On the Aerodynamic Optimization

download On the Aerodynamic Optimization

of 13

Transcript of On the Aerodynamic Optimization

  • 7/30/2019 On the Aerodynamic Optimization

    1/13

    AI AA-84-2163On the Aerodynamic Optimizationof Mini-RPV and Small GAAircraftF. R. Goldschmied, Monroeville, PA

    A l A A2nd Ap pl ied Aerodyn am ics ConfereAugust 21 -23, 1984/Seattle, Washington

    For permiss ionto copy or republish , contact the American Instituteof Aeronautics and A stronautics1633 B roadway, NewYo r k ,NY10019

  • 7/30/2019 On the Aerodynamic Optimization

    2/13

    ON TH E AERODYNAMIC OPTIMIZATION OF MINI-RPV A ND SMA LL GA AIRCRAFlFoblo R . Goldschmied"Monruevi le, PA 15146

    Wing drag, l b

    J et total-head @ Sta. 5, lblft '

    FWbstract

    A brief study has been carried out on the adap-tation of an optimized system comprising an axisym-metri c body, suc tion boundary-layer co ntrol and AH,, Total-head ri s e of fan between S t a .stern je t-pro pul sion, which was developed o ri gi - 2 and 5, l b / f t2

    na l l y f o r l igh te r- than- a i r app l ica tion , to mini-RPVand small GA aircraf t by the addi t ion of dynamicwina l i f t . F or mini-RP V. co ns ide ratio n has been n Fan soeed, RP M

    H,

    Wing l i f t , 7b

    ,

    Free-stream s tat ic pressure, l b / f t2

    S tati c base pressure @ S t a . 5, l b l f t '

    given to fuselage diameters o f 20 and 34" with agros s weig ht range from 125 t o 300 l b a t the speedso f 100 and 150 Kn. The pr ed ic te d powers rangedfrom 2.35 t o 16.20 HP . P5

    For the GA airc raft,co nsi deratio n has been givento fusela ge diameters of 45 and 60" with a grossweight range from 1400 t o 3400 l b a t the speed of200 MPH. The predicted powers ranged from 60.6t o 132.5 HP .

    Nomencl a t ur e

    A Wing area, f t2AR Aspect ratio

    B Wing span, f t

    C Wing chord, f t

    Wing drag coefficient

    Fan pressure-r ise coeff icientAH, 5

    4"CH,, = -

    o J e t to ta l -head coeff i c ie n t, - PCHT, =

    -L q0 Wing l i f t coeff i c ien tCL = qP, - PC P 5 =-

    ta t ic base pressure coeff icientq0 @ Sta. 5

    Fan suct ion f low coeff icient

    Thrust coeff ic ient fo r wingW

    TO

    CTw =-

    o v o ' 6 6

    qovo .66Tota l th rus t coeff i c ien tTo = _ _ _

    Diameter of ste rn je t and o ffan, f t

    d,

    D Diameter o f fuselage, f t

    qo = w,24T

    u = nd,nt

    UO

    V

    NO

    Free-stream dynamic pressure, l b / f t 2

    Fan suction flow, ft ' lsec

    Thrus t of fusel agelboundary-l ayerco ntro l/ je t system, l b

    Fan t i p speed, ft/ s ec

    Free-stream velo city, ft/sec

    J e t v e l o c i t y @ Sta. 5, ft/sec

    Fuselage volume, f t3

    Gross weight, l b

    E l - wouoHP550 Aerodynamic efficiency index

    Fan to ta l e ff i c iency

    Kinematic v i sc os i ty o f a i r, f t2 / sec

    Mass dens i ty o f a i r, l b sec2 / f t4

    'IFV

    P

    $ = A Fan flow parameter5 diu t

    Introduct ion

    The conc ept o f the optimum aerodynamic in te gr a-tio n of body pres sure -di stributio n (w ith concomitantshape), sl ot- su ctio n boundary-layer co ntrol andstern je t-pro pul si on was presented i n 1967'; a wind-tunnel ver if i ca t ion with a self-propel led tes t modelwas pre se nted i n 1982,' showing 50% power red uc tio nas compared to the be st s treamlined body wi th ste rnwake -pro pel ler. An optimized LTA system was deri vedfrom the above data' and i t was al s o shown tha t je t-propulsion of a subsonic body with free transitionwas achieved wi th j e t total-head equal t o free -stream's.' It can be noted that, for the same massflow, a conventional free -stream j e t propuls or wouldhave a je t total-head coe ff icie nt CHT, = 4 or, forthe same diameter, a co e ff ic ie nt CHT, = 2, as showni n Ref. 5, on the bas is of the bes t conventionalstr ea mlin ed body of equal volume.

    The op timiz atio n of streamlined bodies by shape*Consulting Engineer; Associate Fellow A I A A . only was presented i n 1974;6 f or al l- turb ul en t.-/ boundary-layers, l i t t l e drag gain could be obtained@Copyright 1984 by Fabio R. Goldschmied, P.E. by op timiz ing the shape. T his extensive programReleased Io A l A AIo publish in al l orms.

  • 7/30/2019 On the Aerodynamic Optimization

    3/13

    proved conclusively that boundary-layer controland prop ulsio n had t o be integrated with the bodyshape i f su bs tantia l power gain had to be achieved.

    The o b j e c t i ve o f t h i s p ap er i s t o i n v e s t i g a t eheavier- than-air appl icat ions of th i s opt imizedsystem, i .e . to invest igate the in s tal la t io n ofa l i f t i n g wing onto the fuselagefboundary-layerco ntro lf je t propulsio n system. The evaluation w i l lbe ca rrie d out on the bas is o f an aerodynamic e f f i -ciency index 6 = W,U,/HP f o r two c lasses o f a i r-cr af t, i.e. mini-RP V @ 100 and 150 Kn and smallGA (General Avia tion) 2-seat and 4-seat ai rc ra f t0 200 MPH.

    Q timize o Body/Boundary-Layer C on trol /J et-P ropb lsi on System: *Tunnel Te-ss_t

    The wind-tunnel te s t program o f the 20" diameterse lf-p ropel led model was ca rrie d out i n 1981 i nthe 8x10 low-speed wind tunnel o f the David T aylo rNaval Ship R&D Center; the te s t program was qu it eextensive as i t comprised over 800 t e s t p o i n t sorganized i n 86 tes t runs. The tes t res ul ts arepresented i n Refs. 2, 3 and 4. The basic testmodel wi th open j e t (Conf. 00) i s shown i n F i1 (starboard photo) and i n F i g . 2 (stern photoy:I n F i g . 1 the 12" chord s tru t can be p l a i n l y seenas la rge as a wing would be; i t s interfere ncee f fe c t i s a l re a dy ac counte d f o r i n a l l t he t e s tresul ts . F ioure 2 shows cle ar ly the three radialrakes i n th e j e t nozzle to measure the f l ow andthe j e t to ta l -head.

    Fig. 1 S tarboard photo o f wind-tunnel te s t model(Conf. 00)

    The ax ia l force (dra g o r thru s t) measurements

    were based both on the wake's momentum balance,as in di ca ted by a wake rake, and on the for c eexerted on the s trut, as indi cated by the wind-tunnel balance which was supporting the strut.

    A t the higher thru st coeffic ients , above C T =0.010, there was i n a l l cases exc el le nt agreementbetween the two types o f axial force measurements,as shown i n Fi gs. 7, 8 and 9; therefore the thrustdata cannot be dispu ted i n any way.

    The model was a ls o tes ted wi th a tail boo m i nthe j e t nozzle (Conf. 01) as shown i n F i g . 3.

    :.:.:::. . . . 8:. ./j

    F ig. 2 S tern photo o f wind-tunnel te s t model(Conf. 00)

    F i g . 3 P ort photo o f wind-tunnel te s t model wi thtai lbo om (Conf. 01)

    The la yout o f the tes t model's aftbody wi th thes u c ti o n s l o t , f a n i n s t a l l a t i o n and j e t n oz z l e i s

    shown i n F i g . 4. While the fan should have beena t S tati on 5, the arrangement shown had t o be ac-cepted f o r pr ac tic al reasons. The fan mass-flowweighted mean pres sure r i s e i s computed betweenStat ions 2 and 5, wi th the flo w being measured a tS tation 5; the fan a i r power i s determined by theproduct of f lo w and pressure ri s e.

    Figure 5 presents a photo of the axial fanin s tal la t io n i n the forebody of the wind-tunnel tes tmodel: the fan discharae i s i n the l e f t foresround,

    ._..hile the fa n intake i s in dicated by the Foundededge inside the forebody.

    2

  • 7/30/2019 On the Aerodynamic Optimization

    4/13

    F ig. 4 Aftbody layout with suc t ion-s lo t , f ani n s t a l l a t i o n and j e t n o z z le ( C on f. 00)

    Fig . 5 Photo o f f a n i n s t a l l a t i o n i n w i nd -tu nn elte s t model

    The typ ica l s tepwise s t a t i c p ressure d i s t r ibu t ionon the body i s shown i n F i g . 6 a t 0' and 6' ang le

    of a t tack. The s tepwise di s t r ib ut i on i s used (withsui tab le boundary-layer con trol) t o avoid the largegrowth of the boundary-layer momentum-thicknesswhich nonnal lv occurs i n the adverse Dressuregrad ien t a rea "and t o achieve ve ry low extern al wakedrags, as shown i n Refs. 1 and 2.

    While i n Refs . 2, 3 and 4 the wind-tunnel te s tdata were p lo tte d onl y up t o CT = 0.020, since themain focus was on the equ il ib ri um poi nt (CT = O ) ,i n t h i s p a p e r a l l the ava i l ab le t e s t da ta a re p lo t -ted, fo r both fre e t ran s i t io n on the body and fo rt r ans i t ion t r ipped a t 10% leng th .....:...

    R = s s x 1 0 6 I... iMSz

    L&&-.00 0.7 0.4 0.6 0.8 1.0 12 1.4 1.6-... .8.-L 2.0 2. 2. . . U ..4 2. 6

    1.8 1. 0

    Dimanrianler~ i d l 0i i ldnce. XI 0

    Fig. 6 Experimental s ta t ic-pressure dis t r ib ut i onon te s t model @ 6" angle o f attack

    System Analysis

    A procedure has been developed fo r the ad di tio nof wings t o the body and fo r the co mputation o f t h eadd i t iona l th rus t acqui red f rom the j e t t o counter-ac t the wino 's draa . The wino 's l i f t ld ra a ra t io shave been coGputed irom classical NACAdata;' b e tt e rres ul ts could be obtained wi th modern ai rf o i l s suchas the Liebeck, the NASA GA (W)-l and -2, e tc. Thefan performance has been based on the tested NASAaxia l roto r /s ta to r s tage 516; the s tage 's designand experimental performance i s given i n Ref. 8.

    The experimental wind-tunnel te s t data of R ef.2 have been rep lo tted i n the complete th ru s t rangeand are shown i n Fi gs. 7, 8 , 9 , 11, 12 and 13. Thef a n s e l e c ti o n p l o t i s g iv en i n Fig. 10, with the516 performance curves re la ti n g pressure, fl o w andeff i c i ency.

    The computational procedure comprising 15 stepsi s g iven be low:

    1. S ele ct the max. cru is e speed U and thecorresponding dynamic pressure qo; determine o restimate the gross weight Wo.

    2. S elect fuselage diameter t o yi e ld adequatecabin space and/or equipment volume.

    3. Assume l i f t c o e f f i c i e n t CL of wing @ max.cr ui s in g speed. Compute the wing lo ad in g qoCL andthe wing area A = Wo/qoCL. A lift c o e f f i c i e n t C L= 0.40 i s s elected fo r the mini-RPV and CL : .30i s s e l e cte d f o r t h e GA a i r c r a f t .

    4. Compute the wing cho rd and span, ass uminga wing aspect-ratio AR = 10 and constant chord:

    c = Q B = 1ocActually the wing may have a taper ra t i o and thecomputed chord valu e i s th e niean chord.

    5. Compute the wing l i f t /d ra g ra t i o a t theselected CL point , using one of the fol lowing twoexperimental equations from Ref. 7 (Fig. 18, p . 21)f o r wings of aspect ra t i o AR = 10:

    a. Cg=O.0068+0.0343 C f (NACA 23018 A i r f o i l )

    b. Cg=0.0045+0.0383 C f (NACA 653-418 A i r f o i l )

    A par ame tric wing des ign s tudy should be made, i nthe manner of Koegler,' bu t it i s beyond the scopeo f t h i s b r i e f p a p e r.

    3

  • 7/30/2019 On the Aerodynamic Optimization

    5/13

    6. Compute the drag of the wing:

    0.03-

    WOFw = cL/cD

    I ..* I I I

    Transition

    since the wing l i f t must equal the gross weightW, Compute the thrust coefficient:

    required t o generate the th rus t t o counterbalancethe wing drag. Add 10% to the wing thrus t co eff i -ci en t f o r wing/fuselage interfere nce drag, althoughthe model was tes ted i n the wind-tunnel wi th as tr ut la rge enough t o be a wing; al so add anotherthrust coeff icient increment of 0.003 f o r t h eempennage and ta i l b o ms .

    CT, = CTw f 0.10 CTw f 0.003

    I n the wind-tunnel tes ts of Ref. 2, an empennageadequate to y ie ld neu t ra l s t a t i c s t ab i l i ty t o thebody up t o 8' had an incremental power coefficiento f o n ly 0.0020.

    7. Obtain the value of the fan a i r power coef-f i i e n t :

    from the experimental pl o t C HP ~J s CT as presentedi n F i g . 7, c orre sp on di ng t o t h e above CT f o r t hef ree t r ans i t ion o r fo r the t ripped t rans i t ion case,as warranted by the Reynolds number and by opera-t ional considerat ions.

    8. Obtain the value of the fan f low coeff i -c ien t :

    from the experimental plot CQs vs CT as presentedi n F i g . 8, corresponding t o the above CT f o r t hef ree t r an s i t ion o r fo r the tr ipped t rans i t ion case,as warranted by the Reynolds number and by opera-tio na l cons iderations. Compute the fan flo w 4 =

    9. Obtain the value of the fan pressure-rise

    cq , x U 0 V Q . 6 6 .

    c o e f f i c i e n t :

    AnCHli = 2

    qo

    from the experimental plot C H ~ S s CT as presentedi n F i g . 9, corresponding to the above CT fo r the

    f ree t r an s i t io n o r fo r the t r ipped trans i t ion case ,as warranted bv the Revnolds number and bv ooera-tional consid&ations. ~ C ompute th e fan i r e b er i s e AH,,= CH, x q

    10. The select ion of the best axial rotor /s tatorstage f o r the jo b requires the computation of thefan system resis tance coeff icient O'/$ i n th e O Ndomain :

    - - 2L Y 5

    a" @= 3557

    L

    a

    L._Ucrn

    0.02k

    M I 0 1 *

    0 0.01 0.02 0.03 0. M

    Thrust Coefficient C T=Tk,Vo'66

    Fig . 7 Fan a i r power co ef fi ci en t CHP25 vs Th rustcoeff icient CT

    Fig . 8 Fan f low coeff icient CQ5 vs Thrustcoe ff i c i en t CT

    15

    4

    4

  • 7/30/2019 On the Aerodynamic Optimization

    6/13

    1

    Transition

    Thrust Coefficient CT = T/qoVa6

    F i g . 9 Fan pressure-r ise coeff ic ient CH2s vsT h r u s t c o e f f i c i e n t CT

    The denomination of $ i s the f an f low paramete r:

    @ =$-

    7 d:ut

    The denomination of + i s t he f a n t o ta l - p re s s u r eparameter:

    The fa n diameter corresponds to the j e t diameterd, ; u t = n d S n i s t h e f an t i p s peed a nd P i s thea i r mass dens i ty. Figure 10 presents the $ 4 p l o twith two fan system res ista nce curves, repre se ntingthe max. and min. encountered i n th i s s tudy, andwi th the experimental performance c urves $4 nd$ - n ~ f the selected NASA ax ia l ro to r / s t a to r s t age518;

    i tcan be seen th a t a f a i r l y good match i s

    achieved, i . e. the fan w i l l operate between 88.3and 90.6% effic ien cy. Fan aerodynamic se lec tionprocedures are discussed thoroughly i n S ect ion 6o f Ref. 10.

    11. The fan speed i s computed:

    n =-- q5 a 130.13 RP S$ V O . 3 3

    The value of the fan flo w parameter + i s dete rminedi n Fig. 10 from the inte rs ec tio n of the fan systemresis tance curve with the NASA 518 performancecurve . The range of $ i s from 0.485 t o 0.508.S imi la r ly, the f an e ff i c i ency n~ i s de te rmined i nFig. 10 from the NASA 51B efficiency curve at theabove 0 loca t ion .

    The fa n diameter i s assumed to correspond to thes te rn j e t d iamete r:

    The fan s ha ft power can be computed now fro mth e C H P 2 5 value of Step 7 and the above efficiencydetermination f o r an ava i la ble fan design:

    ds = 0.1625D.

    12.

    p 1.00 ,* i I I I INASA Axial

    Y

    0.4 -

    0 3 -Fan System Resistance

    0. 2 -

    0.1 -

    I I I I

    0 0.2 0.3 0.4 0.5 0.6Fan Flw Parameter 0

    F ig. 10 Fan pres sure parameter +and totale f f i c i e n c y QF vs fan fl ow parameter $

    13. The j e t to ta l -head coeff i c i en t

    Hs- PoCHT, = _ _qo

    i s determined from the p lo t of F ig . 11 and the j e tv e l o c i t y r a t i o U s / U , i s determined from the p l o to f F ig . 1 2 f o r t he f r e e t r a n s i t i o n o r t h e tr i p p e dtr a n s it io n cases, as warranted by Reynolds numberand opera t i na l con s i dera t i n s .

    14. The j e t s t a t i c base p ressure coe ff i c i en t CP,i s de te rmined f rom the p l o t o f Fig. 13. I t can beseen that the s ta t ic base pressure coeff ic ien t rangei s v e ry h i gh ; C P s w i l l be over 0 .8 for the thrustco eff ic i en t range of th is s tudy. As a reference,Ref. 11 shows tha t the base pressure co ef f i c i en to f c o nv en ti on al b o a t t a i l / j e t a f te r b od i e s i s i n th e0.10 t o 0.15 range.

    15. The f ina l s tep i s the computation of theaerodynamic efficiency index:

    The index expresses the power required to f l y th ea ir c ra ft s gross weight a t the max. crui se speed;therefore , i t i s a good ind ic ati on of the eff i-ci en cy of the aerodynamic des ign when comparingt w o a i r c r a f t a t the same speed.

    5

  • 7/30/2019 On the Aerodynamic Optimization

    7/13

    Mini R P V

    L&,- ' FreeTransiiion Coni.fiake

    1 andTransitionTripped B 58% 0

    I I I I I0.01 0.02 0.03 0.04 0.05

    0.66Thrust Ccefficient CT= T/q V0

    Fig . 11 J et total-head co eff i cie nt CHT, v SThrust co eff ic ien t CT

    1.8 I I I I 1

    0. 2 c -I1 l oI I I I J

    0.01 0.02 0 m 0. M 0.0510Thrust Ccefficient CT = TPoVo'66

    Fig . 1 2 J e t v e l o c i t y- r a ti o U,/U, v s Thrustcoeff icient CT

    1.4, I I I I I

    I I I I I0 0.01 0.02 0.03 0.M 0.05

    Thrust Ccefliclent C l=T/qoVo'M

    Fig . 1 3 J et s ta t i c base pressure coeff icient CP , v sThrust coef f icie nt CT

    Mini-RP V aerodynamic design has not achieved ye tan adequate degree of ef fi c ie nc y f o r the missi onspeed and endurance requirements. C ons idering ty p i -cal current vehicles such as the A i r Force/Boeing

    A ir c ra f t indus tr ies Scout, the Tadiran Mast iff MK3and the Developmental Sciences Sky Eye, i t i s fo undthat the gross weight ranges from 22 0 t o 380 l b ,the maximum c ru i s i ng speed ranges from 8 5 t o 100

    Kn and the engine powers range from 22 t o 30 HP .The aerodynamic efficiency index ranges from 2 . 5t o 3 . 5 .

    The wind-tunnel t e s t model,2"'4 wi th i t s dia-meter D = 20.0 in. and 100 Kn speed, may be classi-f i e d a s a ful l -scale mini-RPV; Table 1 presents i t sperformance data f o r 125, 150 and 175 l b g ro ssweights with a suitable wing (CL = 0.40) and empen-nage.

    Pave Ti ger, the Atmy/Lockheed Aqu ila, the Is ra el

    Table 1 20" Diameter ( V = 6 . 2 f t 3 ) Mini-RPVP 100 Kn (q o = 34.1 PSF)

    (Free Transi t ion)

    Gross Weight W l b

    Wing loading qoCL @ CL= 0.4PSF

    Wing area A = Wo/qoCL, f t2

    Wing chord, C f t

    Wing span, B f t

    L if t / dra g ra t io of wing,CL/CD @ CL = 0 . 4 0

    CLDrag of wing, Fw = W o / ~

    Thrust coeff. f o r wing CTw

    Total thru s t coe ff. CTaFan a i r power co eff. CHP,

    Fan flow coeff. CQ,

    Fan flow 9 CFSFan pressure-risecoeff . C H z sFan pressure-riseAH 2 i PSF

    Fan s ystem-resi stance

    Fan speed, n RP M

    Fan diameter, d , in .

    coeff . @ 2 / *

    Fan efficiency, '? F %Fan shaft power HP

    J et total-head coeff. CHT5

    J e t ve l o c i ty r a t i o U,/Uo

    J e t s t a t i c bas e

    Aerodynamic efficiency F.index

    pressure coeff. cp 5

    125 I t

    13 .6

    9 . 1 9

    0 .958

    9 . 5 8

    37.6

    3 .32

    0.0285

    0.034E0 .060

    0.0237

    13 .50

    2 .54

    86.36

    0 . 7 8 5

    33,964

    3.25

    8 9 . 7 52 . 3 5

    2.66

    1 . 3 5

    1.04

    16 .34

    ~

    150 l b

    1 3 . 6

    11 .03

    1.050

    10 .50

    37.6

    3 .99

    0.0348

    0.04120.0685

    0.0252

    1 4 . 3 5

    2.80

    95.20

    0 . 8 0 5

    35,756

    3 .25

    90.502 .78

    2.90

    1 .42

    1 .10

    17.20

    _ _

    17 5 l b

    13 .6

    12 .86

    1 .134

    11 .34

    37.6

    4 . 6 5

    1.0406

    1.04761.0755

    1.0264

    1 5 . 0 3

    3 . 0 5

    103.70

    0 . 8 11

    37,311

    3 . 2 5

    90 .753 .12

    3 .16

    1 . 5 1

    1 .10

    18 .22

    6

  • 7/30/2019 On the Aerodynamic Optimization

    8/13

    V

    With free t ra ns i t i on the fan shaf t powers are3 HP and l e s s a t the 100 Kn speed; the aerodynamice f f ic i e n c y i nd e x i s o v e r 16. The engine may bean ava i la ble Fox Twin, yie ldi ng 3 HP @ 14,500 RP Mand weighing 3 l b wit h mount and muffle r. Table 2 pres ents the performance data o f the same 20 i n .fuselage a t 150 Kn speed with free t ran s i t io n,while Table 2a presents the corresponding data witht r a n s i t i o n t r i p p e d @ 10% length on the fuselage,for gross weights of 150, 175 and 200 l b . I t i sfound th a t the fan sha ft powers are les s than 7HP with f ree t r an s i t io n and l e s s than 8 HP w i t htripped transition; the corresponding aerodynamiceff ic iency index values are over 13 and 10, respec-t i v e l y.

    As a di re c t comparison with a curr en t mini-RPVdesign, the fuselage diameter was increa se d t o 34in . to match both the la te ra l dimension and thelen gth of the A i r Force/Boeing Pave Tiger's fuse-lage; Table 3 presents the performance data @ 100Kn with free t ra ns i t i on while T able 3a presentsthe cor responding da ta wi th t r an s i t io n t r ipped @10% length, fo r gross weights o f 225, 250 and 2751 b.

    Table 2 20" Diameter ( V = 6.2 ft') Mini-RPV@

    150K n

    (q o=

    77.3 PSF)(Free Trans i t ion)7Wing loading qoCL @ C~=o.4

    Wing area A = Wo/qoCL, f t2

    Wing span, B

    L i f t/ d r a g r a t i o o f w'CL/CO @ CL = 0.40

    Wing chord, C =t

    CLDrag of wing, Fw = W0/%

    Thrust coeff . f o r wing CTw

    Tota l th rus t coe ff . CT,

    Fan a i r power co eff . CHP,Fan f low coeff . CQ,

    Fan flow Q CFS

    Fan pressure-r ise

    Fan pressure-r iseAH,, PSF

    Fan s ystem-resi stance

    Fan speed, n RP M

    Fan diameter, dS in .

    co ef f. CH2 5

    coeff . '$2/ $

    Fan ef fic ie nc y, 'iF %

    Fan s ha ft power HP

    J et total-head coeff . CHTs

    J e t ve l o c i ty r a t i o U,/Uo

    pressure coeff .

    Aerodynamic efficiency E

    J e t s t a t i c base cp5

    4 index

    4.87

    0.697

    6.97

    37.6

    3.99

    0.015:

    0.0191

    0.039!

    0.020;

    17.20

    1.94

    150.0

    0.746

    44,071

    3.2589.05.29

    2.06

    1.16

    0.86

    13.00

    ~

    175 l b

    30.8

    5.68

    0.753

    7.53

    37.6

    ~

    4.65

    0.0179

    0.0226

    0.0432

    0.0210

    17.89

    2.05

    158.8

    0.763

    45,412

    3.2589.6

    5.74

    2.20

    1.20

    0.89

    14.00

    _ _203 l b

    30.8

    6.49

    0.805

    8.05

    37.6

    ~

    5.32

    0.0205

    0.0255

    0.0471

    0.0216

    18.40

    2.16

    166.9

    0.766

    46,617

    3.2589.7

    6.26

    2.30

    1.25

    0.93

    14.69

    With free t ra ns i t i on the fan shaf t powers areless than 6 HP w h i l e w i t h t r ip p e d t r a n s i t i o n t h epowers are less than 20 HP ; t h i s may be comparedwi th the 28 HP enaine o f the 250 l b Pave Tiae r.The aerodynamic efficiency index values are over14 and 11, r e spec t ive ly.

    F i n a l l y, Table 4 presents the performance dataof the 34 in . diameter fuselage a t 150 Kn withgross weights of 250, 275 and 300 l b a nd w i t ht ri p p e d t r a n s i t i o n . I t can be noted tha t th i s casewi th 300 l b represents a subs tant ia l performanceimprovement over the Pave T ige r, i n both speed (50%gain) and weight (20% gain); the fan sha ft poweri s 16 HP and the aerodynamic ef fi ci en cy inde x i s8.75. It can be noted that, wi th t r ipp ed t rans i-t ion , the re i s no l aminar f low r i s k and tha t theturbulent power coeff ic ients should actual ly belowe r because the R eynolds number i s hi ghe r by thefac to r 1.7 x 1.5 = 2.55.

    A schematic la yo ut of the proposed mini-RP V con-f i g u r a t i o n i s shown i n Fig. 14; the pylon/wingarrangement was proposed by Larrabee" f o r gl id e rsso as t o maximize the w ing's l i f t . I t can be notedtha t the pylon/fuselage interferen ce ef fe ct wasalready s imulated i n the wind-tunnel tes ts by the

    s tru t. The wing span i s 162 in. and the usefulfuselage length i s 83 in . , whi le the ove ral l fuse-l a g e le n g th i s 127 i n . The empennage i s supportedby a single boom.

    S m a l l General Aviat ion Aircraf t

    Small GA aircraf t cornwise another cateoorv.~ ..

    t o which th is system ana lysis may be appl ied w ithi n t e r e s t i n g r e s u l t s .

    Table 2a 20" Diameter ( V = 6.2 ft3) ini-RPV@ 150 Kn (q o = 77.3 PSF)

    (Trans i t ion Tr ipped @ 10% Length)

    Gross Weight Wo l b

    Total thrust coeff . CT,

    Fan a i r power co eff. CHPZS

    Fan flow coeff. CQ,

    Fan flow Q CFSFan pressure-r iseco eff. CHFan pressure-r iseAH *5 PSFFan system- res i stance

    Fan speed, n RP M

    Fan diameter, d5 in .

    coe ff . ' $ 2 / $

    Fan efficiency, ' i ~ %

    Fan s ha ft power HPJ et total-head coe ff . CHTS

    J e t v e l o c i t y r a t i o U,/Uo

    pressure coeff.

    Aerodynamic efficiency Eindex

    J e t s t a t i c base cp5

    _ _150 11

    0.019c

    0.0500.022;

    18.9

    2.24

    173.1

    0.781

    49,034

    3.25

    88.3

    6.75

    2.28

    1.28

    0.98

    10.40

    ~

    175 I t

    0 .022

    0.054:0.0227

    19.3

    2.35

    181.6

    0.778

    49,835

    3.25

    89.9

    7.19

    2.40

    1.32

    1.02

    11.19

    -200 l b

    0.0255

    0.0587

    0.0234

    19.9

    2.48

    191.7

    0.783

    50,140

    3.25

    90.2

    7.75

    2.50

    1.36

    1.06

    11.84

    _ _

    7

  • 7/30/2019 On the Aerodynamic Optimization

    9/13

    Table 3 34" Diak te r ( V = 30.5 f t3) Mini-RPV@ 100 Kn (so = 34.1 PSF)

    (Free Transi t ion)

    Gross Weight Wo l b

    Wing loading qoCL @ C~'0.4PSF

    Gross Weight Wo l b

    Wing loading qoCL @ C ~=0. 4PSF

    250 l b 275 l b

    30.8 30.8

    Wing area A = Wo/qoCL, f tZWing chord, C f tWing span, B f t

    CLDrag of wing, Fw = W o / r l b

    Thrust coeff. f o r wing CTwTotal thrust coeff . CT,Fan a i r power coeff. CHP,,Fan flow coeff. C Q sFan flow Q C F SFan pressure-risecoeff. CH25

    0

    L ift /dr ag ra t i o of wing,CL/CO @ CL = 0.40

    6.65 7.31

    0.0089 0.00980.0128 0.01380.0390 0.04050.0198 0.0202

    48.8 49.81.92 1.98

    CLDrag of wing, Fw =

    Thrust coeff . f o r wing C TwTotal thrust coeff . CT,Fan a i r power coeff. CHP,,Fan flow coeff. C Q 5Fan flow Q CFSFan pressure-risecoeff . C H s s

    Fan pressure-riseAH*, PSF

    Fan system-resi stancecoeff. m2/*

    Fan pressure-riseAH, PSF

    148.4 153.0

    0.724 0.731_ _

    Fan system-resi stance

    Fan speed, n RPMFan diameter, d i n.

    Fan shaft power HPJ et total-head coeff . CHT5J e t v e l o c i ty r a t i o U,/UoJ e t s t a t i c base C P Spressure coeff.Aerodynamic e ffi ci en cy Eindex

    coeff. $2/*

    Fan efficiency, n~ %

    -225 l b

    13.6

    16.51.28412.8437.6

    ~

    5.98

    1.01801.02281.04361.021034.952.05

    69.9

    0.763

    :7,9165.52589.104.982.201.200.90

    14.0

    _ _

    !50 I t

    13.6

    18.41.35613.5637.6

    ~

    6.65

    1.02011.02511.046f1.021f35.942.14

    72.9

    D.773

    8,3545.52589.405.292.301.240.92

    14.6

    _ _175 l b

    13.6

    20.21.42114.2137.6

    ~

    7.31

    'LO2211.02738.0495'.022036.602.23

    76.0

    3.770

    8.6195.52539.605.652.381.260.95

    15.1

    Table 3a 34" Diameter ( V = 30.5 ft') Mini-RPVP 100 Kn (qo = 34.1 PSF)(Trans i t ion Tripped @ 10% Le ngth)

    Gross Weight Wo l b

    Total thrust coeff . CTOFan a i r power coeff. CHP,Fan flow coeff. CQ,Fan flow Q CFSFan pressure-risecoeff . CH,,Fan pressure-riseA H 2 5 PSFFan system-resistance

    Fan speed, n RP MFan diameter, d5 i n .

    Fan shaft power HPJ e t total- hea d coeff. CHT,J e t v e l o c i ty r a t i o U,/UoJ e t s t a t i c base CP 5pressure coeff.Aerodynamic efficiency Eindex

    coeff . m2/+

    Fan eff iciency, n~ %

    ~

    275 l b

    0.02730.06120.023739.432.54

    86.6

    0.785

    20,0185.52589.86.902.561.381.08

    12.26

    ~

    Table 4 34" Diameter ( V = 30.5 ft') Mini-RPV@ 15 0 Kn (so = 77.3 PSF)

    (Trans i t ion T ripped @ 10% L ength)

    Wing area A = Wo/qoCL, f t ZWing chord, C f tWing span, B f tL i f t /d rag ra t io o f wing,CL/CD @ CL = 0.40

    Fan speed, n RPMFan diameter, d i n .

    Fan shaft power HPJ et total-head coe ff. CHTsJ e t v e l o c i ty r a t i o U &J e t s t a t i c b as e C P5pressure coeff.Aerodynamic efficiency Eindex

    Fan efficiency, QF %

    25,8625.52588.415.001.901.150.87

    7.72

    '

    26,2765.52588.615.701.961.160.89

    8.19

    -I00 l b_ _

    0.8

    9.740.9869.8637.6

    7.98

    1.01061.01461.04161.020550.52.02

    156.3

    0.738

    5,5575.52588.816.202.001.180.90

    8 . 7 5

    Table 5 l i s ts the pert ine nt parameters of threecurrent 2-seat personal GA aircraft by Beech,Cessna and P iper; the gross weight i s nearly thesame (1670 to 1675 lb ) and so i s the speed (121t o 127 MPH) and the engine power (108 t o 115 HP).The aerodynamic e ff i c ienc y index i s i n the v ic in i tyof 5.0.

    The fuselage diameter i s selected a t 45 in. soas t o accommodate two tandem se ats; the ca bi narrangement layo ut i s shown i n F ig. 15. It hasbeen observed t h a t minimum ca bin he ig ht i s 42 in.and th e minimum seat spacing dimension i s 36 i n.

    The speed has been sel ec ted t o be 200 MP Hinstead of 125 MPH because it represents presentGA speed fo r small personal ai rc ra ft. Table 6 pre-sents the performance data for gross weights of1400, 1675 and 1800 l b with trip ped tr an s iti on .It can be seen tha t the fan s ha ft power i s l e s sthan 72 HP and the aerodynamic ef fi c ie nc y indexi s over 12.0. This performance yields a 60% speedimprovement, a 33% power gain and a 7.5% grossweight enhancement. l h e schematic la yo ut o f th i s2-seat GA configurat ion i s shown i n F ig. 16, witha mid-wing arrangement with 0.45 tape r r a ti o and277 in . o ve ra ll span. The useful fuselage le ngthi s 110 in . while the overal l fuselage length i s130 in . The empennage i s sup ported by a twi n boomand i t comorises twin rudders. -

    8

  • 7/30/2019 On the Aerodynamic Optimization

    10/13

    0.272

    5.04

    n6.7'

    0.322

    5.05

    U

    F i g . 14 Schematic la yo ut of mini-RP Y co nfi gu ra tio n

    Table 5 2-Seat E4 A i r c r a f t @ 120 MPH(qo = 37.0 PSF)

    Empty weight W l b

    Gross weight Wo I b

    Wing area A ft'

    Wing loading W/A PSF

    Wing span B ft

    Length 2 ft

    Engine power HP

    Uo MPHax. cruise

    speed

    CLWing l i f tcoeff .

    Aerodynamice f f i c i e n c y Eindex

    _ _ _Beech

    77,kipper

    1,103

    1,675

    30.0

    13012.88

    24.0

    115121

    0.341

    _ _

    4.70

    Cessna P ipe r152 IPA-38-112

    ierobat Tomahawk 2

    124.7

    24.1 23.1

    122 1 127

    Note: The above data were de rive d from AviationWeek & Space Technology, March 12, 1984, p. 144.

    L >

    I48" I

    4-Seat Cabin Arrangement - 60" Oia. Fuselage

    - 110" L

    2-Seat Cabin Arrangement - 45" Dia. Fuselage

    F i g . 15 Cabin arrangement layo ut fo r GA a i r c r a f t

    Table 6 45" Diameter ( V = 70.6 ft3) 4 A i r c r a f t@ 200 MPH (q o = 104 PSF)

    (Trans i t ion Tr ipped @ 10% Length)

    Gross Weight Wo l b

    Wing loading qoCL @ C ~=0.3PSF

    Wing area A = Wo/qoCL, f t2Mean wing chord, C f tWing span, B f t

    Li f t /d rag ra t io of wing,

    Drag o f wing, Fw = Wo/rlb

    Thrust coeff. for wing CTwTota l th rus t coe ff . CToFan a i r power coeff. CHP,Fan flow coeff. CQ,Fan flow Q CFSFan pressure-r ise

    Fan pressure-riseAH,, PSFFan system-resistance

    Fan speed, n RPMFan diameter, d 5 in .

    Fan s ha ft power HPJ et total-head co eff . CHTsJ e t v e l o c i ty r a t i o U,/Uo

    pressure coeff .

    CL/CO @ CL i .30

    CL0

    coef f . C"* 5

    coeff . mn

    Fan e ff i c i ency, ' 1 ~ %

    J e t s t a t i c base cp5

    Aerodynamic efficiency Ei n d e x

    -1400 1 b

    31.2

    44.82.1121.1

    38.3

    _ _

    36.5

    0.02060.02560.05880.0234117.12.45

    254.8

    0.793

    25,7777.3190.160.62.51.370.92

    12.1

    -

    675 1 I31.2

    53.72.3123.1

    38.3

    -

    43.7

    1.024;1.030:1.06511.0241122.12.66

    276.6

    0.794

    !6,82!7.319 0 . 268.6

    2.661.411.10

    13.0

    -800 1 b

    31.2

    57.72.4024.0

    38.3

    -

    47.0

    1.02651.03211.06851.0248124.12.74

    284.9

    0.796

    17,2117.3190.371.62.741.441.11

    13.3

    9

  • 7/30/2019 On the Aerodynamic Optimization

    11/13

    Table 7 l i s ts th'e pert inent parameters of f ivecurrent 4-seat GA a i rc ra f t by Maule, Mooney, P iper,Cessna and Beech, wi th speed from 196 t o 201 MPH,gross weights from 2500 t o 3400 l b and enginepowers from 200 to 285 HP. The aerodynamic e f f i -ci enc y index ranges from 6.5 t o 7.9.

    The cabin dimensions fo r four s eats are typi -c al ly 43 in . width, 48 in . height and 92 in .length; a fuselage diameter of 60 in. has beenselected and the cabin layout arrangement i s shown

    i n Fig. 15. Table 8 pres ents the performance data f o r gross

    weig hts of 2500, 2900 and 3400 l b a t 200 MP H witht r ipped t rans i t ion . I t i s seen that f o r the lowestweight the fan s haf t power i s 110, fo r a ga in o f47%; f o r the middle weight the fa n power i s 120HP , f o r a g ai n o f 40%, while for the top weightthe fan power i s 13 2 HP, f o r a gain o f 53%.

    Length ft

    Engine power HP

    M a x ' cruise U MP Hspeed

    Wing l i f tcoeff.

    Aerodynamice f f i c i e n c y Eindex

    CLr - r f l Schematic-Seat GA Aircraftayout1 Confiouration

    24.4 24.7 27.3 28.6 26.7

    210.0 200.0 200.0 235.0 285.0

    196.0 201.0 198.0 199.0 198.0

    0.157 0.148 0.167 0.172 0.184

    6.49 7.47 7.90 7.22 6.501675 6 Gross Weight68 HP (Tripped Trans. I

    F ig. 16 Schematic lay out of 2-seat GA a i r c r a f tconfiguration

    Ta ble 7 4-Seat 6R A i r c r a f t @ 200 MPH(so = 104 PSF)

    _ _2125

    340033.5

    181.0

    18.8

    Gross Weight W l b

    Wing loading qoCL @ C ~ = 0 . 3PSF

    Wing area A = Wo/qoCL, f t2Mean wing chord, C f tWing span, 8 f tL if t /d ra g r a t i o o f wing,CL/CO @ CL = 0.30

    Drag of wing, Fw = Wo/-lb

    Thrust coeff . f o r wing CTwTotal thrus t coeff . C TOFan a i r power coeff . CHP,,Fan flow coeff. CQ,Fan flow Q CFSFan pressure-ri secoeff . CH..

    CLCD

    L D

    Fan pressure-riseAH". PSF

    /