Optimization of Process Parameters in MIG Welding of Two Dissimilar Materials

6
International Journ Internat ISSN No: 245 @ IJTSRD | Available Online @ www Optimization Welding M. S. Amarnath R 1 P Sri Venkateswara Institu ABSTRACT The joining of dissimilar Aluminum Copper aluminum plates of 5mm t carried out by technique. Optim parameters were obtained for joints us approach. Five different tool design employed to an alyse the influence of and traverse speed over the micro s tensile properties. In FSW technique, the process of weldi material, well below its melting tem opened up new trends in produc dissimilar joints. Effect of weldin microstructures, hardness distribution properties of the welded joints were in varying the process parameters, defect efficiency welded joints were produced. The ratio between tool shoulder diam diameter is the most dominant factor structural analysis it is evident that the m on the advancing side dominates the n The hardness in the HAZ of 6061 wa minimum, where the welded joints fail tensile studies. Keywords: Mig Welding Technique, Haz INTRODUCTION MIG Welding is a process by which t dissimilar metals may be joined by he suitable temperatures with or without t of the pressure and without use of fill filler metal has its melting point either the same as that of the work piece metal but normally about 430degree centigrade nal of Trend in Scientific Research and De tional Open Access Journal | www.ijtsr 56 - 6470 | Volume - 2 | Issue – 6 | Sep w.ijtsrd.com | Volume – 2 | Issue – 6 | Sep-Oct n of Process Parameters in MI of Two Dissimilar Materials Reddy 1 , Mr. J. Sree Hari 2 , Mr. K. Sai Kir PG. Scholar, 2 Assistant Professor ute of Technology, Anantapuram, Andhra Prades m Alloy and thickness was mum process sing statistical ns have been rotation speed structural and ing of the base mperature, has cing efficient ng speed on n and tensile nvestigated. By free and high . meter and pin r. From micro material placed nugget region. as found to be led during the z. two similar or eating them to the application ler metal. The approximately l or little lower de. During welding the edges of welded are heated by sever derived from electric arc, hydrogen flame, black smith f as in case of the rm it welding. AUTOGENEOS WELDING Welding consists of those pro metals are joined with the he metal. EX: mild steel, cast iron. HETEROGENEOUS WELD It is a method in which dissi The metals being joined are temperature or plastic state an The melting point of filler rod for easy melting. EX: copper<->brass. CLASSIFICATION OF WE Welding is classified into two Fusion (or) non pressure w Pressure welding FUSION (OR) NON PRESS It involves heating of work p temperature above the meltin the work pieces. This way the work pieces takes place and t without the application of welding involves the use of through an electrode. evelopment (IJTSRD) rd.com p – Oct 2018 2018 Page: 992 IG ran 2 sh, India the work piece’s to be ral ways. Heat may be oxy-acetylene or oxy- fire or chemical reaction . G: ocesses in which similar elp of filler rod of same DING: milar metals are joined. e brought up to critical nd the filler rod is used. d less than parent metals ELDING: types. They are welding SURE WELDING: pieces to be joined to a ng point of the metal of e fusion of base metal of these are joined together any pressure. Fusion f additional filler metal

description

The joining of dissimilar Aluminum Alloy and Copper aluminum plates of 5mm thickness was carried out by technique. Optimum process parameters were obtained for joints using statistical approach. Five different tool designs have been employed to an alyse the influence of rotation speed and traverse speed over the micro structural and tensile properties. In FSW technique, the process of welding of the base material, well below its melting temperature, has opened up new trends in producing efficient dissimilar joints. Effect of welding speed on microstructures, hardness distribution and tensile properties of the welded joints were investigated. By varying the process parameters, defect free and high efficiency welded joints were produced. The ratio between tool shoulder diameter and pin diameter is the most dominant factor. From micro structural analysis it is evident that the material placed on the advancing side dominates the nugget region. The hardness in the HAZ of 6061 was found to be minimum, where the welded joints failed during the tensile studies. M. S. Amarnath Reddy | Mr. J. Sree Hari | Mr. K. Sai Kiran "Optimization of Process Parameters in MIG Welding of Two Dissimilar Materials" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-2 | Issue-6 , October 2018, URL: https://www.ijtsrd.com/papers/ijtsrd18749.pdf Paper URL: http://www.ijtsrd.com/engineering/mechanical-engineering/18749/optimization-of-process-parameters-in-mig-welding-of-two-dissimilar-materials/m-s-amarnath-reddy

Transcript of Optimization of Process Parameters in MIG Welding of Two Dissimilar Materials

Page 1: Optimization of Process Parameters in MIG Welding of Two Dissimilar Materials

International Journal of Trend in

International Open Access Journal

ISSN No: 2456

@ IJTSRD | Available Online @ www.ijtsrd.com

Optimization Welding of Two

M. S. Amarnath Reddy1P

Sri Venkateswara Institute

ABSTRACT The joining of dissimilar Aluminum Alloy and Copper aluminum plates of 5mm thickness was carried out by technique. Optimum process parameters were obtained for joints using approach. Five different tool designs have been employed to an alyse the influence of rotation speed and traverse speed over the micro structural and tensile properties. In FSW technique, the process of welding of the base material, well below its melting temperature, has opened up new trends in producing efficient dissimilar joints. Effect of welding speed on microstructures, hardness distribution and tensile properties of the welded joints were investigated. By varying the process parameters, defect free and high efficiency welded joints were produced. The ratio between tool shoulder diameter and pin diameter is the most dominant factor. From micro structural analysis it is evident that the material placed on the advancing side dominates the nugget region. The hardness in the HAZ of 6061 was found to be minimum, where the welded joints failed during the tensile studies. Keywords: Mig Welding Technique, Haz. INTRODUCTION MIG Welding is a process by which two similar or dissimilar metals may be joined by heating them to suitable temperatures with or without the application of the pressure and without use of filler metal. The filler metal has its melting point either approximately the same as that of the work piece metal or little lower but normally about 430degree centigrade.

International Journal of Trend in Scientific Research and Development (IJTSRD)

International Open Access Journal | www.ijtsrd.com

ISSN No: 2456 - 6470 | Volume - 2 | Issue – 6 | Sep

www.ijtsrd.com | Volume – 2 | Issue – 6 | Sep-Oct 2018

Optimization of Process Parameters in MIGWelding of Two Dissimilar Materials

Amarnath Reddy1, Mr. J. Sree Hari2, Mr. K. Sai KiranPG. Scholar, 2Assistant Professor

Sri Venkateswara Institute of Technology, Anantapuram, Andhra Pradesh

The joining of dissimilar Aluminum Alloy and Copper aluminum plates of 5mm thickness was carried out by technique. Optimum process parameters were obtained for joints using statistical approach. Five different tool designs have been

alyse the influence of rotation speed and traverse speed over the micro structural and

In FSW technique, the process of welding of the base w its melting temperature, has

opened up new trends in producing efficient dissimilar joints. Effect of welding speed on microstructures, hardness distribution and tensile properties of the welded joints were investigated. By

, defect free and high efficiency welded joints were produced.

The ratio between tool shoulder diameter and pin diameter is the most dominant factor. From micro structural analysis it is evident that the material placed

nugget region. The hardness in the HAZ of 6061 was found to be minimum, where the welded joints failed during the

Mig Welding Technique, Haz.

MIG Welding is a process by which two similar or be joined by heating them to

suitable temperatures with or without the application of the pressure and without use of filler metal. The filler metal has its melting point either approximately the same as that of the work piece metal or little lower

mally about 430degree centigrade.

During welding the edges of the work piece’s to be welded are heated by several ways. Heat may be derived from electric arc, oxyhydrogen flame, black smith fire or chemical reaction as in case of the rm it welding. AUTOGENEOS WELDING:Welding consists of those processes in which similar metals are joined with the help of filler rod of same metal. EX: mild steel, cast iron. HETEROGENEOUS WELDING:It is a method in which dissimilar metals are joined. The metals being joined are brought up to critical temperature or plastic state and the filler rod is used. The melting point of filler rod lessfor easy melting. EX: copper<->brass. CLASSIFICATION OF WELDINGWelding is classified into two types. They are� Fusion (or) non pressure welding� Pressure welding FUSION (OR) NON PRESSURE WELDING:It involves heating of work pieces to be joined to a temperature above the melting point of thethe work pieces. This way the fusion of base metal of work pieces takes place and these are joined together without the application of any pressure. Fusion welding involves the use of additional filler metal through an electrode.

Research and Development (IJTSRD)

www.ijtsrd.com

6 | Sep – Oct 2018

Oct 2018 Page: 992

ers in MIG

Sai Kiran2

Andhra Pradesh, India

During welding the edges of the work piece’s to be welded are heated by several ways. Heat may be derived from electric arc, oxy-acetylene or oxy-hydrogen flame, black smith fire or chemical reaction

it welding.

AUTOGENEOS WELDING: Welding consists of those processes in which similar metals are joined with the help of filler rod of same

HETEROGENEOUS WELDING: It is a method in which dissimilar metals are joined. The metals being joined are brought up to critical temperature or plastic state and the filler rod is used.

rod less than parent metals

CLASSIFICATION OF WELDING: Welding is classified into two types. They are

Fusion (or) non pressure welding

FUSION (OR) NON PRESSURE WELDING: It involves heating of work pieces to be joined to a temperature above the melting point of the metal of the work pieces. This way the fusion of base metal of work pieces takes place and these are joined together without the application of any pressure. Fusion welding involves the use of additional filler metal

Page 2: Optimization of Process Parameters in MIG Welding of Two Dissimilar Materials

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456

@ IJTSRD | Available Online @ www.ijtsrd.com

PRESSURE WELDING: It involves heating of work pieces to the temperature range in which the base metal of the work pieces becomes plastic and then the work pieces joined together by applying pressure on them. No additional filler metal is used in pressure welding. SUBMERGED ARC WELDING: Mode of Operation: An arc is maintained between the end of a bare wire electrode and the work. As the electrode is melted, it is fed into the arc by a set of rolls driven by a governed motor. Wire feed speed is automatically controlled to equal the rate at which the electrode is melted, thus arc length is constant (similar to MIG/MAG-constant voltage). Joint Preparation: Joint preparation depends on plate thickness, type of joint e.g. circumferential or longitudinal and to sextent on the standards to which the structure is being made. Plates of up to 14mm thick can be butt welded without preparation with a gap not exceeding 1mm or 10% of the plate thickness, whichever is the greater. Thicker plates need preparation if full penetration is to be obtained. Variable fit up cannot be tolerated. Welding Procedure: In general the more severe the low temperature notch toughness requirements, the lower the maximum welding current that can be used. This is to minimize heat input and means that a multi pass technique may be required. When welding stainless steels the heat input should be kept low because it has poor thermal conductivity and a high coefficient of expansion compared with mild steel. These two effects lead to overheating and excessive distortion if large diameter wires and high currents are used. Multiusing small diameter wires are therefore recommended for stainless steels and high nickel alloys such as Inconel. Selection of the correct welding conditionsplate thickness and joint preparation to be welded is very important if satisfactory joints free from defects such as cracking, porosity and undercut are to be obtained. The process variables which have to be considered are: 1. Electrode polarity 2. Welding Current 3. Electrode Diameter 4. Arc Voltage

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456

www.ijtsrd.com | Volume – 2 | Issue – 6 | Sep-Oct 2018

It involves heating of work pieces to the temperature range in which the base metal of the work pieces becomes plastic and then the work pieces joined together by applying pressure on them. No additional

An arc is maintained between the end of a bare wire electrode and the work. As the electrode is melted, it is fed into the arc by a set of rolls driven by a governed motor. Wire feed speed is automatically controlled to equal the rate at which the electrode is melted, thus arc length is constant (similar to

Joint preparation depends on plate thickness, type of joint e.g. circumferential or longitudinal and to some extent on the standards to which the structure is being made. Plates of up to 14mm thick can be butt welded without preparation with a gap not exceeding 1mm or 10% of the plate thickness, whichever is the greater.

l penetration is to be obtained. Variable fit up cannot be tolerated.

In general the more severe the low temperature notch toughness requirements, the lower the maximum welding current that can be used. This is to minimize

pass technique may be required. When welding stainless steels the heat input should be kept low because it has poor thermal conductivity and a high coefficient of expansion compared with mild steel. These two effects lead to

g and excessive distortion if large diameter wires and high currents are used. Multi-run welds using small diameter wires are therefore recommended for stainless steels and high nickel

Selection of the correct welding conditions for the plate thickness and joint preparation to be welded is very important if satisfactory joints free from defects such as cracking, porosity and undercut are to be obtained. The process variables which have to be

5. Welding Speed 6. Electrode Extension 7. Electrode Angle Principle Of Operation:

Schematic diagram of the FSW process: Two discrete metal work pieces butted together, along with the tool. The progress of the tool through the joint, also showing the weld zone and the regiotool shoulder, In FSW, a cylindricalwith a profile of threaded/unthreaded nib is rotated at a constant speed and fed at a constant traverse rate into the joint line between two pieces of sheet or plate material, which are butted together. Frictional heat is generated between the wearwelding tool shoulder and nib, and the material of the work pieces. This heat, along with the heat generated by the mechanical mixing process and the adiabatic heat within the material, cause the stirred materials to soften without reaching the melting point (hence cited a solid-state process), allowing the traversing of the tool along the weld line in a plasticized tubof metal. METHODOLOGY: Mig Welding Parameters: Tool Rotation and Traverse SpeedsThere are two tool speeds to be considered in frictionstir welding; how fast the tool rotates and how quickly it traverses the interface. These two parameters haconsiderable importance and must be chosen with care to ensure a successful and efficient welding cycle. The relationship between the welding speeds and the heat input during welding is complex but, in general, it can be said that increasing the rotatiospeed or decreasing the traverse speed will result in a hotter weld. In order to produce a successful weld it is necessary that the material surrounding the tool is hot enough to enable the extensive plastic flow required and mini mise the forces acting

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

Oct 2018 Page: 993

Schematic diagram of the FSW process: Two discrete metal work pieces butted together, along with the tool.

through the joint, also showing the weld zone and the region affected by the

In FSW, a cylindrical-shouldered tool, /unthreaded nib is rotated at

a constant speed and fed at a constant traverse rate ine between two pieces of sheet or plate

material, which are butted together.

Frictional heat is generated between the wear-resistant welding tool shoulder and nib, and the material of the work pieces. This heat, along with the heat generated

mechanical mixing process and the adiabatic heat within the material, cause the stirred materials to soften without reaching the melting point (hence cited

state process), allowing the traversing of the tool along the weld line in a plasticized tubular shaft

Traverse Speeds There are two tool speeds to be considered in friction-stir welding; how fast the tool rotates and how quickly it traverses the interface. These two parameters have considerable importance and must be chosen with care to ensure a successful and efficient welding cycle. The relationship between the welding speeds and the heat input during welding is complex but, in general, it can be said that increasing the rotation speed or decreasing the traverse speed will result in a hotter weld. In order to produce a successful weld it is necessary that the material surrounding the tool is hot enough to enable the extensive plastic flow required

mise the forces acting on the tool. If the

Page 3: Optimization of Process Parameters in MIG Welding of Two Dissimilar Materials

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456

@ IJTSRD | Available Online @ www.ijtsrd.com

material is too cool then voids or other flaws may be present in the stir zone and in extreme cases the tool may break. Tool Tilt and Plunge Depth: A drawing showing the plunge depth and tilt of the tool, The tool is moving to the left. The plunge depth is defined as the depth of the lowest point of the shoulder below the surface of the welded plate and has been found to be a critical parameter for ensuring weld quality. Plunging the shoulder below the plate surface increases the pressure below the tool and helps ensure adequate forging of the material at the rear of the tool. Tilting the tool by 2-4 degrees, such that the rear of the tool is lower than the front, has been found to assist this forging process. Tool Design: The design of the tool is a critical factor as a good tool can improve both the quality of the weld and the maximum possible welding speed. It is desirable that the tool material is sufficiently strong, tough and hard wearing, at the welding temperature. Hotsteel such as AISI H13 has proven perfectly acceptable for welding aluminum thickness ranges of 0.5 – 50 mm but more advanced tool materials are necessary for more demanding applications such as highly abrasive composites or higher melting point materials such as steel or titanium. WELDING FORCES: During welding a number of forces will act on the tool: � A downwards force is necessary to maintain the

position of the tool at or below the material surface.

� The traverse force acts parallel to the tool motion and is positive in the traverse direction.

� The lateral force may act perpendicular to the tool traverse direction and is defined here as positive towards the advancing side of the weld.

� Torque is required to rotate the tool, the amount of which will depend on the down force and friction coefficient (sticking friction).

In order to prevent tool fracture and to minimize excessive wear and tear on the tool and associated machinery, the welding cycle should be modified so

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456

www.ijtsrd.com | Volume – 2 | Issue – 6 | Sep-Oct 2018

material is too cool then voids or other flaws may be present in the stir zone and in extreme cases the tool

unge depth and tilt of the

t. The plunge depth is defined as the depth of the lowest point of the shoulder below the surface of the welded plate and has been found to be a critical parameter for ensuring weld quality. Plunging the shoulder below the plate

ure below the tool and helps ensure adequate forging of the material at the

4 degrees, such that the rear of the tool is lower than the front, has been found to assist this forging process.

The design of the tool is a critical factor as a good tool can improve both the quality of the weld and the maximum possible welding speed. It is desirable that the tool material is sufficiently strong, tough and hard

Hot-worked tool steel such as AISI H13 has proven perfectly

alloys within more advanced

tool materials are necessary for more demanding applications such as highly abrasive metal matrix

or higher melting point materials such as

During welding a number of forces will act on the

is necessary to maintain the position of the tool at or below the material

The traverse force acts parallel to the tool motion and is positive in the traverse direction. The lateral force may act perpendicular to the tool

is defined here as positive towards the advancing side of the weld. Torque is required to rotate the tool, the amount of which will depend on the down force and friction

In order to prevent tool fracture and to minimize excessive wear and tear on the tool and associated machinery, the welding cycle should be modified so

that the forces acting on the tool are as low as and abrupt changes are avoided. GENERATION AND FLOW OF HEATFor any welding process it is, in general, desirable to increase the travel speed and minias this will increase productivity and possibly reduce the impact of welding on the mechanical properties of the weld. At the same time it is necessary to ensure that the temperature around the tool is sufficiently high to permit adequate material flow and prevent flaws or tool fracture. The welding cycle can be split into several stages during which the heat flow and thermal different: � Dwell. The material is preheated by a stationary,

rotating tool in order to achieve a sufficient temperature ahead of the tool to allow the traverse.

� Transient heating. When the tool begins to move there will be a transient perioproduction and temperature around the tool will alter in a complex manner until an essentially steady-state is reached.

� Pseudo steady-state. Although fluctuations in heat generation will occur the thermal field around the tool remains effectively constant, at least on the macroscopic scale.

� Post steady-state. Near the end of the weld heat may ‘reflect’ from the end of the plate leading to additional heating around the tool.

Heat generation during frictionfrom two main sources: friction at the surface of the tool and the deformation of the material around the tool.

Where ω is the angular velocity of the tool, shoulder is the radius of the tool shoulder and that of the pin. Several other equations have been proposed to account for factors such as the pin but the general approach remains the same. MATERIALS AND THICKNESSESMaximum thickness in a single pass is dependent on machine power, but values TWI has welded 75mm 6xxx material in a single pass, and larger thicknesses are possible.

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

Oct 2018 Page: 994

that the forces acting on the tool are as low as possible and abrupt changes are avoided.

ND FLOW OF HEAT: For any welding process it is, in general, desirable to increase the travel speed and mini mise the heat input as this will increase productivity and possibly reduce the impact of welding on the mechanical properties of

me time it is necessary to ensure that the temperature around the tool is sufficiently high to permit adequate material flow and prevent

The welding cycle can be split into several stages during which the heat flow and thermal profile will be

The material is preheated by a stationary, rotating tool in order to achieve a sufficient temperature ahead of the tool to allow the

When the tool begins to move there will be a transient period where the heat production and temperature around the tool will alter in a complex manner until an essentially

Although fluctuations in heat generation will occur the thermal field around

ectively constant, at least on

Near the end of the weld heat may ‘reflect’ from the end of the plate leading to additional heating around the tool.

Heat generation during friction-stir welding arises in sources: friction at the surface of the

tool and the deformation of the material around the

is the angular velocity of the tool, R is the radius of the tool shoulder and Rpin

that of the pin. Several other equations have been proposed to account for factors such as the pin but the general approach remains the same.

MATERIALS AND THICKNESSES: Maximum thickness in a single pass is dependent on

50mm are achievable. TWI has welded 75mm 6xxx material in a single pass, and larger thicknesses are possible.

Page 4: Optimization of Process Parameters in MIG Welding of Two Dissimilar Materials

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456

@ IJTSRD | Available Online @ www.ijtsrd.com

� 2000 series aluminum (Al-Cu) � 5000 series aluminum (Al-Mg) � 6000 series aluminum (Al-Mg-Si) � 7000 series aluminum (Al-Zn) � 8000 series aluminum (Al-Li) MMCs based on aluminium (metal matrix composites):

Other aluminum alloys of the 1000 (commercially pure), 3000 (Al-Mn) and 4000 (Alaluminum castings,

Other materials successfully welded include:� Copper and its alloys � Lead � Titanium and its alloys � Magnesium alloys � Zinc � Plastics � Mild and C-Mn steels � Stainless steel � Nickel alloys APPLICATIONS: Shipbuilding and Marine Industries

Base metal

Ultimate tensile

Strength (MPa)

0.2% Proof

strength (MPa)

Elongation

AA6061 310 250 Cu 220 125

� Panels for decks, sides, bulkheads and floors � Aluminum extrusion � Offshore accommodation THE MACHINE: The materials, the welding processes and parameters used, and the mechanical properties and chemical compositions of the base materials are described in this chapter. Characterization techniques and the mechanical testing procedures employed to evaluate the welds are also described in detail. The

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456

www.ijtsrd.com | Volume – 2 | Issue – 6 | Sep-Oct 2018

(metal matrix

alloys of the 1000 (commercially Mn) and 4000 (Al-Si) series,

Other materials successfully welded include:

% Elongation

12 15

Panels for decks, sides, bulkheads and floors

The materials, the welding processes and parameters used, and the mechanical properties and chemical

rials are described in this chapter. Characterization techniques and the mechanical testing procedures employed to evaluate the welds are also described in detail. The

experimental set up of the friction stir welding machine and friction stir welding procein Figures

THE TOOL: An illustration of some types of tools,shoulder whose rotation against the substrate generates most of the heat required for welding. The pin on the tool is plunged into the substrate and helps stir the metal in the solid state. CHEMICAL COMPOSITION OF THE BASE MATERIALS: The major part of this study was conducted on aluminum alloys of thickness 6 mm, to make these welds. Initially, to identify the optimal welding parameters, 5mm thickness plates were used. The chemical compositions of the base materials used in this study are given in Table 1. Table 1 Chemical composition of the base materials

(weight %)Material Mg M n Fe AA6061 0.9 0.15 0.7

Mechanical Properties Of The Base Materials The mechanical properties of the aluminum 6061 and copper are given in Table 2. The values presented in the table are the average of a minimum of three investigations. HARDNESS TESTING: Hardness testing was conducted using a Vickers hardness testing machine, using a 100 g load applied for 15 s. Welds were tested for hardness in the as welded condition. The results were averaged over a minimum of 5 tests per sample; more tests were TENSILE TESTING: Transverse tensile specimens with a gauge length of 25 mm and a width of 6 mm (overall length: 100 mm) were prepared from the weld coupons in an as

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

Oct 2018 Page: 995

experimental set up of the friction stir welding machine and friction stir welding process are shown

stration of some types of tools, Each tool has a shoulder whose rotation against the substrate generates most of the heat required for welding. The pin on the tool is plunged into the substrate and helps stir the metal in the solid state.

CHEMICAL COMPOSITION OF THE BASE

major part of this study was conducted on aluminum alloys of thickness 6 mm, to make these welds. Initially, to identify the optimal welding parameters, 5mm thickness plates were used. The chemical compositions of the base materials used in

given in Table 1.

Table 1 Chemical composition of the base materials (weight %)

Si Cu Al 0.6 0.25 Remaining

Mechanical Properties Of The Base Materials The mechanical properties of the aluminum alloy 6061 and copper are given in Table 2. The values presented in the table are the average of a minimum of

Hardness testing was conducted using a Vickers using a 100 g load applied

for 15 s. Welds were tested for hardness in the as welded condition. The results were averaged over a minimum of 5 tests per sample; more tests were

Transverse tensile specimens with a gauge length of a width of 6 mm (overall length: 100 mm)

were prepared from the weld coupons in an as-welded

Page 5: Optimization of Process Parameters in MIG Welding of Two Dissimilar Materials

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456

@ IJTSRD | Available Online @ www.ijtsrd.com

condition. Room-temperature tensile tests were conducted on three samples as per ASTM E8 (2010) on a universal tensile testing machine dimensions of t

Dimensions of the tensile specimen (mm)

RESULTS AND DISCUSSION: 3.1 Friction Stir Welding Of Aa6061-CuFriction stir welding trials were performed using different friction stir welding parameters obtained from literature. The following process parameters (Rotational speed - 800 rpm, Welding speed mm/minute, Shoulder diameter to pin diameter were used for friction stir welding to get the defect free good quality welds. Trial and error method were used get these process parameters. 3.2 Micro Structure: The base materials used in the study contained grains elongated in the rolling direction and a large number of eutectic and inter metallic particles. The Thermo Mechanically Affected Zone on either side

Figure Microstructures of base materials AA606

Figure Microstructures of HAZ (AA6061

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456

www.ijtsrd.com | Volume – 2 | Issue – 6 | Sep-Oct 2018

temperature tensile tests were conducted on three samples as per ASTM E8 (2010) on a universal tensile testing machine dimensions of t

s of the tensile specimen (mm)

Cu: Friction stir welding trials were performed using different friction stir welding parameters obtained from literature. The following process parameters

800 rpm, Welding speed - 40 mm/minute, Shoulder diameter to pin diameter - 3) were used for friction stir welding to get the defect free good quality welds. Trial and error method were

The base materials used in the study contained grains elongated in the rolling direction and a large number

metallic particles. The Thermo Mechanically Affected Zone on either side

of base materials AA6061

Microstructures of HAZ (AA6061-Cu)

Advancing side AA6061

BASE

HAZ TMAZ

NUGGET

131.2

109.1

113.3

106.7

129.8

110.8

111.5

108.3

128 117.

8 111.

9 94.1

118.6

119.3

113.2

107

128.1

117.4

105.8

108.7

122.8

111.6

114.9

107.8

122.1

108.4

107.8

93.8

119.9

121.2

113.3

102.6

124.4

116.8

115.9

106.1

122.3

120.2

120.1

98.2

127.4

115.4

111.4

102.4

126.8

113.6

109.2

105.2

Average Hardness

Value125.12

113.13

112.36

103.41

CONCLUSION � From the experiments and the

the friction stir welding of dissimilar aluminum alloy 6061 to Cu, the following conclusions are drawn.

� Friction stir welding can produce defect free butt welds, between AA6061-efficiency of around 95% (based on tstrength of the softer material i.e. AA6061).

� The weld joints were stronger than the softer base material, and the tensile failures occur in the heataffected zone of the alloy 6061.

� The MIG welding process parameters were optimized, with respect to tensile strength of the joint and the optimum level of settings were found. The optimum levels of the rotational speed, transverse speed, and the ratio of shoulder diameter to pin diameter (D/d) are 900 rpm, 15 mm/min and 2.5 respectively.

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

Oct 2018 Page: 996

Retreating side AA6061

NUGG TMAZ

HAZ BAS

E

106.7 115.

9 111.

2 130.

1

108.3 112.

9 108.

1 132.

4

106.

3 104.

4 126.

4

112.

9 117.

8 126.

9

108.7 118.

2 109.

6 127.

8

107.8 117.

2 113.

3 120.

4

112.

3 111.

2 121.

2

102.6 109.

6 117.

8 126.

4

106.1 104.

9 119.

3 121.

9

112.

3 120.

5 122.

6

102.4 109.

6 108.

3 128.

4

105.2 114.

2 117.

6 127.

6 Average Hardness

Value

103.41 112.19

113.26

126.01

From the experiments and the study conducted on the friction stir welding of dissimilar aluminum alloy 6061 to Cu, the following conclusions are

Friction stir welding can produce defect free butt -Cu plates, with a joint

efficiency of around 95% (based on the yield strength of the softer material i.e. AA6061). The weld joints were stronger than the softer base material, and the tensile failures occur in the heat-affected zone of the alloy 6061. The MIG welding process parameters were

to tensile strength of the joint and the optimum level of settings were found. The optimum levels of the rotational speed, transverse speed, and the ratio of shoulder diameter to pin diameter (D/d) are 900 rpm, 15 mm/min and 2.5 respectively.

Page 6: Optimization of Process Parameters in MIG Welding of Two Dissimilar Materials

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456

@ IJTSRD | Available Online @ www.ijtsrd.com

REFERENCES 1. Amancio-Filho, S.T., Sheikhi, S., Dos Santos,

J.F., Bolfarini, C. “Preliminary study on the microstructure and mechanical properties of dissimilar friction stir welds in aircraft aluminium alloys 2024-T351 and 6056-T4”, Journal of materials processing technology, Vol. 206, pp. 132-142.

2. ASTM E8/E8M – 09. “Standard test methods for tension testing of metallic materials1”, ASTM International.

3. Atallah, M.M. and Hanadi G Salem. “Friction stir welding parameters: a tool for controlling abnormal grain growth during subsequent heat treatment”, Materials Science Engineering, Vol. 391, pp.51–59

4. Baeslack III, W.A., Jata, K.V., Lienert, T.J. “Structure, properties and fracture of friction stir

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456

www.ijtsrd.com | Volume – 2 | Issue – 6 | Sep-Oct 2018

Filho, S.T., Sheikhi, S., Dos Santos, J.F., Bolfarini, C. “Preliminary study on the microstructure and mechanical properties of dissimilar friction stir welds in aircraft aluminium

T4”, Journal of nology, Vol. 206, pp.

09. “Standard test methods for tension testing of metallic materials1”, ASTM

Atallah, M.M. and Hanadi G Salem. “Friction stir welding parameters: a tool for controlling

g subsequent heat treatment”, Materials Science Engineering, Vol.

Baeslack III, W.A., Jata, K.V., Lienert, T.J. “Structure, properties and fracture of friction stir

welds in a high-temperature Alalloy (AA-8009)”, J Mater sc2951.

5. Bala Srinivasan, P., Dietzel, W., Zettler, R., dos Santos, J.F., Sivan, V. “Stress corrosion cracking susceptibility of friction stir welded AA7075AA6056 dissimilar joint”, Materials Science and Engineering A, Vol. 392, pp. 292

6. Beathe Heinz., Birgit Skrotzi. “Characterization of a Friction-Stir Welded Aluminum Alloy 6013”, Metallurgical and materials transactions B, Vol. 33B, pp. 489-498.

7. Bob Irving. “Scandium Places Aluminum Welding on a New Plateau”, Welding Journal, 76, pp. 53-57.

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

Oct 2018 Page: 997

temperature Al-8.5Fe-1.3V– 1.7Si 8009)”, J Mater sci., Vol. 41, pp. 2939–

Bala Srinivasan, P., Dietzel, W., Zettler, R., dos Santos, J.F., Sivan, V. “Stress corrosion cracking susceptibility of friction stir welded AA7075–AA6056 dissimilar joint”, Materials Science and Engineering A, Vol. 392, pp. 292-300.

Beathe Heinz., Birgit Skrotzi. “Characterization of Welded Aluminum Alloy 6013”,

Metallurgical and materials transactions B, Vol.

Bob Irving. “Scandium Places Aluminum Welding on a New Plateau”, Welding Journal, 76,