Open Channel

20
Open Channel The Islamic University of Gaza Faculty of Engineering Civil Engineering Department Hydraulics - ECIV 3322 Chapter 6 Chapter 6

description

The Islamic University of Gaza Faculty of Engineering Civil Engineering Department Hydraulics - ECIV 3322. Open Channel. Chapter 6. Example 1. Open channel of width = 3m as shown, bed slope = 1:5000, d=1.5m find the flow rate using Manning equation, n=0.025. Example 2. - PowerPoint PPT Presentation

Transcript of Open Channel

Page 1: Open Channel

Open Channel

The Islamic University of Gaza

Faculty of Engineering

Civil Engineering Department

Hydraulics - ECIV 3322

Chapter 6Chapter 6

Page 2: Open Channel

2

Example 1

1.5m

3.0m

2

1

Open channel of width = 3m as shown, bed slope = 1:5000, d=1.5m find the flow rate using Manning equation, n=0.025.

sVAQ

V

P

AR

P

A

SRn

V

h

h

/m 84.49538.0

m/s 538.050001927.0

025.0

1

927.0708.9

9

9.708 35.132

m 95.1935.0

1

3

3

2

22

2

3

2

Page 3: Open Channel

Example 2Open channel as shown, bed slope = 69:1584, find the flow rate using Chezy equation, C=35.

Page 4: Open Channel

sVAQ

V

P

AR

P

A

SRCV

h

h

/m 84.11352.1627.0

m/s 7.01584

69.0917.035

917.018.177

52.162

m 177.18 04.552.28.166.38.115072.0

m 52.16215072.06.32

52.272.08.1652.2

2

04.552.2

3

2222

2

Page 5: Open Channel

Example 3Circular open channel as shown d=1.68m, bed slope = 1:5000, find the Max. flow rate & the Max. velocity using Chezy equation, C=70.

sVAQ

V

mP

AR

dP

ddA

SRCV

h

h

/m 496.117.269.0

m/s 69.05000

1485.070

485.05.4

17.2

m 4.5 68.1180

154

m 17.21542sin8

68.1

180154

4

68.12sin

84

3

22222

154Max. flow rate

Page 6: Open Channel

m/s 748.05000

157.070

57.03775.3

93.1

m 378.368.1180

75.128

m 93.175.1282sin8

68.1

18075.128

4

68.12sin

842

2222

V

mP

AR

dP

ddA

SRCV

h

h

75.128Max. Velocity

Page 7: Open Channel

Trapezoidal open channel as shown Q=10m3/s, velocity =1.5m/s, for most economic section. find wetted parameter, and the bed slope n=0.014.

Example 4

mD

DDDA

DnDBA

mV

QA

BD

DBD

nDBnD

78.1

667.6)2

36055.0(

667.65.1

10

6055.02

232

231

2

21

2

2

2

Page 8: Open Channel

mP

nDDP

nDBP

49.72

3178.12)78.1(6055.0

126055.0

12

2

2

2

To calculate bed Slope

6.1941:1

5.189.0014.0

1

89.049.7

667.6

m 49.7

m 667.6

1

3

2

2

3

2

S

SV

P

AR

P

A

SRn

V

h

h

Page 9: Open Channel

Example 5

13

2

gA

TQ

1

81.93

14.2

3

124.233.1

23

2

3

2

cc

c

cc

c

DD

D

gDnDB

nDBQ

m 31.0cD

Determine the critical depth if the flow is 1.33m3/s. the channel width is 2.4m

Page 10: Open Channel

Example 6

44

81.9

25

3

2

3

1

2

3

1

2

23

1

2

2

BBBgB

Qyc

0.006 2

D

0.016

125

2

P

AR

S R n

1V

32

c

32

BD

B

BD

BD

BD

cc

c

c

Rectangular channel , Q=25m3/s, bed slope =0.006, determine the channel width with critical flow using manning n=0.016

Page 11: Open Channel

mB

B

B

B

BB

BB

BB

3

0.006 8

4

0.016

1

4

25

0.006 42

4

0.016

14

25

32

35

31

32

32

32

32

Page 12: Open Channel

Example 7A 3-m wide rectangular channel carries 15 m3/s of water at a 0.7 m depth before entering a jump. Compute the downstrem water depth and the critical depth

72.27.081.9

14.7

/14.77.0

5

366.181.9

5

/s.mm 53

15

1

11

11

3

2

3

gd

VF

smd

qV

md

q

r

c

md

d

365.2

1)72.2(812

1

7.0

2

22

Page 13: Open Channel

Example 8

dn = Depth can calculated from manning equation

d1=d

n

d2

Page 14: Open Channel

calsupercriti is flow the142.108.181.9

63.4

/63.43

15

08.1

004.032

3

01.0

1

3

15

322

3

1

1

11

11

1

32

32

gd

VF

smd

V

mddD

D

D

D

DBDP

DBDA

SRnA

Q

r

n

h

d1=d

n

d2

a)

b)

md

d

7.1

1)42.1(812

1

08.1

2

22

Page 15: Open Channel

c)

d1=d

n

d2

mgg

E

smd

V

032.02

94.27.1

2

63.408.1

/94.27.13

15

3

15

22

22

Page 16: Open Channel

Example 9A trapezoidal channel with a bottom width of 5m, side slope of 1H: 1V, and a Manning n of 0.013 carries a discharge of 50m3/s at a slope of 0.0004. Compute by the direct step method the backwater profile created by a dam that backs up the water to a depth of 6 m immediately behind the dam. The upstream end of the profile is assumed at a depth equal to 1% greater than the normal depth.

Page 17: Open Channel

17

3

2

3

5

3

22

3

5

2

1

3

22

3

5

3

5

3

2

2

1

2

13

2

3

22

1

3

2

2

1

3

2

225

15

1125

15

0004.0

013.0*50

12

*

11

1

n

nn

n

nn

n

n

y

yy

y

yy

nyb

ynyb

P

A

S

nQ

S

P

A

nSR

nA

Q

SRn

V

By trial and error, Yn = 2.87 m

determine normal depth, Yn

Page 18: Open Channel

1

581.9

5250

12

3

2

3

2

3

2

3

2

cc

c

cc

c

YY

Y

gA

TQ

YbnYg

bnYQ

gA

TQ

determine critical depth, Yc

By trial and error, Yc = 1.90 mControl depth = 1.01*2.87 =2.90m

Page 19: Open Channel

1 2 3 4 5 6 7 8 9 10 11 12

y A P R V E ΔE Sf Sfm So-Sfm Δx L

m m2 m m m/s m m *104 *104 *104 m m

2.9 22.91 13.2 1.735 2.182 3.165 3.710

0.057 3.545 0.455 1250 1250

3.0 24.0 13.49 1.779 2.080 3.222 3.380

0.080 3.190 0.810 987 2237

3.1 25.11 13.77 1.824 1.990 3.303 3.000

0.082 2.830 1.170 700 2937

3.2 26.24 14.05 1.868 1.900 3.384 2.660

0.260 2.268 1.732 1500 4437

3.5 29.75 14.90 1.997 1.680 3.644 1.875

0.455 1.505 2.495 1750 6187

4.0 36.0 16.31 2.207 1.390 4.099 1.135

Page 20: Open Channel

1 2 3 4 5 6 7 8 9 10 11 12

y A P R V E ΔE Sf Sfm So-Sfm

Δx L

m m2 m m m/s m m *104 *104 *104 m m

4.0 36.0 16.31 2.207 1.390 4.099 1.135

0.472 0.925 3.075 1526 7713

4.5 42.75 17.73 2.411 1.170 4.570 0.715

0.481 0.592 3.408 1410 9123

5.0 50.0 19.14 2.612 1.000 5.051 0.469

0.487 0.394 3.606 1350 10473

5.5 57.75 20.56 2.808 0.865 5.538 0.318

0.491 0.271 3.729 1320 11793

6.0 66.0 21.97 3.005 0.758 6.029 0.223