Optimized Domain Desomposition Methodes with HPDDM Libraryhecht/ftp/ff++days/2016/pdf/RH.pdf ·...

69
Optimized Domain Desomposition Methodes with HPDDM Library Ryadh Haferssas 1 Pierre Jolivet 2 Fr´ ed´ eric Nataf 1 2 IRIT-CNRS 1 LJLL-CNRS-INRIA(Alpines) December 9, 2016

Transcript of Optimized Domain Desomposition Methodes with HPDDM Libraryhecht/ftp/ff++days/2016/pdf/RH.pdf ·...

  • Optimized Domain Desomposition Methodes withHPDDM Library

    Ryadh Haferssas 1 Pierre Jolivet 2 Frédéric Nataf 1

    2IRIT-CNRS

    1LJLL-CNRS-INRIA(Alpines)

    December 9, 2016

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    1 Introduction to DDM & improvements

    2 Fields of Application & Numerical Results

    3 Recycling Krylov and Application to Navier-Stokes

    4 Conclusion

    R.H ODDM in HPDDM 2/ 31

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    Outline

    1 Introduction to DDM & improvements

    2 Fields of Application & Numerical Results

    3 Recycling Krylov and Application to Navier-Stokes

    4 Conclusion

    R.H ODDM in HPDDM 3/ 31

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    Why Domain Decomposition Methods ?

    Find u P Vh such that : @v P VhaΩpu, vq “ `pvq

    ùñ Au “ F P Rn.

    Darcy aΩpu, vq “ż

    κ∇u ¨ ∇ v dx

    Elasticty aΩpu, vq “ż

    C : εpuq : εpvq dx

    Purpose

    Solve AU “ F . Achieve robustness with regard to the irregularity of thecoefficient distribution

    Achieve a strong and weak scalability when solving with thousands ofprocessors

    Tools

    A good mathematical foundation theory & HPDDM Library: a parallelframework

    R.H ODDM in HPDDM 4/ 31

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    Why Domain Decomposition Methods ?

    Find u P Vh such that : @v P VhaΩpu, vq “ `pvq

    ùñ Au “ F P Rn.

    Darcy aΩpu, vq “ż

    κ∇u ¨ ∇ v dx

    Elasticty aΩpu, vq “ż

    C : εpuq : εpvq dx

    Purpose

    Solve AU “ F . Achieve robustness with regard to the irregularity of thecoefficient distribution

    Achieve a strong and weak scalability when solving with thousands ofprocessors

    Tools

    A good mathematical foundation theory & HPDDM Library: a parallelframework

    R.H ODDM in HPDDM 4/ 31

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    Why Domain Decomposition Methods ?

    Find u P Vh such that : @v P VhaΩpu, vq “ `pvq

    ùñ Au “ F P Rn.

    Darcy aΩpu, vq “ż

    κ∇u ¨ ∇ v dx

    Elasticty aΩpu, vq “ż

    C : εpuq : εpvq dx

    Purpose

    Solve AU “ F . Achieve robustness with regard to the irregularity of thecoefficient distribution

    Achieve a strong and weak scalability when solving with thousands ofprocessors

    Tools

    A good mathematical foundation theory & HPDDM Library: a parallelframework

    R.H ODDM in HPDDM 4/ 31

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    Why Domain Decomposition Methods ?

    Find u P Vh such that : @v P VhaΩpu, vq “ `pvq

    ùñ Au “ F P Rn.

    Darcy aΩpu, vq “ż

    κ∇u ¨ ∇ v dx

    Elasticty aΩpu, vq “ż

    C : εpuq : εpvq dx

    Purpose

    Solve AU “ F . Achieve robustness with regard to the irregularity of thecoefficient distribution

    Achieve a strong and weak scalability when solving with thousands ofprocessors

    Tools

    A good mathematical foundation theory & HPDDM Library: a parallelframework

    R.H ODDM in HPDDM 4/ 31

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    Why Domain Decomposition Methods ?

    Find u P Vh such that : @v P VhaΩpu, vq “ `pvq

    ùñ Au “ F P Rn.

    Darcy aΩpu, vq “ż

    κ∇u ¨ ∇ v dx

    Elasticty aΩpu, vq “ż

    C : εpuq : εpvq dx

    Purpose

    Solve AU “ F . Achieve robustness with regard to the irregularity of thecoefficient distribution

    Achieve a strong and weak scalability when solving with thousands ofprocessors

    Tools

    A good mathematical foundation theory & HPDDM Library: a parallelframework

    R.H ODDM in HPDDM 4/ 31

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    Why Domain Decomposition Methods ?

    How can we solve a large sparse system Au “ F P Rn ?

    Memory consumptionRobustnessParallelizable

    Direct Methods

    Iterative Methods Memory consumptionRobustnessParallelizable

    DDM “Hybrid” methods

    R.H ODDM in HPDDM 5/ 31

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    Why Domain Decomposition Methods ?

    How can we solve a large sparse system Au “ F P Rn ?

    Memory consumptionRobustnessParallelizable

    Direct Methods

    Iterative Methods Memory consumptionRobustnessParallelizable

    DDM “Hybrid” methods

    R.H ODDM in HPDDM 5/ 31

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    Original Schwarz DDM (H.A. Schwarz, 1870)

    #

    ´∆u “ 0 in Ωu “ g on BΩ

    ùñ Au “ F P Rn.⌦1⌦2

    Given pun1 , un2 q, find pun`11 , un`12 q such thatˇ

    ˇ

    ˇ

    ˇ

    ˇ

    ˇ

    ˇ

    ´∆un`11 “ 0 in Ω1un`11 “ g on BΩ1 X BΩun`11 “ un2 on ΩzΩ1

    ˇ

    ˇ

    ˇ

    ˇ

    ˇ

    ˇ

    ˇ

    ´∆un`12 “ 0 in Ω2un`12 “ g on BΩ2 X BΩun`12 “ un`11 on ΩzΩ2

    [Martin J. Gander and Wanner 2014]

    R.H ODDM in HPDDM 6/ 31

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    Original Schwarz DDM (H.A. Schwarz, 1870)

    #

    ´∆u “ 0 in Ωu “ g on BΩ

    ùñ Au “ F P Rn.⌦1⌦2

    Given pun1 , un2 q, find pun`11 , un`12 q such thatˇ

    ˇ

    ˇ

    ˇ

    ˇ

    ˇ

    ˇ

    ´∆un`11 “ 0 in Ω1un`11 “ g on BΩ1 X BΩun`11 “ un2 on ΩzΩ1

    ˇ

    ˇ

    ˇ

    ˇ

    ˇ

    ˇ

    ˇ

    ´∆un`12 “ 0 in Ω2un`12 “ g on BΩ2 X BΩun`12 “ un`11 on ΩzΩ2

    [Martin J. Gander and Wanner 2014]

    R.H ODDM in HPDDM 6/ 31

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    Schwarz DDM Notations & definitions

    From finite elements spaces :

    Global Vh “ span

    φk : k “ 1, . . . , n(

    ÑN

    Local VhpΩiq “ span!

    φk|Ωi : mespsupppφkqq X Ωi ‰ 0)

    ÑNi

    N “Nď

    i“1Ni

    R.H ODDM in HPDDM 7/ 31

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    Schwarz DDM Notations & definitions

    From finite elements spaces :

    Global Vh “ span

    φk : k “ 1, . . . , n(

    ÑN

    Local VhpΩiq “ span!

    φk|Ωi : mespsupppφkqq X Ωi ‰ 0)

    ÑNi

    N “Nď

    i“1Ni

    R.H ODDM in HPDDM 7/ 31

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    Interpolation Operators :

    Global to Local Ri : R#N ÝÑ R#Ni (Restriction)Local to Global RTi : R

    ᵀi : R#Ni ÝÑ R#N (Prolongation)

    Duplicated unknowns are coupled via apartition of unity:

    Di : R#Ni ÝÑ R#NiNÿ

    i“1Rᵀi Di Ri “ Id.

    Ω1 Ω21

    2

    1

    2

    Then

    un`1 “Nÿ

    i“1Rᵀi Diu

    n`1i

    R.H ODDM in HPDDM 8/ 31

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    Interpolation Operators :

    Global to Local Ri : R#N ÝÑ R#Ni (Restriction)Local to Global RTi : R

    ᵀi : R#Ni ÝÑ R#N (Prolongation)

    Duplicated unknowns are coupled via apartition of unity:

    Di : R#Ni ÝÑ R#NiNÿ

    i“1Rᵀi Di Ri “ Id.

    Ω1 Ω21

    2

    1

    2

    Then

    un`1 “Nÿ

    i“1Rᵀi Diu

    n`1i

    R.H ODDM in HPDDM 8/ 31

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    To solve Au “ F Schwarz methods can be viewed as preconditioners for a fixedpoint algorithm:

    un`1 “ un ` M´1pf ´ Aunq.

    Where the Schwarz preconditioner can be

    Classical :

    M´1ASM,1 :“Nř

    i“1Rᵀi Ai

    ´1Ri with Ai “ RiARᵀi [Toselli and Widlund 2005]

    M´1RAS,1 :“Nř

    i“1Rᵀi DiA

    ´1i Ri [Cai and Sarkis 1999]

    R.H ODDM in HPDDM 9/ 31

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    To solve Au “ F Schwarz methods can be viewed as preconditioners for a fixedpoint algorithm:

    un`1 “ un ` M´1pf ´ Aunq.

    Where the Schwarz preconditioner can be

    Classical :

    M´1ASM,1 :“Nř

    i“1Rᵀi Ai

    ´1Ri with Ai “ RiARᵀi [Toselli and Widlund 2005]

    M´1RAS,1 :“Nř

    i“1Rᵀi DiA

    ´1i Ri [Cai and Sarkis 1999]

    R.H ODDM in HPDDM 9/ 31

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    P-L. Lions algorithm

    ´∆un`11 “ f in Ω1un`11 “ 0 on BΩ1 X BΩ

    ´

    BBn1 ` α

    ¯

    un`11 “´

    BBn1 ` α

    ¯

    un2 on BΩ1 X Ω2 ,

    and´∆un`11 “ f in Ω2

    un`11 “ 0 on BΩ2 X BΩ´

    BBn2 ` α

    ¯

    un`12 “´

    BBn2 ` α

    ¯

    un1 on BΩ2 X Ω1

    Optimized :

    M´1ORAS,1 :“Nř

    i“1Rᵀi DiBi

    ´1Ri [St-Cyr, M. J. Gander, and Thomas 2007]

    M´1SORAS,1 :“Nř

    i“1Rᵀi DiBi

    ´1DiRi [Haferssas, Jolivet, and Nataf 2015]

    R.H ODDM in HPDDM 10 / 31

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    P-L. Lions algorithm

    ´∆un`11 “ f in Ω1un`11 “ 0 on BΩ1 X BΩ

    ´

    BBn1 ` α

    ¯

    un`11 “´

    BBn1 ` α

    ¯

    un2 on BΩ1 X Ω2 ,

    and´∆un`11 “ f in Ω2

    un`11 “ 0 on BΩ2 X BΩ´

    BBn2 ` α

    ¯

    un`12 “´

    BBn2 ` α

    ¯

    un1 on BΩ2 X Ω1

    Optimized :

    M´1ORAS,1 :“Nř

    i“1Rᵀi DiBi

    ´1Ri [St-Cyr, M. J. Gander, and Thomas 2007]

    M´1SORAS,1 :“Nř

    i“1Rᵀi DiBi

    ´1DiRi [Haferssas, Jolivet, and Nataf 2015]

    R.H ODDM in HPDDM 10 / 31

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    P-L. Lions algorithm

    ´∆un`11 “ f in Ω1un`11 “ 0 on BΩ1 X BΩ

    ´

    BBn1 ` α

    ¯

    un`11 “´

    BBn1 ` α

    ¯

    un2 on BΩ1 X Ω2 ,

    and´∆un`11 “ f in Ω2

    un`11 “ 0 on BΩ2 X BΩ´

    BBn2 ` α

    ¯

    un`12 “´

    BBn2 ` α

    ¯

    un1 on BΩ2 X Ω1

    Optimized :

    M´1ORAS,1 :“Nř

    i“1Rᵀi DiBi

    ´1Ri [St-Cyr, M. J. Gander, and Thomas 2007]

    M´1SORAS,1 :“Nř

    i“1Rᵀi DiBi

    ´1DiRi [Haferssas, Jolivet, and Nataf 2015]

    R.H ODDM in HPDDM 10 / 31

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    One-Level methods are not scalable

    Figure: 2D domain partitioned with METIS

    AS RAS ORAS SORAS# DOFs # subdom # iterations # iterations # iterations # iterations

    66703 16 140 140 96 57130433 32 245 216 146 109266812 64 383 312 245 203541838 128 566 460 480 398

    Table: 2D Elasticity: number of GMRES iterations for compressible case with E “ 107and ν “ 0.3

    R.H ODDM in HPDDM 11 / 31

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    One-Level methods are not scalable

    Figure: 2D domain partitioned with METIS

    AS RAS ORAS SORAS# DOFs # subdom # iterations # iterations # iterations # iterations

    66703 16 140 140 96 57130433 32 245 216 146 109266812 64 383 312 245 203541838 128 566 460 480 398

    Table: 2D Elasticity: number of GMRES iterations for compressible case with E “ 107and ν “ 0.3

    R.H ODDM in HPDDM 11 / 31

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    Two Level Domain Decomposition Methods

    Given

    VH :“ spanpZq

    ó

    RH “ Zᵀ : R#N ÝÑ R#Z

    E :“ RHARᵀHlooooooomooooooon

    coarse problem, E much smaller than A

    Enrich the one level preconditioner with Z (ie Q “ RᵀHE´1RH)

    :

    M´12,AD :“ Q ` M´1

    M´12,A´DEF1 :“ M´1pI ´ AQq ` Q

    M´12,A´DEF2 :“ pI ´ QAqM´1 ` Q [Tang, Nabben, Vuik, and Erlangga 2009]

    M´12,BNN :“ pI ´ QAqM´1pI ´ AQq ` Q [Mandel 1992]

    what does the space VH contain?

    R.H ODDM in HPDDM 12 / 31

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    Two Level Domain Decomposition Methods

    Given

    VH :“ spanpZq

    ó

    RH “ Zᵀ : R#N ÝÑ R#Z

    E :“ RHARᵀHlooooooomooooooon

    coarse problem, E much smaller than A

    Enrich the one level preconditioner with Z (ie Q “ RᵀHE´1RH) :

    M´12,AD :“ Q ` M´1

    M´12,A´DEF1 :“ M´1pI ´ AQq ` Q

    M´12,A´DEF2 :“ pI ´ QAqM´1 ` Q [Tang, Nabben, Vuik, and Erlangga 2009]

    M´12,BNN :“ pI ´ QAqM´1pI ´ AQq ` Q [Mandel 1992]

    what does the space VH contain?

    R.H ODDM in HPDDM 12 / 31

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    Two Level Domain Decomposition Methods

    Given

    VH :“ spanpZq

    ó

    RH “ Zᵀ : R#N ÝÑ R#Z

    E :“ RHARᵀHlooooooomooooooon

    coarse problem, E much smaller than A

    Enrich the one level preconditioner with Z (ie Q “ RᵀHE´1RH) :

    M´12,AD :“ Q ` M´1

    M´12,A´DEF1 :“ M´1pI ´ AQq ` Q

    M´12,A´DEF2 :“ pI ´ QAqM´1 ` Q [Tang, Nabben, Vuik, and Erlangga 2009]

    M´12,BNN :“ pI ´ QAqM´1pI ´ AQq ` Q [Mandel 1992]

    what does the space VH contain?

    R.H ODDM in HPDDM 12 / 31

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    Two Level Domain Decomposition Methods

    Given

    VH :“ spanpZq

    ó

    RH “ Zᵀ : R#N ÝÑ R#Z

    E :“ RHARᵀHlooooooomooooooon

    coarse problem, E much smaller than A

    Enrich the one level preconditioner with Z (ie Q “ RᵀHE´1RH) :

    M´12,AD :“ Q ` M´1

    M´12,A´DEF1 :“ M´1pI ´ AQq ` Q

    M´12,A´DEF2 :“ pI ´ QAqM´1 ` Q [Tang, Nabben, Vuik, and Erlangga 2009]

    M´12,BNN :“ pI ´ QAqM´1pI ´ AQq ` Q [Mandel 1992]

    what does the space VH contain?

    R.H ODDM in HPDDM 12 / 31

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    Two Level Domain Decomposition Methods

    Given

    VH :“ spanpZq

    ó

    RH “ Zᵀ : R#N ÝÑ R#Z

    E :“ RHARᵀHlooooooomooooooon

    coarse problem, E much smaller than A

    Enrich the one level preconditioner with Z (ie Q “ RᵀHE´1RH) :

    M´12,AD :“ Q ` M´1

    M´12,A´DEF1 :“ M´1pI ´ AQq ` Q

    M´12,A´DEF2 :“ pI ´ QAqM´1 ` Q [Tang, Nabben, Vuik, and Erlangga 2009]

    M´12,BNN :“ pI ´ QAqM´1pI ´ AQq ` Q [Mandel 1992]

    what does the space VH contain?

    R.H ODDM in HPDDM 12 / 31

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    Two Level Domain Decomposition Methods

    Given

    VH :“ spanpZq

    ó

    RH “ Zᵀ : R#N ÝÑ R#Z

    E :“ RHARᵀHlooooooomooooooon

    coarse problem, E much smaller than A

    Enrich the one level preconditioner with Z (ie Q “ RᵀHE´1RH) :

    M´12,AD :“ Q ` M´1

    M´12,A´DEF1 :“ M´1pI ´ AQq ` Q

    M´12,A´DEF2 :“ pI ´ QAqM´1 ` Q [Tang, Nabben, Vuik, and Erlangga 2009]

    M´12,BNN :“ pI ´ QAqM´1pI ´ AQq ` Q [Mandel 1992]

    what does the space VH contain?

    R.H ODDM in HPDDM 12 / 31

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    GenEO I approach to build VH

    Find the eigenpairs pλi,k, Ui,kq

    ANi Ui,k “ λi,kDiAiDiUi,k

    ˇ

    ˇ

    ˇ

    ˇ

    ˇ

    Solved by ARPACK

    (Concurrently)

    With :

    ANi local matrix, resulting from the local bilinear form,with Neumann boundary condition on the interfaces.

    Ri,0 : Ωi ÝÑ Ω˝i “Ť

    j‰ipΩi

    Ş

    Ωjq a restriction operator.

    Choose a number of eigenmodes τi for each subdomain then define

    Wi “ rDiUi,1, DiUi,2, . . . , DiUi,τis

    FinallyZ “ rW1,W2, . . . ,WN s

    R.H ODDM in HPDDM 13 / 31

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    GenEO I approach to build VH

    Find the eigenpairs pλi,k, Ui,kq

    ANi Ui,k “ λi,kDiAiDiUi,k

    ˇ

    ˇ

    ˇ

    ˇ

    ˇ

    Solved by ARPACK

    (Concurrently)

    With :

    ANi local matrix, resulting from the local bilinear form,with Neumann boundary condition on the interfaces.

    Ri,0 : Ωi ÝÑ Ω˝i “Ť

    j‰ipΩi

    Ş

    Ωjq a restriction operator.

    Choose a number of eigenmodes τi for each subdomain then define

    Wi “ rDiUi,1, DiUi,2, . . . , DiUi,τis

    FinallyZ “ rW1,W2, . . . ,WN s

    R.H ODDM in HPDDM 13 / 31

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    GenEO I approach to build VH

    Find the eigenpairs pλi,k, Ui,kq

    ANi Ui,k “ λi,kDiAiDiUi,k

    ˇ

    ˇ

    ˇ

    ˇ

    ˇ

    Solved by ARPACK

    (Concurrently)

    With :

    ANi local matrix, resulting from the local bilinear form,with Neumann boundary condition on the interfaces.

    Ri,0 : Ωi ÝÑ Ω˝i “Ť

    j‰ipΩi

    Ş

    Ωjq a restriction operator.

    Choose a number of eigenmodes τi for each subdomain then define

    Wi “ rDiUi,1, DiUi,2, . . . , DiUi,τis

    FinallyZ “ rW1,W2, . . . ,WN s

    R.H ODDM in HPDDM 13 / 31

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    Theoretical result for GenEO I

    Theorem (Spillane, Dolean, Hauret, Nataf, Pechstein, Scheichl)

    If for all j: 0 ă λj,mj`1 ă 8:

    κpM´1AS,2Aq ď p1 ` k0q”

    2 ` k0 p2k0 ` 1q´

    1 ` τ¯ı

    where :

    k0 the maximum multiplicity of the interaction between subdomains.

    Parameter τ can be chosen arbitrarily small at the expense of a largecoarse space.

    [Spillane et al. 2014]

    R.H ODDM in HPDDM 14 / 31

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    ORAS: Optimized RAS

    Optimized RAS :

    P.L. Lions algorithm at the continuous level (partial differential equation)

    Algebraic formulation for overlapping subdomainsñ Let Bi be the matrix of the Robin subproblem in each subdomain 1 ď i ď N ,define M´1ORAS :“

    řNi“1 R

    Ti DiB

    ´1i Ri ,

    [St-Cyr, M. J. Gander, and Thomas 2007]

    Symmetric variant M´1SORAS,1 :“Nř

    i“1Rᵀi DiBi

    ´1DiRi

    Adaptive Coarse space with prescribed targeted convergence rateñ ???

    R.H ODDM in HPDDM 15 / 31

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    ORAS: Optimized RAS

    Optimized RAS :

    P.L. Lions algorithm at the continuous level (partial differential equation)

    Algebraic formulation for overlapping subdomains

    ñ Let Bi be the matrix of the Robin subproblem in each subdomain 1 ď i ď N ,define M´1ORAS :“

    řNi“1 R

    Ti DiB

    ´1i Ri ,

    [St-Cyr, M. J. Gander, and Thomas 2007]

    Symmetric variant M´1SORAS,1 :“Nř

    i“1Rᵀi DiBi

    ´1DiRi

    Adaptive Coarse space with prescribed targeted convergence rateñ ???

    R.H ODDM in HPDDM 15 / 31

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    ORAS: Optimized RAS

    Optimized RAS :

    P.L. Lions algorithm at the continuous level (partial differential equation)

    Algebraic formulation for overlapping subdomainsñ Let Bi be the matrix of the Robin subproblem in each subdomain 1 ď i ď N ,define M´1ORAS :“

    řNi“1 R

    Ti DiB

    ´1i Ri ,

    [St-Cyr, M. J. Gander, and Thomas 2007]

    Symmetric variant M´1SORAS,1 :“Nř

    i“1Rᵀi DiBi

    ´1DiRi

    Adaptive Coarse space with prescribed targeted convergence rateñ ???

    R.H ODDM in HPDDM 15 / 31

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    ORAS: Optimized RAS

    Optimized RAS :

    P.L. Lions algorithm at the continuous level (partial differential equation)

    Algebraic formulation for overlapping subdomainsñ Let Bi be the matrix of the Robin subproblem in each subdomain 1 ď i ď N ,define M´1ORAS :“

    řNi“1 R

    Ti DiB

    ´1i Ri ,

    [St-Cyr, M. J. Gander, and Thomas 2007]

    Symmetric variant M´1SORAS,1 :“Nř

    i“1Rᵀi DiBi

    ´1DiRi

    Adaptive Coarse space with prescribed targeted convergence rateñ ???

    R.H ODDM in HPDDM 15 / 31

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    ORAS: Optimized RAS

    Optimized RAS :

    P.L. Lions algorithm at the continuous level (partial differential equation)

    Algebraic formulation for overlapping subdomainsñ Let Bi be the matrix of the Robin subproblem in each subdomain 1 ď i ď N ,define M´1ORAS :“

    řNi“1 R

    Ti DiB

    ´1i Ri ,

    [St-Cyr, M. J. Gander, and Thomas 2007]

    Symmetric variant M´1SORAS,1 :“Nř

    i“1Rᵀi DiBi

    ´1DiRi

    Adaptive Coarse space with prescribed targeted convergence rateñ

    ???

    R.H ODDM in HPDDM 15 / 31

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    ORAS: Optimized RAS

    Optimized RAS :

    P.L. Lions algorithm at the continuous level (partial differential equation)

    Algebraic formulation for overlapping subdomainsñ Let Bi be the matrix of the Robin subproblem in each subdomain 1 ď i ď N ,define M´1ORAS :“

    řNi“1 R

    Ti DiB

    ´1i Ri ,

    [St-Cyr, M. J. Gander, and Thomas 2007]

    Symmetric variant M´1SORAS,1 :“Nř

    i“1Rᵀi DiBi

    ´1DiRi

    Adaptive Coarse space with prescribed targeted convergence rateñ ???

    R.H ODDM in HPDDM 15 / 31

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    SORAS-GenEO II approach to build VHFind the eigenpairs pλi,k, Ui,kq

    ANi Ui,k “ λi,kBiUi,k

    Find the eigenpairs pµi,k, Vi,kq

    BiVi,k “ µi,kDiAiDiVi,k

    ˇ

    ˇ

    ˇ

    ˇ

    ˇ

    Solved by ARPACK

    (Concurrently)

    where :

    Bi the local matrix, resulting from the local bilinear form withOptimized interface conditions

    Choose τi and γi for each subdomain then define

    Wi “ rDiUi,1 DiUi,2 . . . DiUi,τis And Hi “ rDiVi,1 DiVi,2 . . . DiVi,γis

    Zτ “ rW1 W2 . . . WN s And Zγ “ rH1 H2 . . . HN s

    Z “ rZτ Zγs

    R.H ODDM in HPDDM 16 / 31

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    SORAS-GenEO II approach to build VHFind the eigenpairs pλi,k, Ui,kq

    ANi Ui,k “ λi,kBiUi,k

    Find the eigenpairs pµi,k, Vi,kq

    BiVi,k “ µi,kDiAiDiVi,k

    ˇ

    ˇ

    ˇ

    ˇ

    ˇ

    Solved by ARPACK

    (Concurrently)

    where :

    Bi the local matrix, resulting from the local bilinear form withOptimized interface conditions

    Choose τi and γi for each subdomain then define

    Wi “ rDiUi,1 DiUi,2 . . . DiUi,τis And Hi “ rDiVi,1 DiVi,2 . . . DiVi,γis

    Zτ “ rW1 W2 . . . WN s And Zγ “ rH1 H2 . . . HN s

    Z “ rZτ Zγs

    R.H ODDM in HPDDM 16 / 31

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    SORAS-GenEO II approach to build VHFind the eigenpairs pλi,k, Ui,kq

    ANi Ui,k “ λi,kBiUi,k

    Find the eigenpairs pµi,k, Vi,kq

    BiVi,k “ µi,kDiAiDiVi,k

    ˇ

    ˇ

    ˇ

    ˇ

    ˇ

    Solved by ARPACK

    (Concurrently)

    where :

    Bi the local matrix, resulting from the local bilinear form withOptimized interface conditions

    Choose τi and γi for each subdomain then define

    Wi “ rDiUi,1 DiUi,2 . . . DiUi,τis

    And Hi “ rDiVi,1 DiVi,2 . . . DiVi,γis

    Zτ “ rW1 W2 . . . WN s And Zγ “ rH1 H2 . . . HN s

    Z “ rZτ Zγs

    R.H ODDM in HPDDM 16 / 31

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    SORAS-GenEO II approach to build VHFind the eigenpairs pλi,k, Ui,kq

    ANi Ui,k “ λi,kBiUi,k

    Find the eigenpairs pµi,k, Vi,kq

    BiVi,k “ µi,kDiAiDiVi,k

    ˇ

    ˇ

    ˇ

    ˇ

    ˇ

    Solved by ARPACK

    (Concurrently)

    where :

    Bi the local matrix, resulting from the local bilinear form withOptimized interface conditions

    Choose τi and γi for each subdomain then define

    Wi “ rDiUi,1 DiUi,2 . . . DiUi,τis And Hi “ rDiVi,1 DiVi,2 . . . DiVi,γis

    Zτ “ rW1 W2 . . . WN s And Zγ “ rH1 H2 . . . HN s

    Z “ rZτ Zγs

    R.H ODDM in HPDDM 16 / 31

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    SORAS-GenEO II approach to build VHFind the eigenpairs pλi,k, Ui,kq

    ANi Ui,k “ λi,kBiUi,k

    Find the eigenpairs pµi,k, Vi,kq

    BiVi,k “ µi,kDiAiDiVi,k

    ˇ

    ˇ

    ˇ

    ˇ

    ˇ

    Solved by ARPACK

    (Concurrently)

    where :

    Bi the local matrix, resulting from the local bilinear form withOptimized interface conditions

    Choose τi and γi for each subdomain then define

    Wi “ rDiUi,1 DiUi,2 . . . DiUi,τis And Hi “ rDiVi,1 DiVi,2 . . . DiVi,γis

    Zτ “ rW1 W2 . . . WN s And Zγ “ rH1 H2 . . . HN s

    Z “ rZτ Zγs

    R.H ODDM in HPDDM 16 / 31

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    SORAS-GenEO II approach to build VHFind the eigenpairs pλi,k, Ui,kq

    ANi Ui,k “ λi,kBiUi,k

    Find the eigenpairs pµi,k, Vi,kq

    BiVi,k “ µi,kDiAiDiVi,k

    ˇ

    ˇ

    ˇ

    ˇ

    ˇ

    Solved by ARPACK

    (Concurrently)

    where :

    Bi the local matrix, resulting from the local bilinear form withOptimized interface conditions

    Choose τi and γi for each subdomain then define

    Wi “ rDiUi,1 DiUi,2 . . . DiUi,τis And Hi “ rDiVi,1 DiVi,2 . . . DiVi,γis

    Zτ “ rW1 W2 . . . WN s And Zγ “ rH1 H2 . . . HN s

    Z “ rZτ ZγsR.H ODDM in HPDDM 16 / 31

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    Theoretical results for SORAS-GenEO II

    Theorem (H., Jolivet and Nataf, 2015)

    Let γ and τ be user-defined targets. Then, the eigenvalues of the two-levelSORAS-GenEO II preconditioned system satisfy the following estimate

    1

    1 ` k1τď κpM´1SORAS,2 Aq ď maxp1, k0 γq

    where :

    k0 the maximum number of neighbors.

    k1 the maximum multiplicity.

    τ and γ a user-defined thresholds.

    R.H ODDM in HPDDM 17 / 31

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    Outline

    1 Introduction to DDM & improvements

    2 Fields of Application & Numerical Results

    3 Recycling Krylov and Application to Navier-Stokes

    4 Conclusion

    R.H ODDM in HPDDM 18 / 31

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    Fields of Application

    Compressible elasticity equationż

    2µ εpuq : εpvqdx `ż

    λ∇ ¨ puq∇ ¨ pvqdx “ż

    fdx vdx `ż

    ΓNg ¨ v

    Nearly-incompressible elasticity equations$

    &

    %

    2

    ż

    µεpuq : εpvqdx ´ż

    p∇ ¨ pvqdx “ż

    fvdx `ż

    ΓNg ¨ v,

    ´ż

    ∇ ¨ puqqdx ´ż

    1

    λpqdx “ 0

    σS

    puq.n ` Lpαqu “ 0. on BΩizBΩWhere L is constructed from the Lamé coefficient of the material and it is definedas follows

    Lpα, λ, µq :“ 2αµp2µ ` λqλ ` 3µ

    R.H ODDM in HPDDM 19 / 31

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    Fields of Application

    Compressible elasticity equationż

    2µ εpuq : εpvqdx `ż

    λ∇ ¨ puq∇ ¨ pvqdx “ż

    fdx vdx `ż

    ΓNg ¨ v

    Nearly-incompressible elasticity equations$

    &

    %

    2

    ż

    µεpuq : εpvqdx ´ż

    p∇ ¨ pvqdx “ż

    fvdx `ż

    ΓNg ¨ v,

    ´ż

    ∇ ¨ puqqdx ´ż

    1

    λpqdx “ 0

    σS

    puq.n ` Lpαqu “ 0. on BΩizBΩWhere L is constructed from the Lamé coefficient of the material and it is definedas follows

    Lpα, λ, µq :“ 2αµp2µ ` λqλ ` 3µ

    R.H ODDM in HPDDM 19 / 31

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    Stokes equations

    $

    &

    %

    ż

    2µεpuq : εpvqdx ´ż

    p∇ ¨ pvqdx “ż

    fvdx,

    ż

    ∇ ¨ puqqdx “ 0

    σF

    puq.n ` Lpαqu “ 0. on BΩizBΩ

    Where L is constructed from viscosity coefficient of the fluid and it is defined asfollows

    Lpα, λ, µq :“ 2αµp2µ ` λqλ ` 3µ with λ “ 10

    8

    Diffusion equationż

    κ∇u ¨ ∇ v dx “ż

    f vdx

    R.H ODDM in HPDDM 20 / 31

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    Stokes equations

    $

    &

    %

    ż

    2µεpuq : εpvqdx ´ż

    p∇ ¨ pvqdx “ż

    fvdx,

    ż

    ∇ ¨ puqqdx “ 0

    σF

    puq.n ` Lpαqu “ 0. on BΩizBΩ

    Where L is constructed from viscosity coefficient of the fluid and it is defined asfollows

    Lpα, λ, µq :“ 2αµp2µ ` λqλ ` 3µ with λ “ 10

    8

    Diffusion equationż

    κ∇u ¨ ∇ v dx “ż

    f vdx

    R.H ODDM in HPDDM 20 / 31

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    HPDDM Library - P. Jolivet & F. Nataf

    An implementation of several Domain Decomposition Methods :

    One-and two-level Schwarz methods

    The Finite Element Tearing and Interconnecting (FETI) method

    Balancing Domain Decomposition (BDD) method

    Library written in C++11 MPI and :

    Linked with automatic partitioners (METIS & SCOTCH).

    Linked with BLAS & LAPACK.

    Linked with direct solvers (MUMPS, SuiteSparse, MKL PARDISO, PASTIX).

    Linked with eigenvalue solver (ARPACK).

    Interfaced with discretisation kernel FreeFem++ & FEEL++

    R.H ODDM in HPDDM 21 / 31

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    Machine used for scaling tests

    Curie

    5,040 compute nodes

    2 eight-core Intel Sandy [email protected] GHz per node

    1.7 PFLOPs peak performance

    Turing, IDRIS-Genci project

    IBM Blue Gene/Q

    6144 compute nodes (16 core per node @1.6 GHZ )

    1.258 PFLOPs peak performance

    R.H ODDM in HPDDM 22 / 31

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    Weak scalability (Nearly-Incompressible linear elasticity)

    ”Sandwich” problem discretized by P3zP2(2D), P2zP1(3D)Automatic mesh partition with METIS, 1 subdomain/MPI process, 2 OpenMPthreads/MPI process

    256 512 1 0242 048

    4 0968 192

    0%

    20%

    40%

    60%

    80%

    100%

    # of processes

    Effici

    ency

    rela

    tive

    to25

    6pr

    oces

    ses

    3D2D

    22

    704

    #of

    d.o.

    f.—in

    mill

    ions

    6

    197

    R.H ODDM in HPDDM 23 / 31

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    Strong scalability test (Stokes problem)

    Led Driven cavity discretized by P2zP1 FE 50M d.o.f. (3D), 100M d.o.f. (2D)Automatic mesh partition with METIS

    1 0242 048

    4 0968 192

    40

    100

    200

    500

    # of processes

    Run

    time

    (sec

    onds

    )Linear speedup3D 2D

    R.H ODDM in HPDDM 24 / 31

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    Outline

    1 Introduction to DDM & improvements

    2 Fields of Application & Numerical Results

    3 Recycling Krylov and Application to Navier-Stokes

    4 Conclusion

    R.H ODDM in HPDDM 25 / 31

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    Incompressible Navier-Stokes in Turek benchmark

    $

    &

    %

    ρBuBt ` ρ u ¨ ∇u ´ ∇ ¨ σF pu, pq “ f in Ω ˆ p0, T q

    ∇ ¨ u “ 0 in Ω ˆ p0, T qu “ g on ΓD ˆ p0, T q

    σF

    pu, pqn “ h on ΓN ˆ p0, T qup0q “ u0 in Ω ˆ 0

    with BDF2$

    &

    %

    ρ 3un`1´4un`1`un`1

    2dt ` ρp2un ´ un´1q ¨ ∇un`1 ´ µ∆un`1 ` ∇pn`1 “ f in Ω

    ∇ ¨ un`1 “ 0 in ΩBoundary conditions

    A “„

    H LT

    L 0

    UP

    n`1“ F,

    with H “ 1∆tM ` A ` CpUnq

    R.H ODDM in HPDDM 26 / 31

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    DDM preconditionning & Krylov recyling

    AnUn “ Fn n “ 1, 2, ...

    M´1SORAS,1 :“Nÿ

    i“1RTi DiB

    ´1i DiRi

    M´1ORAS,1 :“Nÿ

    i“1RTi DiB

    ´1i Ri

    Use GCRO-DR in [Parks et al. 2006] asimplemented in [Jolivet and Tournier2016]

    0 20 40 60 80 10010−810−710−610−510−410−410−310−210−1

    # of iterations

    Relativ

    eresidu

    alerror

    GMRES-(t0)GCRODR-t1GCRODR(t2)

    Figure: GMRES iterations - Navier-Stokesproblem with 2 millions d.o.f solved on 128proc for 3 time steps.

    R.H ODDM in HPDDM 27 / 31

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    Weak scalability - Incompressible Navier-Stokes in Turekbenchmark

    256 512 1 0242 048

    4 0920%

    20%

    40%

    60%

    80%

    100%

    # of processes

    Efficiency

    relativ

    eto

    256processes

    3D 13

    205

    #of

    d.o.f.—

    inmillions

    13

    205

    CD “ 0.31 P r0.29, 0.31s CL “ ´0.01 P r´0.01,´0.008s Strouhal “ 0.36

    R.H ODDM in HPDDM 28 / 31

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    Strong scalability - Incompressible Navier-Stokes

    Turek benchmark discretized by P2zP1 FE, 87M d.o.f. (3D)automatic mesh partition with METIS

    1 0242 048

    4 0968 192

    16 382

    10

    20

    30

    60

    120

    # of processes

    Runtim

    e(secon

    ds)

    Linear speedup3D

    R.H ODDM in HPDDM 29 / 31

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    Outline

    1 Introduction to DDM & improvements

    2 Fields of Application & Numerical Results

    3 Recycling Krylov and Application to Navier-Stokes

    4 Conclusion

    R.H ODDM in HPDDM 30 / 31

  • Intro to DDM & improvements Fields of Application & Numerical Results Recycling Krylov and Application to Navier-Stokes Conclusion

    Conclusion

    Summary

    SORAS preconditioner

    M´1SORAS :“Nÿ

    i“1RTi DiB

    ´1i DiRi

    is amenable to a fruitful theory for OSM

    Using two generalized eigenvalue problems, we are able to achieve a targetedconvergence rate for OSM

    Nonlinear time dependent problem

    Freely available via HPDDM library or FreeFem++

    Future work

    Another look at parameter α optimization

    Multilevel extension of the coarse operator

    Recycle coarse spaceR.H ODDM in HPDDM 31 / 31

  • References

    Cai, Xiao-Chuan and Marcus Sarkis (1999). “A restricted additive Schwarzpreconditioner for general sparse linear systems”. In: SIAM Journal onScientific Computing 21, pp. 239–247.

    St-Cyr, A., M. J. Gander, and S. J. Thomas (2007). “Optimizedmultiplicative, additive, and restricted additive Schwarz preconditioning”. In:SIAM J. Sci. Comput. 29.6, 2402–2425 (electronic). issn: 1064-8275. doi:10.1137/060652610. url: http://dx.doi.org/10.1137/060652610.

    Gander, Martin J. and Gerhard Wanner (2014). “The Origins of theAlternating Schwarz Method”. In: Domain Decomposition Methods inScience and Engineering XXI. Springer, pp. 487–495.

    Haferssas, Ryadh, Pierre Jolivet, and Frdric Nataf (2015). “A robust coarsespace for optimized Schwarz methods: SORAS-GenEO-2”. In: C. R. Math.Acad. Sci. Paris 353.10, pp. 959–963. issn: 1631-073X. doi:10.1016/j.crma.2015.07.014. url:http://dx.doi.org/10.1016/j.crma.2015.07.014.

    R.H ODDM in HPDDM 1/ 7

    http://dx.doi.org/10.1137/060652610http://dx.doi.org/10.1137/060652610http://dx.doi.org/10.1016/j.crma.2015.07.014http://dx.doi.org/10.1016/j.crma.2015.07.014

  • References

    Jolivet, Pierre and Pierre-Henri Tournier (2016). “Block Iterative Methodsand Recycling for Improved Scalability of Linear Solvers”. In: Proceedings ofthe 2016 International Conference for High Performance Computing,Networking, Storage and Analysis. SC16. IEEE.

    Mandel, Jan (1992). “Balancing domain decomposition”. In: Comm. onApplied Numerical Methods 9, pp. 233–241.

    Parks, Michael L., Eric de Sturler, Greg Mackey, Duane D. Johnson, andSpandan Maiti (2006). “Recycling Krylov subspaces for sequences of linearsystems”. In: SIAM J. Sci. Comput. 28.5, 1651–1674 (electronic). issn:1064-8275. doi: 10.1137/040607277. url:http://dx.doi.org/10.1137/040607277.

    Spillane, N., V. Dolean, P. Hauret, F. Nataf, C. Pechstein, and R. Scheichl(2014). “Abstract robust coarse spaces for systems of PDEs via generalizedeigenproblems in the overlaps”. In: Numer. Math. 126.4, pp. 741–770. issn:0029-599X. doi: 10.1007/s00211-013-0576-y. url:http://dx.doi.org/10.1007/s00211-013-0576-y.

    Tang, J.M., R. Nabben, C. Vuik, and Y.A. Erlangga (2009). “Comparison oftwo-level preconditioners derived from deflation, domain decomposition andmultigrid methods”. In: Journal of Scientific Computing 39.3, pp. 340–370.

    R.H ODDM in HPDDM 2/ 7

    http://dx.doi.org/10.1137/040607277http://dx.doi.org/10.1137/040607277http://dx.doi.org/10.1007/s00211-013-0576-yhttp://dx.doi.org/10.1007/s00211-013-0576-y

  • References

    Toselli, Andrea and Olof Widlund (2005). Domain Decomposition Methods -Algorithms and Theory. Vol. 34. Springer Series in ComputationalMathematics. Springer.

    R.H ODDM in HPDDM 3/ 7

  • References

    Weak scaling (Nearly-Incompressible linear elasticity)-time

    N Factorization Deflation Solution # of it. Total # of d.o.f.

    3D

    1 024 79.2 s 229.0 s 76.3 s 45 387.5 s

    50.63 · 1062 048 29.5 s 76.5 s 34.8 s 42 143.9 s4 096 11.1 s 45.8 s 19.8 s 42 80.9 s8 192 4.7 s 26.1 s 14.9 s 41 56.8 s

    2D

    1 024 5.2 s 37.9 s 51.5 s 51 95.6 s

    100.13 · 1062 048 2.4 s 19.3 s 22.1 s 42 44.5 s4 096 1.1 s 10.4 s 10.2 s 35 22.6 s8 192 0.5 s 4.6 s 6.9 s 38 12.7 s

    R.H ODDM in HPDDM 4/ 7

  • References

    Weak scaling (Nearly-Incompressible linear elasticity), -time

    1 subdomain/MPI process, 2 OpenMP threads/MPI process.

    N Factorization Deflation Solution # of it. Total # of d.o.f.

    3D

    256 25.2 s 76.0 s 37.2 s 46 145.2 s 6.1 · 106512 26.5 s 81.1 s 39.8 s 47 155.1 s 12.4 · 106

    1 024 29.2 s 82.6 s 41.7 s 45 165.5 s 25.0 · 1062 048 26.9 s 83.5 s 46.3 s 47 171.0 s 48.8 · 1064 096 28.3 s 88.8 s 54.5 s 53 177.7 s 97.9 · 1068 192 29.0 s 78.3 s 79.8 s 60 196.1 s 197.6 · 106

    2D

    256 4.8 s 72.9 s 39.9 s 46 123.9 s 22.1 · 106512 4.7 s 65.9 s 45.0 s 51 121.3 s 44.0 · 106

    1 024 4.8 s 70.0 s 46.1 s 51 127.0 s 88.3 · 1062 048 4.8 s 69.0 s 46.5 s 51 127.4 s 176.8 · 1064 096 4.8 s 65.8 s 52.8 s 56 132.6 s 351.0 · 1068 192 4.8 s 65.4 s 53.0 s 54 134.8 s 704.1 · 106

    R.H ODDM in HPDDM 5/ 7

  • References

    Weak scaling (Incompressible Navier-Stokes in Turekbenchmark, with FreeFem++ and HPDDM)

    N Factorization GCRODR # of it. Total # of d.o.f.

    3D256 28.2 s 17.0 s 29 67.9 s 13.7 · 106512 30.5 s 16.7 s 28 68.1 s 26.0 · 1061 024 30.6 s 19.7 s 35 70.8 s 50.9 · 1062 048 30.9 s 24.0 s 41 75.7 s 103.6 · 1064 092 28.6 s 28.5 s 57 79.8 s 205.8 · 106

    R.H ODDM in HPDDM 6/ 7

  • References

    Strong scaling (Incompressible Navier-Stokes in Turekbenchmark, with FreeFem++ and HPDDM)

    N Factorization GCRODR # of it. Total Step # of d.o.f.

    3D

    1 024 70.4 s 27.2 s 36 129.7 s

    87.11 · 1062 048 23.7 s 16.7 s 46 59.0 s4 096 8.1 s 10.3 s 57 30.3 s8 192 3.6 s 7.0 s 66 20.4 s

    3D

    16 384 1.5 s 4.7 s 75 13.1 s

    87.11 · 106

    R.H ODDM in HPDDM 7/ 7

    Introduction to DDM & improvementsFields of Application & Numerical ResultsRecycling Krylov and Application to Navier-StokesConclusion