On the stability of the linear delay differential and...

32
ON THE STABILITY OF THE LINEAR DELAY DIFFERENTIAL AND DIFFERENCE EQUATIONS A. ASHYRALYEV AND P. SOBOLEVSKII Received 14 August 2001 We consider the initial-value problem for linear delay partial differential equa- tions of the parabolic type. We give a sufficient condition for the stability of the solution of this initial-value problem. We present the stability estimates for the solutions of the first and second order accuracy difference schemes for approximately solving this initial-value problem. We obtain the stability esti- mates in Hölder norms for the solutions of the initial-value problem of the delay differential and difference equations of the parabolic type. 1. Introduction Methods for numerical solutions of the delay ordinary differential equations have been studied extensively by many researchers (cf. [1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16] and the references therein) and developed over the last two decades. In this literature, the linear delay equations was considering under the condition, such that in the case of the constant coefficients follows obviously from characteristic equations as the necessary condition. The stability of the solution of this initial-value problem and of the difference schemes for approximately solving the initial-value problem were obtained. However, the theory and numerical solution of the delay partial differential equations have received less attention than the delay ordinary differential equa- tions. In the present paper, we consider the initial-value problem for linear delay differential equations du(t) dt + Au(t) = B(t)u(t ω), t 0, u(t) = g(t), ω t 0, (1.1) in an arbitrary Banach space E with unbounded linear operators A and B(t) in E with dense domain D(A) D(B(t)). Let A be a strongly positive operator, Copyright © 2001 Hindawi Publishing Corporation Abstract and Applied Analysis 6:5 (2001) 267–297 2000 Mathematics Subject Classification: 65J, 65M, 47D, 34K, 34G URL: http://aaa.hindawi.com/volume-6/S1085337501000616.html

Transcript of On the stability of the linear delay differential and...

Page 1: On the stability of the linear delay differential and ...downloads.hindawi.com/journals/aaa/2001/535262.pdf · approximately solving the initial-value problem were obtained. However,

ON THE STABILITY OF THE LINEAR DELAYDIFFERENTIAL AND DIFFERENCEEQUATIONS

A. ASHYRALYEV AND P. SOBOLEVSKII

Received 14 August 2001

We consider the initial-value problem for linear delay partial differential equa-tions of the parabolic type. We give a sufficient condition for the stability ofthe solution of this initial-value problem. We present the stability estimatesfor the solutions of the first and second order accuracy difference schemes forapproximately solving this initial-value problem. We obtain the stability esti-mates in Hölder norms for the solutions of the initial-value problem of the delaydifferential and difference equations of the parabolic type.

1. Introduction

Methods for numerical solutions of the delay ordinary differential equationshave been studied extensively by many researchers (cf. [1, 2, 3, 4, 6, 7, 8,9, 10, 12, 13, 14, 15, 16] and the references therein) and developed over thelast two decades. In this literature, the linear delay equations was consideringunder the condition, such that in the case of the constant coefficients followsobviously from characteristic equations as the necessary condition. The stabilityof the solution of this initial-value problem and of the difference schemes forapproximately solving the initial-value problem were obtained.

However, the theory and numerical solution of the delay partial differentialequations have received less attention than the delay ordinary differential equa-tions. In the present paper, we consider the initial-value problem for linear delaydifferential equations

du(t)

dt+Au(t) = B(t)u(t −ω), t ≥ 0,

u(t) = g(t), −ω ≤ t ≤ 0,

(1.1)

in an arbitrary Banach space E with unbounded linear operators A and B(t) inE with dense domain D(A) ⊆ D(B(t)). Let A be a strongly positive operator,

Copyright © 2001 Hindawi Publishing CorporationAbstract and Applied Analysis 6:5 (2001) 267–2972000 Mathematics Subject Classification: 65J, 65M, 47D, 34K, 34GURL: http://aaa.hindawi.com/volume-6/S1085337501000616.html

Page 2: On the stability of the linear delay differential and ...downloads.hindawi.com/journals/aaa/2001/535262.pdf · approximately solving the initial-value problem were obtained. However,

268 Delay differential and difference equations

that is, −A is the generator of the analytic semigroup exp{−tA} (t ≥ 0) of thelinear bounded operators with exponentially decreasing norm when t → ∞.This means the following estimates hold:

∥∥exp{−tA}∥∥E �→E

≤ Me−δt ,∥∥tAexp{−tA}∥∥

E �→E≤ Me−δt , t > 0 (1.2)

for some M > 0, δ > 0 (see [11]).A function u(t) is called a solution of problem (1.1) if the following condi-

tions are satisfied:(i) The function u(t) is continuously differentiable on the interval [−ω,∞).

The derivative at the endpoint t = −ω is understood as the appropriate unilateralderivative.

(ii) The function u(t) belongs to D(A) for all t ∈ [−ω,∞), and the func-tions Au(t) and B(t)u(t) are continuous on the interval [−ω,∞).

(iii) The function u(t) satisfies the equation and the initial condition (1.1).A solution u(t) of the initial-value problem (1.1) is said to be stable if

∥∥u(t)∥∥

E≤ max−ω≤t≤0

∥∥g(t)∥∥

E(1.3)

for every t , −ω ≤ t < ∞. We are interested to study the stability of solutionsof the initial-value problem under the assumption that

∥∥B(t)A−1∥∥

E �→E≤ 1 (1.4)

holds for every t ≥ 0. We have not been able to obtain the estimate (1.3) in thearbitrary Banach space E. Nevertheless, we can establish the analog of estimates(1.3) where the space E is replaced by the fractional spaces Eα (0 < α < 1)

under the more strong assumption than (1.4).

2. The delay differential equation

It is known that (cf. [17]) the strongly positive operator A defines the fractionalspaces Eα = Eα(A,E) (0 < α < 1) consisting of all v ∈ E for which thefollowing norms are finite:

‖v‖Eα = supλ>0

∥∥λ1−αAexp{−λA}v∥∥E. (2.1)

First, we consider problem (1.1) when

A−1B(t)x = B(t)A−1x, x ∈ D(A). (2.2)

Page 3: On the stability of the linear delay differential and ...downloads.hindawi.com/journals/aaa/2001/535262.pdf · approximately solving the initial-value problem were obtained. However,

A. Ashyralyev and P. Sobolevskii 269

Theorem 2.1. Assume that the condition

∥∥B(t)A−1∥∥

E �→E≤ (1−α)

M22−α(2.3)

holds for every t ≥ 0. Then for every t ≥ 0,

∥∥u(t)∥∥

Eα≤ max−ω≤t≤0

∥∥g(t)∥∥

Eα. (2.4)

Proof. Using the formula

u(t) = exp{−tA}g(0)+∫ t

0exp

{−(t −s)A}B(s)g(s −ω)ds, (2.5)

the semigroup property, condition (2.3), and the estimates (1.2) we have

λ1−α∥∥Aexp{−λA}u(t)

∥∥E

≤ λ1−α∥∥Aexp

{−(λ+ t)A}g(0)

∥∥E

+λ1−α

∫ t

0

∥∥∥∥Aexp

{− λ+ t −s

2A

}∥∥∥∥E→E

∥∥B(s)A−1∥∥

E→E

×∥∥∥∥Aexp

{− λ+ t −s

2A

}g(s −ω)

∥∥∥∥E

ds

≤ λ1−α

(λ+ t)1−α

∥∥g(0)∥∥

Eα+ 1−α

M22−α

∫ t

0

Mλ1−α22−α

(λ+ t −s)2−αds max

0≤s≤ω

∥∥g(s −ω)∥∥

≤ max−ω≤t≤0

∥∥g(t)∥∥

(2.6)

for every t , 0 ≤ t ≤ ω and λ, λ > 0. This shows that

∥∥u(t)∥∥

Eα≤ max−ω≤t≤0

∥∥g(t)∥∥

Eα(2.7)

for every t,0 ≤ t ≤ ω. Applying the mathematical induction, one can easilyshow that it is true for every t . Namely, assume that inequality (2.4) is true fort , (n−1)ω ≤ t ≤ nω, n = 1,2,3, . . . . Using the formula

u(t) = exp{−(t −nω)A

}u(nω)+

∫ t

exp{−(t −s)A

}B(s)u(s−ω)ds, (2.8)

Page 4: On the stability of the linear delay differential and ...downloads.hindawi.com/journals/aaa/2001/535262.pdf · approximately solving the initial-value problem were obtained. However,

270 Delay differential and difference equations

the semigroup property, condition (2.3), and the estimates (1.2) we have

λ1−α∥∥Aexp{−λA}u(t)

∥∥E

≤ λ1−α∥∥Aexp

{−(λ+ t −nω)A}u(nω)

∥∥E

+λ1−α

∫ t

∥∥∥∥Aexp

{− λ+ t −s

2A

}∥∥∥∥E→E

∥∥B(s)A−1∥∥

E→E

×∥∥∥∥Aexp

{− λ+ t −s

2A

}u(s −ω)

∥∥∥∥E

ds

≤ λ1−α

(λ+ t −nω)1−α

∥∥u(nω)∥∥

Eα+ 1−α

M22−α

∫ t

Mλ1−α22−α

(λ+ t −s)2−αds

× maxnω≤s ≤(n+1)ω

∥∥u(s −ω)∥∥

≤ max−(n−1)ω≤t≤nω

∥∥u(t)∥∥

(2.9)

for every t , nω ≤ t ≤ (n+1)ω, n = 1,2,3, . . . and λ, λ > 0. This shows that∥∥u(t)

∥∥Eα

≤ max−ω≤t≤0

∥∥g(t)∥∥

Eα(2.10)

for every t , nω ≤ t ≤ (n+1)ω, n = 1,2,3, . . . . This result completes the proofof Theorem 2.1. �

Now, we consider problem (1.1) when

A−1B(t)x = B(t)A−1x, x ∈ D(A). (2.11)

Note that (see [11]) A is a strongly positive operator in a Banach space E ifand only if its spectrum σ(A) lies in the interior sector of angle ϕ, 0 < 2ϕ < π ,symmetric with respect to the real axis, and if on the edges of this sector,S1 = [z = ρ exp(iϕ) : 0 ≤ ρ < ∞] and S2 = [z = ρ exp(−iϕ) : 0 ≤ ρ < ∞],and outside it the resolvent (z−A)−1 is subject to the bound

∥∥(z−A)−1∥∥

E→E≤ M1

1+|z| (2.12)

for some M1 > 0. Throughout, the operator (zI −A)−1 will be written (z−A)−1.First of all we prove a lemma that will be needed in the sequel.

Lemma 2.2. For any z on the edges of the sector, S1 = [z = ρ exp(iϕ) : 0 ≤ ρ <

∞], and S2 = [z = ρ exp(−iϕ) : 0 ≤ ρ < ∞], and outside it the estimate

∥∥A(z−A)−1ϕ∥∥

E≤ Mα

1 Mα(1+M1

)1−α2(2−α)α

α(1−α)(1+|z|)α ‖ϕ‖Eα (2.13)

Page 5: On the stability of the linear delay differential and ...downloads.hindawi.com/journals/aaa/2001/535262.pdf · approximately solving the initial-value problem were obtained. However,

A. Ashyralyev and P. Sobolevskii 271

holds. Here and in the future M and M1 are some constants of the estimates(1.2) and (2.12).

Proof. Applying the formula (see [11])

ϕ =∫ ∞

0Aexp{−τA}ϕ dτ, (2.14)

and using the semigroup property we obtain

A(z−A)−1ϕ =∫ N

0A(z−A)−1Aexp{−τA}ϕ dτ

+∫ ∞

N

(z−A)−1Aexp

{− τ

2A

}Aexp

{− τ

2A

}ϕ dτ.

(2.15)

Using the estimates (1.2), (2.12), and the definition of the spaces Ea , we obtain

∥∥A(z−A)−1ϕ∥∥

E≤

∫ N

0

∥∥A(z−A)−1∥∥

E→E

∥∥Aexp{−τA}ϕ∥∥E

d τ

+∫ ∞

N

∥∥(z−A)−1∥∥

E �→E

∥∥∥∥Aexp

{− τ

2A

}∥∥∥∥E �→E

×∥∥∥∥Aexp

{− τ

2A

∥∥∥∥E

≤(∫ N

0

(1+M1

)τα−1 dτ +

∫ ∞

N

MM122−ατα−2

|z|+1dτ

)‖ϕ‖Eα

= ψ(N)‖ϕ‖Eα .

(2.16)

Here

ψ(N) = (1+M1

)Nα

α+ MM122−αNα−1(|z|+1

)(1−α)

. (2.17)

Taking the minimum of the function ψ(N) over all N , 0 < N < ∞, we obtainLemma 2.2. �

Lemma 2.3. For all τ > 0 the following estimate holds:∥∥A−1[Aexp{−τA}B(s)−B(s)Aexp{−τA}]ϕ∥∥E

≤ e(α+1)MαM1+α1

(1+2M1

)(1+M1

)1−α2(2−α)α‖Q‖E �→E‖ϕ‖Eα

τ 1−απα2(1−α).

(2.18)

Here Q = A−1(AB(s)−B(s)A)A−1.

Page 6: On the stability of the linear delay differential and ...downloads.hindawi.com/journals/aaa/2001/535262.pdf · approximately solving the initial-value problem were obtained. However,

272 Delay differential and difference equations

Proof. Applying the Cauchy-Riesz formula, we obtain the representation

Aexp{−τA}ϕ = 1

2πi

∫S1∪S2

exp{−τz}A(z−A)−1dzϕ

= − 1

2πi

∫S1∪S2

exp{−τz}dzϕ

+ 1

2πi

∫S1∪S2

exp{−τz}z(z−A)−1dzϕ

(2.19)

for every τ , τ > 0. From that it follows that

A−1[Aexp{−τA}B(s)−B(s)Aexp{−τA}]ϕ= 1

2πi

∫S1∪S2

exp{−τz}zA−1[(z−A)−1B(s)−B(s)(z−A)−1]dzϕ

= 1

2πi

∫S1∪S2

exp{−τz}z(z−A)−1QA(z−A)−1 dzϕ.

(2.20)

Making the substitution z = −1/τ +iy, −∞ < y < ∞ and using integration byparts, we can write the formula

A−1[Aexp{−τA}B(s)−B(s)Aexp{−τA}]ϕ

= e

∫ ∞

−∞exp(−τ iy)

(− 1

τ+ iy

)(− 1

τ+ iy −A

)−1

QA

×(− 1

τ+ iy −A

)−1

dyϕ

= e

2πτ

∫ ∞

−∞exp(−τ iy)

(− 1

τ+ iy −A

)−1

×[Q−

(− 1

τ+ iy

)(− 1

τ+ iy −A

)−1

Q

−(− 1

τ+ iy

)Q

(− 1

τ+ iy −A

)−1]

×A

(− 1

τ+ iy −A

)−1

dyϕ.

(2.21)

Page 7: On the stability of the linear delay differential and ...downloads.hindawi.com/journals/aaa/2001/535262.pdf · approximately solving the initial-value problem were obtained. However,

A. Ashyralyev and P. Sobolevskii 273

By Lemma 2.2 and performing the change of variable τy = x, and using theestimate (2.12), we obtain

∥∥A−1[Aexp{−τA}B(s)−B(s)Aexp{−τA}]ϕ∥∥E

≤ e

2πτ

∫ ∞

−∞∣∣exp(−τ iy)

∣∣∥∥∥∥(

− 1

τ+ iy −A

)−1∥∥∥∥E �→E

×(1+2M1

)‖Q‖E �→E

∥∥∥∥A

(− 1

τ+ iy −A

)−1

dyϕ

∥∥∥∥E

≤ e

2πτ

∫ ∞

−∞dy(

1/τ 2 +y2)(1+α)/2

×(1+2M1

)‖Q‖E �→EM1+α1 Mα

(1+M1

)1−α2(2−α)α‖ϕ‖Eα

α(1−α)

= e

πτ 1−α

∫ ∞

0

dx(1+x2

)(1+α)/2

×(1+2M1

)‖Q‖E �→EM1+α1 Mα

(1+M1

)1−α2(2−α)α‖ϕ‖Eα

α(1−α)

≤ e(1+α)(1+2M1

)‖Q‖E �→EM1+α1 Mα

(1+M1

)1−α2(2−α)α‖ϕ‖Eα

πτ 1−αα2(1−α).

(2.22)

Lemma 2.3 is thus proved. �

Suppose that

∥∥A−1(AB(t)−B(t)A

)A−1

∥∥E �→E

≤ π(1−α)2α2ε

eM1+αM1+α1

(1+2M1

)(1+M1

)1−α22+α−α2(1+α)

(2.23)

holds for every t ≥ 0. Here and in the future ε is some constant, 0 ≤ ε ≤ 1.

Theorem 2.4. Assume that the condition

∥∥A−1B(t)∥∥

E �→E≤ (1−α)(1−ε)

M22−α(2.24)

holds for every t ≥ 0. Then for every t ≥ 0 the estimate (2.4) holds.

Page 8: On the stability of the linear delay differential and ...downloads.hindawi.com/journals/aaa/2001/535262.pdf · approximately solving the initial-value problem were obtained. However,

274 Delay differential and difference equations

Proof. Using formula (2.5) we have

λ1−αAexp{−λA}u(t)

= λ1−αAexp{−(λ+ t)A

}g(0)

+λ1−α

∫ t

0exp

{− λ+ t −s

2A

}B(s)

×Aexp

{− λ+ t −s

2A

}g(s −ω)ds

+λ1−α

∫ t

0exp

{− λ+ t −s

2A

}

×[Aexp

{− λ+ t −s

2A

}B(s)

−B(s)Aexp

{− λ+ t −s

2A

}]g(s −ω)ds

= I1 +I2 +I3.

(2.25)

Using the estimates (1.2), (2.12), and condition (2.24) we have

∥∥I1∥∥

E= λ1−α

∥∥Aexp{−(λ+ t)A}g(0)∥∥

E

≤ λ1−α

(λ+ t)1−α

∥∥g(0)∥∥

Eα≤ λ1−α

(λ+ t)1−αmax−ω≤t≤0

∥∥g(t)∥∥

Eα,

∥∥I2∥∥

E≤ λ1−α

∫ t

0

∥∥∥∥Aexp

{− λ+ t −s

2A

}∥∥∥∥E �→E

∥∥A−1B(s)∥∥

E �→E

×∥∥∥∥Aexp

{− λ+ t −s

2A

}g(s −ω)

∥∥∥∥E

ds

≤ max0≤t≤ω

∥∥A−1B(t)∥∥

E �→E

∫ t

0

Mλ1−α22−α

(λ+ t −s)2−αds max

0≤s≤ω

∥∥g(s −ω)∥∥

≤ max−ω≤t≤0

∥∥g(t)∥∥

(1− λ1−α

(λ+ t)1−α

)(1−ε)

(2.26)

Page 9: On the stability of the linear delay differential and ...downloads.hindawi.com/journals/aaa/2001/535262.pdf · approximately solving the initial-value problem were obtained. However,

A. Ashyralyev and P. Sobolevskii 275

for every t , 0 ≤ t ≤ ω and λ, λ > 0. Now we estimate I3. By Lemma 2.3 andusing the estimate (2.23), we obtain

∥∥I3∥∥

E≤ λ1−α

∫ t

0

∥∥∥∥Aexp

{− λ+ t −s

2A

}∥∥∥∥E �→E

×∥∥∥∥A−1

[Aexp

{− λ+ t −s

2A

}B(s)−B(s)

×Aexp

{− λ+ t −s

2A

}]g(s −ω)

∥∥∥∥E

ds

≤ λ1−αe(1+α)M1+αM1+α1

(1+2M1

)(1+M1

)1−α2(2−α)α

×∫ t

0

∥∥A−1(AB(s)−B(s)A

)A−1

∥∥E �→E

22−α∥∥g(s −ω)

∥∥Eα

ds

(λ+ t −s)2−απα2(1−α)

≤ max0≤s≤ω

∥∥A−1(AB(s)−B(s)A

)A−1

∥∥E �→E

×∫ t

0

e(1+α)M1+αM1+α1

(1+2M1

)(1+M1

)1−α2(2−α)α22−α ds

(λ+ t −s)2−απα2(1−α)

× max−ω≤t≤0

∥∥g(t)∥∥

≤ max−ω≤t≤0

∥∥g(t)∥∥

(1− λ1−α

(λ+ t)1−α

(2.27)

for every t , 0 ≤ t ≤ ω and λ, λ > 0. Using the triangle inequality we obtain

λ1−α∥∥Aexp{−λA}u(t)

∥∥E

≤ max−ω≤t≤0

∥∥g(t)∥∥

Eα(2.28)

for every t , 0 ≤ t ≤ ω and λ, λ > 0. This shows that

∥∥u(t)∥∥

Eα≤ max−ω≤t≤0

∥∥g(t)∥∥

Eα(2.29)

for every t , 0 ≤ t ≤ ω. Applying the mathematical induction, one can easilyshow that it is true for every t . Namely, assume that inequality (2.4) is true forevery t , (n − 1)ω ≤ t ≤ nω, n = 1,2,3, . . . . Therefore, using formula (2.24)

Page 10: On the stability of the linear delay differential and ...downloads.hindawi.com/journals/aaa/2001/535262.pdf · approximately solving the initial-value problem were obtained. However,

276 Delay differential and difference equations

we have

λ1−αAexp{−λA}u(t)

= λ1−αAexp{−(λ+ t −nω)A

}u(nω)

+λ1−α

∫ t

exp

{− λ+ t −s

2A

}B(s)Aexp

{− λ+ t −s

2A

}u(s −ω)ds

+λ1−α

∫ t

exp

{− λ+ t −s

2A

}[Aexp

{− λ+ t −s

2A

}B(s)

−B(s)Aexp

{− λ+ t −s

2A

}]

×u(s −ω)ds

= I1n +I2n +I3n.

(2.30)

Using the estimates (1.2), (2.12), and condition (2.24), we have

∥∥I1n

∥∥E

= λ1−α∥∥Aexp

{−(λ+ t −nω)A}u(nω)

∥∥E

≤ λ1−α

(λ+ t −nω)1−α

∥∥u(nω)∥∥

Eα≤ λ1−α

(λ+ t −nω)1−αmax−ω≤t≤0

∥∥g(t)∥∥

Eα,

∥∥I2n

∥∥E

≤ λ1−α

∫ t

∥∥∥∥Aexp

{− λ+ t −s

2A

}∥∥∥∥E �→E

∥∥A−1B(s)∥∥

E �→E

×∥∥∥∥Aexp

{− λ+ t −s

2A

}u(s −ω)

∥∥∥∥E

ds

≤ maxnω≤t≤(n+1)ω

∥∥A−1B(t)∥∥

E �→E

∫ t

Mλ1−α22−α

(λ+ t −s)2−αds

× maxnω≤s≤(n+1)ω

∥∥u(s −ω)∥∥

≤ max−ω≤t≤0

∥∥g(t)∥∥

(1− λ1−α

(λ+ t)1−α

)(1−ε)

(2.31)

Page 11: On the stability of the linear delay differential and ...downloads.hindawi.com/journals/aaa/2001/535262.pdf · approximately solving the initial-value problem were obtained. However,

A. Ashyralyev and P. Sobolevskii 277

for every t , nω ≤ t ≤ (n + 1)ω and λ, λ > 0. Now we estimate I3n. ByLemma 2.3 and using the estimate (2.23), we obtain

∥∥I3n

∥∥E

≤ λ1−α

∫ t

∥∥∥∥Aexp

{− λ+ t −s

2A

}∥∥∥∥E �→E

×∥∥∥∥A−1

[Aexp

{− λ+ t −s

2A

}B(s)

−B(s)Aexp

{− λ+ t −s

2A

}]u(s −ω)

∥∥∥∥E

ds

≤ λ1−αe(1+α)M1+αM1+α1

(1+2M1

)(1+M1

)1−α2(2−α)α

×∫ t

∥∥A−1(AB(s)−B(s)A

)A−1

∥∥E �→E

22−α∥∥u(s −ω)

∥∥Eα

ds

(λ+ t −s)2−απα2(1−α)

≤ maxnω≤s≤(n+1)ω

∥∥A−1(AB(s)−B(s)A

)A−1

∥∥E �→E

×∫ t

e(1+α)M1+αM1+α1

(1+2M1

)(1+M1

)1−α2(2−α)α22−α ds

(λ+ t −s)2−απα2(1−α)

× maxnω≤t≤(n+1)ω

∥∥u(s −ω)∥∥

≤ max−ω≤t≤0

∥∥g(t)∥∥

(1− λ1−α

(λ+ t)1−α

(2.32)

for every t , nω ≤ t ≤ (n+1)ω and λ, λ > 0. Using the triangle inequality weobtain

λ1−α∥∥Aexp{−λA}u(t)

∥∥E

≤ max−ω≤t≤0

∥∥g(t)∥∥

Eα(2.33)

for every t , nω ≤ t ≤ (n+1)ω, n = 1,2,3, . . . , and λ, λ > 0. This shows that

∥∥u(t)∥∥

Eα≤ max−ω≤t≤0

∥∥g(t)∥∥

Eα(2.34)

for every t , nω ≤ t ≤ (n+1)ω, n = 1,2,3, . . . . This result completes the proofof Theorem 2.4. �

3. The delay difference equation

Using the first and second order accuracy implicit difference schemes for dif-ferential equations without delay (cf. [5]), we have the following approximate

Page 12: On the stability of the linear delay differential and ...downloads.hindawi.com/journals/aaa/2001/535262.pdf · approximately solving the initial-value problem were obtained. However,

278 Delay differential and difference equations

solution for the initial-value problem (1.1)

1

τ

(uk −uk−1

)+Auk = Bkuk−N,

Bk = B(tk

), tk = kτ, 1 ≤ k, Nτ = ω,

uk = g(tk

), tk = kτ, −N ≤ k ≤ 0;

(3.1)

1

τ

(uk −uk−1

)+(

A+ 1

2τA2

)uk = 1

2

(I + τ

2A

)Bk

(uk−N +uk−N−1

),

Bk = B

(tk − τ

2

), tk = kτ, 1 ≤ k,

uk = g(tk

), tk = kτ, −N ≤ k ≤ 0.

(3.2)

Theorem 3.1. Assume that all the conditions of Theorem 2.1 are satisfied. Thenfor the solution of difference scheme (3.1) the estimate∥∥uk

∥∥Eα

≤ max−N≤k≤0

∥∥g(tk

)∥∥Eα

(3.3)

holds for any k ≥ 1.

Proof. Consider 1 ≤ k ≤ N . In this case

uk = Rkg(0)+k∑

j=1

Rk−j+1g(tj−N

)τ, (3.4)

where R = (1+τA)−1. Using the formula (see [5, 11])

(I +τA)−k = 1

(k−1)!∫ ∞

0tk−1 exp(−t)exp(−τ tA)dt, k ≥ 1, (3.5)

and condition (2.3), we have

λ1−α∥∥Aexp{−λA}uk

∥∥E

≤ λ1−α 1

(k−1)!∫ ∞

0tk−1 exp(−t)

∥∥Aexp{−(τ t +λ)A}g(0)∥∥

E

+λ1−αk∑

j=1

τ1

(k−j)!

×∫ ∞

0tk−j exp(−t)

∥∥∥∥Aexp

{− (τ t +λ)A

2

}∥∥∥∥E �→E

∥∥BjA−1

∥∥E �→E

×∥∥∥∥Aexp

{− (τ t +λ)A

2

}g(tj−N

)∥∥∥∥E

Page 13: On the stability of the linear delay differential and ...downloads.hindawi.com/journals/aaa/2001/535262.pdf · approximately solving the initial-value problem were obtained. However,

A. Ashyralyev and P. Sobolevskii 279

≤ λ1−α 1

(k−1)!∫ ∞

0tk−1 exp(−t)

dt

(tτ +λ)1−α

∥∥g(0)∥∥

+λ1−α 1−α

M22−α

k∑j=1

τ1

(k−j)!

×∫ ∞

0tk−j exp(−t)

M22−α dt

(tτ +λ)2−α

∥∥g(tj−N

)∥∥Eα

≤ J max−N≤k≤0

∥∥g(tk

)∥∥Eα

, (3.6)

where

J = λ1−α 1

(k−1)!∫ ∞

0tk−1 exp(−t)

dt

(tτ +λ)1−α

+λ1−α(1−α)

k∑j=1

τ1

(k−j)!∫ ∞

0tk−j exp(−t)

dt

(tτ +λ)2−α.

(3.7)

We will calculate J . Making the substitution k − j = m and using Taylor’sformula and integration by parts, we obtain

J = λ1−α 1

(k−1)!∫ ∞

0tk−1 exp(−t)

dt

(tτ +λ)1−α

+λ1−α(1−α)

k−1∑m=0

τ1

m!∫ ∞

0tm exp(−t)

dt

(tτ +λ)2−α

= λ1−α 1

(k−1)!∫ ∞

0tk−1 exp(−t)

dt

(tτ +λ)1−α

+λ1−α(1−α)

∫ ∞

0exp(t)

[1−

∫ t

0

ξk−1 exp(−ξ)dξ

(k−1)!]

exp(−t)dt

(tτ +λ)2−α

= λ1−α 1

(k−1)!∫ ∞

0tk−1 exp(−t)

dt

(tτ +λ)1−α+1

−λ1−α 1

(k−1)!∫ ∞

0tk−1 exp(−t)

dt

(tτ +λ)1−α

= 1.

(3.8)

Therefore,

λ1−α∥∥Aexp{−λA}uk

∥∥E

≤ max−N≤k≤0

∥∥g(tk

)∥∥Eα

(3.9)

Page 14: On the stability of the linear delay differential and ...downloads.hindawi.com/journals/aaa/2001/535262.pdf · approximately solving the initial-value problem were obtained. However,

280 Delay differential and difference equations

for every k, 1 ≤ k ≤ N and λ, λ > 0. This shows that

∥∥uk

∥∥Eα

≤ max−N≤k≤0

∥∥g(tk

)∥∥Eα

(3.10)

for every k, 1 ≤ k ≤ N . Assume that the estimate (3.2) is true for k, where(n−1)N ≤ k ≤ nN , n = 1,2,3, . . . . Then for any k, with nN ≤ k ≤ (n+1)N

using formula (3.5) and

uk = Rk−nNunN +k∑

j=nN+1

τRk−j+1Bjuj−N (3.11)

and the estimates (1.2) and condition (2.3), we have

λ1−α∥∥Aexp{−λA}uk

∥∥E

≤ λ1−α 1

(k−nN −1)!∫ ∞

0tk−nN−1 exp(−t)

∥∥Aexp(−(τ t +λ)A

)unN

∥∥E

+λ1−αk∑

j=nN+1

τ1

(k−j)!∫ ∞

0tk−j exp(−t)

∥∥∥∥Aexp

{− (τ t +λ)A

2

}∥∥∥∥E→E

×∥∥BjA−1

∥∥E→E

×∥∥∥∥Aexp

{− (τ t +λ)A

2

}uj−N

∥∥∥∥E

≤ λ1−α 1

(k−nN −1)!∫ ∞

0tk−nN−1 exp(−t)

dt

(tτ +λ)1−α

∥∥unN

∥∥Eα

+λ1−α 1−α

M22−α

k∑j=nN+1

τ1

(k−j)!∫ ∞

0tk−j exp(−t)

M22−α dt

(tτ +λ)2−α

∥∥uj−N

∥∥Eα

≤ Jn max(n−1)N≤k≤nN

∥∥uk

∥∥Eα

,

(3.12)

where

Jn = λ1−α 1

(k−nN −1)!∫ ∞

0tk−nN−1 exp(−t)

dt

(tτ +λ)1−α

+λ1−α(1−α)

k∑j=nN+1

τ1

(k−j)!∫ ∞

0tk−j exp(−t)

dt

(tτ +λ)2−α.

(3.13)

Page 15: On the stability of the linear delay differential and ...downloads.hindawi.com/journals/aaa/2001/535262.pdf · approximately solving the initial-value problem were obtained. However,

A. Ashyralyev and P. Sobolevskii 281

We will calculate Jn. Making the substitution k − j = m and using Taylor’sformula and integration by parts, we obtain

Jn = λ1−α 1

(k−nN −1)!∫ ∞

0tk−nN−1 exp(−t)

dt

(tτ +λ)1−α

+λ1−α(1−α)

k−nN−1∑m=0

τ1

m!∫ ∞

0tm exp(−t)

dt

(tτ +λ)2−α

= λ1−α 1

(k−nN −1)!∫ ∞

0tk−nN−1 exp(−t)

dt

(tτ +λ)1−α

+λ1−α(1−α)

∫ ∞

0exp(t)

×[

1−∫ t

0

ξk−nN−1 exp(−ξ)dξ

(k−nN −1)!]

exp(−t)dt

(tτ +λ)2−α

= λ1−α 1

(k−nN −1)!∫ ∞

0tk−nN−1 exp(−t)

dt

(tτ +λ)1−α

+1−λ1−α 1

(k−nN −1)!∫ ∞

0tk−nN−1 exp(−t)

dt

(tτ +λ)1−α

= 1.

(3.14)

Therefore

λ1−α∥∥Aexp{−λA}uk

∥∥E

≤ max−N≤k≤0

∥∥g(tk

)∥∥Eα

(3.15)

for every k, nN ≤ k ≤ (n+1)N , n = 1,2,3, . . . , and λ, λ > 0. This shows that

∥∥uk

∥∥Eα

≤ max−ω≤k≤0

∥∥g(tk

)∥∥Eα

(3.16)

for every k, nN ≤ k ≤ (n+1)N , n = 1,2,3, . . . . This result completes the proofof Theorem 3.1. �

Theorem 3.2. Assume that all the conditions of Theorem 2.4 are satisfied. Thenfor the solution of the difference scheme (3.1), the estimate (3.3) holds for anyk ≥ 1.

Proof. Consider 1 ≤ k ≤ N . Using formula (3.5) we have

Page 16: On the stability of the linear delay differential and ...downloads.hindawi.com/journals/aaa/2001/535262.pdf · approximately solving the initial-value problem were obtained. However,

282 Delay differential and difference equations

λ1−αAexp{−λA}uk = λ1−α 1

(k−1)!∫ ∞

0tk−1 exp(−t)Aexp

(−(τ t +λ)A)g(0)

+λ1−αk∑

j=1

τ1

(k−j)!∫ ∞

0tk−j exp(−t)exp

{− τ t +λ

2A

}

×BjAexp

{− τ t +λ

2A

}g(tj−N

)

+λ1−αk∑

j=1

τ1

(k−j)!

×∫ ∞

0tk−j exp(−t)Aexp

{− τ t +λ

2A

}A−1

×[

exp

{− τ t +λ

2A

}ABj −BjAexp

{− τ t +λ

2A

}]g(tj−N

)

= T1 +T2 +T3.

(3.17)

Using the estimates (1.2), (2.12) and assumption (2.24), we have

∥∥T1∥∥

E≤ λ1−α 1

(k−1)!∫ ∞

0tk−1 exp(−t)

∥∥Aexp{−(τ t +λ)A

}g(0)

∥∥E

≤ λ1−α 1

(k−1)!∫ ∞

0tk−1 exp(−t)

dt

(tτ +λ)1−αmax−N≤k≤0

∥∥g(tk

)∥∥Eα

,

∥∥T2∥∥

E≤ λ1−α

k∑j=1

τ1

(k−j)!∫ ∞

0tk−j exp(−t)

∥∥∥∥Aexp

{− τ t +λ

2A

}∥∥∥∥E→E

×∥∥BjA−1

∥∥E→E

×∥∥∥∥Aexp

{−τ t+λ

2A

}g(tj−N

)∥∥∥∥E

≤ λ1−α(1−α)(1−ε)

M22−α

×k∑

j=1

τ1

(k−j)!∫ ∞

0tk−j exp(−t)

M22−α dt

(tτ +λ)2−α

∥∥g(tj−N

)∥∥Eα

≤ λ1−α(1−α)(1−ε)

k∑j=1

τ1

(k−j)!∫ ∞

0tk−j exp(−t)

dt

(tτ +λ)2−α

× max−N≤k≤0

∥∥g(tk

)∥∥Eα

(3.18)

Page 17: On the stability of the linear delay differential and ...downloads.hindawi.com/journals/aaa/2001/535262.pdf · approximately solving the initial-value problem were obtained. However,

A. Ashyralyev and P. Sobolevskii 283

for every k, 1 ≤ k ≤ N and λ, λ > 0. Now we estimate T3. By Lemma 2.3 andusing the estimate (2.23), we obtain

∥∥T3∥∥

E≤ λ1−α

k∑j=1

τ1

(k−j)!∫ ∞

0tk−j exp(−t)

∥∥∥∥Aexp

{− τ t +λ

2A

}∥∥∥∥E→E

×∥∥∥∥A−1

[Aexp

{− τ t +λ

2A

}Bj−BjAexp

{− τ t +λ

2A

}]g(tj−N

)∥∥∥∥E

≤ λ1−α max1≤k≤N

∥∥A−1(ABj −BjA

)A−1

∥∥E→E

k∑j=1

τ1

(k−j)!

×∫ ∞

0tk−j exp(−t)

e(1+α)MαM1+α1

(1+2M1

)(1+M1

)1−α2(2−α)α

πα2(1−α)

× M22−α dt

(tτ +λ)2−α

∥∥g(tj−N

)∥∥Eα

≤ λ1−α(1−α)ε

k∑j=1

τ1

(k−j)!∫ ∞

0tk−j exp(−t)

dt

(tτ +λ)2−α

× max−N≤k≤0

∥∥g(tk

)∥∥Eα

(3.19)

for every k, 1 ≤ k ≤ N and λ, λ > 0. Using the triangle inequality we obtain

λ1−α∥∥Aexp{−λA}uk

∥∥E

≤ max−N≤k≤0J∥∥g

(tk

)∥∥Eα

(3.20)

for every k, 1 ≤ k ≤ N and λ, λ > 0. This shows that

∥∥uk

∥∥Eα

≤ max−N≤k≤0

∥∥g(tk

)∥∥Eα

(3.21)

for every k, 1 ≤ k ≤ N . Applying the mathematical induction, one can easilyshow that it is true for every k. Namely, assume that inequality (3.2) is true forevery k, (n−1)N ≤ k ≤ nN , n = 1,2,3, . . . . Then for any k, nN ≤ k ≤ (n+1)N

using formula (2.8) we have

Page 18: On the stability of the linear delay differential and ...downloads.hindawi.com/journals/aaa/2001/535262.pdf · approximately solving the initial-value problem were obtained. However,

284 Delay differential and difference equations

λ1−αAexp{−λA}uk

= λ1−α 1

(k−nN −1)!∫ ∞

0tk−nN−1 exp(−t)Aexp

{−(τ t +λ)A}unN

+λ1−αk∑

j=nN+1

τ1

(k−j)!∫ ∞

0tk−j exp(−t)exp

{− τ t +λ

2A

}Bj

×Aexp

{− τ t +λ

2A

}uj−N

+λ1−αk∑

j=nN+1

τ1

(k−j)!∫ ∞

0tk−j exp(−t)Aexp

{− τ t +λ

2A

}

×A−1[

exp

{− τ t +λ

2A

}ABj −BjAexp

{− τ t +λ

2A

}]uj−N

= T1n +T2n +T3n.

(3.22)

Using the estimates (1.2), (2.12), and assumption (2.24) we have

∥∥T1n

∥∥E

≤λ1−α 1

(k−nN−1)!∫ ∞

0tk−nN−1 exp(−t)

∥∥Aexp{−(τ t +λ)A

}unN

∥∥E

≤λ1−α 1

(k−nN−1)!∫ ∞

0tk−nN−1exp(−t)

dt

(tτ+λ)1−αmax−N≤k≤0

∥∥g(tk

)∥∥Eα

,

∥∥T2n

∥∥E

≤λ1−αk∑

j=nN+1

τ1

(k−j)!∫ ∞

0tk−j exp(−t)

∥∥∥∥Aexp

{− τ t +λ

2A

}∥∥∥∥E→E

×∥∥A−1Bj

∥∥E→E

×∥∥∥∥Aexp

{− τ t +λ

2A

}uj−N

∥∥∥∥E

≤ λ1−α(1−α)(1−ε)

M22−α

×k∑

j=nN+1

τ1

(k−j)!∫ ∞

0tk−j exp(−t)

M22−α dt

(tτ +λ)2−α

∥∥uj−N

∥∥Eα

≤ λ1−α(1−α)(1−ε)

k∑j=nN+1

τ1

(k−j)!∫ ∞

0tk−j exp(−t)

dt

(tτ +λ)2−α

× max−N≤k≤0

∥∥g(tk

)∥∥Eα

(3.23)

Page 19: On the stability of the linear delay differential and ...downloads.hindawi.com/journals/aaa/2001/535262.pdf · approximately solving the initial-value problem were obtained. However,

A. Ashyralyev and P. Sobolevskii 285

for every k, nN ≤ k ≤ (n+1)N , n = 1,2,3, . . . , and λ, λ > 0. Now we estimateT3n. By Lemma 2.3 and using the estimate (2.23), we obtain

∥∥T3n

∥∥E

≤ λ1−αk∑

j=nN+1

τ1

(k−j)!∫ ∞

0tk−j exp(−t)

∥∥∥∥Aexp

{− τ t +λ

2A

}∥∥∥∥E→E

×∥∥∥∥A−1

[Aexp

{− τ t +λ

2A

}Bj −BjAexp

{− τ t +λ

2A

}]uj−N

∥∥∥∥E

≤ λ1−α maxnN+1≤k≤(n+1)N

∥∥A−1(ABj −BjA

)A−1

∥∥E→E

k∑j=1

τ1

(k−j)!

×∫ ∞

0tk−j exp(−t)

e(1+α)MαM1+α1

(1+2M1

)(1+M1

)1−α2(2−α)α

πα2(1−α)

× M22−α dt

(tτ +λ)2−α

∥∥uj−N

∥∥Eα

≤ λ1−α(1−α)ε

k∑j=nN+1

τ1

(k−j)!∫ ∞

0tk−j exp(−t)

dt

(tτ +λ)2−α

× max−N≤k≤0

∥∥g(tk

)∥∥Eα

(3.24)

for every k, nN ≤ k ≤ (n+1)N , n = 1,2,3, . . . , and λ, λ > 0. Using the triangleinequality we obtain

λ1−α∥∥Aexp{−λA}uk

∥∥E

≤ max−N≤k≤0Jn

∥∥g(tk

)∥∥Eα

(3.25)

for every k, nN ≤ k ≤ (n+1)N , n = 1,2,3, . . . , and λ, λ > 0. This shows that

∥∥uk

∥∥Eα

≤ max−ω≤k≤0

∥∥g(tk

)∥∥Eα

(3.26)

for every k, nN ≤ (n+1)N , n = 1,2,3, . . . . This result completes the proof ofTheorem 3.2. �

Now we consider the difference scheme (3.2). We have not been able toobtain the same result for solution of the difference scheme (3.2) in the spacesEα under the assumption for the difference scheme (3.1). But, we have theasymptotical stability of the solution of the difference scheme under the supple-mentary restriction of the operator A that is considered in the following section.

Page 20: On the stability of the linear delay differential and ...downloads.hindawi.com/journals/aaa/2001/535262.pdf · approximately solving the initial-value problem were obtained. However,

286 Delay differential and difference equations

4. The difference scheme (3.2)

Theorem 4.1. Let condition (1.2) be satisfied. Suppose that the following esti-mate holds:

∥∥∥∥(I +τA)

(I +τA+ (τA)2

2

)−1∥∥∥∥E �→E

≤ 1,

∥∥∥∥(

I + τA

2

)(I +τA)

(I +τA+ (τA)2

2

)−1∥∥∥∥E �→E

≤ 1+√2

2,

(4.1)

and

∥∥B(t)A−1∥∥

E �→E≤ (1−α)

M21−α(1+√

2) (4.2)

holds for every t ≥ 0.Then for the solution of difference scheme (3.2) the estimate

∥∥uk

∥∥Eα

≤ max−N≤k≤0

∥∥g(tk

)∥∥Eα

(4.3)

holds for any k ≥ 1.

Proof. Consider 1 ≤ k ≤ N . In this case

uk = Rkg(0)+k∑

j=1

Rk−j+1(

I + τA

2

)(g(tj−N

)+g(tj−N−1

))τ, (4.4)

where R = (I +τA+(τA)2/2)−1. Using formula (3.5), the estimates (1.2), andassumption (4.1) we have

λ1−α∥∥Aexp{−λA}uk

∥∥E

≤∥∥∥∥(

(I +τA)

(I +τA+ (τA)2

2

)−1)k∥∥∥∥E �→E

×λ1−α 1

(k−1)!∫ ∞

0tk−1 exp(−t)

∥∥Aexp{−(τ t +λ)A

}g(0)

∥∥E

+λ1−αk∑

j=1

τ

∥∥∥∥(

(I +τA)

(I +τA+ (τA)2

2

)−1)k−j∥∥∥∥E �→E

×∥∥∥∥(

I + τA

2

)(I +τA)

(I +τA+ (τA)2

2

)−1∥∥∥∥E �→E

Page 21: On the stability of the linear delay differential and ...downloads.hindawi.com/journals/aaa/2001/535262.pdf · approximately solving the initial-value problem were obtained. However,

A. Ashyralyev and P. Sobolevskii 287

× 1

(k−j)!∫ ∞

0tk−j exp(−t)

∥∥∥∥Aexp

{− τ t +λ

2A

}∥∥∥∥E→E

∥∥BjA−1

∥∥E→E

×∥∥∥∥Aexp

{− τ t +λ

2A

}1

2

(g(tj−N

)+g(tj−N−1

))∥∥∥∥E

≤ λ1−α 1

(k−1)!∫ ∞

0tk−1 exp(−t)

dt

(tτ +λ)1−α

∥∥g(0)∥∥

+(1+√

2)

2

1−α

M21−α(1+√

2)

k∑j=1

τ1

(k−j)!∫ ∞

0tk−j exp(−t)

M22−α dt

(tτ +λ)2−α

×∥∥∥∥1

2

(g(tj−N

)+g(tj−N−1

))∥∥∥∥Eα

≤ J max−N≤k≤0

∥∥g(tk

)∥∥Eα

. (4.5)

Therefore

λ1−α∥∥Aexp{−λA}uk

∥∥E

≤ max−N≤k≤0

∥∥g(tk

)∥∥Eα

(4.6)

for every k, 1 ≤ k ≤ N and λ, λ > 0. This shows that

∥∥uk

∥∥Eα

≤ max−N≤k≤0

∥∥g(tk

)∥∥Eα

(4.7)

for every k, 1 ≤ k ≤ N . Assume that the estimate (4.3) is true for k, with(n−1)N ≤ k ≤ nN , n = 1,2,3, . . . . Then for any k, nN ≤ k ≤ (n+1)N usingformula (3.5) and

uk = Rk−nNunN +k∑

j=nN+1

τRk−j

(I + τA

2

)Bj

1

2

(uj−N +uj−N−1

), (4.8)

the estimates (1.2), and assumption (4.1) we have that

λ1−α∥∥Aexp{−λA}uk

∥∥E

≤∥∥∥∥(

(I +τA)

(I +τA+ (τA)2

2

)−1)k−nN∥∥∥∥E �→E

×λ1−α 1

(k−nN −1)!∫ ∞

0tk−nN−1 exp(−t)

∥∥Aexp{−(τ t +λ)A

}unN

∥∥E

Page 22: On the stability of the linear delay differential and ...downloads.hindawi.com/journals/aaa/2001/535262.pdf · approximately solving the initial-value problem were obtained. However,

288 Delay differential and difference equations

+λ1−αk∑

j=nN+1

τ

∥∥∥∥(

(I +τA)

(I +τA+ (τA)2

2

)−1)k−j∥∥∥∥E �→E

×∥∥∥∥(

I + τA

2

)(I +τA)

(I +τA+ (τA)2

2

)−1∥∥∥∥E �→E

× 1

(k−j)!∫ ∞

0tk−j exp(−t)

∥∥∥∥Aexp

{− (τ t +λ)A

2

}∥∥∥∥E→E

×∥∥BjA−1

∥∥E→E

∥∥∥∥Aexp

{− (τ t +λ)A

2

}1

2

(uj−N +uj−N−1

)∥∥∥∥E

≤ λ1−α 1

(k−nN −1)!∫ ∞

0tk−nN−1 exp(−t)

dt

(tτ +λ)1−α

∥∥unN

∥∥Eα

+(1+√

2)

2

1−α

M21−α(1+√

2)

k∑j=nN+1

τ1

(k−j)!

×∫ ∞

0tk−j exp(−t)

M22−α dt

(tτ +λ)2−α

∥∥∥∥1

2

(uj−N +uj−N−1

)∥∥∥∥Eα

≤ Jn max(n−1)N≤k≤nN

∥∥uk

∥∥Eα

. (4.9)

Therefore

λ1−α∥∥Aexp{−λA}uk

∥∥E

≤ max−N≤k≤0

∥∥g(tk

)∥∥Eα

(4.10)

for every k, nN ≤ k ≤ (n+1)N , n = 1,2,3, . . . , and λ, λ > 0. This shows that∥∥uk

∥∥Eα

≤ max−N≤k≤0

∥∥g(tk

)∥∥Eα

(4.11)

for every k, nN ≤ (n+1)N , n = 1,2,3, . . . . This result completes the proof ofTheorem 4.1. �

Now, we consider the difference scheme (3.2) when

A−1B(t)x = B(t)A−1x, x ∈ D(A). (4.12)

Suppose that

∥∥A−1(AB(t)−B(t)A

)A−1

∥∥E �→E

≤ π(1−α)2α2(1+α)−1(1+√

2)−1

ε

eM1+αM1+α1

(1+2M1

)(1+M1

)1−α22+α−α2

(4.13)

holds for every t ≥ 0.

Page 23: On the stability of the linear delay differential and ...downloads.hindawi.com/journals/aaa/2001/535262.pdf · approximately solving the initial-value problem were obtained. However,

A. Ashyralyev and P. Sobolevskii 289

Theorem 4.2. Let the assumptions (1.2) and (4.13) be satisfied. Suppose thatthe following estimate holds:

∥∥A−1B(t)∥∥

E �→E≤ (1−α)(1−ε)

M22−α(1+√

2) (4.14)

for every t ≥ 0. Then for the solution of difference scheme (3.2) the estimate(4.3) holds for any k ≥ 1.

Proof. Consider 1 ≤ k ≤ N . Using formula (3.5) we obtain

λ1−αAexp{−λA}uk

=(

(I +τA)

(I +τA+ (τA)2

2

)−1)k

×λ1−α 1

(k−1)!∫ ∞

0tk−1 exp(−t)Aexp

{−(τ t +λ)A}g(0)

+λ1−αk∑

j=1

τ

((I +τA)

(I +τA+ (τA)2

2

)−1)k−j(I + τA

2

)

×(I +τA)

(I +τA+ (τA)2

2

)−1

× 1

(k−j)!∫ ∞

0tk−j exp(−t)exp

{− (τ t +λ)A

2

}

×BjAexp

{− (τ t +λ)A

2

}1

2

(g(tj−N

)+g(tj−N−1

))

+λ1−αk∑

j=1

τ

((I +τA)

(I +τA+ (τA)2

2

)−1)k−j(I + τA

2

)

×(I +τA)

(I +τA+ (τA)2

2

)−1

× 1

(k−j)!∫ ∞

0tk−j exp(−t)Aexp

{− (τ t +λ)A

2

}A−1

×[

exp

{− (τ t +λ)A

2

}ABj −BjAexp

{− (τ t +λ)A

2

}]

× 1

2

(g(tj−N

)+g(tj−N−1

))= P1 +P2 +P3.

(4.15)

Using the estimates (1.2), (2.12), and assumption (2.24), we have

Page 24: On the stability of the linear delay differential and ...downloads.hindawi.com/journals/aaa/2001/535262.pdf · approximately solving the initial-value problem were obtained. However,

290 Delay differential and difference equations

∥∥P1∥∥

E≤

∥∥∥∥(

(I +τA)

(I +τA+ (τA)2

2

)−1)k∥∥∥∥E �→E

×λ1−α 1

(k−1)!∫ ∞

0tk−1 exp(−t)

∥∥Aexp(−(τ t +λ)A

)g(0)

∥∥E

≤ λ1−α 1

(k−1)!∫ ∞

0tk−1 exp(−t)

dt

(tτ +λ)1−αmax−N≤k≤0

∥∥g(tk

)∥∥Eα

,

∥∥P2∥∥

E≤ λ1−α

k∑j=1

τ

∥∥∥∥(

(I +τA)

(I +τA+ (τA)2

2

)−1)k−j∥∥∥∥E �→E

×∥∥∥∥(

I + τA

2

)(I +τA)

(I +τA+ (τA)2

2

)−1∥∥∥∥E �→E

× 1

(k−j)!∫ ∞

0tk−j exp(−t)

∥∥∥∥Aexp

{− (τ t +λ)A

2

}∥∥∥∥E→E

×∥∥A−1Bj

∥∥E→E

∥∥∥∥Aexp

{− (τ t +λ)A

2

}1

2

(g(tj−N

)+g(tj−N−1

))∥∥∥∥E

≤(1+√

2)

2

λ1−α(1−α)(1−ε)

M21−α(1+√

2)

×k∑

j=1

τ1

(k−j)!∫ ∞

0tk−j exp(−t)

M22−α dt

(tτ +λ)2−α

×∥∥∥∥1

2

(g(tj−N

)+g(tj−N−1

))∥∥∥∥Eα

≤ (1−α)(1−ε)

k∑j=1

τ1

(k−j)!∫ ∞

0tk−j exp(−t)

λ1−α dt

(tτ +λ)2−α

× max−N≤k≤0

∥∥g(tk

)∥∥Eα

(4.16)

for every k, 1 ≤ k ≤ N and λ, λ > 0. Now we estimate P3. By Lemma 2.3 andusing the estimate (2.23), we obtain

∥∥P3∥∥

E≤ λ1−α

k∑j=1

τ

∥∥∥∥(

(I +τA)

(I +τA+ (τA)2

2

)−1)k−j∥∥∥∥E �→E

×∥∥∥∥(

I + τA

2

)(I +τA)

(I +τA+ (τA)2

2

)−1∥∥∥∥E �→E

Page 25: On the stability of the linear delay differential and ...downloads.hindawi.com/journals/aaa/2001/535262.pdf · approximately solving the initial-value problem were obtained. However,

A. Ashyralyev and P. Sobolevskii 291

× 1

(k−j)!∫ ∞

0tk−j exp(−t)

∥∥∥∥Aexp

{− (τ t +λ)A

2

}∥∥∥∥E→E

×∥∥∥∥A−1

[Aexp

{− (τ t +λ)A

2

}Bj −BjAexp

{− (τ t +λ)A

2

}]

× 1

2

(g(tj−N

)+g(tj−N−1

))∥∥∥∥E

≤ λ1−α(1+√

2)

2max

1≤j≤N

∥∥A−1(ABj −BjA

)A−1

∥∥E→E

k∑j=1

τ1

(k−j)!

×∫ ∞

0tk−j exp(−t)

e(1+α)MαM1+α1

(1+2M1

)(1+M1

)1−α2(2−α)α

πα2(1−α)

× M22−α dt

(tτ +λ)2−α

1

2

∥∥(g(tj−N

)+g(tj−N−1

))∥∥Eα

≤ λ1−α(1−α)ε

k∑j=1

τ1

(k−j)!∫ ∞

0tk−j exp(−t)

dt

(tτ +λ)2−α

× max−N≤k≤0

∥∥g(tk

)∥∥Eα

(4.17)

for every k, 1 ≤ k ≤ N and λ, λ > 0. Using the triangle inequality we obtain

λ1−α∥∥Aexp{−λA}uk

∥∥E

≤ J max−N≤k≤0

∥∥g(tk

)∥∥Eα

(4.18)

for every k, 1 ≤ k ≤ N and λ, λ > 0. This shows that

∥∥uk

∥∥Eα

≤ max−N≤k≤0

∥∥g(tk

)∥∥Eα

(4.19)

for every k, 1 ≤ k ≤ N . Assume that inequality (3.3) is true for k, with (n−1)N ≤ k ≤ nN , n = 1,2,3, . . . . Then for any k, nN ≤ k ≤ (n + 1)N usingformula (2.8) we have that

λ1−αAexp{−λA}uk

=(

(I +τA)

(I +τA+ (τA)2

2

)−1)k−nN

×λ1−α 1

(k−nN −1)!∫ ∞

0tk−nN−1 exp(−t)Aexp

{−(τ t +λ)A}unN

Page 26: On the stability of the linear delay differential and ...downloads.hindawi.com/journals/aaa/2001/535262.pdf · approximately solving the initial-value problem were obtained. However,

292 Delay differential and difference equations

+λ1−αk∑

j=nN+1

τ

((I +τA)

(I +τA+ (τA)2

2

)−1)k−j

×(

I + τA

2

)(I +τA)

(I +τA+ (τA)2

2

)−1

× 1

(k−j)!∫ ∞

0tk−j exp(−t)exp

{− (τ t +λ)A

2

}BjA

×exp

{− (τ t +λ)A

2

}1

2

(uj−N +uj−N−1

)

+λ1−αk∑

j=nN+1

τ

((I +τA)

(I +τA+ (τA)2

2

)−1)k−j

×(

I + τA

2

)(I +τA)

(I +τA+ (τA)2

2

)−1

× 1

(k−j)!∫ ∞

0tk−j exp(−t)Aexp

{− (τ t +λ)A

2

}

×A−1[

exp

{− (τ t +λ)A

2

}ABj −BjAexp

{− (τ t +λ)A

2

}]

× 1

2

(uj−N +uj−N−1

)

= P1n +P2n +P3n. (4.20)

Using the estimates (1.2), (2.12), and assumption (2.24) we have

∥∥P1n

∥∥E

≤∥∥∥∥(

(I +τA)

(I +τA+ (τA)2

2

)−1)k−nN∥∥∥∥E �→E

×λ1−α 1

(k−nN −1)!∫ ∞

0tk−1 exp(−t)

∥∥Aexp{−(τ t +λ)A

}unN

∥∥E

≤ λ1−α 1

(k−nN −1)!∫ ∞

0tk−1 exp(−t)

dt

(tτ +λ)1−αmax−N≤k≤0

∥∥g(tk

)∥∥Eα

,

∥∥P2n

∥∥E

≤ λ1−αk∑

j=nN+1

τ

∥∥∥∥(

(I +τA)

(I +τA+ (τA)2

2

)−1)k−j∥∥∥∥E �→E

×∥∥∥∥(

I + τA

2

)(I +τA)

(I +τA+ (τA)2

2

)−1∥∥∥∥E �→E

Page 27: On the stability of the linear delay differential and ...downloads.hindawi.com/journals/aaa/2001/535262.pdf · approximately solving the initial-value problem were obtained. However,

A. Ashyralyev and P. Sobolevskii 293

× 1

(k−j)!∫ ∞

0tk−j exp(−t)

∥∥∥∥Aexp

{− (τ t +λ)A

2

}∥∥∥∥E→E

×∥∥A−1Bj

∥∥E→E

∥∥∥∥Aexp

{− (τ t +λ)A

2

}1

2

(uj−N +uj−N−1

)∥∥∥∥E

≤(1+√

2)

2

λ1−α(1−α)(1−ε)

M21−α(1+√

2)

×k∑

j=nN+1

τ1

(k−j)!∫ ∞

0tk−j exp(−t)

M22−α dt

(tτ +λ)2−α

×∥∥∥∥1

2

(uj−N +uj−N−1

)∥∥∥∥Eα

≤ (1−α)(1−ε)

k∑j=nN+1

τ1

(k−j)!∫ ∞

0tk−j exp(−t)

λ1−α dt

(tτ +λ)2−α

× max−N≤k≤0

∥∥g(tk

)∥∥Eα

(4.21)

for every k, nN ≤ k ≤ (n+1)N , n = 1,2,3, . . . , and λ, λ > 0. Now we estimateP3n. By Lemma 2.3 and using the estimate (2.23), we obtain

∥∥P3n

∥∥E

≤ λ1−αk∑

j=nN+1

τ

∥∥∥∥(

(I +τA)

(I +τA+ (τA)2

2

)−1)k−j∥∥∥∥E �→E

×∥∥∥∥(

I + τA

2

)(I +τA)

(I +τA+ (τA)2

2

)−1∥∥∥∥E �→E

× 1

(k−j)!∫ ∞

0tk−j exp(−t)

∥∥∥∥Aexp

{− (τ t +λ)A

2

}∥∥∥∥E→E

×∥∥∥∥A−1

[Aexp

{− (τ t +λ)A

2

}Bj

−BjAexp

{− (τ t +λ)A

2

}]1

2

(uj−N +uj−N−1

)∥∥∥∥E

≤ λ1−α(1+√

2)

2max

nN+1≤j≤(n+1)N

∥∥A−1(ABj −BjA

)A−1

∥∥E→E

×k∑

j=nN+1

τ1

(k−j)!

Page 28: On the stability of the linear delay differential and ...downloads.hindawi.com/journals/aaa/2001/535262.pdf · approximately solving the initial-value problem were obtained. However,

294 Delay differential and difference equations

×∫ ∞

0tk−j exp(−t)

e(1+α)MαM1+α1

(1+2M1

)(1+M1

)1−α2(2−α)α

πα2(1−α)

× M22−α dt

(tτ +λ)2−α

1

2

∥∥uj−N +uj−N−1∥∥

≤ λ1−α(1−α)ε

k∑j=nN+1

τ1

(k−j)!

×∫ ∞

0tk−j exp(−t)

dt

(tτ +λ)2−αmax−N≤k≤0

∥∥g(tk

)∥∥Eα

(4.22)

for every k, nN ≤ k ≤ (n+1)N and λ, λ > 0. Using the triangle inequality weobtain

λ1−α∥∥Aexp{−λA}uk

∥∥E

≤ Jn max−N≤k≤0

∥∥g(tk

)∥∥Eα

(4.23)

for every k, nN ≤ k ≤ (n+1)N , n = 1,2,3, . . . , and λ, λ > 0. This shows that∥∥uk

∥∥Eα

≤ max−ω≤k≤0

∥∥g(tk

)∥∥Eα

(4.24)

for every k, nN ≤ (n+1)N , n = 1,2,3, . . . . This result completes the proof ofTheorem 4.2. �

5. Applications

We consider the initial-value problem on the range {0 ≤ t ≤ 1, x ∈ Rn} for

2m-order multidimensional delay differential equations of parabolic type

∂u(t,x)

∂t+

∑|τ |=2m

aτ (x)∂ |τ |u(t,x)

∂xτ11 · · ·∂x

τnn

+δu(t,x)

=b(t)

|τ |=2m

aτ (x)∂ |τ |u(t −ω,x)

∂xτ11 · · ·∂x

τnn

+δu(t −ω,x)

, 0<t <∞, x ∈R

n,

(5.1)

u(t,x) = g(t,x), −ω ≤ t ≤ 0, x ∈ Rn, |τ | = τ1 +·· ·+τn, (5.2)

where ar(x), b(t), g(t,x) are given sufficiently smooth functions and δ > 0 isthe sufficiently large number. We will assume that the symbol

Ax1(ξ) =

∑|τ |=2m

ar(x)(iξ)r1 · · ·(iξ)rn (5.3)

of the differential operator of the form

Ax1 =

∑|r=2m|

ar(x)∂ |r|

∂xr11 · · ·∂x

rnn

(5.4)

Page 29: On the stability of the linear delay differential and ...downloads.hindawi.com/journals/aaa/2001/535262.pdf · approximately solving the initial-value problem were obtained. However,

A. Ashyralyev and P. Sobolevskii 295

acting on functions defined on the space Rn, satisfies the inequalities

0 < M1|ξ |2m ≤ ∣∣Ax1(ξ)

∣∣ ≤ M2|ξ |2m < ∞ for ξ = 0. (5.5)

Problem (5.1) has a unique smooth solution. This allows us to reduce theinitial-value problem (5.1) to the initial-value problem (1.1) in the Banach spaceE with a strongly positive operator Ax = Ax

1 + δI defined by (5.4). We give anumber of corollaries of the abstract Theorems 2.1 and 3.1.

Theorem 5.1. Assume that

sup0≤t<∞

∣∣b(t)∣∣ ≤ 1−α

M22−α. (5.6)

Then the solutions of the initial-value problem (5.1) satisfy the following stabil-ity estimates:

sup0≤t<∞

∥∥v(t, ·)∥∥C2mα(Rn)

≤ M2(α) max−ω≤t≤0

∥∥g(t, ·)∥∥C2mα(Rn)

, 0 < α <1

2m,

(5.7)where M2(α) does not depend on g(t,x). Here Cε(Rn) is the space of functionssatisfying a Hölder condition with the indicator ε ∈ (0,1).

The proof of Theorem 5.1 is based on the estimate∥∥exp

{− tAx}∥∥

C(Rn)→C(Rn)≤ M, t ≥ 0, (5.8)

and on the abstract Theorem 2.1, on the strong positivity of the operator Ax inCε(Rn), and on the fact of the equivalence of the norms in the spaces Eα =Eα(A,C(Rn)) and C2mα(Rn) when 0 < α < 1/2m (see [5]).

We define the grid space Rnh (0 < h ≤ h0) as the set of all points of the

Euclidean space Rn whose coordinates are given by

xi = sih, si = 0,±1,±2, . . . , i = 1, . . . ,n. (5.9)

To the differential operator Ax = Ax1 +δI defined by (5.4) we assign the differ-

ence operator Axh by the formula

Axhu

h(x) =∑

2m≤|r|≤S

bhr (x)Dr

huh(x) (5.10)

of an arbitrary high order of accuracy that approximates this multidimensionalelliptic operator Ax which acts on functions uh

x defined on the entire space Rnh.

We will assume that for |ξkh| ≤ π , the symbol Ax(ξh,h) of the operator Axh

satisfies the inequalities∣∣Ax(ξh,h)

∣∣ ≥ M3|ξ |2m,∣∣argAx(ξh,h)

∣∣ ≤ φ < π. (5.11)

Page 30: On the stability of the linear delay differential and ...downloads.hindawi.com/journals/aaa/2001/535262.pdf · approximately solving the initial-value problem were obtained. However,

296 Delay differential and difference equations

With the help of Axh we arrive at the initial-value problem

(uh(t,x)

)′ +Axhu

h(t,x) = b(t)Axhu

h(t −ω,x), t ≥ 0, x ∈ Rn,

uh(t,x) = gh(t,x) = g(t,x) (−ω ≤ t ≤ 0), x ∈ Rn,

(5.12)

for an infinite system of ordinary differential equations. Now, we replace prob-lem (5.12) by the first order accuracy in t difference scheme

1

τ

(uh

k (x)−uhk−1(x)

)+Axhu

hk (x) = b

(tk

)Ax

huhk−N(x),

tk = kτ, 1 ≤ k, Nτ = ω, x ∈ Rnh,

uhk (x) = gh

(tk,x

), tk = kτ, −N ≤ k ≤ 0, x ∈ R

nh.

(5.13)

Theorem 5.2. Assume that all the conditions of Theorem 5.1 are satisfied. Thenfor the solution of difference scheme (5.13) the estimate

sup1≤k<∞

∥∥uhk

∥∥C2mα(Rn

h)≤ M2(α) max−N≤t≤0

∥∥ghk

∥∥C2mα(Rn

h), 0 < α <

1

2m, (5.14)

holds.

The proof of Theorem 5.2 is based on the estimate∥∥exp{− tkA

xh

}∥∥C(Rn

h)→C(Rnh)

≤ M, k ≥ 0, (5.15)

and on the abstract Theorem 3.1, the positivity of the operator Axh in Cε(Rn

h),and on the fact that the Eα = Eα(Ax

h, C(Rnh))-norms are equivalent to the norms

C2mα(Rnh) uniformly in h for 0 < α < 1/2m (see [5]).

References

[1] A. N. Al-Mutib, Stability properties of numerical methods for solving delay differen-tial equations, J. Comput. Appl. Math. 10 (1984), no. 1, 71–79. MR 85m:65075.Zbl 542.65040.

[2] A. Ashyralyev and H. Akça, On difference schemes for semilinear delay differentialequations with constant delay, Actual Problems of Applied Mathematics, Physicsand Engineering (Ashgabad), 1999, pp. 18–21.

[3] , Stability estimates of difference schemes for neutral delay differential equa-tions, Nonlinear Anal. 44 (2001), no. 4, 443–452. CMP 1 822 094.

[4] A. Ashyralyev, H. Akça, and U. Guray, Second order accuracy difference schemefor approximate solutions of delay differential equations, Funct. Differ. Equ. 6(1999), no. 3-4, 223–231. CMP 1 809 191.

[5] A. Ashyralyev and P. E. Sobolevskii, Well-Posedness of Parabolic Difference Equa-tions, Operator Theory: Advances and Applications, vol. 69, Birkhäuser Verlag,Basel, 1994. MR 95j:65094.

[6] A. Bellen, One-step collocation for delay differential equations, J. Comput. Appl.Math. 10 (1984), no. 3, 275–283. MR 85m:65061. Zbl 538.65047.

Page 31: On the stability of the linear delay differential and ...downloads.hindawi.com/journals/aaa/2001/535262.pdf · approximately solving the initial-value problem were obtained. However,

A. Ashyralyev and P. Sobolevskii 297

[7] A. Bellen, Z. Jackiewicz, and M. Zennaro, Stability analysis of one-step methods forneutral delay-differential equations, Numer. Math. 52 (1988), no. 6, 605–619.MR 89h:65134. Zbl 644.65049.

[8] A. Bellen and M. Zennaro, Strong contractivity properties of numerical methods forordinary and delay differential equations, Appl. Numer. Math. 9 (1992), no. 3-5,321–346, from ASU conference 1990. MR 93a:65104. Zbl 0749.65042.

[9] K. L. Cooke and I. Györi, Numerical approximation of the solutions of delay dif-ferential equations on an infinite interval using piecewise constant arguments,Comput. Math. Appl. 28 (1994), no. 1-3, 81–92. MR 95f:65141. Zbl 809.65074.

[10] T. Hong-Jiong and K. Jiao-Xun, The numerical stability of linear multistep methodsfor delay differential equations with many delays, SIAM J. Numer. Anal. 33(1996), no. 3, 883–889. MR 97d:65037. Zbl 855.65094.

[11] M. A. Krasnoselskiı̆, P. P. Zabreı̆ko, E. I. Pustylnik, and P. E. Sobolevskii, IntegralOperators in Spaces of Summable Functions, Monographs and Textbooks onMechanics of Solids and Fluids, Mechanics: Analysis, Noordhoff, Leiden, 1976.MR 52#6505.

[12] L. Lianhua, Numerical stability of the θ -methods for systems of differential equationswith several delay terms, J. Comput. Math. Appl. 34 (1991), 291–304.

[13] , The stability of the block of θ -methods, IMA J. Numer. Anal. 13 (1993),101–114.

[14] M. Z. Liu and M. N. Spijker, The stability of the θ -methods in the numerical solutionof delay differential equations, IMA J. Numer. Anal. 10 (1990), no. 1, 31–48.MR 91e:65106. Zbl 693.65056.

[15] L. Torelli, Stability of numerical methods for delay differential equations, J. Comput.Appl. Math. 25 (1989), no. 1, 15–26. MR 90f:65146. Zbl 664.65073.

[16] , A sufficient condition for GPN-stability for delay differential equations,Numer. Math. 59 (1991), no. 3, 311–320. MR 92h:65127. Zbl 726.65106.

[17] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland Mathematical Library, vol. 18, North-Holland, Amsterdam, 1978.MR 80i:46032b. Zbl 387.46032.

A. Ashyralyev: Department of Mathematics, Fatih University, 34900,Buyukcekmece, Istanbul, Turkey

Current address: Department of Mathematics, International Turkmen-TurkishUniversity, 84, Gerogly, 744012, Ashgabat, Turkmenistan

E-mail address: [email protected]

P. Sobolevskii: Institute of Mathematics, Hebrew University, Jerusalem,Israel

E-mail address: [email protected]

Page 32: On the stability of the linear delay differential and ...downloads.hindawi.com/journals/aaa/2001/535262.pdf · approximately solving the initial-value problem were obtained. However,

Submit your manuscripts athttp://www.hindawi.com

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttp://www.hindawi.com

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

CombinatoricsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

The Scientific World JournalHindawi Publishing Corporation http://www.hindawi.com Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com

Volume 2014 Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Stochastic AnalysisInternational Journal of