Optical cavities and trapped ions: building blocks for ...€¦ · Optical cavities and trapped...

25
Optical cavities and trapped ions: building blocks for quantum networks Tracy Northup Institute for Experimental Physics, University of Innsbruck Zeiss Symposium 2018: Optics in the Quantum World

Transcript of Optical cavities and trapped ions: building blocks for ...€¦ · Optical cavities and trapped...

  • Optical cavities and trapped ions:building blocks for quantum networks

    Tracy NorthupInstitute for Experimental Physics, University of Innsbruck

    Zeiss Symposium 2018: Optics in the Quantum World

  • • Quantum light fields for computing, communication & simulation

    • Classical light fields for manipulation & measurement of matter-based qubits

    Here, optical cavities as an interface between quantum light and quantum matter.

    What roles does optics play in quantum technology?

    Zeiss Symposium 2018 I T. E. Northup I 18.04.2018 Page 2

  • Ingredients for a quantum network

    Photons travelling along quantum channels…

    …linking quantum nodes:• generation & measurement

    of quantum states• quantum memories• quantum computers

    Key concept:Coherent interface between nodes and channels.

    H. J. Kimble, Nature 453, 1023 (2008)

    Network applications:• quantum communication• quantum sensing• distributed quantum computing

    Zeiss Symposium 2018 I T. E. Northup I 18.04.2018 Page 3

  • » Trapped-ion qubits for quantum information science

    » Optical cavities as building blocks for quantum networksEntangling ions and photonsTransferring quantum states between ions and photons

    » Outlook: applications for ion-based networks

    Zeiss Symposium 2018 I T. E. Northup I 18.04.2018 Page 4

  • Ions: a highly controllable two-level system.

    » Coherence can be preserved for long times in hyperfine and optical qubits

    » Deterministic, high-fidelity, coherent manipulation of both individual qubits and gate operations between qubits

    » High-fidelity state readout via electron shelving

    Trapped ions as quantum bits

    32D5/2

    729 nm

    42P1/2397 nm

    40Ca+

    42S1/2Linear Paul trap: RF field creates a rotating pseudopotential for charged particles.

    DC

    DC

    RF

    RF

    GND

    GND

    Zeiss Symposium 2018 I T. E. Northup I 18.04.2018 Page 5

  • Two examples of the state of the art:

    A platform for quantum computing and metrology

    1. Multi-partite entanglement in a register of 20 qubitsN. Friis, O. Marty, C. Maier, C. Hempel, M. Holzäpfel, P. Jurcevic, M. B. Plenio, M. Huber, C. Roos, R. Blatt, and B. Lanyon, Phys. Rev. X 8, 021012 (2018)

    • Entanglement characterized for neighboring groups of qubits• Each qubit individually controlled & qubit-qubit interactions turned

    on and off

    2. Spectroscopy of molecular ions via quantum logicF. Wolf, Y. Wan, J. C. Heip, F. Gebert, C. Shi, P. O. Schmidt, Nature 530, 457 (2016)

    • Quantum state of molecular ion measured via its coupling to an atomic ion

    ions as sensors: talk today by J. Hecker Denschlag

    Zeiss Symposium 2018 I T. E. Northup I 18.04.2018 Page 6

  • » Trapped-ion qubits for quantum information science

    » Optical cavities as building blocks for quantum networksEntangling ions and photonsTransferring quantum states between ions and photons

    » Outlook: applications for ion-based networks

    Zeiss Symposium 2018 I T. E. Northup I 18.04.2018 Page 7

  • An ion trap integrated with an optical cavity

    Zeiss Symposium 2018 I T. E. Northup I 18.04.2018 Page 8

  • A Raman process generates single cavity photons

    32D5/2

    393 nm

    854 nm

    729 nm

    42D1/2397 nm

    42P3/2

    cavity

    laser

    40Ca+

    42S1/2

    Zeiss Symposium 2018 I T. E. Northup I 18.04.2018 Page 9

  • Entangled ions and photons: a network resource

    S

    S → DHS → D´V

    S → DH + D´V

    …the ion and photon are maximally entangled.

    D´D

    A bichromatic Raman field generates entanglement.

    42P3/2

    H

    V

    32D5/242S1/2

    Zeiss Symposium 2018 I T. E. Northup I 18.04.2018 Page 10

  • Entangled ions and photons: a network resource

    S

    D´D

    42P3/2

    H

    V

    32D5/242S1/2

    The photon is measured in three orthogonal bases…

    …and the ion in three orthogonal bases.

    A. Stute et al., Nature 485, 482 (2012)

    Zeiss Symposium 2018 I T. E. Northup I 18.04.2018 Page 11

  • Entangled ions and photons: a network resource

    S

    D´D

    42P3/2

    H

    V

    32D5/242S1/2

    …and the ion in three orthogonal bases.

    A. Stute et al., Nature 485, 482 (2012)

    maximally entangled state: DH + D´V

    classical bound: 50%

    Zeiss Symposium 2018 I T. E. Northup I 18.04.2018 Page 12

  • Ion-photon entanglement enables remote entanglement

    click! click!

    entangled!

    Cavities aren’t required…• ions in separate traps

    D. L. Moehring et al., Nature 449, 68 (2007) • atomic ensembles, neutral atoms, NV centers, quantum dots, ...

    ...but they are a means to achieve efficient collection.

    Zeiss Symposium 2018 I T. E. Northup I 18.04.2018 Page 13

  • A similar protocol entangles ions in the same cavity

    B. Casabone et al., Phys. Rev. Lett. 111, 100505 (2013)

    ion 1: DH + D´Vion 2: DH + D´V

    → detect H & V → DD´ + D´D

    We prepare ion–ion entanglement with fidelity ≥ (91.9 ± 2.5)% with respect to a maximally entangled state.

    Outlook: cavity-based methods as a route to efficient remote entanglement & teleportation-based networks.

    L.-M. Duan, H. J. Kimble, Phys. Rev. Lett. 90, 253601 (2003)

    phase

    parity

    Zeiss Symposium 2018 I T. E. Northup I 18.04.2018 Page 14

  • An alternative to teleporation: quantum state transferJ. I. Cirac, P. Zoller, H. J. Kimble, H. Mabuchi, Phys. Rev. Lett. 78, 3221 (1997)

    neutral atoms:S. Ritter et al., Nature 484, 195 (2012)

    TN & R. Blatt, Nature Photon. 8, 256 (2014)

    Zeiss Symposium 2018 I T. E. Northup I 18.04.2018 Page 15

  • A bichromatic Raman process maps the quantum state

    S → horizontally polarized photonS´ → vertically polarized photon𝑎𝑎S + 𝑏𝑏S´ → 𝑎𝑎H + 𝑏𝑏V

    D

    S

    42S1/2

    32D5/2

    42P3/2

    A. Stute et al., Nat. Photon. 7, 219 (2013)

    Process fidelity: 92%Classical threshold: 50%

    Zeiss Symposium 2018 I T. E. Northup I 18.04.2018 Page 16

  • Addressing decoherence in state-transfer networks

    A significant loss mechanism for current experiments: scattering and absorption losses in the cavity.

    Can we build networks based on direct state transfer along photonic channels?

    We compare two methods for state transfer; one method allows us to suppress these losses.

    B. Vogell et al., Quantum Sci. Technol. 2, 045003 (2017)

    Zeiss Symposium 2018 I T. E. Northup I 18.04.2018 Page 17

  • Addressing decoherence in state-transfer networks

    J. I. Cirac, P. Zoller, H. J. Kimble, H. Mabuchi, Phys. Rev. Lett. 78, (1997)

    T. Pellizzari, Phys. Rev. Lett. 79, 5242 (1997)

    Can we build networks based on direct state transfer along photonic channels?

    #1 #2

    Zeiss Symposium 2018 I T. E. Northup I 18.04.2018 Page 18

  • Addressing decoherence in state-transfer networksCan we build networks based on direct state transfer along photonic channels?

    The key idea: Cavity losses are analogous to spontaneous emission in STIRAP and can be suppressed.

    (Channel losses, on the other hand, can’t be suppressed.)

    B. Vogell et al., Quantum Sci. Technol. 2, 045003 (2017)

    Zeiss Symposium 2018 I T. E. Northup I 18.04.2018 Page 19

  • » Trapped-ion qubits for quantum information science

    » Optical cavities as building blocks for quantum networksEntangling ions and photonsTransferring quantum states between ions and photons

    » Outlook: applications for ion-based networks

    Zeiss Symposium 2018 I T. E. Northup I 18.04.2018 Page 20

  • Scaling up cavity-based interfaces

    » Smaller cavities → faster interface with higher fidelities

    2 cmwaist: 13 µm

    0.5 mm

    high-finesse mirrors on optical fiber tips, ablated with a CO2 laserD. Hunger et al., New. J. Phys. 12, 065038 (2010)

    K. Ott et al., Opt. Express 24, 9839 (2916)

    see also: ions + fiber cavities in Bonn (Köhl), Sussex (Keller), Mainz (Schmidt-Kaler)…

    » Scaling up ion traps: ongoing research efforts worldwide

    HOA2 trap, Sandia National Laboratories

    … integrating optics is an important & challenging task.see: work in Chiaverini group at Lincoln Labs on integrated waveguides for ion addressing

    Zeiss Symposium 2018 I T. E. Northup I 18.04.2018 Page 21

  • Towards a quantum internet

    Quantum Internet Alliancehttp://quantum-internet.team

    This talk: ion-photon interactions at one node

    State of the art: two-node experiments

    We need:

    • multi-node networks over long distances

    • quantum repeaters that surpass direct transmission

    How to benchmark different experimental platforms?

    Network applications beyond quantum key distribution:

    What resources are required?

    Which applications are suited to few-node networks?

    Zeiss Symposium 2018 I T. E. Northup I 18.04.2018 Page 22

  • Optical cavities provide an interface between ions and photons, enabling building blocks for quantum networks: entanglement and quantum state transfer.

    Trapped ions are a promising platform for quantum simulation, computation & sensing. Network connectivity enables distributed applications & quantum communication.

    Scaling up from experiments with one and two nodes will require us to address decoherence in quantum nodes and channels.

    Zeiss Symposium 2018 I T. E. Northup I 18.04.2018 Page 23

  • Quantum Light-Matter Interfaces Group

    Moonjoo Lee

    Florian Kranzl

    Konstantin Friebe

    Dmitry Bykov

    Dario Fioretto

    Markus Teller Lorenzo Dania

    Pau Mestres

    Florian Ong KlemensSchüppert

    Matthias Knoll

    Pierre Jobez

    Zeiss Symposium 2018 I T. E. Northup I 18.04.2018 Page 24

  • Quantum Optics and Spectroscopy Group

    Adiabatic passage: B. Vogell, B. Vermersch, B. Lanyon, C. Muschik @ Innsbruck

    Fiber cavities: K. Ott, S. Garcia, J. Reichel @ ENS, Paris

    Collaborations

    Zeiss Symposium 2018 I T. E. Northup I 18.04.2018 Page 25

    Optical cavities and trapped ions:�building blocks for quantum networks��Tracy Northup�Institute for Experimental Physics, University of Innsbruck��Zeiss Symposium 2018: Optics in the Quantum WorldWhat roles does optics play in quantum technology?Ingredients for a quantum networkFoliennummer 4Trapped ions as quantum bitsA platform for quantum computing and metrologyFoliennummer 7An ion trap integrated with an optical cavityA Raman process generates single cavity photonsEntangled ions and photons: a network resourceEntangled ions and photons: a network resourceEntangled ions and photons: a network resourceIon-photon entanglement enables remote entanglementA similar protocol entangles ions in the same cavityAn alternative to teleporation: quantum state transferA bichromatic Raman process maps the quantum stateAddressing decoherence in state-transfer networksAddressing decoherence in state-transfer networksAddressing decoherence in state-transfer networksFoliennummer 20Scaling up cavity-based interfacesTowards a quantum internetFoliennummer 23Quantum Light-Matter Interfaces GroupQuantum Optics and Spectroscopy Group