Open Loop and Close Loop System 1 -

download Open Loop and Close Loop System 1 -

of 11

Transcript of Open Loop and Close Loop System 1 -

  • 8/13/2019 Open Loop and Close Loop System 1 -

    1/11

    Exp Bra in Res (1993) 95 :308-318

    9 Springer-Verlag 1993

    Open loop and c losed loop control of posture:A rand om w alk analys i s o f center of pressure trajectoriesJ . J . C o l l in s C . J . D e L u c aNeuroMuscular Research Center and Department of Biomedical Engineering, Boston U niversity, 44 C umm ington St.,Boston, MA 02215, USAReceived: 5 M ay 1992/A ccepted: 21 Decem ber 1992

    Abstract . A n e w c o n c e p t u a l a n d t h e o r e t i c a l f r a m e w o r kf o r s t u d y i n g th e h u m a n p o s t u r a l c o n t r o l s y s t e m is i n tr o -d u c e d . M a t h e m a t i c a l t e c h n i q u e s f r o m s t a t i s t i c a l m e c h -a n i c s a r e d e v e l o p e d a n d a p p l i e d t o t h e a n a l y s i s a n di n t e r p r e t a t i o n o f s t a b i l o g r a m s . T h i s w o r k w a s b a se d o nt h e a s s u m p t i o n t h a t t h e a c t o f m a i n t a i n i n g a n e r ec tpos ture could be v i ewed, i n pa r t , a s a s tochas t i c p rocess .T w e n t y - f i v e h e a l t h y y o u n g su b j e c ts w e r e s t u d i e d u n d e rq u i e t - s t a n d i n g c o n d i t i o n s . C e n t e r - o f - p r e s su r e C O P ) tr a -j e c t o r i e s w e r e a n a l y z e d a s o n e - d i m e n s i o n a l a n d t w o -d i m e n s i o n a l r a n d o m w a l k s. T h i s n o v el a p p r o a c h l ed t o t h ee x t r a c t i o n o f r e p e a ta b l e , p h y s i o l o g i c a l l y m e a n i n g f u l p a r a -m e t e r s f r o m s t a b i l o g r a m s . I t i s sh o w n t h a t a l t h o u g hi n d i v i d u a l s t a b i l o g r a m s f o r a s i n g l e su b j e c t w e r e h i g h l yv a r i a b l e a n d r a n d o m i n a p p e a r a n c e , a c o n s i s t e n t, su b j e ct -sp e c if ic p a t t e r n e m e r g e d w i t h t h e g e n e r a t i o n o f a v e r a g e ds t a b i l o g r a m - d i f f u s i o n p l o t s m e a n sq u a r e C O P d i sp l a ce -m e n t v s t i m e i n t er v a l) . I n a d d i t i o n , s i g n i f ic a n t i n te r - su b j e c td i f fe rences were found in the ca l cu la t ed re su l t s . Thi ssu g g e s t s t h a t t h e s t e a d y - s t a t e b e h a v i o r o f t h e c o n t r o lm e c h a n i s m s i n v o l v ed i n m a i n t a i n i n g e r ec t p o s t u r e c a n b eq u i t e v a r i a b l e e v e n a m o n g s t a p o p u l a t i o n o f a g e - m a t c h e d ,a n t h r o p o m e t r i c a l l y s i m i l a r , h e a l t h y i n d i v i d u a l s . T h e sep o s t u r o g r a p h i c a n a l y s e s a l s o d e m o n s t r a t e d t h a t C O Pt r a j e c t o r i e s c o u l d b e m o d e l l e d a s f r a c t i o n a l B r o w n i a nm o t i o n a n d t h a t a t le a s t t w o c o n t r o l sy s t e m s - a sh o r t -t e r m m e c h a n i s m a n d a l o n g - t e r m m e c h a n i s m - w e r eo p e r a t i n g d U r in g q u i e t s t a n d i n g . M o r e sp e c if i ca l ly , t h ep r e se n t r e su l t s su g g e s t t h a t o v e r sh o r t - t e r m i n t e r v a l so p e n - l o o p c o n t r o l s c h e m e s a r e u t i l i z e d b y t h e p o s t u r a lc o n t r o l sy s t e m , w h e r e a s o v e r l o n g - t e r m i n t e r v a l s c l o se d -l o o p c o n t r o l m e c h a n i sm s a r e c a l l e d i n t o p l a y . T h i s w o r ks t r o n g l y s u p p o r t s t h e p o s i t io n t h a t m u c h c a n b e l e a rn e da b o u t t h e f u n c t i o n a l o r g a n i z a ti o n o f t h e p o s t u r a l c o n t r o ls y s t e m b y s t u d y i n g t h e s t e a d y - st a t e b e h a v io r o f t h e h u m a nb o d y d u r i n g p e r i o d s o f u n d i s t u r b e d s t an c e .Key words: P o s t u r a l c o n t r o l - O p e n - l o o p c o n t r o l -C l o s ed - lo o p c o n tr o l - R a n d o m w a l k - H u m a nCorrespondence to J.J. C ollins

    In tr o duc t io nT h e t a s k o f m a i n t a i n i n g a n u p r i g h t p o s t u r e i n v o l v es ac o m p l e x s e n s o r i m o t o r c o n t r o l s y s t e m . E v e n w h e n ay o u n g , h e a l t h y i n d i v i d u a l a t t e m p t s t o s t a n d s t i l l , t h ec e n t e r o f g r a v i t y o f h i s o r h e r b o d y a n d t h e c e n t e r o fp r e s su r e C O P ) u n d e r h i s o r h e r fe e t m o v e r e la t i v e t o ag l o b a l c o o r d i n a t e sy s t e m . A p l o t o f t h e t i m e - v a r y i n gc o o r d i n a t e s o f t h e C O P i s k n o w n a s a s t a b i l o g r a m F i g . 1 ).A n u m b e r o f b io m e c h a n i c a l r e se a r ch e r s h a v e a t t e m p t e d t oe v a l u a t e p o s t u r a l sw a y b y u s i n g a f o r c e p l a t f o r m t om e a su r e t h e a n t e r o p o s t e r i o r a n d m e d i o l a t e r a l d i sp l a c e -m e n t s o f t h e C O P o v e r th e p l a n e o f s u p p o r t. H o w e v e r ,p r e v i o u s a t t e m p t s a t i n t e r p r e t i n g s t a b i l o g r a m s f r o m am o t o r c o n t r o l p e r sp e c t iv e h a v e n o t b e e n su c ce s s f u l. M a n yo f t h e e a r l i e r s t u d i e s l i m i t e d t h e a n a l y s i s o f t h e se p l o t s t osu m m a r y s t a t i s ti c s , i. e. , c a l c u l a t i o n o f t h e l e n g t h o f sw a yp a t h , a v e r a g e r a d i a l a r e a, e t c. D i e n e r e t a l. 1 9 8 4 ; K i r b ye t a l. 1987; No r r6 e t a l. 1987; H asa n e t a l . 1990). By do ingso , t h e se i n v e s t i g a t i o n s i g n o r e d t h e d y n a m i c c h a r a c t e r -i st ic s o f s t a b i lo g r a m s , i .e ., t h e m a g n i t u d e a n d d i r e c t i o n o fd i sp l a c e m e n t s b e t w e e n a d j a c e n t p o i n t s , t h e t e m p o r a lo r d e r i n g o f a s e r ie s o f C O P c o o r d i n a t e s , e t c .T h e m a j o r i t y o f c o n t e m p o r a r y s c i e n t i f i c a n d c l i n i c a li n v e s t i g a t i o n s i n p o s t u r a l c o n t r o l h a v e d i r e c t e d t h e i r a t -t e n t i o n t o a n a l y z i n g t h e r e s p o n se o f t h e h u m a n b o d y t ov a r i o u s e x t e r n a l p e r t u r b a t i o n s M o o r e e t a l. 1 9 8 8; W o o l -l aco t t e t a l . 1988; D ien e r e t a l . 19 88 , 1991; H or ak e t a l .1990; D ie t z e t a l. 1991) . A l t ho ug h th i s re f l ex ive app roa che n a b l e s o n e t o e x a m i n e t h e i n p u t / o u t p u t c h a r a c t e r i s t ic s o fd i f f e re n t c l o se d - l o o p f e e d b a c k sy s t e m s N a sh n e r 1 9 71 ,1972) , i t does n o t cons ide r expl i c i t l y the s t ab i l i z ing ro l e s o fp o s s i b l e o p e n - l o o p c o n t r o l s c h e m e s o r t h e s t e a d y - s t a t eb e h a v i o r o f th e h u m a n b o d y d u r i n g p e r i o d s o f u n d is t u r -b e d s t a n c e. F u r t h e r m o r e , t h e e x p e r i m e n t a l p r o t o c o l s a s so -c i at e d w i t h d y n a m i c p o s t u r o g r a p h y a r e c o n s i d e r a b lym o r e h a z a r d o u s a n d p h y s i c al l y t a x in g t h a n t h o s e i n v o l v edi n s t a t i c p o s t u r o g r a p h y . A l so , t h e o u t p u t o f a p e r t u r b a t i o no r i n p u t i m p u l se is m o d u l a t e d b y t h e s t a t e o f e x c i t a t i o n o ra l e r tness o f t he ind iv idua l Ho rak e t al . 1989; Beckley e t a l .1 99 1) . T h u s , f r o m a c l i n i ca l s t a n d p o i n t , s t a t ic p o s t u r o g r a -

  • 8/13/2019 Open Loop and Close Loop System 1 -

    2/11

    309

    E

    EE.9{gs09~ J

    15

    -15-15 15

    d i s p l a c e m e n t x m m )Fig. 1. Typical 30-s stabilogram for a healthy young individualduring quiet standing. Mediolateral and anteroposterior COP dis-placements are plotted along the x-axis and y-axis, respectively

    phy is a much simpler and safer test to perform andadminister to aged an d disabled individuals. Nonetheless,to date, the utility of static postu rog rap hy in the clinic andlaboratory has been limited by the lack of a reliable,consistent ly useful approach or technique for extract ingrepeatable, physiological ly meaningful information fromstabilograms.In the present study, the problem of characterizingstabil ogra ms is approa ched from the perspective of statist-ical mechanics. In particular, it is postulated that themove ment of the center of pressure during quiet stan dingcan be modelled as a system of coupled, correlated r and omwalks, i.e., the motion is considered to be the result of acomb inati on of determinist ic and stochast ic mechanisms.In order to test this hypothesis, probabilist ic tools andtechniques from statistical mechanics will be introducedinto the experimental domain of posturography. One ofthe aims of this work is to develop a general stochasticmodell ing framework to examine and interpret center-of-pressure time series. In this way, it is hoped that thepresent approach wil l lead to a greater u nders tandi ng ofthe strategies utilized by the postural control system tomain tain the complex, mult i-degree-of-freedom structureof the musculosk eletal system in equi libr ium with externalforces during quiet standing.

    ater i a l s and m ethods

    Appl i ca t ion o f s ta t i s ti ca l mechanicsFundamental concepts and principles from statistical mechanicshave been applied to the study of a number of different neuro-physiological systems and phenomena (Holden 1976; Tuckwell1989). Bartol et al. (1991), for instance, utilized diffusion theory andstochastic methods for modelling miniature endplate current genera-tion in neuromuscular junctions. In a classic study, Gers tein andMandelbro t (1964) represented the statistical properties of spiketrains of single neurons as random walks towards an absorbingbarrier. Recently, this work has been extended to more detailed

    analyses of how information is encoded and t ransmitted by neurons(Gorse and Taylor 1990; Longtin et al. 1991). Others have usedstatistical physics models to simulate and analyze the collectivedynamics and emergent properties of large networks of coupledneurons (Peretto 1984; Sompolinsky 1988).The general driving principle of statistical mechanics is thatalthough the outcome of an individual random event is unpredict-able, it is still possible to obtain definite expressions for the probabil-ities of various aspects of a stochastic process or mechanism. Aclassic example of a statistical mechanical phenomenon is Brownianmotion. The simplest case of Brownian motion is the randommovement of a single particle along a straight line. This construct isknown as a one-dimensional andom walk. In 1905, Einstein studiedBrownian motion and showed that the mean square displacement(Ax2) 1 of a one-dimensional random walk was related to the timeinterval At by the expression:(Ax 2) =2DAt (1)where the parameter D is the diffusion coefficient. In words, thediffusion coefficient is an average measure of the stochastic activity ofa random walker, i.e., it is directly related to its jump frequencyand/or amplitude. The above result is easily extended to higherdimensions, i.e., random walks in a plane or in three-dimensionalspace. In each case, the mean square displacement and time intervalare still linearly related.The term f i actional Brownian motion was introduced byMandelbrot and van Ness (1968) to designate a generalized family ofGaussian stochastic processes. This mathematical concept, which isan extension of classical or ordinary Brownian motion, has beenused to model a number of different natural objects and phenomena,including andscape terrains and fluid turbulence (Mandelbrot 1983).Accessible introductions to the subject are provided by Feder (1988),Saupe (1988) and Voss (1988). For the purposes of the present study,it is important to point out that for fractional Brownian motion theEinstein relation given by Eq. 1 is generalized to the following scalinglaw:(Ax 2) ~ At~" (2)where the scaling exponent H can be any real number in the range0 < H < 1. For classical Brownian motion, H =1 . As can be seen fromEq. 2, the scaling exponent H can be determined from the slope of thelog-log plot of the mean square displacement versus At curve.An impor tant feature of fractional Brownian motion is that pastincrements in a particle's displacement are correlated with futureincrements. The only exception to this rule is the case H =89 which,as stated earlier, corresponds to a classical random walk.2For fractional Brownian motion, the correlation function C, which istime-independent, is given by the expression (Feder 1988):C= 2 2 2H ~-1). 3)

    Note that for H > 89 the stochastic process is positively correlated,i.e., C>0. In this case, a fractional Brownian particle moving ina par ticular direction for some t o will tend to continue in the samedirection for t > t o. In general, increas ing (decreasing) trends in thepast imply on the average increasing (decreasing) trends in the future(Feder 1988; Saupe 1988). This type of behavior is known aspersistence.The opposite situation occurs for H< 89 - past and futureincrements are negatively correlated. Thus, an increasing (decreas-ing) trend in the past implies a decreasing (increasing) trend inthe future. This type of stochastic behavior is referred to asanti-persistence.

    1The angled brackets ( -) denote an average over time or anensemble average over a large number of samples.2 The increments in displacement making up ordinary Brownianmotion are statistically independent.

  • 8/13/2019 Open Loop and Close Loop System 1 -

    3/11

    310E x p e r i m e n t a l m e t h o d sTw e nty- f iv e he a l thy m a le subje c t s of s im i la r a ge (19 27 ye a rs , m e a n22.3 ye a r s ) a nd s iz e (body we ight 59 .1-85 .0 kg , m e a n 71 .8 kg; he ight165.1-186.7 c m , m e a n 174.9 c m ) we re inc lud e d in the s tudy . T hem e m b e r s o f t h e s u b je c t p o p u l a t i o n h a d n o e v i d e n c e o r k n o w n h i s t o r yo f a g ai t , p o s t u r a l o r s k e l e t a l d is o r d e r . I n f o r m e d c o n s e n t w a so b t a i n e d f r o m e a c h s u b j e ct p r i o r t o p a r t i c i p a t i o n . P o s t u r a l s t a b i l i tyw a s e v a l u a t e d b y u s i n g a K i s t l e r 9 2 8 7 m u l t i c o m p o n e n t f o r c e p l a t -f o r m t o m e a s u r e t h e t i m e - v a r y i n g d i s p la c e m e n t s o f t h e C O P u n d e r asubje c t s fe e t. Ea c h subje c t wa s ins t ruc te d to s t a nd in a n u pr igh tp o s t u r e i n a s t a n d a r d i z e d s t a n c e o n t h e p l a t fo r m . I n t h e s t a n d a r d i z e ds ta nc e , the subje c t s f e e t we re a bduc te d 10~ a nd the i r he e l s we res e p a r a t e d m e d i o l a t e r a l l y b y a d i s t a n c e o f 3 c m . D u r i n g t h e t e s ti n g ,t h e s u b j e c ts s t o o d b a r e f o o t w i t h t h e i r a r m s c o m f o r t a b l y a t t h e i r s i d esa n d t h e i r e y es o p e n a n d f i x e d o n a p o i n t i n f r o n t o f t h e m . E a c h t r i all a s t ed f o r a p e r i o d o f 30 s a n d t h e f o r c e p l a t f o r m d a t a w e r e s a m p l e d a ta f r e que nc y o f 100 Hz . A se rie s of 30 t r i a ls we re c on du c te d for e a c h ofthe f i r s t 10 subje c t s . Thi s l a rge num be r of t e s t s wa s r e qu i re d to a s se sst h e r e l i a b i l i t y o f t h e p r o p o s e d s t a t i s t i c a l m e c h a n i c a l m e t h o d o l o g y .R e s t p e r i o d s o f 6 0 s a n d 5 m i n w e r e p r o v i d e d b e t w e e n e a c h t r i a l a n dbe twe e n e a c h se t of 10 t r i a l s , r e spe c t ive ly . Te n t r i a l s we re c onduc te dfor e a c h of the r e m a in ing 15 subje c t s .

    In orde r to a s se s s the noi se c ha ra c te r i s t i c s of the K is t l e r p la t form ,a l a r g e m a s s o f a p p r o x i m a t e l y 1 0 0 k g w a s p l a c e d o n t h e p l a t f o r m .T h e k i n e t i c d a t a w e r e s a m p l e d a t 1 0 0 H z f o r a p e r i o d o f 3 0 s . I nt h e o r y , t h e C O P o f a s t a ti c o b j e c t s h o u l d b e c o n s t a n t a s a f u n c t io n o ft i m e . I t w a s f o u n d , h o w e v e r , t h a t e x p e r i m e n t a l n o i s e i n t r o d u c e dv a r i a t i o n s t h a t w e r e l es s t h a n + _ 0. 5 m m i n m a g n i t u d e i n t h e m e a s -u r e d c o o r d i n a t e s o f t h e C O P o f t h e t e s t m a s s .

    Data ana ly s i s and s tab i l ogram-d i f f us ion p lo t sT h e C O P t r a j e c t o r i e s w e r e s t u d i e d a s o n e - d i m e n s i o n a l a n d t w o -d i m e n s i o n a l r a n d o m w a l k s . T h e d i s p l a c e m e n t a n a l y s i s w a s c a r r i e do u t b y c o m p u t i n g t h e s q u a r e o f t h e d i s p l a c e m e n t s b e t w e e n a l l p a ir sof poin t s s e pa ra te d in t im e by a spe c i f i e d t im e in te rva l A t ( s e eF i g . 2 a ) . T h e s q u a r e d i s p l a c e m e n t s w e r e t h e n a v e r a g e d o v e r t h en u m b e r o f A t m a k i n g u p t h e C O P t i m e s e ri e s. 3 T h i s p r o c e s s w a sr e p e a t e d f o r i n c r e a s in g v a l u e s o f A t. A n i m p o r t a n t p o i n t t o n o t e i st h a t t h e n u m b e r o f c a l c u l a t e d s q u a r e d i s p l a c e m e n t s w a s i n v e r s e lyp r o p o r t i o n a l t o t h e s i ze o f t h e t i m e i n t er v a l . A p l o t o f m e a n s q u a r eC O P d i s p l a c e m e n t v e r s u s t i m e i n t e r v a l A t w i l l b e r e f e r r e d t o a s as tab i logr am-d i f fu s ion p lo t (Fig. 2b).E x p e r i m e n t a l s t u d i e s c o n c e r n e d w i t h d i f f u s i o n - l i k e p r o c e s s e st y p i c a ll y a n a l y z e e i t h e r a l o n g t i m e s e r ie s o f d a t a m e a s u r e m e n t s o r al a r g e n u m b e r o f s m a l l e r ti m e s e r ie s o f su c h m e a s u r e m e n t s ( S h l e s in g e ra n d W e s t 1 9 8 4 ; M o n t r o l l a n d L e b o w i t z 1 9 8 7 ). I n a p o s t u r o g r a p h i ci n v e s t i g a t i o n , i t w o u l d b e i m p r a c t i c a l , h o w e v e r , t o h a v e s u b j e c t ss t a n d o n a f o r c e p l a t f o r m f o r e x t e n d e d p e r i o d s o f t im e . P h y s i o l o g i c a lf a c tor s suc h a s f a t igue would t e nd to obsc ure the r e su l t s . In thep r e s e n t s t u d y , i t w a s t h e r e f o r e d e c i d e d t o c o l l e c t a l a r g e n u m b e r o f30-s t r i a l s for e a c h su bje c t a nd to a na ly z e a ve ra g e d se t s of the r e su l t sde r ive d f rom the se t e s t s . Spe c i f i c a l ly , s t a b i logra m -di f fus ion p lo t sw e r e c o m p u t e d f o r e a c h s u b j e c t t r i a l a n d t h e n 1 0 s u c h c u r v e s w e r ea v e r a g e d t o o b t a i n a r e s u l t a n t s t a b i l o g r a m - d i f f u s i o n p l o t f o r ap a r t i c u l a r s u b j e c t . T h r e e r e s u l t a n t p l o t s w e r e t h u s g e n e r a t e d f o r asubje c t who pa r t i c ipa te d in 30 t r i a l s .D i f fus ion c oe f f i c ie n t s D (Eq. 1) we re c a lc u la te d f ro m th e s lope s oft h e r e s u l t a n t l i n e a r -l i n e a r p lo t s o f m e a n s q u a r e C O P d i s p l a c e m e n tve r sus t im e in te rva l c urve s , i .e ., (Ar 2 vs A t , A x 2 ) v s A t , an d ( A y 2 )v s A t. S i m i l ar l y , s c a l in g e x p o n e n t s H ( E q . 2 ) w e r e c o m p u t e d f r o m t h ere sul t a n t lo g- log p lo t s o f suc h c urve s . In a l l c a se s , the s lope s we red e t e r m i n e d b y u t i l i z i n g th e m e t h o d o f le a s t s q u a r e s t o f i t s t r a i g h t3 I n t h e p r e s e n t s t u d y , { x , } a n d { y , } a r e t h e m e d i o l a t e r a l a n da n t e r o p o s t e r i o r C O P t i m e s e ri e s, r e sp e c t iv e l y , a n d { A r 2 ) = { A x 2 )q- Ay2) .

    -m

    yt ( X l , Y I ) ~, (x2,Y2)

    IX

    F o r a g i v e n A t ( s p a n n i n g m d a t a i n t e r v a l s ) :N m~ A r i ) 2i=1< At2 >~ - (N - m)

    b S c h e m a t i c R e p r e s e n t a t i o n o fS t a b i l o g r a m - D i f f u s i o n P l o t100 Short- Long-TermRegionTerm80 Region

    6O T iCri t ic a l P o i n t = A t r c , < A r 2 >c )(ram2) 40

    200 0 2 4 6 8 10

    Time Interval (s)F i g . 2 . a D i a g r a m s h o w i n g t h e m e t h o d f o r c a lc u l a t i n g m e a n s q u a r ep l a n a r d i s p l a c e m e n t ( f i r a ) a s a f u n c t i o n o f ti m e i n t e r v a l A t f o r aC O P t r a je c tory m a de up of N da ta poin t s (x~ , Y l ; x2 , Y2;- . -; xN , YN}-b . A typic a l r e su l t a n t p la na r s t a b i log ra m -d i f fus ion p lo t ( (Ar 2) vs A t )g e n e r a t e d f r o m C O P t i m e s e r i e s a c c o r d i n g t o t h e m e t h o d s h o w n i n(a) . The d i f fus ion c oe f f i c ien t s D~ a nd D ,~ a re c o m p ute d f rom thes l o p e s o f t h e l i n e s f i t t e d t o t h e s h o r t - t e r m a n d l o n g - t e r mre gions , r e spe c t ive ly . The c r i t i c a l po in t , (A t rc , (ArZ)c ) , i s de f ine dby the in te r se c t io n of the l ine s f it t e d to the two re g ions of theplo t . The sc a l ing e xpo ne nts Hrs a nd Hr~ a re c a lc u la te d f ro m thes l o p e s o f t h e l o g - l o g p l o t s o f t h e s h o r t - t e r m a n d l o n g - t e r m r e g i o n s,r e spe c t ive ly

    l i n es t h r o u g h d e f i n e d p o r t i o n s o f t h e a f o r e m e n t i o n e d p l o t s. A l lp a r a m e t e r s w e r e d e t e r m i n e d b y a s i n g l e in v e s t i g a t o r .In t r a c la s s c o r re la t io n c oe f f i c ie n t s ( ICCs) we re c a lc u la te d to de te r -m i n e t h e d e g r e e o f a g r e e m e n t b e t w e e n t h e r e s p e c ti v e s t a b i l o g r a m -d i f fu s i o n p a r a m e t e r s w h i c h w e r e e x t r a c t ed f r o m t h e t h r e e r e s u l t a n tp lo t s for e a c h of the f i r s t 10 subje c t s . Th e IC C e q ua t i on for a r a n d o me f fe c t s m ode l , i . e . , ICC e qua t ion (2 ,1) a s de sc r ibe d by Shrout a ndFle i s s (1979) , wa s use d in the pre se nt s tudy . Th is e qu a t ion i s g ive n by

  • 8/13/2019 Open Loop and Close Loop System 1 -

    4/11

    the expression:BMS EMSlCC 2, 1)= 4)B MS + k - 1) EMS + k J M S- EMS) /n

    where n is the number of subjects, k is the number of repeatedmeasures judges) per subject, and B M S, JMS and E MS are thebetween-subjects mean square, between-judges mean square anderro r mean square, respectively. See Shrout and F leiss 1979) forfurther details.Although there are no rigorous, universally accepted standardsfor assessing reliability, Flei ss 1986) offer ed the following generalguidelines: ICC values less than 0.4 represent p oo r reliability, onesbetween 0.4 and 0.75 represent fair to good reliability, and valuesgreater than 0.75 correspond to excellent reliability. This categoriz-ation was adopted in this investigation.

    R e s u l t s

    R e s u l t a n t p l a n a r s t a b i l o g r a m - d i f f u s i o n p l o t s f o r f o u r r e p -r e s e n t a t i v e s u b j e c t s a r e s h o w n i n F i g. 3 . I t is i m p o r t a n t t on o t e t h a t t h e p o s t u r o g r a p h i c r e s u l t s o f F i g . 3 w e r e q u a l i -t a t iv e l y d i ff e re n t f r o m t h o s e e x p e c t e d f o r o r d i n a r y B r o w -n i a n m o t i o n . W h e r e a s t h e m e a n s q u a r e d i s p l a c e m e n t o f ar a n d o m w a l k g r o w s l i n e a r l y w i t h a c o n s t a n t s l o p e f o ri n c r e a s i n g t i m e i n t e r v a l [ s e e E q . 1 ], t h e s t a b i l o g r a m -d i f f u s i o n c u r v e s c h a n g e d s l o p e a f t e r a t r a n s i t i o n o r c r i t ic a lp o i n t a t s o m e s m a l l A t . T h i s g e n e r a l f e a t u r e w a s f o u n d i nt h e c a l c u l a t e d r e s u l t s f o r al l 2 5 s u b j e c t s w h o p a r t i c i p a t e di n t h e p r e s e n t i n v e s t i g a t i o n . A s w i l l b e d e s c r i b e d b e l o w ,C O P t r a j e c to r i e s a l s o d i ff e re d f r o m c l a ss i c al B r o w n i a nm o t i o n i n o t h e r w a y s .I n o r d e r t o p a r a m e t e r i z e t h e a b o v e s t a b i l o g r a m - d i f f u -s i o n p l o t s , t w o r e g i o n s w e r e i d e n t i fi e d - a s h o r t - t e r mr e g i o n a n d a l o n g - t e r m r e g io n . T h e s e r e g i o n s w e r e s e p a r -a t e d b y a t r a n s i t i o n p e r i o d w h e r e t h e s l o p e o f t h es t a b i l o g r a m - d i f f u s i o n p l o t c h a n g e d c o n s i d e r a b l y . D i f f u -s i o n c o e ff i c ie n t s a n d s c a l i n g e x p o n e n t s w e r e c a l c u l a t e d f o re a c h r e g i o n F i g . 2 b ). S u b s c r i p t s s a n d l w i ll b e u s e dt h r o u g h o u t t h e m a n u s c r i p t t o d e n o t e t h e s h o r t - t e r m a n dl o n g - t e r m r e g i o n s , r e s p e c t i v e l y . T h e l i n e s f i t t e d f o r c o m -pu ta t io n o f D ~s, D jz , H j~, a nd H j l w h e re j = x , y , r ) ha d r 2va lue s t h a t r a n ge d f ro m 0 .97 to 1 .00, 0 .65 to 0 .99 , 0 .90 to1 .00 , a nd 0 .68 to 1 .00 , r e spe c t ive ly . A n e s t ima te fo r e a c hc r i t i c a l p o i n t w a s d e t e r m i n e d a s t h e i n t e r s e c t i o n p o i n t o ft h e s t r a i g h t l i n e s f it t e d t o t h e t w o r e g i o n s o f t h e l i n e a r -l i n e a r v e r s i o n o f e a c h r e s u l t a n t s t a b i l o g r a m - d i f f u s i o n p l o tFig . 2b) .

    The f ir s t groupDiffusion coefficients. T h e m e a n s a n d s t a n d a r d d e v i a t i o n so f t he c a l c u l a t e d d i f fu s ion c oe f f i c i e n t s fo r t he f i r s t 10s u b j e c t s a r e g i v e n in T a b l e 1. S e v e r a l g e n e r a l p o i n t s s h o u l db e n o t e d . F i r s t l y , i n a l l c a s e s , t h e s h o r t - t e r m d i f f u s i o nc o e f f i c i e n t s w e r e m u c h g r e a t e r t h a n t h e r e s p e c t i v e l o n g -t e rm c oe f f i c i e n t s , i .e ., D ~s > D ~ w h e re j= x , y , r . Se c o nd ly ,f o r t h e m a j o r i t y o f s u b je c t s, t h e a n t e r o p o s t e r i o r d i ff u s io nc o e ff ic i en t s w e r e g r e a t e r t h a n t h e i r m e d i o l a t e r a l c o u n t e r -par ts , i .e . , Dy i > Dx i w h e r e i=s I . T h i s r e s u l t w a s n o tu n e x p e c t e d g i v e n t h e f a c t t h a t a n t e r o p o s t e r i o r p o s t u r a l

    l o o80

    < ~ I_ 2 > 6 0(ram2 40

    200

    4 6Time Interval (s)

    311

    10

    IOO80

    60(rama ) 40

    200

    4 6Time Interval (s)

    10

    1(3080

    60m m 2 ) 4O

    2O0

    0 2 4 6Time Interval (s)

    8 10

    100.806 0< A r 2 >

    r a m 2 ) 4 0 -

    20-0 . . . . . . .

    0 2 4 6 8 10Time Interval (s)

    F i g . 3 a - d . R e s u l t a n t p l a n a r s t a b i l o g r a m - d i f f u s i o n p l o t s . E a c h r e s -u l t a n t c u r v e i s g e n e r a t e d f r o m t e n d i f f e r e n t 3 0 -s C O P t i m e s e ri e s. T h ea p p r o x i m a t e d s h o r t - t e r m r e g i o n in e a c h g r a p h i s s h a d e d , a S u b j e c t 1 ;b subject 3; e subject 4; d subject 5. Th e calculated results for thesesubjects are given in Tables 1 3

  • 8/13/2019 Open Loop and Close Loop System 1 -

    5/11

    312a b l e 1. Diffusion coefficients (mm 2 s 1):means and standard deviations for thefirst population of subjects (n = 10)

    Su bje ct Mediolateral (x) Anteroposterior (y) Planar (r)D : ~ D xz D y~ y l D ~ D~l

    1 3 . 2 3_ +0 . 52 0 . 60_+0. 28 5 . 05_+0. 25 1 . 37_+0. 07 8 . 28_+0. 74 1 .97_+0.232 2 . 3 3_ +0 . 16 0 . 24_+0. 07 4 . 10_+0. 62 0 . 55 -+0 . 4 9 6 . 43_+0. 53 0 .79-+0 .453 3 . 35 -+ 0 . 22 0 . 32-+0 . 14 6 . 10_+0. 86 1 . 13_+0. 53 9 . 45_+0. 67 1 .45_+0.574 2 . 9 1_ +0 . 54 0 . 64_+0. 05 4 . 06_+0. 19 1 . 09_+0. 25 6 . 97_+0. 47 1 .73+_0 .215 3 . 4 7_ +0 . 49 0 . 31_+0. 08 3 . 16_+0. 58 1 . 02_+0. 15 6 . 62_+0. 70 1 .32_+0.136 4. 31 _+ 0. 33 0.19_+ 0.14 7.26_+ 1.84 1.00_+0 .30 11.57_+2.06 1.19_+0.337 2.89 __+ 0.44 0.96 _+0 .63 2.72_+0.29 1.11 _+0.12 5.60 _+0 .73 2.06_+0.578 1 . 2 0+ _0 . 23 0 . 21_+0. 14 2 . 46_+0.41 0 . 45_+0. 11 3 . 66_+0. 32 0 .66_+0.039 2 . 5 3_ +0 . 21 0 . 80_+0. 38 4 . 08_+0. 53 1 . 47_+0. 38 6 .61_+0. 65 2 .27_+0.2910 0. 58 _+ 0. 16 0.13_+ 0.04 1.63_+0.11 1.06_+ 0.25 2.21_+ 0.26 1.19_+0.22

    GM _+SD 2.68_+1.10 0.44_+0.35 4.06_+ 1.76 1.02 +_0 .40 6.74_+2.68 1.46_+0.59Gr oup means (GM ) and standard deviations (SD) for the respective parameters arelast row given in the

    s w a y i s ty p i c a l l y g r e a te r t h a n m e d i o l a t e r a l s w a y . T h i r d l y ,s ince( A r 2 ) = ( A x 2 ) q - ( A y 2 ) ( 5)i t f o l l o w s t h a t t h e r e s p e c t i v e p l a n a r d i f f u s i o n c o e f f i c i e n t sa r e l i n e a r c o m b i n a t i o n s o f t h e d i f f u s i o n c o e f fi c i e n t s c a l c u -la ted fo r the x a nd y d i rec t io ns , i .e ., Dri = D~ Dy .I t s h o u l d a l s o b e p o i n t e d o u t t h a t t w o s u b j e c t s , s u b -j e c t s 8 a n d 1 0, e x h i b i t e d r e l a t i v e l y s m a l l d i f f u s i o n c o e ff i c -i en t s Da i (Tab le 1 ) . S im i la r ly , ve ry sm a l l (c lose to ze ro)l o n g - t e r m m e d i o l a t e r a l d i f f u s i o n c o e f fi c i e n t s w e r e c a l c u -l a t e d f o r s u b j e c t 6 . I n t h e c a s e o f s u b j e c t 6, h i s C O P h a df u ll y e x p l o r e d t h e c h a r a c t e r i s t ic s p a c e f o r m e d i o l a t e r a ls w a y d u r i n g t h e e a r l y s t ag e s o f t h e l o n g - t e r m r e g i o n o f th es t a b i l o g r a m - d i f f u s i o n p l o t . I n o t h e r w o r d s , a f t e r s o m es m a l l A t, t h e C O P n o l o n g e r m o v e d f a r t h e r a w a y a l o n g t h ex - a x is , o n a v e r a g e , f r o m s o m e r e l a t i v e c e n t r a l p o i n t . U n d e rt h e s e c o n d i t i o n s , t h e C O P t r a j e c t o r y is sa i d t o h a v es a t u r a t e d t o s o m e b o u n d a r y v a l u e . S i n c e t h e C O P i sl i m i t e d t o t h e a r e a o f s u p p o r t d e f i n e d b y a s u b j e c t s f e e t, i ti s e x p e c t e d t h a t a s t a b i l o g r a m w o u l d a l s o s a t u r a t e t o as y s t e m a t i c b o u n d a r y v a l u e i n t h e a n t e r o p o s t e r i o r d i r e c -t i o n . H o w e v e r , f o r t h e m a x i m u m t i m e i n te r v a l c o n s i d e r e din the p resen t s t ab i logram -di f fus ion p lo t s (F ig . 3 ) , i . e . ,At,,~x = 1 0 s, s u c h a n e f f e c t w a s n o t f o u n d f o r a n y o f t h es u b je c ts . L o n g e r C O P t i m e s e ri e s a r e n e e d e d t o s t u d y t h i sp h e n o m e n o n . 4S c a l i n g e x p o n e n t s . T h e m e a n s a n d s t a n d a r d d e v i a t io n s o ft h e c o m p u t e d s t a b i l o g r a m - d i f f u s io n s c a li n g e x p o n e n t s f o rt h e f i r st 1 0 s u b j e c t s a r e p r e s e n t e d i n T a b l e 2 . F o r t h e s h o r t -t e r m r e g i o n , t h e s c a l i n g e x p o n e n t s H i s w e r e , i n g e n e r a l ,m u c h g r e a t e r t h a n 0 . 5 . T h u s , o v e r s h o r t - t e r m i n t e r v a l sd u r i n g q u i e t s t a n d i n g , C O P t r a j e c to r i e s e x h i b it p e r s is t e n tb e h a v i o r . O n t h e o t h e r h a n d , l o n g - t e r m s c a li n g e x p o n e n t sH j l w e r e in n i n e o u t o f t e n c a s e s m u c h l e ss t h a n 0 .5( T a b l e 2 ) . T h u s , o v e r l o n g - t e r m i n t e r v a l s , s t a b i l o g r a m se x h i b i t a n t i -p e r s i st e n c e . T h e o n l y e x c e p t i o n t o t h e a b o v e4 In a preliminary posturographic study using 60-s time series, t wasfound th at several subject~ saturated to a characteristic boundaryvalue in the anterop osterior direction after some relatively long timeinterv al, i.e., At = 30 s.

    s t a t e m e n t w a s s u b j e c t 1 0 w h o d i s p l a y e d m e a n v a l u e s o f0 . 53 and 0 . 47 fo r Hyz an d Hr~ , re spec t iv e ly . S ub jec t 10 ss h o r t - t e r m b e h a v i o r w a s a l s o d i ff e r e n t f r o m t h e o t h e rs u b j e c t s ; f o r e x a m p l e , h i s m e d i o l a t e r a l s c a l i n g e x p o n e n tw a s c lo s e t o t h a t e x p e c t e d f o r a n u n c o r r e l a t e d r a n d o mw a l k , i . e . , H x s ~ 0 . 5 . F i n a l l y , i t s h o u l d b e n o t e d t h a t t h el o n g - t e r m m e d i o l a t e r a l s c a l in g e x p o n e n t H x , f o r s u b j e c t 6w a s n e a r l y z e r o ( T a b l e 2 ) . T h i s i m p l i e d t h a t s u b j e c t 6 sm e a n s q u a r e C O P d i s p l a c e m e n t i n t h e x d i r e c t i o n w a se s s e n t i a l ly c o n s t a n t f o r i n c r e a s i n g v a l u e s o f A t. T h i s r e s u l tis a d ir e c t c o n s e q u e n c e o f t h e fa c t t h a t t h e C O P t r a j e c t o r -i e s f o r s u b j e c t 6 s a t u r a t e d t o a m e d i o l a t e r a l b o u n d a r yv a l u e d u r i n g t h e e a r l y s t a g e s o f t h e l o n g - t e r m r e g i o n ( a sn o t e d a b o v e ) .

    C r i t i c a l p o i n t c o o r d i n a t e s . T h e e s t i m a t e d v a l u e s o f t h et i m e i n te r v a l s a n d m e a n s q u a r e d i s p l a c e m e n t s d e f i n i n g th es t a b i l o g r a m - d i f f u s i o n c r i t i c a l p o i n t s f o r t h e f i r s t 1 0 s u b -j e c t s a r e p r e s e n t e d i n T a b l e 3 . I n g e n e r a l , t h e t r a n s i t i o npoin t s occur red a t re la t ive ly sm a l l t im e in te rva l s , i . e . , At jcr a n g e d f r o m 0 .3 3 t o 1 .6 7 s w i t h a m e a n o f a p p r o x i m a t e l y1 .0 s . O n t h e o t h e r h a n d , t h e c r i t ic a l m e a n s q u a r e d i s p l a c e -m e n t s r a n g e d f r o m v e r y s m a l l v a l u e s , i .e ., 1 . 10 m m 2 f o r( A x 2 ) c , t o r a t h e r l a r g e o n e s , i .e ., 2 9 .3 7 m m 2 f o r ( A r 2 ) c . I ti s i m p o r t a n t t o p o i n t o u t t h a t t h e c r i t i c a l p o i n t s w e r e i l l -d e f i n e d f o r m a n y o f th e s u b j e c t s . I n t h e s e c a s e s , t h e s l o p e o fa s t a b i l o g r a m - d i f f u s io n p l o t d i d n o t c h a n g e a b r u p t l y a t ad i s t in c t p o i n t , b u t r a t h e r i t c h a n g e d m o r e g r a d u a l l y o v e r ab r i e f t i m e p e r i o d . C o n s e q u e n t l y , t h e n u m b e r s g i v e n inT a b l e 3 s h o u l d o n l y b e lo o k e d u p o n a s r o u g h e s t im a t e s .R e l i a b i l i t y . T h e i n t r a c l a s s c o r r e l a t i o n c o e f f i ci e n t s f o rt h e d i f f u s i o n c o e f f i c ie n t s , s c a l i n g e x p o n e n t s a n d c r i t ic a lp o i n t c o o r d i n a t e s f o r t h e f i r s t 1 0 s u b j e c t s a r e g i v e n i nT a b l e 4 . T h e s h o r t - t e r m d i f f u s i o n c o e f f i c i e n t s D j ~ a n ds c a l i n g e x p o n e n t s H i s w e r e h i g h l y r e l i a b l e - I C C v a l u e sr a n g e d f r o m 0 . 7 6 t o 0 . 9 2 . T h e r e l i a b i l i t y m e a s u r e s f o r t h el o n g - t e r m s c a l i n g e x p o n e n t s H ~z w e r e l o w e r b u t , i n g e n e r a l ,g o o d t o e x c e l l e n t (F l e is s 1 9 8 6) : I C C v a l u e s r a n g e d f r o m0 . 5 9 t o 0 . 8 3 . T h e I C C v a l u e s f o r t h e l o n g - t e r m d i f f u s i o nc o e f f i c ie n t s D~g w e r e l o w e r t h a n t h o s e f o r t h e s h o r t - t e r mdi f fus io n coe f f i c ien t s , i .e ., 0 . 46-0 . 68 vs 0 . 83-0 . 90 . In a l lc a s e s , t h e r e l i a b i l i t y m e a s u r e s f o r t h e l o n g - t e r m s t a b i l o -

  • 8/13/2019 Open Loop and Close Loop System 1 -

    6/11

    able2. Scaling exponents: means andstandard deviations for the first popula-tion of subjects (n = i0)

    313

    Subject Med iolateral (x) Anteroposterior (y) Plan ar (r)H ~ Hx, Hy~ Hy H~ Hrl1 0 .7 1_ + 0 .02 0 .26_+ 0 .05 0 .73_+ 0.01 0 .39_+ 0 .05 0 .72_+ 0 .01 0 .35_+ 0 .032 0 .7 4_ + 0 .02 0 .18_+ 0 .02 0 .8 l_+ 0 .03 0 .17_+ 0 .10 0 .78+ _0 .03 0 .17_+ 0 .073 0 .7 6_ + 0 .01 0 .18_+ 0 .02 0 .78_+ 0 .02 0 .34 -+ 0 .08 0 .77_+ 0.01 0 .28_+ 0 .064 0 . 78 -+ 0 . 03 0 .31 -+ 0 .05 0 .79 -+ 0 .01 0 .30+ _0 .07 0 .79 -+ 0 .02 0 .31+_0 .065 0.78 _+0 .01 0.11 _+0.05 0.76-+0.03 0.31 -+ 0.0 1 0.77_ +0.0 1 0.24_+0.026 0 . 79 -+ 0 . 01 0 .06 -+ 0 .04 0 .85 -+ 0 .02 0 .17_+ 0 .04 0 .82+ _0 .02 0 .14 -+ 0 .037 0 .7 7_ + 0 .01 0 .27 -+ 0 .1 0 0 .79_+ 0 .01 0 .34 -+ 0 .02 0 .78_+ 0.01 0 .31_+ 0 .048 0 .6 5_ + 0 ,02 0 .21_+0 .11 0 .71_+ 0 .03 0 .24_+ 0 .05 0 .69_+ 0 .02 0 .23+0 .019 0 . 73 -+ 0 . 03 0 .29 -+ 0 .07 0 .79 -+ 0 .03 0 .37_+ 0 .08 0 .76 -+ 0 .03 0 .34_+ 0 .0310 0 . 57 _+ 0. 03 0 .26_+0.05 0 .72_+0.02 0 .53_+0.05 0 .68_+0.01 0 .47_+0.04

    GM_+ SD 0.73_+0.07 0 .21_+0.10 0 .77_+0.05 0 .31 -+0.1 2 0 .76_+0.05 0 .28_+0.10Gr ou p means (GM ) and standard deviations (SD) for the respective parameters are given in thelast row

    able 3. Critical point coordinates [timeintervals (s) and mean squaredisplacements (mm2)]: meansand standard deviations for the firstpopulation of subjects (n = 10)

    Subject Mediolateral (x) Anteroposterior 0 ) Pla nar (r)Atxc AX2 )c Atyc Ay~ Atrc Ar2)c1 0 . 88 _+ 0 . 27 5 .38_+1 .01 0 .42_+ 0 .32 3 .67_+ 2.93 0 .61_+ 0 .28 9 .26 -+ 3 .572 1 . 20 _+ 0. 16 5 .28_+0.40 1 .67-+0.15 12.85-+1.99 1 .50_+0.10 18.15_+2.253 0 .8 7 - + 0 .1 7 5 .44_+ 1 .49 0 .33 -+ 0 .15 3 .55 -+ 2 .14 0 .55 -+ 0 .08 9 .34_+ 1.224 0 .8 1 -+ 0. 1 4 4 .15_+1.02 1 .28 9 .68_+5.02 1 .06_+0.33 13.80-+5.405 0 .8 3 - + 0 .0 8 5 .32 -+ .02 1 .57_+0 .54 9 .57_+ 4 .21 1 .15 -+ 0 .27 14 .28 -+ 3 .146 1. 30 _+ 0. 16 10.48 -+2.15 1.36_+0.19 18.86_+3.37 1.33_+0.05 29.37-+5.047 1 . 25 -+ 0 . 36 7 .15_+ 1 .62 1 .21_+ 0 .54 6 .68_+ 2 .37 1 .23 -+ 0 .40 13.90_+ 3 .458 1 . 23 _+ 0. 31 2 .84_+1.24 1 .35_+0.21 6 .51_+2.03 1 .35- +0.1 0 9 .46_+1.539 1 .1 0_ + 0 .68 5 .65 -+ 3 .24 1 .00_+ 0 .25 7 .22_+ 0 .97 0 .85 -+ 0 .26 11.03_+ 3 .7610 1 . 04 -+ 0 . 39 1 .10 -+ 0 .26 0 .56_+ 0 .18 1 .58 -+ 0 .39 0 .72_+ 0 .23 2 .80_+0 .64

    GM _+SD 1.05_+0.32 5.28_ +2.73 1.07_+ 0.55 8.02 _+5 .44 1.04_+0.38 13.14_+7.34Gr ou p means (GM ) and standard deviations (SD) for the respective parameters are given in thelast row

    Table 4. Intraclass correlation coefficients: ICC (2, 1) for the repeatedmeasures of the stabilogram-diffusion parameters for the first 10subjectsDiffusion coefficientsD:,~ D:,~ D~s D~,~ D~ D,.~0.90 0.46 0.83 0.46 0.90 0.68Scaling exponentsH:,s Hxl H~.s Hyl H rs Hrz0.92 0.59 0 .76 0.73 0 .86 0.83Critical point coordinatesAtxc (AX2>c Atyc

  • 8/13/2019 Open Loop and Close Loop System 1 -

    7/11

    314Table 5. Rang es, group m eans andstandard deviations (SD) for the diffusioncoefficients, scaling expo nents, a ndcritical point coordinates for thesecond population of 15 subjects

    Parameter Range Group Mean+_SDDiffusion coefficients m i tt 2 s - 1 ) Dxs 1.0 5- 12 ,44 3.94+2.81Dxz 0.17-2.09 0.54 _ 0.47Dys 2.57 1 6 .0 3 7.27+_4.11Dyt 0.43-6.73 2.51 _ 1.76

    Dr, 3.62 26.03 11.21 + 6.43Drt 0.60-7.51 3.05 + 2.06Scaling expon ents Hx~ 0.634).81 0.74 -- 0.05H-x~ 0.1 24 ).32 0.23 +_0.05Hy~ 0.70 4).83 0.77 _+0.04H rz 0 . 1 8 - 0 . 5 0 0 . 3 8 _ + 0 .1 0Hr~ 0.70-0 .82 0.76 +_0.04Hr~ 0.18-0.45 0.34 +- 0.08Critical point coordinates (s) At~c 0.63 1 . 8 5 1.06 _+ 0.42Aty 0.35-1.85 0.97 0.46At~ 0.44-1 .30 0.92 -+ 0.29A x 2 ) c 1 .8 8 2 0 . 7 0 7 . 7 5+ _ 5 . 74Critical point coordinates (ram2) < A y 2 > ~ 3 . 8 7 - 4 7 . 6 3 1 2 .6 9 _+ 0 .7 1A r 2 )c 5.50-64.64 19.65 -+ 15.72

    t e r m a n t e r o p o s t e r i o r s c a li n g e x p o n e n t ( H y~ ) e q u a l t o 0 .5 .A s m e n t i o n e d e a r l i e r , t h i s i s t h e r e s u l t e x p e c t e d f o r ac l a s s i c a l , i . e . , u n c o r r e l a t e d , r a n d o m w a l k .Q u a n t i t a t i v e l y , t h e g r o u p m e a n s f o r t h e d i ff u s i o n c o e f -f i c i en t s D jl g i v e n i n T a b l e 5 w e r e , i n a l l ca s e s, l a r g e r t h a nt h o s e l i s t e d in T a b l e 1 . T h i s w a s d u e m a i n l y t o t h e f a c t t h a ta s m a l l n u m b e r o f th e s u b j e c ts i n th e s e c o n d p o p u l a t i o nh a d v e r y l a r g e d i f f u s i o n c o e f f i c i e n t s . O n t h e o t h e r h a n d ,t h e g r o u p m e a n s f o r t h e s c a li n g e x p o n e n t s a n d c r i ti c a l t i m ei n t e r v a ls f o r th e s e c o n d e x p e r i m e n t a l p o p u l a t i o n ( T a b l e 5 )w e r e i n c lo s e a g r e e m e n t w i t h t h o s e f o r t h e f ir s t p o p u l a t i o n( T a b l e s 2 a n d 3 , r e s p e c t i v e l y ) . H o w e v e r , t h e r e s p e c t i v eg r o u p m e a n s f o r t h e cr i ti c a l m e a n s q u a r e d i s p l a c e m e n t sg i v e n i n T a b l e 5 w e r e l a r g e r , i n a l l c a s e s , t h a n t h o s ec a l c u l a t e d f o r t h e f i r s t 1 0 s u b j e c t s ( T a b l e 3 ) . T h e s e d i s -p l a c e m e n t d i f fe r e n ce s w e r e a d i r e c t c o n s e q u e n c e o f th e f a c tt h a t t h e c r i t i c a l t i m e i n t e r v a l s f o r t h e t w o g r o u p s w e r ee q u i v a l e n t b u t t h e a v e r a g e s h o r t - t e r m d i f f u s i o n c o e f f i c -i e n t s f o r t h e s e c o n d s u b j e c t p o p u l a t i o n w e r e l a r g e r t h a nthose fo r the f i r s t .

    athematical model developmentI n t h i s s tu d y , it w a s s h o w n t h a t p o s t u r o g r a p h i c t i m e s e ri e sw e r e q u a l i t at i v e l y d i f f er e n t f r o m t h o s e p r e d i c t e d f o r o r d i -n a r y B r o w n i a n m o t i o n . A s d e s c r i b e d e ar l ie r , t h e d i f f u si o nc u r v e s f o r a c l a s s i c a l r a n d o m w a l k g r o w l i n e a r l y a n du n b o u n d e d w i t h i n c r e a s in g t i m e i n t e r v a l w h e r e a s s t a b i l o -g r a m - d i f f u s i o n c u r v e s c h a n g e s l o p e a f t e r a t r a n s i t io n p o i n ta t s o m e s m a l l A t a n d t h e n s a t u r a t e t o a r e l a t i v el y c o n s t a n tm e a n s q u a r e d i s p l a c e m e n t a f t e r s o m e l a r g e t im e i n t e r v a l.F u r t h e r m o r e , w h e r e a s t h e s c a l i n g e x p o n e n t f o r a n u n -c o r r e l a t e d r a n d o m w a l k s h o u l d b e e q u a l t o 0 . 5 , i t w a sd e m o n s t r a t e d t h a t t h e s ca l in g e x p o n e n t s f o r C O P t r a je c -t o r i e s a r e g r e a t e r t h a n a n d l e s s t h a n 0 . 5 ( p e r s i s t e n c e / a n t i -p e r s i s t e n c e ) f o r s h o r t - t e r m a n d l o n g - t e r m i n t e r v a l s ,r e s p e c t i v e l y .

    T o a c c o u n t f o r t h e s e e x p e r i m e n t a l o b s e r v a t i o n s a n do f f e r a p o s s i b le p h y s i o l o g i c a l e x p l a n a t i o n , t h e m o v e m e n t so f t h e C O P d u r i n g u n d i s t u r b e d s t an c e c a n b e m o d e l l e d asa s y s te m o f c o u p l e d , b o u n d e d r a n d o m w a l k s. T h e p r e -s u m e d f o r m o f th e m o d e l w a s m o t i v a t e d b y t h e c a l c u l a t e dd y n a m i c d i f f er e n c es b e t w e e n t h e s h o r t - t e r m a n d l o n g - t e r mr e g i o n s o f t h e s t a b i l o g r a m - d i f f u s i o n p l o t s a n d b y t h ef o l l o w i n g m e c h a n i c a l / p h y s i o l o g i c a l c o n s i d e r a ti o n s : ( 1) t h ee r e c t h u m a n b o d y c a n , i n t h e o r y , a s s u m e a n i n f i n i t en u m b e r o f d i f f er e n t g e o m e t r i c c o n f i g u r a t i o n s a n d r e m a i ni n e q u i l i b r i u m w i t h e x t e r n a l f o r c e s ; ( 2 ) s i n c e s k e l e t a lm u s c l e is i n c a p a b l e o f p r o d u c i n g p u r e l y c o n s t a n t f o r c es( D e L u c a e t al . 19 8 2) , b o d y s e g m e n t s a c t e d u p o n b y a c t i v em u s c l e s a re i n c a p a b l e o f m a i n t a i n i n g p u r e l y c o n s t a n tp o s i t i o n s a n d / o r o r i e n t a t i o n s . T h e p r e l i m i n a r y m a t h e m a t -i c a l m o d e l i s c o m p o s e d o f t w o s t o c h a s t i c s y s t e m s ( F i g . 4 ).T h e f i rs t sy s t e m c o n s i s ts o f a r a n d o m w a l k e r w h i c h i sa t t a c h e d t o a n o n l i n e a r s p r i n g a t t h e c e n t e r o f a b o u n d e dc i r c u l a r a r e a . If t h e r a n d o m w a l k e r m o v e s a w a y f r o m t h ec e n t e r o f t h e c i r c l e ( it s e q u i l i b r i u m p o i n t ) , i t is a c t e d u p o nb y a n o n l i n e a r , e l a s t i c r e s t o r a t i v e f o r c e . T h e s e c o n d s y s -t e m , w h i c h i s l i n e a r l y s u p e r i m p o s e d o n t o t h e f i r st , c o n s i s t so f a n o t h e r r a n d o m w a l k e r w h i ch i s b o u n d e d b y a s m a l le rc i r c u l a r a r e a . I n t h e s m a l l e r c ir c l e, t h e w a l k e r i s a c t e d u p o nb y a s y s t e m o f t h r e s h o l d - b a s e d a l t e r n a t i n g s p r i n g s, w h i c ha r e a t t a c h e d a r o u n d t h e b o u n d a r y . O n c e t h e r a n d o mw a l k e r r e a c h e s t h e p e r i m e t e r o f i ts b o u n d e d a r e a , th es p r i n g a c t in g u p o n t h e w a l k e r i s d e a c t i v a t e d a n d t h e o n el o c a t e d o n t h e o p p o s i t e s i d e o f t h e b o u n d e d a r e a i s c a l le di n t o p l a y . T h u s , f o r t h is c o n f i g u r a t i o n , t h e c e n t e r o f t h eb o u n d e d a r e a i s not a s t a b l e e q u i l i b r i u m p o i n t . I n s u m -m a r y , th e C O P r a n d o m w a l k e r f o r e a c h m o d e l le d s y st e mi s p e r t u r b e d a t a n y g i v e n t i m e b y b o t h a r a n d o m l yf l u c t u a t in g f o r c e a n d a s t a b i l iz i n g a n d / o r d e s t a b il i z in gs p r i n g f o r c e .T h e b e h a v i o r o f t h e a b o v e p o s t u r o g r a p h i c m o d e l c a n b ed e s c r i b e d b y a s i m p l e se t o f e q u a t i o n s . F o r e x a m p l e , t h ed y n a m i c s o f t h e fi rs t C O P r a n d o m w a l k e r ( w h ic h m o v e s

  • 8/13/2019 Open Loop and Close Loop System 1 -

    8/11

    r b

    F i g . 4 . D i a g r a m o f t h e m o d e l s y s te m o f co u p l e d , b o u n d e d r a n d o mw a l k s . T h e f i r s t s y s t e m c o n s is t s o f a C O P r a n d o m w a l k e r w h i c h i sa c te d upo n by a spr in g (w i th s t if fne ss k~) whic h i s a t t a c he d to thec e n t e r o f th e l a r g e r c i r c u l a r a re a . L i n e a r l y s u p e r i m p o s e d o n t o t h i sr a n d o m w a l k e r i s a n o t h e r b o u n d e d s y s t e m . I n t h e s m a l l e r b o u n d e da r e a , a s e c o n d C O P r a n d o m w a l k e r i s a c t e d u p o n b y a s y s t e m o ft h r e s h o l d - b a s e d a l t e r n a t i n g s p r i n g s . I n t h e d i a g r a m , t h e r a n d o mwa lk e r i s in i t i a l ly a c te d upo n b y a spr ing (w i th s t i ffne s s k , ) a t t a c he d a tr E . A f t e r t h e r a n d o m w a l k e r c r o s se s t h e b o u n d a r y a t r ~ ,, t h e f i r s tspr ing i s tu rne d o f fa nd the spr ing (w i th s t if fne s s k , ) a t t a c he d a t - r~ ,i s a c t iva te d

    100-80-

    60 -(mm2) 40-

    20-

    2 4 6 8 ITime nterval s)F i g . 5 . R e s u l t a n t p l a n a r s t a b i l o g r a m - d i f f u s i o n p l o t s g e n e r a t e d b yt h e p o s t u r o g r a p h i c m o d e l o f F i g . 4. E a c h r e s u l t a n t c u r v e i s g e n e r a t e dfrom ten different 30-s simulated C OP time series. The approximatedshort-term region for the system is shaded

    w i t h i n t h e l a r g e r b o u n d e d a r e a ) i s g o v e r n e d b y t h ee x p r e s s i o n : 5l _ l ~ l i ir , + l - r , + F ( r o , 0 - r , ) (6 )

    w h e r e ~ a n dn + 1 r n a r e t h e p o s i t i o n s o f t h e r a n d o m w a l k e ra t t im es t = n + 1 and t = n , re spe c t ive ly , ~z repr esen t s thei n f l u e n c e o f a r a n d o m l y f l u c t u a t i n g f o r c e , a n d F ~( r ) r e p r e -s T h e o r i g i n o f ea c h l o c a l c o o r d i n a t e s y s t em i s l o c a t e d a t t h e c e n t e r o fi t s b o u n d e d a r e a .

    315s e n t s t h e i n f l u e n c e o f a r e s t o r a t i v e s p r i n g l o c a t e d a t t h ec e n t e r (rZ o,0) o f t h e b o u n d e d a r e a . T h e b e h a v i o r o f t h es e c o n d C O P r a n d o m w a l k e r ( w h i c h m o v e s w i t h i n t h es m a l l e r b o u n d e d a r e a ) i s g o v e r n e d b y t h e f o l l o w i n ge q u a t i o n s :r~+~ = r. + 4.~ + F ~ (r ~ - r s) if [r.~[ < I gJ (7)r,~+l = r, + ~ + F S ( - r~, - r, ) if lrSl _> I g] (8)w h e r e t h e a b o v e t e r m s a r e e q u i v a l e n t t o t h o s e i n E q . 6e x c e p t t h a t F S (r ~) i n E q . 7 r e p r e s e n t s t h e i n f l u e n c e o f ap e r i m e t e r - b a s e d s p r i n g a t t a c h e d a t p o i n t r ~. I f t h e s e c o n dC O P r a n d o m w a l k e r c r o ss e s t h e b o u n d a r y a t r{ ,, t h e n t h ef i r st s p r i n g a c t i n g i n E q . 7 is t u r n e d o f f a n d a s p r i n ga t t a c h e d a t p o i n t - r ~ , i s a c t i v a t e d , a s s h o w n i n E q . 8 a n dFig. 4.T h e a b o v e e q u a t i o n s f o r m e d t h e b a s i s o f a n i n i t ia l -p h a s e c o m p u t e r p r o g r a m . I n o r d e r t o c o m p a r e t h e s im u -l a t i o n r e su l t s w i t h e x p e r i m e n t a l d a t a , t h e c o m p u t e r m o d e lw a s u s e d t o g e n e r a t e d i f f e r e n t s e t s o f 1 0 t i m e s e r ie s o f 3 0 0 0d a t a p a i r s . R e s u l t a n t s t a b i l o g r a m - d i f f u s i o n c u r v e s w e r et h e n c a l c u l a t e d a c c o r d i n g t o t h e m e t h o d s d e s c r i b e de a r li e r. R e p r e s e n t a t i v e r e s u lt s o f t h e m o d e l a r e s h o w n i nF i g. 5 . T h e s i m u l a t i o n c u r v e s o f Fi g . 5 a r e r e m a r k a b l ys i m i l a r i n s h a p e a n d f o r m t o t h e e x p e r i m e n t a l p l o t s o fF i g . 3. F o r e x a m p l e , i t i s c l e a r t h a t t h e s i m u l a t e d d i f f u s i o nc u r v e s c h a n g e d s l o p e a f t e r s o m e s m a l l t i m e i n t e r v a l , i . e . ,A t ,- ~ 1 .0 s . M o r e o v e r , o v e r s h o r t - t e r m a n d l o n g - t e r m i n t e r -v a l s , t h e s t a b i l o g r a m m o d e l e x h i b i t e d p e r s i s t e n t ( s i m u -l a t e d H j ~ > 0 . 5 ) a n d a n t i - p e r s i s t e n t ( s i m u l a t e d H i t < 0 . 5 )b e h a v i o r , r e s p e c ti v e ly . F i n a ll y , a n i m p o r t a n t f e a t u r e o f t h ep r e s e n t c o m p u t e r m o d e l w a s t h a t t h e q u a l i t a t i v e a n dq u a n t i t a t i v e c h a r a c t e r is t i c s o f t h e s i m u l a t e d s t a b i l o g r a m -d i f f u si o n c u r v e s c o u l d b e m o d i f i e d b y v a r y i n g t h e m a g n i -t u d e o f th e d i f f e r e n t p a r a m e t e r s t h a t d e f i n e d t h e m o d e l sb e h a v i o r .

    i scussion

    e l iab i l i t yB e f o r e a n y n e w t e c h n i q u e c a n b e u s e f u ll y e m p l o y e d a s as c i e n ti f ic a n d / o r c l i n ic a l t o o l ,, i t s r e l i a b i l i t y m u s t b e a s s e s-s e d. I n t h i s s t u d y , i n t r a c l a s s c o r r e l a t i o n c o e f f i c i e n t s w e r ec a l c u l a t e d t o d e t e r m i n e t h e d e g r e e o f a g r e e m e n t b e t w e e nr e p e a t e d m e a s u r e s o f t h e r e s p e c t iv e s t a b i l o g r a m - d i f f u s i o np a r a m e t e r s - d i f f u s i o n c o e f f i c ie n t s , s c a l i n g e x p o n e n t s , a n dc r i ti c a l p o i n t c o o r d i n a t e s . I t w a s s h o w n t h a t t h e m a j o r i t yo f t h e p r o p o s e d p o s t u r o g r a p h i c p a r a m e t e r s d e m o n s t r a t e dg o o d t o e x c e l l e n t r e l ia b i li t y . T h e k e y a n a l y t i c a l a d v a n c e -m e n t o f t h e p r e s e n t w o r k w a s t h e u t i l i z a t io n o f tr i ala v e r a g in g . D u e t o t h e s t o c h a s t i c n a t u r e o f s t a b i lo g r a m s , i ti s d i f f ic u l t , c o n c e p t u a l l y a n d p r a c t i c a l l y , t o o b t a i n r e p e a t -a b l e p a r a m e t e r s f r o m i n d i v i d u a l 3 0 - s C O P t i m e s er ie s. A se v i d e n c e d b y t h e r e p o r t e d r e s u l t s , t h i s t a s k i s g r e a t l ys i m p l i f ie d b y l o o k i n g a t e n s e m b l e a v e r a g e s o f a r e l a t i v e l ys m a l l n u m b e r o f e x p e r i m e n t a l s e q u e n c e s , i .e ., te n 3 0 - s t es ts .A s m e n t i o n e d e a r l i e r , i t i s e x p e c t e d t h a t t h e r e l i a b i l i t y o ft h e r es p e c t iv e p a r a m e t e r s w o u l d i m p r o v e a s th e n u m b e r o fC O P t i m e s e r i e s m a k i n g u p t h e r e s u l t a n t s t a b i l o g r a m -

  • 8/13/2019 Open Loop and Close Loop System 1 -

    9/11

    316d i f fu s i o n p lo t s w a s i n c r e a se d . H o w e v e r , b e c a u s e o f t h ec o m p l i c a t i o n s a s s o c i a t e d w i t h s u b j e c t f a t i g u e , a n y c l i n i c a lo r s c i e n ti fi c i n v e s t i g a t io n i n p o s t u r o g r a p h y w i ll h a v e t oa c c e p t s o m e t r a d e - o f f b e t w e e n r e l ia b i li t y a n d e x p e r i m e n t a lp r a c t i c a l i t y .

    Open loop and closed loop control strategiesB y a n a l y z i n g s ta b i l o g r a m s a s f r a c t io n a l B r o w n i a n m o t i o n ,i t w a s r e v e a l e d t h a t a t l e a s t t w o d i s t i n c t l y d i f f e r e n t n e u r o -m u s c u l a r c o n t r o l m e c h a n i s m s - o n e w h i c h e x h i b i ts p e rs i s-t e n c e a n d a n o t h e r w h i c h e x h i b i t s a n t i -p e r s i s te n c e - a r ef u n c t i o n i n g d u r i n g q u i e t s t a n d i n g . M o r e s p e c i f ic a l l y , t h e s ea n a l y s e s s u g g e s t t h a t o v e r s h o r t - t e r m i n t e r v a ls o p e n - l o o pc o n t r o l s c h e m e s a r e u t i l i z e d b y t h e p o s t u r a l c o n t r o l s y s -t e m , w h e r e a s o v e r l o n g - t e r m i n t e r v a l s c l o s e d - lo o p c o n t r o lm e c h a n i s m s a r e c a l l e d i n t o p l a y . T h e s e i s s u e s w i l l b ed i s c u s s e d i n g r e a t e r d e t a i l i n t h e f o l l o w i n g s e c t i o n s .

    Physiologically mean ingful posturographic param etersP o s t u r o g r a p h y h a s b e e n l i m i t e d b y t h e la c k o f a n a n a l y t -i c a l t e c h n i q u e f o r e x t r a c t i n g p h y s i o l o g i c a l l y m e a n i n g f u lp a r a m e t e r s f r o m s t a b i l o g r a m s . S i n c e t h e C O P is a m e a s -u r e o f w h o l e - b o d y d y n a m i c s , i t r e p r e s e n t s th e s u m m e de f fe c t o f a n u m b e r o f d i ff e r e n t n e u r o m u s c u l o s k e l e t a l c o m -p o n e n t s a c t i n g a t a n u m b e r o f d if f e r en t j o i n ts . T h i s i n h e r -e n t f e a tu r e h a s c o n f o u n d e d t h e m a j o r i t y o f p r e v i o u sa t t e m p t s a t i n t e r p r e t i n g s t a b i l o g r a m s f r o m a m o t o rc o n t r o l p e r sp e c t iv e . A n a d v a n t a g e o f t h e p r o p o s e d s t a b i l o -g r a m - d i f f u s i o n p a r a m e t e r s i s t h a t t h e y c a n b e d i r e c t l yr e l a t e d t o t h e r e s u l t a n t s t e a d y - s t a t e b e h a v i o r a n d f u n c -t i o n a l in t e r a c t i o n o f t h e o p e n - l o o p a n d c l o s e d - l o o p n e u r o -m u s c u l a r m e c h a n i s m s u n d e r l y i n g p o s t u r a l c o n t r o l .D i f f u s i o n c o e f f i ci e n t s, f o r e x a m p l e , r e f l e c t t h e l e v e l o fs t o c h a s t i c a c t i v i ty o f t h e C O P a l o n g t h e m e d i o l a t e r a l o ra n t e r o p o s t e r i o r a x is o r a b o u t t h e p l a n e o f s u p p o r t . T h e s em e a s u r e s c a n t h u s b e u s e d t o q u a n t i f y p o s t u r a l i n s ta b i l it y ,i . e . , l a r g e r D j i c o r r e s p o n d t o a l e s s t i g h t l y r e g u l a t e d o rm o r e r a n d o m c o n t r o l s y st e m a n d v i ce v e r sa . 6 I n l ig h t o ft h e s e c o m m e n t s , s e v e r a l a s p e c t s o f t h e c a l c u l a t e d r e s u l t ss h o u l d b e d i s c u s s e d . F i r s t l y , i t w a s f o u n d t h a t t h e s h o r t -t e r m d i f fu s i o n c o ef f ic i en t s w e r e m u c h l a r g e r t h a n t h e l o n g -t e r m c o e ff i ci e nt s . T h i s s u g g e s ts t h a t t h e o p e n - l o o p c o n t r o lm e c h a n i s m s w h i c h d o m i n a t e s h o r t - t e r m i n t e r v a l s h a v e ah i g h e r l e v e l o f s t o c h a s ti c a c t i v i ty t h a n t h e c l o s e d - l o o pc o n t r o l m e c h a n i s m s w h i c h a r e u ti l iz e d o v e r l o n g - t e r mi n t er v a l s. S e c o n d l y , i t w a s s h o w n t h a t t h e a n t e r o p o s t e r i o r6 It is important to point out, however, that an individual may haverelatively large diffusion coefficientsDj~and relatively small criticalmean square displacements and /or saturation points. In this case, thepostural control system allows a relatively high lev el of stochasticactivity within a relatively small region of the base of support. Itshould also be noted th at it is possible for two individuals to havesimilar scaling exponen ts bu t sign ificantly different diffusion coeffic-ients. Fo r th is situation, the CO P step increments for the twosubjects are sim ilarly correlated, bu t the average mean squaredisplacem ent (over a given time interval) is larger for one subject ascompared to the other.

    d i f f u s i o n c o e ff i c i en t s w e r e g r e a t e r t h a n t h e r e s p e c t i v em e d i o l a t e r a l c o e ff ic i en t s. T h i s a s y m m e t r y c a n b e a t t r i b u -t e d l a r g e ly t o t h e g e o m e t r y o f t h e l o w e r l im b . T h e a n k l e o rt i b i o t a r s a l j o i n t i s, f o r e x a m p l e , m a i n l y a s i m p l e h i n g e j o i n tw h i c h a l lo w s r o t a t i o n ( p l a n t a r f le x i o n / d o r s i f le x i o n ) i n t h es a g i t t a l p l a n e . T h u s , f r o m a p a s s i v e m e c h a n i c a l s t a n d -p o i n t , u p r i g h t b i p e d a l s t a n c e i s c o n s i d e r a b l y m o r e s t a b l ei n t h e f r o n t a l p l a n e t h a n i n t h e s a g i t t a l p l a n e . T h i r d l y , i tc a n b e s e e n i n T a b l e s 1 a n d 5 t h a t t h e m a g n i t u d e s o f t h ed i f f u si o n c o e f fi c ie n t s w e r e h i g h l y v a r i a b l e a m o n g s t y o u n gh e a l t h y s u b j e c t s . F o r i n s t a n c e , t h e r e w a s a n o r d e r o fm a g n i t u d e d i f fe r e n c e i n t h e c a l c u l a t e d v a l u e o f t h e l o n g -t e r m p l a n a r d i f f u s i o n c o e f f i c ie n t D r t f o r s u b j e c t 1 0 ( T a b l e 1 )a n d o n e o f t h e s u b j ec t s o f t h e s e c o n d p o p u l a t i o n ( T a b l e 5 ):1 .1 9 v s 2 6. 0 3 m m 2 s - 1 . T h i s i m p l i e s t h a t s u b j e c t 1 0 w a sm o r e s t a b l e t h a n t h e o t h e r i n d i v i d u a l . O n a l a r g e r s c a l e ,t h e se d i f f e r en c e s s u g g e s t t h a t t h e s t e a d y - s t a t e b e h a v i o r o ft h e c o n t r o l m e c h a n i s m s i n v o l v e d i n m a i n t a i n i n g e r e c tp o s t u r e c a n b e q u i t e v a r i a b l e e v e n a m o n g s t a p o p u l a t i o no f a g e - m a t c h e d , a n t h r o p o m e t r i c a l l y s i m i la r , h e a l t h yi n d i v i d u a l s .T h e s e c o n d s e t o f s t a b i l o g r a m - d i f f u s io n p a r a m e t e r sw e r e t h e s c a li n g e x p o n e n t s , w h i c h q u a n t i f y t h e c o r r e l a t i o nb e t w e e n t h e s t e p i n c r e m e n t s m a k i n g u p a n e x p e r i m e n t a ls t a b i l o g r a m t i m e s e r i e s . F o r t h e s h o r t - t e r m r e g i o n , t h ec o m p u t e d s c a l i n g e x p o n e n t s w e r e m u c h g r e a t e r t h a n 0 . 5 .T h u s , o v e r s h o r t - t e r m i n t e r v a l s d u r i n g q u i e t s t a n d i n g , t h eC O P b e h a v e d a s a p o s i t i v e ly c o r r e l a t e d r a n d o m w a l k , i.e .,o n e w h i c h t e n d s t o m o v e a w a y f r o m s o m e r e l a t i v e e q u i li -b r i u m p o i n t f o l l o w i n g a n e x t e r n a l p e r t u r b a t i o n ( i n d i c a ti v eo f o p e n - l o o p c o n t r o l ). O n t h e o t h e r h a n d , i t w a s f o u n d t h a tt h e s c a l i n g e x p o n e n t s w e r e m u c h l e s s t h a n 0 .5 f o r t h e l o n g -t e r m r e g i o n . T h u s , o v e r l o n g - t e r m i n t e rv a l s , t h e C O Pb e h a v e d a s a n e g a t i v e l y c o r r e l a t e d r a n d o m w a l k , i.e ., o n ew h i c h t e n d s t o r e t u r n t o a r e l a t i v e e q u i l i b r i u m p o i n tf o l l o w i n g a p e r t u r b a t i o n ( i n d ic a t iv e o f c l o s e d - l o o p c o n -t r o l) . T h e s e r e s u l t s i m p l y t h a t f o r t h e m a j o r i t y o f su b j e c t st h e m o v e m e n t s o f t h e C O P d u r i n g u n d i s t u r b e d s t a n c e a r en o t p u r e l y r a n d o m , 7 i .e ., H j i r I n s t e a d , t h e s e m o t i o n sm o s t l i k e l y r e p r e s e n t t h e c o m b i n e d o u t p u t o f c o - e x i s t e n td e t e r m i n i s t i c a n d s t o c h a s t i c m e c h a n i s m s / F i n a l l y , i ts h o u l d b e n o t e d t h a t t h e s c a l i n g e x p o n e n t i n t e r - s u b j e c tv a r i a b i l i t y ( T a b l e s 2 a n d 5 ) w a s l e s s t h a n t h a t f o r t h ed i f fus ion coe f f i c ien t s (Tab les 1 and 5): the coe f f i c ien t s o fv a r i a t i o n f o r t h e s c a l i n g e x p o n e n t s w e r e , i n g e n e r a l ,s m a l l e r t h a n t h o s e f o r t h e d i f f u s i o n c o e f fi c i e n ts . T h u s , t h i sf u n c t i o n a l a s p e c t o f t h e p o s t u r a l c o n t r o l s y s t e m , i.e ., t h es t a b i l i z i n g / d e s t a b i l i z i n g e f f e c t s o f d i f f e r e n t c o n t r o l m e c h -

    7 A sm all number of the subjects had scaling exponents which w ereapprox imately eq ual to 0 .5, i.e., the resu lt expected for classicalBrownian motion.s It is important to emphasize the fact that the C OP displacementsmeasured in the present study w ere principally associated withpostural swa y and not instrumentation no ise - the maximumfluctuations introduced by instrumentation noise were less than 5%of the maximum displacement of the CO P during a typical 30-s trial(see Materials and methods). The presence of low levels of elec-tronic/instrumentation noise would, how ever, decrease the correla-tion between the CO P step increments and thereby shift the values ofthe resp ective scaling exponen ts closer to 0.5.

  • 8/13/2019 Open Loop and Close Loop System 1 -

    10/11

    317a n i sm s , m a y b e m o r e c o n s i s t e n t w i t h i n a p a r t i c u l a r s u b j e c tp o p u l a t i o n .T h e t h i rd s et o f p o s t u r o g r a p h i c p a r a m e t e r s w e r e t h ec r i ti c a l p o i n t c o o r d i n a t e s t h e c r i ti c a l t i m e i n t e r v a l s a n dc r i ti c a l m e a n s q u a r e d i s p l a c e m e n t s . F r o m a n a n a l y t i c a ls t a n d p o i n t , t h e s e c o o r d i n a t e s a p p r o x i m a t e t h e t r a n s i t i o np o i n t a t w h i c h t h e s l o p e o f a r e s u l t a n t s t a b i l o g r a m -d i f f u si o n p l o t c h a n g e s c o n s i d e r a b l y . F r o m a p h y s i o l o g i c a ls t a n d p o i n t , t h e s e c o o r d i n a t e s r e p r e s e n t t h e p o i n t a t w h i c ht h e p o s t u r a l c o n t r o l s y s te m s w i t ch e s o v e r f r o m o p e n - l o o pc o n t r o l t o c l o s e d - l o o p c o n t r o l . O n a v e r a g e , t h is c r o s s o v e rp o i n t o c c u r r e d a t r e l a t i v e l y s m a l l t i m e i n t e r v a l s , i . e . ,At jc ~ 1 .0 s , an d m ean squ a re d i sp lac em ents , i .e . ~ A j 2 c w a sl es s t h a n 2 0 .0 m m 2. A r e l a t e d p a r a m e t e r w h i c h w a s n o tf u ll y e x p l o r e d i n t h e p r e s e n t i n v e s t i g a t io n w a s t h e s a t u r a -t i o n p o i n t . T h i s p o i n t , w h i c h i s a f u n c t i o n o f m e a n s q u a r ed i s p l a c e m e n t a n d t i m e i n t e r v a l , c o r r e s p o n d s t o a s y s -t e m a t ic b o u n d a r y v a l u e f o r l a rg e - sc a le C O P m o v e m e n ta n d t h e c h a r a c t e r i s t i c ti m e i t t a k e s t h e C O P t o s a t u r a t e t ot h a t v a l u e . B e y o n d t h e s a t u r a t i o n p o i n t , t h e d i f f u s i o nc o e f fi c ie n t s a n d s c a li n g e x p o n e n t s s h o u l d a p p r o x i m a t ez e r o . T h e s a t u r a t i o n p o i n t c a n t h u s b e v i e w e d a s a na v e r a g e m e a s u r e o f t h e o p e r a t i o n a l s a f e t y l i m i ts a l l o w e db y a n i n d i v i d u a l ' s p o s t u r a l c o n t r o l s y s t e m d u r i n g q u i e ts t a n d i n g . I t w a s o b s e r v e d t h a t s e v e r a l s u b j e c t s s a t u r a t e d t oa b o u n d a r y v a l u e i n th e m e d i o l a t e r a l d i r e c t i o n i n A t < l 0 s .A s i m i l a r a n t e r o p o s t e r i o r e f f ec t w a s n o t s e en i n a n y o f t h es u bj ec ts . T h i s p o s t u r o g r a p h i c p h e n o m e n o n - a n t e r o p o s -t e r i o r p o s t u r a l s w a y s a t u r a t i o n - r e q u i r e s l o n g e r C O Pt i m e s e ri es a n d c o r r e s p o n d i n g l y l a rg e r A tm , x .

    P h y s i o l o g i c a l i n t e r p r e t a t i o n sD u r i n g a n y g iv e n t a s k , t h e h u m a n p o s t u r a l c o n t r o l s y s te mr e c ei v e s i n f o r m a t i o n f r o m t h e v i s ua l , v e s t i b u l a r a n d s o m a -t o s e n s o r y s y s t e m s . I n t h e p a s t , i t w a s g e n e r a l l y b e l i e v e dt h a t t h e s e a f f e r e n t s i g n a l s w e r e u t i l i z e d t o r e g u l a t e a n dc o n t i n u a l l y m o d i f y t h e a c t iv i t y o f t h e m u s c u l a t u r e d u r i n gq u i e t s t a n d i n g . T h e p r e s e n t p o s t u r o g r a p h i c r e s u l t s , h o w -e v e r , d o n o t s u p p o r t t h i s v ie w . I n s t e a d , t h e s e a n a l y s e si n d i c a t e t h a t i n a d d i t i o n t o t h e a b o v e c l o s e d - l o o p f e e d b a c km e c h a n i s m s , t h e p o s t u r a l c o n t r o l s y s t e m a l s o e m p l o y so p e n - l o o p c o n t r o l s c h em e s , t h e o u t p u t o f w h i c h m a y t a k et h e f o r m o f d e s c e n d i n g c o m m a n d s t o d i f f er e n t p o s t u r a lm u s c le s . S i n ce s k e l e ta l m u s c l e s a r e i n c a p a b l e o f p r o d u c i n gp u r e l y c o n s t a n t f o r c e s ( D e L u c a e t a l . 1 9 8 2 ) , t h e s e o p e n -l o o p a c t i v a t i o n s i g n a l s r e s u l t i n s m a l l m e c h a n i c a l f l u c t u -a t i o n s a t v a r i o u s j o i n t s o f t h e b o d y . T h e p r e s e n t w o r ks u g g e s t s t h a t t h e s e f l u c t u a t i o n s a n d t h e i r a s s o c i a t e d d r i f te f fe c ts a r e l e ft u n c h e c k e d b y t h e p o s t u r a l c o n t r o l s y s t emu n t i l t h e y e x c e e d s o m e s y s t e m a t i c t h r e s h o l d , a f t e r w h i c hc o r r e c t i v e f e e d b a c k m e c h a n i s m s a r e c a l le d i n t o p l a y . A sn o t e d a b o v e , t h e s t a b i l o g r a m - d i f f u s i o n c r i t i c a l p o i n t c o -o r d i n a t e s q u a n t i f y t h e s p a ti a l a n d t e m p o r a l c h a r a c t e r i s t ic so f t h is s w i t c h in g p h e n o m e n o n . I t is i m p o r t a n t t o p o i n t o u tt h a t w i t h i n t h i s c o n c e p t u a l m o d e l , t h e c e n t r a l n e r v o u ss y s t em s ti ll c o n t i n u a l l y r e c e i v es a f f e r e n t i n f o r m a t i o n f r o mp e r i p h e r a l s e n s o r y o r g a n s ; h o w e v e r , s u c h i n f o r m a t i o n i sn o t u s e d t o m o d u l a t e t h e e f f e r e n t s ig n a ls t r a n s m i t t e d t op o s t u r a l m u s c l e s u n l e s s a c e r t a i n t h r e s h o l d v a l u e i s e x -

    c e e d e d . T h i s o p e n - l o o p / c l o s e d - l o o p c o n t r o l s t r a t e g y ,w h i c h a l l o w s a c e r t a i n a m o u n t o f s l o p p i n e s s i n b a l a n c ec o n t r o l , m a y h a v e e v o l v e d t o t a k e a c c o u n t o f t h e i n h e r e n tt i m e d e l a y s o f f e e d b a c k l o o p s a n d t o s i m p l if y th e t a s k o fi n t e g ra t i n g v a s t a m o u n t s o f s en s o r y i n f o r m a t i o n w h e n t h es y s t em is n o t i n j e o p a r d y o f i n s ta b i l it y ,T h e r e a r e a n u m b e r o f p o s s i b le s o u r c e s w h i c h m a y s e tt h e c o o r d i n a t e s o f t h e s t a b i l o g r a m - d i f f u s i o n c r i t ic a l p o i n t .F i r s tl y , fo r e x a m p l e , it s p o s i t i o n m a y b e d e t e r m i n e d b y ap r o p r i o c e p t i v e d e a d z o n e , i .e ., a r e g i o n o v e r w h i c h s l i g h tv a r i a t i o n s i n b o d y s e g m e n t p o s i t i o n a n d o r i e n t a t i o n a r el e f t u n c h a n g e d . W i t h i n t h i s s c e n a r i o , t h e c r i t i c a l m e a ns q u a r e d i s p l a c e m e n t q u a n t i f i e s a n i n d i v i d u a l ' s f i r s t - l e v e ls t a b i l i t y l i m i t , i . e . , a p r i m a r y f e e d b a c k t h r e s h o l d . A na l t e r n a t i v e w a y o n e c o u l d g e t a d e a d z o n e w o u l d b et h r o u g h t h e i n t e r a c t i o n o f p o s t u r a l r e s p o n s e s w i th t h eb o d y ' s i n e r t i a . P o s t u r a l r e s p o n s e s h a v e t i m e d e l a y s o f~ 1 0 0 m s ( N a s h n e r 1 9 77 ), w h e r e a s t h e m u s c u l o s k e l e t a ls y s t e m h as r i g i d - b o d y t i m e c o n s t a n t s w h i c h m a y b e o n t h eo r d e r o f ~ 1 s. T h e s y s t em i n e r t i a m a y t h u s c a u s e at e m p o r a l d e a d z o n e f o r r e s p o n se d u r i n g w h i c h t h ec e n t r a l n e r v o u s s y s t e m i s i n a n o p e n - l o o p c o n t r o l m o d e .A n o t h e r p o s s i b il i ty i s th a t t h e p o s i t i o n o f th e t r a n s i t i o np o i n t i s r e l a t e d t o t h e d e s t a b i l i z i n g i n f l u e n c e o f g r a v i t y . I ft h i s w e r e t h e c a s e , i t w o u l d b e e x p e c t e d t h a t t h e c r i t i c a lp o i n t c o o r d i n a t e s w o u l d c h a n g e i n a r e d u c e d - g r a v i t ye n v i r o n m e n t . F i n a l l y , t h e s t a b i l o g r a m - d i f f u s i o n c r i t i c a lp o i n t m a y b e e s t a b li s h e d b y f ix e d , p r e - p r o g r a m m e d c e n t -r a l c o m m a n d s t h a t a r e u t i li z e d in q u i e t s t an c e . C e n t r a lp r o g r a m s f o r p o s t u r a l c o n t r o l h a v e p r e v i o u s l y b e e n d is -c u s s ed i n t h e c o n t e x t o f p e r t u r b a t i o n e x p e r i m e n t s ( H o r a ka n d N a s h n e r 1 9 8 6 ; D i e t z 1 9 9 2 ) .Acknowledgements. This study was supported by the R ehabilitationand Development Service of Veterans Affairs and Liberty M utualInsurance Company. The authors w ould like to thank ProfessorGuido Sandri for many helpful discussions and M ichael Rosensteinfor his assistance with software development and the preparation offigures.

    e f e r e n c e sBartol TM, Land BR, Salpeter EE, Salpeter MM (1991) Mon te Carlosimulation o f miniature endplate current generation in the verte-brate neuromuscular junction. Biophys J 59:1290-1307Beckley D J, Bloem BR, Remler MP, Roos RAC , Van Dijk JG (1991)Long latency postural responses are functionally mod ified bycognitive set. Electroencephalogr Clin N europhysiol 81:353-358De L uca CJ, LeFever RS, McC ue M P, Xenakis AP (1982) Controlscheme governing concurrently active human mo tor un its duringvoluntary contractions. J Physiol (Lond) 329:129 142Diener HC , Dichgans J, Bacher M, G om pf B (1984) Quantification ofpostural s way in norm als and patients with cerebellar diseases.Electroencephalogr Clin Neurophysiol 57:134~1 42Diener HC , Ho rak FB, Nashner LM (1988) Influence of stimulusparameters on hum an p ostural responses. J Neurophy siol 59:1888 1905Diener HC, H orak F, Stelmach G, G uscblbauer B, Dichgans J (1991)Direction and amplitude precuing has n o eff ect on autom aticposture responses. Exp Brain Res 84:219 223Dietz V (1992) Hum an neuronal control of automatic functionalmovem ents: interaction b etween central programs and afferent

    input. Physiol Rev 72:33-69

  • 8/13/2019 Open Loop and Close Loop System 1 -

    11/11

    318Dietz V, Trippel M, Discher M, Hors tmann GA 1991) Compensa-tion of human stance perturbations: selection of the appropriateelectromyographic pattern. Neurosci Lett 126:71-74Einstein A 1905) Llber die von de r molekularkinetischen Theorieder W~irme geforderte Bewegung yon in ruhenden Flfissigkeitensuspendierten Teilchen. Ann Phys 322:549-560Feder J 1988) Fractals. Plenum Press, New YorkFleiss JL 1986) The design and analysis of clinical experiments.

    Wiley, New YorkGerstein GL, Mandelbrot B 1964) Random walk models for thespike activity of a single neuron. Biophys J 4:41-68Gorse D, Taylor JG 1990) A general model of stochastic neuralprocessing. Biol Cybern 63:299-306Hasan SS, Lichtenstein M J, Shiavi RG 1990) Effect of loss of balanceon biomechanics platform measures of sway: influence of stanceand a method for adjustment. J Biomech 23:783-789Holden AV 1976) Models of the stochastic activity of neurones.Springer-Verlag, Berlin Heidelberg New YorkHorak FB, Diener HC, Nashner LM 1989) Influence of central seton human postural responses. J Neurophysiol 62:841-853Horak FB, Nashner LM 1986) Central programming of postura lmovements: adapta tion to altered support-surface configura-tions. J Neurophysiol 55:1369 1381Horak FB, Nashner LM, Diener HC 1990) Postural strategiesassociated with somatosensory and vestibular loss. Exp BrainRes 82:167-177Kirby RL, Price NA, MacLeod DA 1987) The influence of footposition on s tanding balance. J Biomech 20:423~427Longt in A, Bulsara A, Moss F 1991) Time-interval sequences inbistable systems and the noise- induced transmiss ion of informa-tion by sensory neurons. Phys Rev Lett 67:656-659Mandelbrot BB 1983) The fractal geometry of nature. Freeman,New YorkMandelbrot BB, van Ness JW 1968) Fractional Brownian motions,fractional noises and applications. SIAM Rev 10:422-437

    Montroll EW, Lebowitz JL eds) 1987) Fluc tuati on phenomena.Elsevier North-Holland, Amsterdam New YorkMoore SP, Rushmer DS, Windus SL, Nashner LM 1988) Humanautomatic postural responses: responses to horizontal perturba-tions of stance in multiple directions. Exp Brain Res 73:648 658Nashner LM 1971) A model describing vestibular detection of bodysway motion. Acta Otolaryngol 72:429-436Nashner LM 1972) Vestibular postural contro l model. KybernetikI0:106 110Nashner LM 1977) Fixed patterns of rapid postural responsesamong leg muscles during stance. Exp Brain Res 30:13-24Norr~ ME, Forrez G, Beckers A 1987) Posturography measuringinstability n vestibular dysfunction in the elderly. Age Ageing 16:89-93Peretto P 1984) Collective properties of neural networks: a statist-ical physics approach. Biol Cybern 50:51-62Saupe D 1988) Algorithms for random fractals. In: Peitgen H-O,Saupe D eds) The science of fractal images. Springer-Verlag,Berlin Heidelberg New York, pp 71-136Shlesinger MF, West BJ eds) 1984) Random walks and theirapplications in the physical and biological sciences. AmericanInstitute of Physics, New YorkShrout PE, Fleiss JL 1979) Intraclass correlations: uses in assessingrater reliability. Psych Bull 86:420-428Sompolinsky H 1988) Statistical mechanics of neural networks.Phys Today Dec 70-80Tuckwell HC 1989) Stochastic processes in the neurosciences.SIAM, PhiladelphiaVoss RF 1988) Fractals in nature: from characterization to simu-lation. In: Peitgen H-O, Saupe D eds) The science of fractalimages. Springer-Verlag, Berlin Heidelberg New York, pp 21 70Woollacott MH, von Hosten C, R6sblad B 1988) Relation betweenmuscle response onset and body segmental movements duringpostural perturbations in humans. Exp Brain Res 72:593-604