optical.ppt

download optical.ppt

of 88

Transcript of optical.ppt

  • 7/30/2019 optical.ppt

    1/88

    Kaisar R. Khan

    Ph. D (EE) Candidate

    University of CentralFlorida

  • 7/30/2019 optical.ppt

    2/88

    Believe

    Professionalism

    Innovation

    Integrity Honesty

    Patience

  • 7/30/2019 optical.ppt

    3/88

    EDUCATION

    Ph. D, (Expected date of GraduationFall 2007) University of CentralFlorida

    MSEE, The University of Texas at ElPaso

    M. Eng, Bangladesh University ofEngineering and Technology, Dhaka.

  • 7/30/2019 optical.ppt

    4/88

    Research Area:High speed electronics andOptoelectronics

    Major Advisor:

    Dr. Thomas Wu

    Dept. of ECE, UCF

  • 7/30/2019 optical.ppt

    5/88

    JOURNAL PUBLICATIONS1. Kaisar R. Khan, H. Kabir, T.X. Wu, S. M Shamim Hasan

    and Mehdi Shadaram. Performance evaluation of Multi-wavelength M-QAM signal transmitted through fiber opticlink with EDFA Journal of Optical Fiber Technology,Elseiver Publication, July 2004, pp 266-274.

    2. Md. Kaisar R Khan, FM Atiq, H. Kabir and S. M ShamimHasan, Performance evaluation of 64-MQAM signaltransmitted through fiber optic link with fiber amplifier,November 2003, IEB Journal of Electrical Engineering,Dhaka, Bangladesh.

    3. Md. Kaisar R Khan, Q. Ahsan and M. R Bhuiyan,Expected Energy Production Cost of Two Area

    interconnected Systems with Jointly Owned Units ElectricPower System Research journal (Elseiver), April 2004.

  • 7/30/2019 optical.ppt

    6/88

    CONFERENCEPROCEEDINGS

    1. Jie Chen, Kaisar Khan, Thomas X. Wu, M. Auerbach, Larry Mertens, Don Wilson,and Jim Houyouse, RFLoss Measurement of Pipeline Security Monitoring SystemPresented in IEEE APS/URSI annual meeting, July 2005, Washington D.C

    2. K. Khan, T. Wu, Y. Lu and S.T. Wu, Liquid Crystal all optical switches, Presentedin IEEE APS/URSI annual meeting, June 2004, Monterey, CA

    3. Md. Kaisar R Khan, Q. Ahsan and M. R Bhuiyan, Expected Energy Generation ofTwo Geographically Isolated Area System with Jointly Owned Units, Presentedthird International Conference on Renewable Energy for Sustainable Development,

    October 2003,Dhaka, Bangladesh4. K. Khan, M. Rahman , Xiang li and M. Potasek Effects of Pulse Separation and

    Bit-Rate in Multi-Terabit/sec All-optical Waveguide Switches Presented at OSAconference on laser and optics, October 5 -9, Tucson, Arizona.

    5. Md. Kaisar R Khanand Mehdi Shadaram Performance Evaluation of M-QAMFiber Optic Link with EDFA Proceeding of Communication Systems, Networks andDigital Signal Processing Symposium, July 15-17, 2002, Stafford shire universityUK, pp. 140-143.

    6. Md. Kaisar R Khan and Mehdi Shadaram, "Effect of amplified spontaneous

    emission noise on the phase of reference signals transmitted through fiberamplifiers," ICAPT 2002, Quebec City, Canada, June 2002.

  • 7/30/2019 optical.ppt

    7/88

    PROFESSIONAL TRAINING1. GTA Certification course, Faculty

    resources center, UCF, Spring, 20052. Laboratory safety orientation course, UT

    El Paso, 2000

    3. Management training for the governmentofficers in Bangladesh, Aug. Dec. 1998

    4. Two month on job attachment to asatellite earth station at Dhaka,

    Bangladesh, May 99 to July 995. Training on SPC digital switching system

    in Bangladesh, February 19996. Industrial attachment on video system to

    Philips Bangladesh Ltd., Dec 93 to Jan 94

  • 7/30/2019 optical.ppt

    8/88

    GRADUATE COURSES

    More than twenty graduate courses

    taken in the areas of :

    1. RF and Optical fiber communication2. Laser and Optoelectronic

    3. Semiconductor devices and VLSI

    design4. Telecommunication and Networking

    5. Wireless communication etc

  • 7/30/2019 optical.ppt

    9/88

    PROJECT PROPOSAL1. 189K Digital telephone installation project

    in Bangladesh, Submitted to thegovernment of Bangladesh.

    2. Dynamic Magneto Transport Effect on

    Semiconductor Material, Kaisar Khan andThomas Wu, submitted to SATOP.

    3. Remote RF Measurements for PipelineMonitoring, (FloWatch Phase II), Jie Chen,

    Kaisar Khan and Thomas Wu, submittedto Emtel, Melbourne, Florida.4. RF sensor design for remote gas pipeline

    monitoring system, Kaisar Khan, YupengChen and Thomas Wu, submitted to

    Emtel, Melbourne, Florida.

  • 7/30/2019 optical.ppt

    10/88

    ResearchActivities

  • 7/30/2019 optical.ppt

    11/88

    Lab Procedures:

    Optical Communicationand Optoelectronic

    Kaisar Khan and Dr. Guifang. Li

    CREOL, UCF

  • 7/30/2019 optical.ppt

    12/88

    Instrument (I)

  • 7/30/2019 optical.ppt

    13/88

    optical filtersAttenuator

  • 7/30/2019 optical.ppt

    14/88

    Measurement of NA of OpticalFiber

  • 7/30/2019 optical.ppt

    15/88

    Measurement of fiberattenuation

  • 7/30/2019 optical.ppt

    16/88

    Observation of interference

  • 7/30/2019 optical.ppt

    17/88

  • 7/30/2019 optical.ppt

    18/88

    Fiber Optic Link

  • 7/30/2019 optical.ppt

    19/88

    Polarization of Light

    With halfwave retirder

    -1

    0

    1

    2

    3

    4

    5

    6

    0 8 16 24 32 40 48 56 64 72 80 88 96 104

    112

    120

    128

    136

    144

    152

    160

    168

    176

    184

    192

    200

    Angle

    Current,uA

    Series2

  • 7/30/2019 optical.ppt

    20/88

    Diffraction

  • 7/30/2019 optical.ppt

    21/88

    Hologram

  • 7/30/2019 optical.ppt

    22/88

    E-O Effect

    Normalized intensity profile of E-O cell RF spectrum for 1 MHz ac signal (maximum bias)

  • 7/30/2019 optical.ppt

    23/88

    Light Source (Laser Diode)

    Spectral output of the laser diode,

    operating below threshold. (I= 37 mA)Spectral output of the laser diode,

    operating at threshold (I=48mA)

  • 7/30/2019 optical.ppt

    24/88

    Laser Output Related to BiasCurrent

    Optical power measured at the detector v/s bias current

  • 7/30/2019 optical.ppt

    25/88

    Liquid Crystal Cell

    0

    5

    10

    15

    20

    25

    0.01 1 1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7 4 4.3 4.6 4.9 7 10

    Vrms

    Transmitte

    dPower(uW)

    90 Degree

    45 Degree

    Commercial LC Cell LC cell manufactured in the lab d = 5 um

  • 7/30/2019 optical.ppt

    26/88

    Schematic Diagram For WDM

    System

  • 7/30/2019 optical.ppt

    27/88

    WDM Signal

    -50

    -45

    -40

    -35

    -30

    -25

    -20

    -15

    -10

    -5

    0

    150

    0

    150

    3

    150

    7

    151

    0

    151

    3

    151

    7

    152

    0

    152

    3

    152

    7

    153

    0

    153

    3

    153

    6

    154

    0

    154

    3

    154

    6

    155

    0

    155

    3

    155

    6

    156

    0

    156

    3

    156

    6

    156

    9

    157

    3

    157

    6

    157

    9

    158

    3

    158

    6

    158

    9

    159

    3

    159

    6

    159

    9

    Wavelength, nm

    Intensity,

    dBm

    Odd Even

    O/P without Filter

    -90

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    -10

    0

    150

    0

    150

    3

    150

    7

    151

    0

    151

    3

    151

    7

    152

    0

    152

    3

    152

    7

    153

    0

    153

    3

    153

    6

    154

    0

    154

    3

    154

    6

    155

    0

    155

    3

    155

    6

    156

    0

    156

    3

    156

    6

    156

    9

    157

    3

    157

    6

    157

    9

    158

    3

    158

    6

    158

    9

    159

    3

    159

    6

    159

    9

    wavelength, nm

    Intensity,

    dBm

    O/P with Filter

  • 7/30/2019 optical.ppt

    28/88

    Simulated BER Performance

    10 Gbps 40 Gbps

  • 7/30/2019 optical.ppt

    29/88

    Liquid Crystal All-OpticalWaveguide Switches

    Kaisar Khan, Thomas X. Wu, Yanqing Lu and Shin-Tson Wu

    ECE and CREOL,University of Central Florida

    Orlando, FL 32816

  • 7/30/2019 optical.ppt

    30/88

    Motivation for LC All OpticalSwitch

    All optical switches are used for high bit ratedata transfer (continuous or burst).

    Also used for optical packet switching. Support switching of soliton pulses.

    Use of high nonlinear properties of LC in optical

    switching.

  • 7/30/2019 optical.ppt

    31/88

    System Requirement

    Return to zero (RZ) soliton like pulse.

    Existing modulation technique for 10 Gb/s isnon return

    to zero (NRZ)

    Very narrow soliton pulse width (femtosecond).

    N

    0k0B01])/ksech[(P)(0,q

    P0=Normalized Incident Power

    B =Separation Between Adjacent Bit

    0=1/e Half Width of pulse intensity

  • 7/30/2019 optical.ppt

    32/88

    WG1

    WG2

    I/P O/P

    Switching Technique

    N

    0k0B01])/ksech[(P)(0,q

    Nonlinear Kerr effect: intensity-dependent change inrefractive index.

    For low input power the light beam is transferred fromone waveguide to the other.

    For high input power the light beam remains in thesame waveguide.

    0)(0,q2

  • 7/30/2019 optical.ppt

    33/88

    Governing Equation

    0]1

    )2

    *21

    *1

    (1

    )2

    2

    2

    1(

    1[

    21)

    2

    2

    2

    1(

    21

    1

    qqqqqqqqpqi

    qqqqq

    iq

    0]2

    )1

    *12

    *2

    (2

    )2

    1

    2

    2(

    2[

    12)

    2

    1

    2

    2(

    22

    2

    qqqqqqqqpqi

    qqqqq

    iq

    For WG 1

    For WG 2

    0

    0

    21

    12

    ff

    2

    Ae

    n2

  • 7/30/2019 optical.ppt

    34/88

    2-D Pulse Shape forClose Pulse Separation

    Overshoot in Pulse Shape due to pulsecoalescence between adjacent pulses

    B = 4

    0

    B = 8

    0

  • 7/30/2019 optical.ppt

    35/88

    2-D Pulse Shape forWide Pulse Separation

    Pulse propagate without coalescence.

    B = 15

    0

    B = 20

    0

  • 7/30/2019 optical.ppt

    36/88

    Pulse Propagation in SingleCoupling Length

    I/P O/P

    Waveguide 1 Waveguide 2

    Pulse Propagation in Multiple

  • 7/30/2019 optical.ppt

    37/88

    Narrow Pulse Separation

    Pulse Propagation in Multiple

    Coupling Lengths (I)

    B = 4

    0B = 8

    0

    Pulse Propagation in Multiple

  • 7/30/2019 optical.ppt

    38/88

    Wide Pulse

    Separation

    Pulse Propagation in Multiple

    Coupling Lengths (II)

    B = 15

    0

    B = 20

    0

  • 7/30/2019 optical.ppt

    39/88

    Transmission Characteristics

    1

    2

    4

    56

    78

    2

    )(2

    2)(

    1

    2)(

    1)(

    1T

    qq

    q

  • 7/30/2019 optical.ppt

    40/88

    Significant Results

    Bit rate limits the performance of liquidcrystal all optical switches.

    Numerical results show that the bit spacingmust be approximately eight times the pulsewidth in order to avoid interactions betweenadjacent pulses.

    Due to short distance Soliton-Soliton

    interaction doesnt affect in this case.

  • 7/30/2019 optical.ppt

    41/88

    RF loss measurementof pipeline

    Kaisar Khan, Jie Chen, Satish Valenkarand Dr. Thomas Wu

  • 7/30/2019 optical.ppt

    42/88

    RF loss measurement

    RF L M t f G

  • 7/30/2019 optical.ppt

    43/88

    RF Loss Measurement of GasPipe (I)

    Baseline Test Set Model

    Receiver Section (B)Section of Pipe (P)Transmitter Section (A)

    g/4Coax to WG transformer

    Impedance transformer

    Matched

    Load

    Short

    Circuit

    RF Loss Measurement of Gas

  • 7/30/2019 optical.ppt

    44/88

    RF Loss Measurement of GasPipe (II)

    AA

    AA

    A

    SS

    SSS

    2221

    1211

    BB

    BB

    B

    SS

    SSS

    2221

    1211

    TT

    TT

    T

    SS

    SSS

    2221

    1211

    Transmitter Section:

    Receiver Section:

    Total S-parameter:

    where;BA

    AABAT

    SS

    SSSSS

    1122

    1221111111

    1

    BA

    ABT

    SS

    SSS

    1122

    121212

    1

    BA

    BAT

    SS

    SSS

    1122

    212121

    1

    BA

    BABBT

    SS

    SSSSS

    1122

    1222212222

    1

    Receiver Section (B)Transmitter Section (A)

  • 7/30/2019 optical.ppt

    45/88

    30mm

    30mm

    30mm

    b3b2b1 a3

    a2a1

    31.4mm

    31mm

    31.6mm

    a1

    = 2.5 mm

    b1

    = 5.75 mm

    a2

    = 5 mm

    b2 = 11.5 mm

    a3= 7.5 mm

    b3

    = 17.3 mm

    a4

    = 11.4 mm

    b4

    = 26.25 mmb

    4a

    4

    40mm

    33mm

    3mm

  • 7/30/2019 optical.ppt

    46/88

  • 7/30/2019 optical.ppt

    47/88

    Coax Waveguide Adapter Design

    Operating frequency: 1.3 GHz

    Medium inside the waveguide: Air

    Dielectric in coaxial line: Air

    Probe depth of

    penetration to

    launch RF waves

    PShort

    Circuit 2gL

    Theoretical simulation results:

    Probe Length L (m)

    Reflection(d

    B)

    Reflection(d

    B)

    Distance P (m)

    Frequency Dependant

  • 7/30/2019 optical.ppt

    48/88

    Frequency DependantAttenuation

    Jie Chen, Kaisar Khan, Thomas X. Wu, M. Auerbach, Larry Mertens, Don Wilson, andJim Houyouse, RFLoss Measurement of Pipeline Security Monitoring SystemPresented inIEEE APS/URSI annual meeting, July 2005, Washington D.C

  • 7/30/2019 optical.ppt

    49/88

    1.2 GHz Transceiver

    Design

    Kaisar Khan, Yupeng Chen and Dr. L. Marten

    UCF and Emtel Inc.

    System Overview : Flow

  • 7/30/2019 optical.ppt

    50/88

    System Overview : FlowWatch Monitoring System

    Breach

    PipelineRF signal

    Sensor System

    Si l/N i ti (SNR) f ti f di t

  • 7/30/2019 optical.ppt

    51/88

    Signal/Noise ratio (SNR) as a function of distancefor (a) demonstration system and (b) operational

    system

    (a) (b)(a) (b)

  • 7/30/2019 optical.ppt

    52/88

    Transceiver Block Diagram

    RF Amp PA

    LNA

    IF Amp

    Output

    Timer

    (FPGA) Impedancematching (50 ohm)

    BPF

    IF: BPF(10MHz)

    PeakDetector

    LPF ADC DSPFIFO

    Limiter

    DAC

    STC

    synthesizer

  • 7/30/2019 optical.ppt

    53/88

    Phase Noise in OFLink with EDFA

    Kaisar Khan and Dr. Mehdi Shadaram

    UT El Paso, TX

  • 7/30/2019 optical.ppt

    54/88

    System Block Diagram

    1550 nm

    Msg.

    1:1

    Coupler

    External

    Modulator

    Msg. Signal

    1:1

    CouplerPhoto diode

    De-modulator

    Laser diode

    IsolatorOpt. Pump

    1:1

    Cou ler

  • 7/30/2019 optical.ppt

    55/88

    Optical Amplifier in the link

    Power Amplifier

    Inline Amplifiers

    Receiver Amplifiers

    Tx Rx

    Tx Rx

    Tx Rx

    EDFAs Gain Saturation

  • 7/30/2019 optical.ppt

    56/88

    EDFA s Gain SaturationCharacteristics

    EDFAs Wavelength Dependant

  • 7/30/2019 optical.ppt

    57/88

    EDFAs Wavelength DependantGain Characteristics

    -50

    -45

    -40

    -35

    -30

    -25

    -20

    -15

    -10

    -5

    0

    1500

    1503

    1506

    1509

    1512

    1515

    1518

    1520

    1523

    1526

    1529

    1532

    1535

    1538

    1541

    1544

    1547

    1549

    1552

    1555

    1558

    1561

    1564

    1567

    1570

    1573

    1576

    1578

    1581

    1584

    1587

    1590

    1593

    1596

    1599

    Wavelength, nm

    Intensity,

    dBm

  • 7/30/2019 optical.ppt

    58/88

    Phase Noise

    Md. Kaisar R Khan andMehdi Shadaram, "Effect of amplified spontaneous emission noise on

    the phase of reference signals transmitted through fiber amplifiers," ICAPT 2002, Quebec City,Canada, June 2002

  • 7/30/2019 optical.ppt

    59/88

    QAM Transmission ThroughOF Link with EDFA

    Kaisar Khan and Dr. Mehdi Shadaram

    UT El Paso, TX

  • 7/30/2019 optical.ppt

    60/88

    System Block Diagram

    1550 nm

    Msg.

    1:1

    Cou ler

    External

    Modulator

    M-QAMSi nal

    1:1CouplerPhoto diode

    M-QAM

    Receiver

    Laser diode

    IsolatorOpt. Pump

    1:1

    Coupler

  • 7/30/2019 optical.ppt

    61/88

    Optical Amplifier in the link

    Power Amplifier

    Inline Amplifiers

    Receiver Amplifiers

    Tx Rx

    Tx Rx

    Tx Rx

  • 7/30/2019 optical.ppt

    62/88

    EDFAs Characteristics

    EDFAs Wavelength Dependant

  • 7/30/2019 optical.ppt

    63/88

    EDFA s Wavelength DependantGain Characteristics

    -50

    -45

    -40

    -35

    -30

    -25

    -20

    -15

    -10

    -5

    0

    1500

    1503

    1506

    1509

    1512

    1515

    1518

    1520

    1523

    1526

    1529

    1532

    1535

    1538

    1541

    1544

    1547

    1549

    1552

    1555

    1558

    1561

    1564

    1567

    1570

    1573

    1576

    1578

    1581

    1584

    1587

    1590

    1593

    1596

    1599

    Wavelength, nm

    Intensity,

    dBm

  • 7/30/2019 optical.ppt

    64/88

    Effect of Link Loss

    -15

    -12

    -9

    -6

    -3

    0

    -35 -30 -25 -20 -15 -10 -5 0 5 10

    Po, dBm

    log(BER)

    L = 10 dB 20 dB 30 dB 40 dB Upper Bound

    -15

    -13.5

    -12

    -10.5

    -9

    -7.5

    -6

    -4.5

    -3

    -1.5

    0

    -35 -30 -25 -20 -15 -10 -5 0 5 10 15

    Po, dBm

    log(BER)

    L = 0 d B 20 d B 4 0 d B 6 0 dB Up per Bo un d

  • 7/30/2019 optical.ppt

    65/88

    Effect of Amplifier Position

    -15

    -13.5

    -12

    -10.5

    -9

    -7.5

    -6

    -4.5

    -3

    -1.5

    0

    -35 -30 -25 -20 -15 -10 -5 0 5 10

    Po, dBm

    log(BER)

    Power In-line Rx Upper Bound

    -15

    -13.5

    -12

    -10.5

    -9

    -7.5

    -6

    -4.5

    -3

    -1.5

    0

    -25 -20 -15 -10 -5 0 5 10Po, dBm

    log(BER

    )

    Power In-line Rx Upper Bound

    20 dB40 dB

  • 7/30/2019 optical.ppt

    66/88

    WDM Application of 16-QAM Signal

    Kaisar R. Khan, H. Kabir, T.X. Wu, S. M Shamim Hasan and MehdiShadaram. Performance evaluation of Multi-wavelength M-QAM signaltransmitted through fiber optic link with EDFA Journal of Optical FiberTechnology, Elseiver Publication, July 2004, pp 266-274.

  • 7/30/2019 optical.ppt

    67/88

    Significant Results1. ASE noise is the most dominating noise at low and

    medium link losses, but at very high link losses thethermal noise becomes as a dominating noise.

    2. Higher wavelengths show less degree of saturation andultimately better BER performance ofM-QAM signal.

    3. The receiver amplifier performs better than the other twoamplifier positions (power and in-line amplifier) the link athigh link losses, because the amplifier placed at thereceiver end experience less degree of saturation due tolink losses.

  • 7/30/2019 optical.ppt

    68/88

    Last mile solution usingFree Space Optics

    Kaisar Khan and Yusuf Niaz

    June 2003

    BTTB, Bangladesh

    BER with Random

  • 7/30/2019 optical.ppt

    69/88

    BER with RandomIrradiance

    dI

    dxdx

    dIIPIBERBER

    x

    x

    x

    II

    I

    mx

    I

    mx

    I

    ]exp[

    })exp()exp({

    )()(

    2

    22

    81

    21

    21

    12

    0

    20

    0

    }2)/ln({

    22

    1

    2

    )(

    )(2

    121

    2

    )(

    )(2

    121

    0

    0

    })exp()exp({ 21

    21

    12

    0

    20

    0 2

    )(

    2

    1

    2

    )(

    2

    121 dxdxBER

    mxmx

    20

    21

    2/101

    20

    21

    21

    20

    201

    21

    200110 )}/ln()(2)({1

    mmmm

    Probability distribution of

  • 7/30/2019 optical.ppt

    70/88

    Probability distribution ofthreshold crossing

    0

    5

    10

    15

    20

    25

    30

    0.1

    0.4

    0.7 1

    1.3

    1.6

    1.9

    2.2

    2.5

    2.8

    3.1

    3.4

    3.7 4

    4.3

    4.6

    4.9

    5.2

    5.5

    5.8

    6.1

    6.4

    6.7 7

    7.3

    7.6

    7.9

    8.2

    8.5

    8.8

    9.1

    9.4

    9.7 10

    tau

    Io

    Series2

    Broadband Access Network( d l )

  • 7/30/2019 optical.ppt

    71/88

    Todays access plant is predominantly narrow band

    Required for increased capacity & higher speed

    Alternative broadband access technologies

    New broadband services or applications

    (Residential Services)

    Access Backbone

    Tomorrow

    Today

    Switch

    Narrowband

    (64 Kbps)

    (The Bottleneck)

    Switch/

    Router

    Broadband

    (2-20+ Mbps)

    LD Traffic

    LD Traffic

    VIDEO

    VOICE BAND

    DATA

    VOICE

    VOICE / DATA

    roa an ccess e wor us nessServices)

  • 7/30/2019 optical.ppt

    72/88

    Services)

    Services mix

    Lower initial deployment cost - Success Base Deployment

    Customized Solutions

    Security

    Metro HubMetro DWDM /

    OADM Transport

    DSLAM

    xDSL

    DS3

    E3-ATM

    TeraLinkTeraLink

    Vertical Feeder

    Riser Fiber

    FT1/DS1/DS3

    SONET/SDH/ATM/IP

    ServicesLAN-IP Services

    Ethernet

    IP Services

    GBE Services

    1, 2, 3 ...1, 2, 3 ...

    Service

    Distribution

    Network

    Collector

    Ring

    Metro Node

    Metro Node Metro Node

    Metro Node

    Office

    Complex

    Campus

    Industrial

    Park

    Collector

    Ring

  • 7/30/2019 optical.ppt

    73/88

    Next G Wireless Access

  • 7/30/2019 optical.ppt

    74/88

    Limitations of Wireless LAN

    Bandwidth small

    Shared media

    Not Scalable

    Poor performance for TCP/IPparticularly for congested network.

  • 7/30/2019 optical.ppt

    75/88

    FSO is poised to become a major player in the localbroadband access market, particularly among smalland medium-size businesses, which typically lackfiber connections.

  • 7/30/2019 optical.ppt

    76/88

    Key Requirements :

    1. Multiprotocol support

    2. Scalability

    3. Reliability and availability4. Openness

    5. Ease of installation and management

    6. Size and power consumption7. Cost effectiveness

  • 7/30/2019 optical.ppt

    77/88

    C bl TV

  • 7/30/2019 optical.ppt

    78/88

    Cable TV

  • 7/30/2019 optical.ppt

    79/88

    Distance

    < 2 Km is commercially available

    > 5 Km in R&D stage

    Problem

    1. Low SNR due beam focusing

    2. Laser beam scintillation due toatmospheric turbulence

  • 7/30/2019 optical.ppt

    80/88

  • 7/30/2019 optical.ppt

    81/88

  • 7/30/2019 optical.ppt

    82/88

  • 7/30/2019 optical.ppt

    83/88

    Resources

    www. ieee. org

    www.ietf.org

    www.airfiber.com

    www.opticomm.com

    www.lightPointe.com

    http://www.ietf.org/http://www.airfiber.com/http://www.opticomm.com/http://www.lightpointe.com/http://www.lightpointe.com/http://www.opticomm.com/http://www.airfiber.com/http://www.ietf.org/
  • 7/30/2019 optical.ppt

    84/88

    THESIS

    Effect of ASE noise on reference and M-QAM signals in afiber-optic link with EDFA, MS thesis at UT El PasoAdvisor: Mehdi Shadaram, Professor and Head, Dept. ofECE, UTEP

    Expected energy generation of two area interconnected

    system with jointly owned units, M. Eng. thesis at BUETAdvisor: Quamrul Ahsan, Professor and Dean, Faculty ofECE, BUET

    Digital design of a dc motor speed controller, senior projectconducted at BIT, Rajsahi

  • 7/30/2019 optical.ppt

    85/88

    TEACHING EXPERIENCE

    Teach under graduate courses and Labs inthe area of telecommunication,microprocessor, electronic, andnetworking as GTA/AdjunctLecturer/Lecturer for more than 6 years.

  • 7/30/2019 optical.ppt

    86/88

    LAB

    1. Electronics 2 (EEL4309) at UCF2. Analog Filter Design (EEL 4140 ) at UCF3. Analog Devices Lab (EEL 1070C )at Florida

    Technical College4. Measurement Laboratory (EE 221 ), at CCNY5. Tool Skills Laboratory (EM 130) at NY City Tech6. Electronics Laboratory at UTEP7. Microprocessors at UTEP8. Telecomm Laboratory at BUET

  • 7/30/2019 optical.ppt

    87/88

    Lecture

    1. EEL4205 (Electric Machinery) atUCF

    2. EEL 1070C: Analog Devices and

    Operation at Florida TechnicalCollege

    3. MAT1001:Remedial Math course at

    BMCC4. Electromagnetic at BIT , Rajshahi

    5. Electrical Machines at BIT, Rajshahi

  • 7/30/2019 optical.ppt

    88/88

    Priority

    GOD

    Health

    Family

    Work and Education

    Social Activity

    Entertainment