On solving post-Newtonian accurate Kepler Equation

23
On solving post-Newtonian accurate Kepler Equation Yannick Boetzel Physik-Institut der Universit¨ at Z¨ urich In collaboration with: A. Susobhanan, A. Gopakumar, A. Klein, P. Jetzer La Thuile, 30.03.2017 Yannick Boetzel Rencontres de Moriond On solving PN accurate Kepler Equation

Transcript of On solving post-Newtonian accurate Kepler Equation

Page 1: On solving post-Newtonian accurate Kepler Equation

On solving post-Newtonian accurate KeplerEquation

Yannick Boetzel

Physik-Institut der Universitat Zurich

In collaboration with: A. Susobhanan, A. Gopakumar, A. Klein, P. Jetzer

La Thuile, 30.03.2017

Yannick Boetzel Rencontres de Moriond On solving PN accurate Kepler Equation

Page 2: On solving post-Newtonian accurate Kepler Equation

Eccentric GW templates

We work on providing accurate & efficient prescriptions for h+,×(t)associated with compact binaries merging along eccentric orbits

Yannick Boetzel Rencontres de Moriond On solving PN accurate Kepler Equation

Page 3: On solving post-Newtonian accurate Kepler Equation

Eccentric GW templates

We work on providing accurate & efficient prescriptions for h+,×(t)associated with compact binaries merging along eccentric orbits

h+,×(t) = −G m η

c2 R ′x∞∑p=0

[Cp+,× cos(pl) + Sp+,× sin(pl)

]

C1+ = s2i

(−e +

e3

8− e5

192+

e7

9216

)+ c2β(1 + c2i )

(−3e

2+

2e3

3− 37e5

768+

11e7

7680

)S1+ = s2β(1 + c2i )

(−3e

2+

23e3

24+

19e5

256+

371e7

5120

)

Yannick Boetzel Rencontres de Moriond On solving PN accurate Kepler Equation

Page 4: On solving post-Newtonian accurate Kepler Equation

Eccentric GW templates

h+,×(r , r , φ, φ)

Invoke quasi-Keplerian solutionto the conservative dynamics ⇓

(r , r , φ, φ) ⇒ κi (x , et , u(t),m, η)

Explicit expression for u(t) bysolving Kepler equation ⇓

h+,× (κi (x , et , u(t),m, η)) ⇒ h+,×(t) for conservative dynamics

Impose GW emission inducedvariations in x and et

⇓h+,× (κi (x(t), et(t), u(t),m, η)) ⇒ h+,×(t) with radiation reaction

⇓h+,×(t) for binaries inspiralling in PN-accurate eccentric orbits

Yannick Boetzel Rencontres de Moriond On solving PN accurate Kepler Equation

Page 5: On solving post-Newtonian accurate Kepler Equation

Eccentric GW templates

h+,×(r , r , φ, φ)

Invoke quasi-Keplerian solutionto the conservative dynamics ⇓

(r , r , φ, φ) ⇒ κi (x , et , u(t),m, η)

Explicit expression for u(t) bysolving Kepler equation ⇓

h+,× (κi (x , et , u(t),m, η)) ⇒ h+,×(t) for conservative dynamics

Impose GW emission inducedvariations in x and et

⇓h+,× (κi (x(t), et(t), u(t),m, η)) ⇒ h+,×(t) with radiation reaction

⇓h+,×(t) for binaries inspiralling in PN-accurate eccentric orbits

Yannick Boetzel Rencontres de Moriond On solving PN accurate Kepler Equation

Page 6: On solving post-Newtonian accurate Kepler Equation

Classical Kepler problem

Equation of motion

d2~r

dt2= −Gm

r2r

Yannick Boetzel Rencontres de Moriond On solving PN accurate Kepler Equation

Page 7: On solving post-Newtonian accurate Kepler Equation

Classical Kepler problem

Keplerian parametrization

r = a (1− e cos u)

φ− φ0 = v(u)

tanv

2=

√1 + e

1− etan

u

2

where v is called true anomaly and u iscalled eccentric anomaly

Yannick Boetzel Rencontres de Moriond On solving PN accurate Kepler Equation

Page 8: On solving post-Newtonian accurate Kepler Equation

Classical Kepler problem

Keplerian parametrization

r = a (1− e cos u)

φ− φ0 = v(u)

Classical Kepler Equation

l = u − e sin u

where l = n (t − t0) is called mean anomaly

Yannick Boetzel Rencontres de Moriond On solving PN accurate Kepler Equation

Page 9: On solving post-Newtonian accurate Kepler Equation

Solving the classical Kepler Equation

Fourier series

u(l)− l =∞∑s=1

As sin(sl)

As =2

π

∫ π

0

(u(l)− l) sin(sl)dl

=2

∫ π

0

cos(sl)du

=2

s

{1

π

∫ π

0

cos(su − se sin u)du

}=

2

sJs(se)

Yannick Boetzel Rencontres de Moriond On solving PN accurate Kepler Equation

Page 10: On solving post-Newtonian accurate Kepler Equation

Solving the classical Kepler Equation

Fourier series

u(l)− l =∞∑s=1

As sin(sl)

As =2

π

∫ π

0

(u(l)− l) sin(sl)dl

=2

∫ π

0

cos(sl)du

=2

s

{1

π

∫ π

0

cos(su − se sin u)du

}=

2

sJs(se)

Yannick Boetzel Rencontres de Moriond On solving PN accurate Kepler Equation

Page 11: On solving post-Newtonian accurate Kepler Equation

Solving the classical Kepler Equation

Solution to the classical Kepler Equation

u = l +∞∑s=1

2

sJs(se) sin(sl)

Yannick Boetzel Rencontres de Moriond On solving PN accurate Kepler Equation

Page 12: On solving post-Newtonian accurate Kepler Equation

Relativistic Kepler problem

Equation of motion

d2~r

dt2= −Gm

r2r + A r + B v

A = A1 + A2 + A2.5 + A3 + A3.5 + ...

B = B1 + B2 + B2.5 + B3 + B3.5 + ...

A’s & B’s are functions of r , r , φ, φ, m and η

Radiation reaction terms (2.5PN & 3.5PN) cause orbit to shrink

There exists a quasi-Keplerian parametrization to the 3PNconservative dynamics

Yannick Boetzel Rencontres de Moriond On solving PN accurate Kepler Equation

Page 13: On solving post-Newtonian accurate Kepler Equation

Relativistic Kepler problem

Quasi-Keplerian parametrization

r = ar (1− er cos u)

φ− φ0 = (1 + k)v + (f4φ + f6φ) sin(2v) + (g4φ + g6φ) sin(3v)

+ i6φ sin(4v) + h6φ sin(5v)

tanv

2=

√1 + eφ1− eφ

tanu

2

The coefficients a, er , eφ, k , f , g , i , h are PN-accurate functions of x ,et and η = µ/m

k represents precession of periastron

Yannick Boetzel Rencontres de Moriond On solving PN accurate Kepler Equation

Page 14: On solving post-Newtonian accurate Kepler Equation

Relativistic Kepler problem

3PN-accurate Kepler Equation

l = u − et sin u + (g4t + g6t) (v − u)

+ (f4t + f6t) sin(v) + i6t sin(2v) + h6t sin(3v)

Yannick Boetzel Rencontres de Moriond On solving PN accurate Kepler Equation

Page 15: On solving post-Newtonian accurate Kepler Equation

Relativistic Kepler problem

3PN-accurate Kepler Equation

l = u − et sin u + (g4t + g6t) (v − u)

+ (f4t + f6t) sin(v) + i6t sin(2v) + h6t sin(3v)

Objective

Invert the 3PN-accurate Kepler Equation to get u(l) accurate to 3PNorder

Yannick Boetzel Rencontres de Moriond On solving PN accurate Kepler Equation

Page 16: On solving post-Newtonian accurate Kepler Equation

Solving the 3PN-accurate Kepler Equation

v − u = 2∞∑j=1

βj

jsin(ju)

sin(v) =2√

1− e2φ

∞∑j=1

βj sin(ju)

sin(2v) =4√

1− e2φ

e2φ

∞∑j=1

βj(j√

1− e2φ − 1)

sin(ju)

sin(3v) =2√

1− e2φ

e3φ

∞∑j=1

βj(

4− e2φ − 6j√

1− e2φ + 2j2(1− e2φ))

sin(ju)

where β =1−√

1−e2φ

Yannick Boetzel Rencontres de Moriond On solving PN accurate Kepler Equation

Page 17: On solving post-Newtonian accurate Kepler Equation

Solving the 3PN-accurate Kepler Equation

l = u − et sin u +∞∑j=1

αj(x , et , η) sin(ju)

αj(x , et , η) =2βj

√1− e2φ

e3φ

((f4t + f6t)e

2φ +

(g4t + g6t)e3φ

j√

1− e2φ

+ 2i6teφ[j√

1− e2φ − 1]

+ h6t[4− e2φ − 6j

√1− e2φ + 2j2(1− e2φ)

])

Yannick Boetzel Rencontres de Moriond On solving PN accurate Kepler Equation

Page 18: On solving post-Newtonian accurate Kepler Equation

Solving the 3PN-accurate Kepler Equation

Fourier series

u − l =∞∑s=1

As sin(sl)

As =2

π

∫ π

0

(u − l) sin(sl)dl

=2

∫ π

0

cos(sl)du

=2

s

{1

π

∫ π

0

cos(su − se sin u + s

∞∑j=1

αj sin(ju))du

}

Yannick Boetzel Rencontres de Moriond On solving PN accurate Kepler Equation

Page 19: On solving post-Newtonian accurate Kepler Equation

Solving the 3PN-accurate Kepler Equation

As =2

∫ π

0

cos (su − set sin u) du −2

π

∞∑j=1

αj

∫ π

0

sin (su − set sin u) sin(ju)du

=2

sJs (set) +

1

π

∞∑j=1

αj

∫ π

0

{cos ((s + j)u − set sin u)− cos ((s − j)u − set sin u)

}du

=2

sJs (set) +

∞∑j=1

αj {Js+j (set)− Js−j (set)}

Yannick Boetzel Rencontres de Moriond On solving PN accurate Kepler Equation

Page 20: On solving post-Newtonian accurate Kepler Equation

Solving the 3PN-accurate Kepler Equation

Solution to the 3PN-accurate Kepler Equation

u = l +∞∑s=1

As sin(sl)

As =2

sJs(set) +

∞∑j=1

αj {Js+j(set)− Js−j(set)}

Yannick Boetzel Rencontres de Moriond On solving PN accurate Kepler Equation

Page 21: On solving post-Newtonian accurate Kepler Equation

Numerical comparison

Numerical solution using Newton’s method

We plot integrated error 12π

(∫ 2π

0

(unum−uanlunum−l

)2dl

)1/2

Yannick Boetzel Rencontres de Moriond On solving PN accurate Kepler Equation

Page 22: On solving post-Newtonian accurate Kepler Equation

Numerical comparison

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9et

10−7 10−7

10−6 10−6

10−5 10−5

10−4 10−4

10−3 10−3

10−2 10−2

10−1 10−1

100 100

Inte

grat

eder

ror

x = 0.01

x = 0.02

x = 0.03

x = 0.05

x = 0.07

x = 0.10

Yannick Boetzel Rencontres de Moriond On solving PN accurate Kepler Equation

Page 23: On solving post-Newtonian accurate Kepler Equation

Brief summary

We derived an elegant series solution to the 3PN accurate Keplerequation

We use this solution to calculate eccentric GW templates

Yannick Boetzel Rencontres de Moriond On solving PN accurate Kepler Equation