Optimal Power Flow Problems Steven Low CMS, EE, Caltech Collaborators: Mani Chandy, Javad Lavaei,...

36
Optimal Power Flow Problems Steven Low CMS, EE, Caltech Collaborators: Mani Chandy, Javad Lavaei, Ufuk Topcu, Mumu Xu

Transcript of Optimal Power Flow Problems Steven Low CMS, EE, Caltech Collaborators: Mani Chandy, Javad Lavaei,...

Page 1: Optimal Power Flow Problems Steven Low CMS, EE, Caltech Collaborators: Mani Chandy, Javad Lavaei, Ufuk Topcu, Mumu Xu.

Optimal Power Flow Problems

Steven LowCMS, EE, Caltech

Collaborators: Mani Chandy, Javad Lavaei, Ufuk Topcu, Mumu Xu

Page 2: Optimal Power Flow Problems Steven Low CMS, EE, Caltech Collaborators: Mani Chandy, Javad Lavaei, Ufuk Topcu, Mumu Xu.

Outline

Renewable energy and smart grid challenges

Optimal power flow problems Zero duality gap: Javad Lavaei, SL OPF with storage: M. Chandy, SL, U. Topcu,

M. Xu

Page 3: Optimal Power Flow Problems Steven Low CMS, EE, Caltech Collaborators: Mani Chandy, Javad Lavaei, Ufuk Topcu, Mumu Xu.

Renewable energy is exploding... driven by sustainability... enabled by investment & policy

average : 2B people not electrified

Global investment in renewables

Source: Renewable Energy GRS, Sept 2010

Page 4: Optimal Power Flow Problems Steven Low CMS, EE, Caltech Collaborators: Mani Chandy, Javad Lavaei, Ufuk Topcu, Mumu Xu.

Source: Renewable Energy Global Status Report, Sept 2010

renewables47%

fossil fuels53%

Global capacity growth2008, 09

Renewable energy is exploding... driven by sustainability... enabled by investment & policy

average : 2B people not electrified

Page 5: Optimal Power Flow Problems Steven Low CMS, EE, Caltech Collaborators: Mani Chandy, Javad Lavaei, Ufuk Topcu, Mumu Xu.

Summary

Renewables in 2009 Account for 26% of global electricity capacity Generate 18% of global electricity Developing countries have >50% of world’s

renewable capacity World: +80GW renewable capacity (31GW hydro,

48GW non-hydro)

China: +37GW to a total renewable of 226 GW In both US & Europe, more than 50% of added

capacity is renewable

Page 6: Optimal Power Flow Problems Steven Low CMS, EE, Caltech Collaborators: Mani Chandy, Javad Lavaei, Ufuk Topcu, Mumu Xu.

Generation

TransmissionDistribution

Load

Page 7: Optimal Power Flow Problems Steven Low CMS, EE, Caltech Collaborators: Mani Chandy, Javad Lavaei, Ufuk Topcu, Mumu Xu.

Some challenges

1. Increase grid efficiency2. Manage distributed generation 3. Integrate renewables & storage4. Reduce peak load through DR

Technical issuesa) Wide range of timescalesb) Uncertainty in demand and supplyc) SoS architecture and algorithms

Page 8: Optimal Power Flow Problems Steven Low CMS, EE, Caltech Collaborators: Mani Chandy, Javad Lavaei, Ufuk Topcu, Mumu Xu.

8© 2010 Electric Power Research Institute, Inc. All rights reserved.

Challenge 1: Wind & Solar are Far from People

Legend:

• Wind

• People

•Need transmission lines

Source: Rosa Yang

Page 9: Optimal Power Flow Problems Steven Low CMS, EE, Caltech Collaborators: Mani Chandy, Javad Lavaei, Ufuk Topcu, Mumu Xu.
Page 10: Optimal Power Flow Problems Steven Low CMS, EE, Caltech Collaborators: Mani Chandy, Javad Lavaei, Ufuk Topcu, Mumu Xu.

Challenge 1: grid efficiency

Must increase grid efficiency

5% higher grid efficiency = 53M cars Real-time dynamic visibility of power

system Now: measurements at 2-4 s timescale offers

steady-state behavior Future: GPS-synchronized measurement at

ms timescale offers dynamic behavior But: lack theory on how to control

Source: DoE, Smart Grid Intro, 2008

Page 11: Optimal Power Flow Problems Steven Low CMS, EE, Caltech Collaborators: Mani Chandy, Javad Lavaei, Ufuk Topcu, Mumu Xu.

Challenge 2: distributed gen

Source: DoE, Smart Grid Intro, 20082-3x more efficiency, less load on trans/distr

Page 12: Optimal Power Flow Problems Steven Low CMS, EE, Caltech Collaborators: Mani Chandy, Javad Lavaei, Ufuk Topcu, Mumu Xu.

12© 2010 Electric Power Research Institute, Inc. All rights reserved.

Challenge 3: uncertainty of renewables

High Levels of Wind and Solar PV Will Present an Operating Challenge!

Source: Rosa Yang

Page 13: Optimal Power Flow Problems Steven Low CMS, EE, Caltech Collaborators: Mani Chandy, Javad Lavaei, Ufuk Topcu, Mumu Xu.

Challenge 3: storage integration

Source: Mani Chandy

Transmission & Sub-transmission

Customer

Transmission & Sub-transmission

Customer

Generation

Storage

Storage

• Where to place storage systems?• How to size them?• How to optimally schedule them?

Page 14: Optimal Power Flow Problems Steven Low CMS, EE, Caltech Collaborators: Mani Chandy, Javad Lavaei, Ufuk Topcu, Mumu Xu.

Challenge 4: High peak

Source: DoE, Smart Grid Intro, 2008

National load factor: 55% 10% of generation and

25% of distribution facilities are used less than 400 hrs per year, i.e. ~5% of time

Demand response can reduce peak Feedback interaction

between supply & demand

Page 15: Optimal Power Flow Problems Steven Low CMS, EE, Caltech Collaborators: Mani Chandy, Javad Lavaei, Ufuk Topcu, Mumu Xu.

Issue c: SoS architecture

Bell: telephone

1876

Tesla: multi-phase AC

1888 Both started as natural monopoliesBoth provided a single commodityBoth grew rapidly through two WWs 1980-90s

1980-90s

Deregulationstarted

1969:DARPAnet

Deregulationstarted

Power network will go through similararchitectural transformation in the next couple decades that phone network is going through now

?

Convergenceto Internet

2000s

Enron, blackouts

Page 16: Optimal Power Flow Problems Steven Low CMS, EE, Caltech Collaborators: Mani Chandy, Javad Lavaei, Ufuk Topcu, Mumu Xu.

Issue c: SoS architecture

... to become more interactive, more distributed, more open, more autonomous, and with greateruser participation

... while maintaining security & reliability

What is an architecture theory to help guide the

transformation?

Page 17: Optimal Power Flow Problems Steven Low CMS, EE, Caltech Collaborators: Mani Chandy, Javad Lavaei, Ufuk Topcu, Mumu Xu.

Outline

Renewable energy and smart grid challenges

Optimal power flow problems Zero duality gap: Javad Lavaei, SL OPF with storage: M. Chandy, SL, U. Topcu,

M. Xu

Page 18: Optimal Power Flow Problems Steven Low CMS, EE, Caltech Collaborators: Mani Chandy, Javad Lavaei, Ufuk Topcu, Mumu Xu.

Optimal power flow (OPF)

OPF is solved routinely to determine How much power to generate where Pricing Parameter setting, e.g. taps, VARs

Non-convex and hard to solve Huge literature since 1962 In practice, operators often use heuristics to

find a feasible operating point Or solve the (primal) problem to find a local

minimum

Page 19: Optimal Power Flow Problems Steven Low CMS, EE, Caltech Collaborators: Mani Chandy, Javad Lavaei, Ufuk Topcu, Mumu Xu.

Optimal power flow (OPF)

ˆ

ˆ

||

ˆ ˆ ˆ

subject to

,ˆ, ;,ˆ,: over

min

*

*

maxmin

maxmin

maxmin

IV

jIV

jIV

V

ii

ii

i

Y

Didd

Gigg

DGivv

Giggg

Giggg

DGiVVGiggu

gc

ii

ii

ii

iii

iii

iiii

Giii

Quadratic generation cost

Kirchoff Law

supply = demand

Page 20: Optimal Power Flow Problems Steven Low CMS, EE, Caltech Collaborators: Mani Chandy, Javad Lavaei, Ufuk Topcu, Mumu Xu.

Our proposal

Solve a convex dual problem (SDP) Very efficient

Recover a primal solution Check if the solution is primal feasible

If so, it is globally optimal A sufficient condition (on the dual

optimal solution) for this to work

Page 21: Optimal Power Flow Problems Steven Low CMS, EE, Caltech Collaborators: Mani Chandy, Javad Lavaei, Ufuk Topcu, Mumu Xu.

Our proposal

All IEEE benchmark systems turn out to (essentially) satisfy the sufficient condition 14, 30, 57, 118, 300 buses

All can be solved efficiently for global optimal

Page 22: Optimal Power Flow Problems Steven Low CMS, EE, Caltech Collaborators: Mani Chandy, Javad Lavaei, Ufuk Topcu, Mumu Xu.

Dual OPF : SDP

subject to

Linear function

Page 23: Optimal Power Flow Problems Steven Low CMS, EE, Caltech Collaborators: Mani Chandy, Javad Lavaei, Ufuk Topcu, Mumu Xu.

Our proposal Solve Dual OPF for If dual optimal value is , OPF is

infeasible Compute in the null space of

Compute a primal solution

If it is primal feasible, it is globally optimal

),( optopt rx

TTT UU ] [ 11

Page 24: Optimal Power Flow Problems Steven Low CMS, EE, Caltech Collaborators: Mani Chandy, Javad Lavaei, Ufuk Topcu, Mumu Xu.

Sufficient condition

TheoremSuppose the positive definite matrixhas a zero eigenvalue of multiplicity 2. The duality gap is zero is globally optimal

optA

optV

Page 25: Optimal Power Flow Problems Steven Low CMS, EE, Caltech Collaborators: Mani Chandy, Javad Lavaei, Ufuk Topcu, Mumu Xu.

Proof idea

Page 26: Optimal Power Flow Problems Steven Low CMS, EE, Caltech Collaborators: Mani Chandy, Javad Lavaei, Ufuk Topcu, Mumu Xu.

Proof idea

}{trace}{Im

}{trace}{Re*

*

Tkkk

Tkkk

UUIV

UUIV

Y

Y

Page 27: Optimal Power Flow Problems Steven Low CMS, EE, Caltech Collaborators: Mani Chandy, Javad Lavaei, Ufuk Topcu, Mumu Xu.

Proof idea

Semidefinite program(convex)

Page 28: Optimal Power Flow Problems Steven Low CMS, EE, Caltech Collaborators: Mani Chandy, Javad Lavaei, Ufuk Topcu, Mumu Xu.

Proof idea

Page 29: Optimal Power Flow Problems Steven Low CMS, EE, Caltech Collaborators: Mani Chandy, Javad Lavaei, Ufuk Topcu, Mumu Xu.

Outline

Renewable energy and smart grid challenges

Optimal power flow problems Zero duality gap: Javad Lavaei, SL OPF with storage: M. Chandy, SL, U. Topcu,

M. Xu

Page 30: Optimal Power Flow Problems Steven Low CMS, EE, Caltech Collaborators: Mani Chandy, Javad Lavaei, Ufuk Topcu, Mumu Xu.

OPF + storage Without battery: optimization in each

period in isolation Grid allows optimization across space

With storage: optimal control over finite horizon Battery allows optimization across time Static optimization optimal control

How to optimally integrate utility-scale storage with OPF?

Page 31: Optimal Power Flow Problems Steven Low CMS, EE, Caltech Collaborators: Mani Chandy, Javad Lavaei, Ufuk Topcu, Mumu Xu.

Simplest case

Tttdtrtg ,...,1 ),()()(

Single generator single load (SGSL) Main simplification

0)(

)(0

)()()1()( t.s.

))(( )(()),(( min1

0)(

tg

Btb

tgtdtbtb

Tbhtbhttgc TT

ttg

all the complications

SGSL problem

Page 32: Optimal Power Flow Problems Steven Low CMS, EE, Caltech Collaborators: Mani Chandy, Javad Lavaei, Ufuk Topcu, Mumu Xu.

Example: time-invariant If battery constraint inactive

Optimal generation decreases linearly in time

Optimality:

)()1()( t.s.

))(( )(2

1 min

1

2

0)(

tgdtbtb

tbBtgT

ttg

“nominal generation” tTtg 1)(

tTtg 1)(

marginal costof generation

unit-cost-to-goof storage

Page 33: Optimal Power Flow Problems Steven Low CMS, EE, Caltech Collaborators: Mani Chandy, Javad Lavaei, Ufuk Topcu, Mumu Xu.

SGSL case With battery constraint

Optimal policy anticipates future starvation and saturation

Optimal generation has 3 phases Phase 1: Charge battery, generation decreases

linearly, battery increases quadratically Phase 2: Generation = d (phase 2 may not exist) Phase 3: Discharge battery, generation decreases

linearly, battery decreases quadratically

],0[ )()()1()( t.s.

))(( )(()),(( min1

0)(

Btgtdtbtb

Tbhtbhttgc TT

ttg

Page 34: Optimal Power Flow Problems Steven Low CMS, EE, Caltech Collaborators: Mani Chandy, Javad Lavaei, Ufuk Topcu, Mumu Xu.

Key assumption

Forecast for Cal ISO, 27 September, 2009

Page 35: Optimal Power Flow Problems Steven Low CMS, EE, Caltech Collaborators: Mani Chandy, Javad Lavaei, Ufuk Topcu, Mumu Xu.

Optimal solution: case 1 Optimal generation cross demand curve

at most once, from above

Page 36: Optimal Power Flow Problems Steven Low CMS, EE, Caltech Collaborators: Mani Chandy, Javad Lavaei, Ufuk Topcu, Mumu Xu.

Optimal solution: case 2 Optimal generation cross demand curve

at most once, from above