runoff, wind lossesβ€’ Pipe flushing, screen cleaning, filter maintenance (unavoidable)

β€’ Chemical injection to clean pipes and hoses

I R R I G A T I O N E F F I C I E N C Y P R I N C I P L E S

Why increase irrigation efficiency?

C O N S E R V A T I O N I R R I G A T I O N L A B

9

β€’ Cost of water and energyβ€’ Grow more acreage with water supplyβ€’ Disease management and plant healthβ€’ Stewardship and compliance with environmental regulations (e.g. ILRP, SMGA, AB 589)

4

Irrigation Efficiency vs. Application Efficiency

Application efficiency is event-based, while

irrigation efficiency is based on the whole

irrigation season. These terms are related,

but not interchangeable.

C O N S E R V A T I O N I R R I G A T I O N L A B

1 0

πΌπΈπ΅π‘’π‘›π‘’π‘“π‘–π‘π‘–π‘Žπ‘™ π‘Šπ‘Žπ‘‘π‘’π‘Ÿ π‘ˆπ‘ π‘’π‘‡π‘œπ‘‘π‘Žπ‘™ 𝐴𝑝𝑝𝑙𝑖𝑒𝑑 π‘Šπ‘Žπ‘‘π‘’π‘Ÿ

π΄πΈπ‘Šπ‘Žπ‘‘π‘’π‘Ÿ π‘ π‘‘π‘œπ‘Ÿπ‘’π‘‘ 𝑖𝑛 π‘Ÿπ‘œπ‘œπ‘‘ π‘§π‘œπ‘›π‘’π‘‡π‘œπ‘‘π‘Žπ‘™ 𝐴𝑝𝑝𝑙𝑖𝑒𝑑 π‘Šπ‘Žπ‘‘π‘’π‘Ÿ

Application Efficiency is event‐basedIrrigation Efficiency is seasonal

Irrigation Efficiency vs. Distribution Uniformity

Distribution uniformity (DU) provides

information about how evenly irrigation

is being applied across a given area.

C O N S E R V A T I O N I R R I G A T I O N L A B

1 1

πΌπΈπ΅π‘’π‘›π‘’π‘“π‘–π‘π‘–π‘Žπ‘™ π‘Šπ‘Žπ‘‘π‘’π‘Ÿ π‘ˆπ‘ π‘’π‘‡π‘œπ‘‘π‘Žπ‘™ 𝐴𝑝𝑝𝑙𝑖𝑒𝑑 π‘Šπ‘Žπ‘‘π‘’π‘Ÿ

π·π‘ˆπ΄π‘£π‘’π‘Ÿπ‘Žπ‘”π‘’ πΉπ‘™π‘œπ‘€ πΏπ‘œπ‘€π‘’π‘ π‘‘ 25% πΈπ‘šπ‘–π‘‘π‘‘π‘’π‘Ÿπ‘ 

π΄π‘£π‘’π‘Ÿπ‘Žπ‘”π‘’ πΉπ‘™π‘œπ‘€ 𝐴𝑙𝑙 πΈπ‘šπ‘–π‘‘π‘‘π‘’π‘Ÿπ‘ 

Irrigation Efficiency vs. Distribution Uniformity

C O N S E R V A T I O N I R R I G A T I O N L A B

1 2

Poor DU & Poor IE  Good DU, Poor IE Good DU & Good IE

Lightle, 2019

5

Optimizing pistachio irrigation efficiency

System design, installation,

maintenance, evaluation, and

strategic scheduling

How can we ensure optimal irrigation efficiency?

C O N S E R V A T I O N I R R I G A T I O N L A B

1 4

System Design & Installation  Maintenance & Evaluation Strategic Scheduling

Lightle, 2019 CVWD, 2018Schwankl, 2016

System design considerations

Microirrigation definition, system

design options, benefits, and

drawbacks

6

What is microirrigation?Can be microsprinkler,

surface drip, subsurface

drip system, but same basic

design to maximize

application uniformity &

control of

timing/amount

C O N S E R V A T I O N I R R I G A T I O N L A B

1 6

Components of a microirrigation system

Schwankl, 2016

System Design Options

M i c r o s p r i n k l e r & F a n j e t

D r i p S u b s u r f a c e d r i pS i n g l e v s . D u a l

D r i p l i n e s

C O N S E R V A T I O N I R R I G A T I O N L A B

1 7

Zaccaria, 2018

S Y S T E M D E S I G N C O N S I D E R AT I O N S

Microsprinkler & Fan Jet

C O N S E R V A T I O N I R R I G A T I O N L A B

1 8

β€’ Larger wetting zone (+)β€’ Easy to inspect/maintain (+)β€’ Higher application rates (+)β€’ Weed growth (‐)β€’ Expensive (‐)β€’ Wind/evaporative losses (‐)

7

S Y S T E M D E S I G N C O N S I D E R AT I O N S

Drip irrigation system

C O N S E R V A T I O N I R R I G A T I O N L A B

1 9

β€’ Economical (+)β€’ Easier maintenance (+)β€’ Limited weed growth (+)β€’ Small wetting zone (‐)β€’ Susceptible to clogs (‐)

S Y S T E M D E S I G N C O N S I D E R AT I O N S

Subsurface drip irrigation system

C O N S E R V A T I O N I R R I G A T I O N L A B

2 0

β€’ Minimize soil evaporation (+)β€’ Flexibility of irrigation timing (+)β€’ Limited weed growth (+)β€’ Protected from above ground damage (+)β€’ Challenging to inspect/maintenance β€’ Small wetting zone (‐)β€’ Root intrusion (‐)β€’ Animal damage (‐)β€’ Expensive for herbicide protection (‐)

S Y S T E M D E S I G N C O N S I D E R AT I O N S

Dual Driplines?

C O N S E R V A T I O N I R R I G A T I O N L A B

2 1

β€’ Larger wetting zone (+)β€’ Increase application rate (+)β€’ Challenging to inspect/maintenance (‐)β€’ Increased energy costs (‐)β€’ Increased fixed costs (‐) 

8

Water Application Requirements

Calculating water requirements,

example calcs

W AT E R A P P L I C AT I O N R E Q U I R E M E N T S

Water Application Calculation

C O N S E R V A T I O N I R R I G A T I O N L A B

2 3

System Application Efficiency Fraction

Drip 0.85-0.90

Micro-sprinkler 0.80-0.90

Sprinkler 0.70-0.90

W AT E R A P P L I C AT I O N R E Q U I R E M E N T S

Example Water Calculation

C O N S E R V A T I O N I R R I G A T I O N L A B

2 4

Example 2: Max ETDaily for 7 days =  0.4” => Applied Water for 3 days= 2.8”/0.85 = 3.3”

Applied Water

Example 1: Applied Water (season) = 40”/0.85 = 47”

9

W AT E R A P P L I C AT I O N R E Q U I R E M E N T S

Set time and application rate for different soils

C O N S E R V A T I O N I R R I G A T I O N L A B

2 5

SystemAppl. Rate

(in./hr)

Gravity 0.43

Drip 0.03

Micro-sprinkler 0.05

Sprinkler 0.12

RateIntakeSoil

D

RateAppl

DT MAXGMAXGIRR

.

Many more detailed example calculationsW A T E R A P P L I C A T I O N R E Q U I R E M E N T S

C O N S E R V A T I O N I R R I G A T I O N L A B

2 6

https://anrcatalog.ucanr.edu/pdf/8571.pdf

Irrigation System Evaluation

Calculating water requirements,

factoring in soil variability & salinity,

calculating energy requirements,

example calcs

10

How do we evaluate our irrigation system function?

C O N S E R V A T I O N I R R I G A T I O N L A B

2 8

Distribution Uniformity Application Rate Troubleshooting

I R R I G AT I O N S Y S T E M E VA L U AT I O N

Distribution Uniformity

C O N S E R V A T I O N I R R I G A T I O N L A B

2 9

π·π‘ˆπ΄π‘£π‘’π‘Ÿπ‘Žπ‘”π‘’ πΉπ‘™π‘œπ‘€ πΏπ‘œπ‘€π‘’π‘ π‘‘ 25% πΈπ‘šπ‘–π‘‘π‘‘π‘’π‘Ÿπ‘ 

π΄π‘£π‘’π‘Ÿπ‘Žπ‘”π‘’ πΉπ‘™π‘œπ‘€ 𝐴𝑙𝑙 πΈπ‘šπ‘–π‘‘π‘‘π‘’π‘Ÿπ‘ 

I R R I G AT I O N S Y S T E M E VA L U AT I O N

Distribution Uniformity Example

C O N S E R V A T I O N I R R I G A T I O N L A B

3 0

The total number of emitters measured: 16 => 25% * 16 emitters = 4 emitters in the lowest 25%

The average flow of all emitters measured: 0.97 gph

The average flow of the lowest 25% emitters measured: 0.87 gph

The Distribution Uniformity = 0.87/0.97 = 90%

11

I R R I G AT I O N S Y S T E M E VA L U AT I O N

What contributes to Distribution Uniformity?

C O N S E R V A T I O N I R R I G A T I O N L A B

3 1

β€’ Pressure differences between emittersβ€’ Unequal spacing (emitters and/or plants)

β€’ Unequal drainage of emittersβ€’ Other (clogging, unequal wear)

Additional Distribution Uniformity Resources I R R I G A T I O N S Y S T E M E V A L U A T I O N

C O N S E R V A T I O N I R R I G A T I O N L A B

3 2

https://anrcatalog.ucanr.edu/pdf/8571.pdf

Clogging causes and preventionI R R I G A T I O N S Y S T E M E V A L U A T I O N

C O N S E R V A T I O N I R R I G A T I O N L A B

3 3

http://micromaintain.ucanr.edu

12

E N S U R I N G O P T I M A L I R R I G A T I O N S Y S T E M F U N C T I O N

Maintenance Recommendations

0 1

Professional system evaluations 2-3

years; DU decreases over time

0 2

Know your application rate, time to run applications,

and DU

0 3

Check pressure and flow rate of your system regularly, flush hoses often,

clean filters, chemigation, fix

breaks/leaks

C O N S E R V A T I O N I R R I G A T I O N L A B

3 4

Thanks for listening

I would love to hear from you if you have

questions or comments!

[email protected] // www.irrigationlab.com

// @mallika_nocco

UC Davis

Special thank you to Dr. Daniele Zaccaria for

resources and photos