OPEN STOPES AND SUPPORT EMPIRICAL DESIGN

28
TA 4123 – Stability of Underground Excavations 06 OPEN STOPES AND SUPPORT EMPIRICAL DESIGN Ridho K. Wattimena

Transcript of OPEN STOPES AND SUPPORT EMPIRICAL DESIGN

TA

412

3–

Sta

bil

ity

of

Un

der

gro

un

d E

xcav

atio

ns

06

OPEN STOPES AND SUPPORT EMPIRICAL DESIGN

Ridho K. Wattimena

TA

412

3–

Sta

bil

ity

of

Un

der

gro

un

d E

xcav

atio

ns

06

INTRODUCTION

@RKW

TA

412

3–

Sta

bil

ity

of

Un

der

gro

un

d E

xcav

atio

ns

06

Introduction

❖ RMR and Q were developed from a database composed primarily of civil engineering tunnels.

❖ The recommendations derived from the systems often results in conservative designs for large temporary or non-entry mining excavations

❖ These limited access areas can be designed as temporary structures and in the case of non-entry stopes, can tolerate limited local fallout of small rock blocks provided that dilution is minimised and overall stability is maintained →A more economical design suitable for mining (Hutchinson and Diederichs, 1996).

TA

412

3–

Sta

bil

ity

of

Un

der

gro

un

d E

xcav

atio

ns

06

MATHEW’S STABILITY GRAPH METHOD

@RKW

TA

412

3–

Sta

bil

ity

of

Un

der

gro

un

d E

xcav

atio

ns

06

Introduction

❖ Mathews et al. (1980) proposed an empirical method for the dimensioning of open stopes based on Q’ and on three factors accounting for stress, structural orientation, and gravity effects.

❖ The method is used to dimension each face of the stopeseparately based on a combination of these three factors and on the hydraulic radius (surface area/perimeter) HRof the face.

@RKW

TA

412

3–

Sta

bil

ity

of

Un

der

gro

un

d E

xcav

atio

ns

06

Stability Number N

N = Q’ x A x B x C

Q’ = (RQD/Jn) x (Jr/Ja)

A is a measure of the ratio of intact rock strength to induced stress

B is a measure of the relative difference between the dips of the stope surface and the critical joint sets.

C reflects the fact that the orientation of the stopeinfluences its stability.

@RKW

TA

412

3–

Sta

bil

ity

of

Un

der

gro

un

d E

xcav

atio

ns

06

(Mathews et al., 1980)

@RKW

TA

412

3–

Sta

bil

ity

of

Un

der

gro

un

d E

xcav

atio

ns

06

(Mathews et al., 1980)

TA

412

3–

Sta

bil

ity

of

Un

der

gro

un

d E

xcav

atio

ns

06

MODIFIED STABILITY GRAPH METHOD

@RKW

TA

412

3–

Sta

bil

ity

of

Un

der

gro

un

d E

xcav

atio

ns

06

Introduction

❖ Potvin (1988) modified Mathew’s approach and calibrated it using 175 case histories and Nickson (1992)added case histories and further investigated Potvin’ssupport design guidelines.

❖ Case histories: hanging walls, foot walls, ends, and backs from a wide variety of mining environments.

❖ Other case histories can be found throughout literature (Bawden, 1993; Bawden et al., 1989, Greer, 1989).

❖ The method has been expanded by Hutchinson and Diederichs (1996) to provide improved support guidelines.

@RKW

TA

412

3–

Sta

bil

ity

of

Un

der

gro

un

d E

xcav

atio

ns

06

Modified Stability Number, N’

❖ The classification of the rock mass and of the excavation problem is accomplished in the Modified Stability Graph through the use of the Modified Stability Number, N’(Potvin, 1988; Potvin and Milne, 1992; Bawden, 1993).

❖ N’ is similar to N proposed by Mathews at al. (1981) but has different factor weightings.

❖ Canadian mines use N’ and Australian mines use N (Hutchinson and Diederichs, 1996).

❖ This method has been referred to as the Potvin Method, the Mathews/Potvin Method, the Modified Stability Graph Method, and the Stability Graph Method.

@RKW

TA

412

3–

Sta

bil

ity

of

Un

der

gro

un

d E

xcav

atio

ns

06

Modified Stability Number, N’

N’ = Q’ x A x B x C

Q’ = (RQD/Jn) x (Jr/Ja)

A is a measure of the ratio of intact rock strength to induced stress

B is a measure of the relative orientation of dominant jointing with respect to the excavation surface.

C is a measure of the influence of gravity on the stability of the face being considered.

@RKW

TA

412

3–

Sta

bil

ity

of

Un

der

gro

un

d E

xcav

atio

ns

06

Rock Stress Factor A

@RKW

TA

412

3–

Sta

bil

ity

of

Un

der

gro

un

d E

xcav

atio

ns

06

Joint Orientation Factor B

@RKW

TA

412

3–

Sta

bil

ity

of

Un

der

gro

un

d E

xcav

atio

ns

06

Joint Orientation Factor B

Simplified approach(special case)

@RKW

TA

412

3–

Sta

bil

ity

of

Un

der

gro

un

d E

xcav

atio

ns

06

Gravity Adjustment Factor C

@RKW

TA

412

3–

Sta

bil

ity

of

Un

der

gro

un

d E

xcav

atio

ns

06

@RKW

TA

412

3–

Sta

bil

ity

of

Un

der

gro

un

d E

xcav

atio

ns

06

@RKW

TA

412

3–

Sta

bil

ity

of

Un

der

gro

un

d E

xcav

atio

ns

06

Stope and SupportDesign Zones

(Hutchinson and Diederichs, 1996)

@RKW

TA

412

3–

Sta

bil

ity

of

Un

der

gro

un

d E

xcav

atio

ns

06

Cableboltdensity to control local unravelling

(Hutchinson and Diederichs, 1996)

@RKW

TA

412

3–

Sta

bil

ity

of

Un

der

gro

un

d E

xcav

atio

ns

06

Cableboltspacing and density for overall stopeface stability

(Hutchinson and Diederichs, 1996)

@RKW

TA

412

3–

Sta

bil

ity

of

Un

der

gro

un

d E

xcav

atio

ns

06

Five design zones for cable support of open stopes(Hutchinson and Diederichs, 1996)

@RKW

TA

412

3–

Sta

bil

ity

of

Un

der

gro

un

d E

xcav

atio

ns

06

(Hutchinson and Diederichs, 1996)

@RKW

TA

412

3–

Sta

bil

ity

of

Un

der

gro

un

d E

xcav

atio

ns

06

(Hutchinson and Diederichs, 1996)

@RKW

TA

412

3–

Sta

bil

ity

of

Un

der

gro

un

d E

xcav

atio

ns

06

(Hutchinson and Diederichs, 1996)

TA

412

3–

Sta

bil

ity

of

Un

der

gro

un

d E

xcav

atio

ns

06

EXTENDED MATHEW’S STABILITY GRAPH METHOD

@RKW

TA

412

3–

Sta

bil

ity

of

Un

der

gro

un

d E

xcav

atio

ns

06

(Mawdesley et al., 2001)

THANK YOU