On the Classification of Modular Tensor Categories

26
On the Classification of Modular Tensor Categories Eric C. Rowell, Texas A&M U. UT Dallas, 19 Dec. 2007

description

On the Classification of Modular Tensor Categories. Eric C. Rowell, Texas A&M U. UT Dallas, 19 Dec. 2007. A Few Collaborators. See www.arxiv.org. Connections. (Turaev). Modular Categories. 3-D TQFT. (Freedman). definition. Top. Quantum Computer. (Kitaev). Top. States (anyons). - PowerPoint PPT Presentation

Transcript of On the Classification of Modular Tensor Categories

Page 1: On the Classification of Modular Tensor Categories

On the Classification of Modular Tensor Categories

Eric C. Rowell, Texas A&M U.UT Dallas, 19 Dec. 2007

Page 2: On the Classification of Modular Tensor Categories

A Few Collaborators

Z. Wang (Microsoft)R. Stong (Rice)S.-M. Hong (Indiana)

See www.arxiv.org

Page 3: On the Classification of Modular Tensor Categories

Connections

Top. Quantum Computer

Modular Categories

Top. States (anyons)

3-D TQFT (Turaev)

definition

(Kitaev)

(Freedman)

Page 4: On the Classification of Modular Tensor Categories

Topological States: FQHE

1011 electrons/cm2

10 Tesla

defects=quasi-particles

particle exchange

fusion

9 mK

Page 5: On the Classification of Modular Tensor Categories

Topological Computation

initialize create particles

apply operators braid

output measure

Computation Physics

Page 6: On the Classification of Modular Tensor Categories

Conceptual MTC

group G Rep(G) Modular Categorydeform

axioms

Sn action

(Schur-Weyl)

Bn action

(braiding)

6

Page 7: On the Classification of Modular Tensor Categories

Algebraic Constructions

g Uqg Rep(Uqg) C(g,q,L)Lie algebra

quantumgroup

qL=-1

semisimplify

G DG Rep(DG) finite group

twistedquantum double

Finite dimensional quasi-Hopf algebra

Page 8: On the Classification of Modular Tensor Categories

New from Old

C and D MTCs

• Direct products: CD

• Sub-MTCs: C D ( D= CC Müger)

• D(S), S spherical

Page 9: On the Classification of Modular Tensor Categories

Invariants of MTCs

• Rank: # of simple objects Xi

• Dimensions: dim(X) =

• S-matrix: Sij =

• Twists: i =

IdX

ij

i

Page 10: On the Classification of Modular Tensor Categories

Structure

• Fusion rules: Xi Xj = k Nijk Xk

• Bn action on End(Xn): : i IdX cXX IdX

• PSL(2,Z) representation:1 1

100 -1

01 S, T = iji

Page 11: On the Classification of Modular Tensor Categories

Properties of MTCs

Property DescriptionSelf-dual X X* for all XD Prime D≠ C×CProperty F (Bn) finite for all

XD. Unitary End(Xn) Hilbert,

unitary rep.

Page 12: On the Classification of Modular Tensor Categories

Analogy/Counting

N 1 2 3 4 5

2 17 230 4783 finite

2 8 24 36 ?

N-dim’l space groups Rank N UMTCs

Page 13: On the Classification of Modular Tensor Categories

Wang’s Conjecture

Conjecture (Z. Wang 2003):

#{C MTC: rank(C)=M }

True for M4!

Page 14: On the Classification of Modular Tensor Categories

Another Analogy

Theorem (E. Landau 1903):

#{ G : |Rep(G)|=N }

Proof: Exercise (Hint: Use class equation)

Page 15: On the Classification of Modular Tensor Categories

Simple Xi multigraph Gi

Vertices labeled by 0,…,M-1

Graphs of Self-dual Fusion Rules

Nijk edges

j k

Note: for non-self-dual, need arrows…

Gi =

Page 16: On the Classification of Modular Tensor Categories

Example: C(g2,q,10)

Rank 4 MTC with graphs:

G1: 0 1 2 3

G2: 0 2 1 3

G3: 20 3

1

Not prime, product of2 copies of Fibbonaci!

Page 17: On the Classification of Modular Tensor Categories

Prime Self-dual UMTCs, rank4

Theorem: (ER, Stong, Wang) Fusion graphs are:

1 3

2 4

Page 18: On the Classification of Modular Tensor Categories

Property F

A modular category D has property F if the subgroup:

(Bn) GL(End(Vn))

is finite for all objects V in D.

Page 19: On the Classification of Modular Tensor Categories

Property F Conjecture

Conjecture: (ER)

D a UMTC has property F dim(Xi)2

for all simple Xi D

Page 20: On the Classification of Modular Tensor Categories

Property F Hierarchy

dim(Xi

)2

• C(so2k+1

,4k+2)

• D(TY) ?

dim(Xi

)

• DG

• f.d. q-Hopf?

dim(Xi

)=1

• DA, A abelian• C(sln,q,n+1)

Page 21: On the Classification of Modular Tensor Categories

Prop. F vs. Invariant ComplexityConstruct. Prop. F? Invariant Complexity C(sl2,q,L) L=2,3,4,6 Arf, H1(M,Z/3Z)

JonesP if L=2,3,4,6#P-hard else

C(sln,q,L) L=n+1,4,6 classicalHOMFLYPT

P if L=n+1,4,6#P-hard else

C(so2k+1,q,L) L=4k+2 H1(M,Z/NZ) Kauffman

P if L=4k+2#P-hard else

Rep(DG) Yes #{Hom(1(K),G)} P if G solvable ? else?

Page 22: On the Classification of Modular Tensor Categories

Exotic MTCs

• Observation: All MTCs rank4 have quantum group realizations.

• Conjecture (Moore & others): All MTCs “come from” quantum groups.

• Probably false: counterexamples calledEXOTIC

Page 23: On the Classification of Modular Tensor Categories

Two Potentially Exotic MTCs

• D(E) a rank 10 category: “doubled ½E6”

• D(H) a rank 12 category: “doubled ½Haagerup” related to subfactor of index

½(5+ 13)• Analogous to finite simple sporadic groups

• Difficult to make precise & prove…

Page 24: On the Classification of Modular Tensor Categories

Physical Feasibility

Realizable TQC Bn action Unitary

i.e. Unitary Modular Category

24

Page 25: On the Classification of Modular Tensor Categories

Two Examples

Unitary, for some q Never Unitary

Lie type G2 q21=-1 Half of Lie type B2 q9=-1

Known for quantum group categories

Page 26: On the Classification of Modular Tensor Categories

Thanks!