On Complement Of Intuitionstic Product Fuzzy Graphs

12
Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 13, Number 9 (2017), pp. 5381-5392 ยฉ Research India Publications http://www.ripublication.com On Complement Of Intuitionstic Product Fuzzy Graphs Y. Vaishnaw 1 and Sanjay Sharma 2 1 Department of Mathematics Govt. College Bhakhara, Dhamtari ( C. G. ) India. 2 Department of Applied Mathematics, Bhilai Institute of technology, Durg ( C. G. ) India. Abstract The notion of product fuzzy graph has generalized for intuitionistic product fuzzy graph and definition of complement and ring sum of two intuitionistic product fuzzy graph have provided. Further some properties of ring sum of intuitionistic product fuzzy graph have discussed. AMS Subject Classification: 05C72 Keywords: Fuzzy graph, product fuzzy graph, complement of fuzzy graph INTRODUCTION In 1975, Rosenfeld [4] discussed the concept of fuzzy graphs whose basic idea was introduced by Kauffmann in 1973. The fuzzy relations between fuzzy sets were also considered by Rosenfeld and he developed the structure of fuzzy graphs, obtaining analogs of several graph theoretical concepts. In [4] Rosendfeld and Yeh and Beng independently developed the theory of fuzzy graph. A fuzzy graph is a pair G:(ฯƒ, ฮผ), where ฯƒ is a fuzzy subset of V and ฮผ is fuzzy relation on V such that, ฮผ (xy) โ‰ค ฯƒ (x) โ‹€ ฯƒ (y) for all x,y โˆˆV where ฯƒ: V โ†’ [0,1] and ฮผ: V ร— V โ†’ [0,1]. Mohideen Ismail S. et al [11] have evaluated the basic definitions of intuitionistic fuzzy graph and discussed some properties of the power of an intuitionistic fuzzy graph and given the relationship between the index matrix of an intuitionistic fuzzy graph and power of an intuitionistic fuzzy graph and Nagoor Gani A. et al [2010] has

Transcript of On Complement Of Intuitionstic Product Fuzzy Graphs

Page 1: On Complement Of Intuitionstic Product Fuzzy Graphs

Global Journal of Pure and Applied Mathematics.

ISSN 0973-1768 Volume 13, Number 9 (2017), pp. 5381-5392

ยฉ Research India Publications

http://www.ripublication.com

On Complement Of Intuitionstic Product Fuzzy

Graphs

Y. Vaishnaw1 and Sanjay Sharma2

1Department of Mathematics Govt. College Bhakhara, Dhamtari ( C. G. ) India.

2Department of Applied Mathematics, Bhilai Institute of technology, Durg ( C. G. ) India.

Abstract

The notion of product fuzzy graph has generalized for intuitionistic product

fuzzy graph and definition of complement and ring sum of two intuitionistic

product fuzzy graph have provided. Further some properties of ring sum of

intuitionistic product fuzzy graph have discussed.

AMS Subject Classification: 05C72

Keywords: Fuzzy graph, product fuzzy graph, complement of fuzzy graph

INTRODUCTION

In 1975, Rosenfeld [4] discussed the concept of fuzzy graphs whose basic idea was

introduced by Kauffmann in 1973. The fuzzy relations between fuzzy sets were also

considered by Rosenfeld and he developed the structure of fuzzy graphs, obtaining

analogs of several graph theoretical concepts. In [4] Rosendfeld and Yeh and Beng

independently developed the theory of fuzzy graph. A fuzzy graph is a pair G:(ฯƒ, ฮผ),

where ฯƒ is a fuzzy subset of V and ฮผ is fuzzy relation on V such that, ฮผ (xy) โ‰ค ฯƒ (x) โ‹€

ฯƒ (y) for all x,y โˆˆV where ฯƒ: V โ†’ [0,1] and ฮผ: V ร— V โ†’ [0,1].

Mohideen Ismail S. et al [11] have evaluated the basic definitions of intuitionistic

fuzzy graph and discussed some properties of the power of an intuitionistic fuzzy

graph and given the relationship between the index matrix of an intuitionistic fuzzy

graph and power of an intuitionistic fuzzy graph and Nagoor Gani A. et al [2010] has

Page 2: On Complement Of Intuitionstic Product Fuzzy Graphs

5382 Y. Vaishnaw and Sanjay Sharma

introduced regular fuzzy graph.

V. Ramaswamy and Poornima B. [12] replaced โ€˜minimumโ€™ in the definition of fuzzy

graph by โ€˜productโ€™ and call the resulting structure product fuzzy graph and proved

several results which are analogous to fuzzy graphs. Further they discussed a

necessary an sufficient condition for a product partial fuzzy sub graph to be the

multiplication of two product partial fuzzy sub graphs.

The notion of product fuzzy graph has generalized for intuitionistic product fuzzy

graph and definition of complement and ring sum of two intuitionistic product fuzzy

graph have provided. Further some properties of ring sum of intuitionistic product

fuzzy graph have discussed.

1. PRELIMINARY

Definition:1.1[12] Let G be a graph whose vertex set is V,๐œŽ be a fuzzy sub set of V

and ๐œ‡ be a fuzzy sub set of Vร—V then the pair (๐œŽ, ๐œ‡) is called product fuzzy graph if

ฮผ(x, y) โ‰ค ฯƒ(x) ร— ฯƒ(y) , โˆ€x, y โˆˆ V

Remark : If (๐œŽ, ๐œ‡) is a product fuzzy graph and since ๐œŽ(๐‘ฅ) and ๐œŽ(๐‘ฆ) are less than or

equal to 1, it follows that ฮผ(x, y) โ‰ค ฯƒ(x) ร— ฯƒ(y) โ‰ค ฯƒ(x) โˆง ฯƒ(y) , โˆ€ x, y โˆˆ V Hence

(๐œŽ, ๐œ‡) is a fuzzy graph thus every product fuzzy graph is a fuzzy graph

Definition:1.2 a product fuzzy graph (๐œŽ, ๐œ‡) with crisp graph (V,E) is said to be

complete product fuzzy graph if ฮผ(x, y) = ฯƒ(x) ร— ฯƒ(y) , โˆ€ x, y โˆˆ V

Definition:1.3 A product fuzzy graph (๐œŽ, ๐œ‡) with crisp graph (V,E) is said to be

strong product

fuzzy graph if ฮผ(x, y) = ฯƒ(x) ร— ฯƒ(y) , โˆ€ (x, y) โˆˆ E

Definition:1.4[14] The complement of a product fuzzy graph (๐œŽ, ๐œ‡) with crisp graph

(V,E) is (๏ฟฝฬ…๏ฟฝ , ๐œ‡ ฬ…) where ๏ฟฝฬฟ๏ฟฝ = ๐œŽ

And ฮผ ฬ… (x, y) = ฯƒ(x) ร— ฯƒ(y) โˆ’ ฮผ(x, y)

= ฯƒ ฬ…(x) ร— ฯƒ ฬ…(y) โˆ’ ฮผ(x, y)

It follows that (ฯƒฬ… , ฮผ ฬ…) itself is a fuzzy graph. Also

ฮผฬ… ฬ… (x, y) = ฯƒ(x) ร— ฯƒ(y) โˆ’ ฮผฬ…(x, y)

= ฯƒ(x) ร— ฯƒ(y) โˆ’ [ฯƒ(x) ร— ฯƒ(y) โˆ’ ฮผ(x, y)]

= ฮผ(x, y) โˆ€ x, y โˆˆ V

Definition:1.5 [15] LetG1: (ฯƒ1,ฮผ1) and G2: (ฯƒ2, ฮผ2) are product fuzzy graphs with

Page 3: On Complement Of Intuitionstic Product Fuzzy Graphs

On Complement Of Intuitionstic Product Fuzzy Graphs 5383

G1: (V1, E2) and G2: (V2, E2) and let G = G1 โˆช G2: (V1 โˆช V2, E1 โˆช E2) be the union of

G1 and G2. Then the union of two fuzzy graphs G1 and G 2 is also a product fuzzy

graph and is defined as

G = G1 โˆช G2: (ฯƒ1 โˆช ฯƒ2, ฮผ1 โˆช ฮผ2) Where

(ฯƒ1 โˆช ฯƒ2)u = {

ฯƒ1(u) if u โˆˆ V1 โˆ’ V2ฯƒ2(u) if u โˆˆ V2 โˆ’ V1

max[ฯƒ1(u),ฯƒ2(u)] if u โˆˆ V1 โˆฉ V2

And (ฮผ1โˆช ฮผ

2)uv =

{

ฮผ

1(uv) if uv โˆˆ E1 โˆ’ E2

ฮผ2(uv) ifuv โˆˆ E2 โˆ’ E1

max[ฮผ1(uv),ฮผ

2(uv)] ifuv โˆˆ E1 โˆฉ E2

0 otherwise

Definition:1.6 [15] Let (ฯƒ1, ฮผ1) be a product partial fuzzy sub graph of G1 =

(V1, X1)and (ฯƒ 2,ฮผ2) be a product fuzzy sub graph of G2 = (V2, X2) . Let Xโ€ฒ denot the

set of all arcs joining the vertices of V1 and V2 . Then the join of (ฯƒ1, ฮผ1) and

(ฯƒ 2, ฮผ2) is defined as (ฯƒ 1 + ฯƒ 2, ฮผ1 + ฮผ2) where

(ฯƒ 1 + ฯƒ 2)u = {

ฯƒ 1(u) if u โˆˆ V1ฯƒ 2(u) if u โˆˆ V2

ฯƒ1(u) โˆจ ฯƒ2(u) if u โˆˆ V1 โˆฉ V2

And (ฮผ1+ ฮผ

1)uv =

{

ฮผ1(u, v) if (u, v) โˆˆ X1

ฮผ2(u, v) if (u, v) โˆˆ X2

ฮผ1(u, v) โˆจ ฮผ

2(u, v) if (u, v) โˆˆ X1 โˆฉ X2

ฯƒ1(u) ร— ฯƒ2(v) if (u, v) โˆˆ Xโ€ฒ

2. MAIN RESULTS

Definition: 2.1 An intuitionstic product fuzzy graph (IPFG), denoted by

G: {(ฯƒ, ฯ„), (ฮผ, ฮณ)} of any crisp graph G:(V,E) is defined as follows

i) The function ฯƒ: V โ†’ [0,1] and ฯ„: V โ†’ [0,1] denote the degree of

membership and nonmembership of the elements xi โˆˆ V respectively such

that

0 โ‰ค {ฯƒ(xi) + ฯ„(xi)} โ‰ค 1 โˆ€xi โˆˆ V , (i = 1,2, โ€ฆโ€ฆโ€ฆn)

ii) The function ฮผ: V ร— V โ†’ [0,1] and ฮณ: V ร— V โ†’ [0,1] are defined by

ฮผ(xi, xj) โ‰ค product[ฯƒ(xi),ฯƒ(xj)]

And ฮณ(xi, xj) โ‰ค max[ฯ„(xi), ฯ„(xj)]

Page 4: On Complement Of Intuitionstic Product Fuzzy Graphs

5384 Y. Vaishnaw and Sanjay Sharma

Definition:2.2 An intuitionstic product fuzzy graph (IPFG) is said to be strong if and

only if

ฮผ: V ร— V โ†’ [0,1] and ฮณ: V ร— V โ†’ [0,1] such that

ฮผ(xi, xj) = product[ฯƒ(xi),ฯƒ(xj)]

And ฮณ(xi, xj) = max[ฯ„(xi), ฯ„(xj)] for all (xi, xj) โˆˆ E.

Definition:2.3 An intuitionstic product fuzzy graph (IPFG) is said to be complete if

and only if

ฮผ: V ร— V โ†’ [0,1] and ฮณ: V ร— V โ†’ [0,1] such that

ฮผ(xi, xj) = product[ฯƒ(xi),ฯƒ(xj)]

And ฮณ(xi, xj) = max[ฯ„(xi), ฯ„(xj)] for all xi, xj โˆˆ V.

Definition:2.4 Complement of An intuitionstic product fuzzy graph (IPFG) is defined

by

The function ฯƒ: V โ†’ [0,1] and ฯ„: V โ†’ [0,1] denote the degree of

membership and nonmembership of the elements xi โˆˆ V respectively such

that

0 โ‰ค {ฯƒ(xi) + ฯ„(xi)} โ‰ค 1 โˆ€xi โˆˆ V , (i = 1,2, โ€ฆโ€ฆโ€ฆn)Then

๐œŽ = ๐œŽ and ๐œฬ… = ๐œ

And ๐œ‡: ๐‘‰ ร— ๐‘‰ โ†’ [0,1] and ๐›พ: ๐‘‰ ร— ๐‘‰ โ†’ [0,1] such that

๏ฟฝฬ…๏ฟฝ(๐‘ฅ๐‘–, ๐‘ฅ๐‘—) = ๐‘๐‘Ÿ๐‘œ๐‘‘๐‘ข๐‘๐‘ก[๐œŽ(๐‘ฅ๐‘–), ๐œŽ(๐‘ฅ๐‘—)] โˆ’ ๐œ‡(๐‘ฅ๐‘– , ๐‘ฅ๐‘—)

โ‰ค ๐‘๐‘Ÿ๐‘œ๐‘‘๐‘ข๐‘๐‘ก[๐œŽ(๐‘ฅ๐‘–), ๐œŽ(๐‘ฅ๐‘—)]

๐‘๐‘Ÿ๐‘œ๐‘‘๐‘ข๐‘๐‘ก[๏ฟฝฬ…๏ฟฝ(๐‘ฅ๐‘–), ๐œŽ(๐‘ฅ๐‘—)]

i.e. ๏ฟฝฬ…๏ฟฝ(๐‘ฅ๐‘–, ๐‘ฅ๐‘—) โ‰ค ๐‘๐‘Ÿ๐‘œ๐‘‘๐‘ข๐‘๐‘ก[๐œŽ(๐‘ฅ๐‘–), ๐œŽ(๐‘ฅ๐‘—)]

And ๏ฟฝฬ…๏ฟฝ(๐‘ฅ๐‘–, ๐‘ฅ๐‘—) = ๐‘š๐‘Ž๐‘ฅ[๐œ(๐‘ฅ๐‘–), ๐œ(๐‘ฅ๐‘—)] โˆ’ ๐›พ(๐‘ฅ๐‘– , ๐‘ฅ๐‘—)

โ‰ค ๐‘š๐‘Ž๐‘ฅ[๐œ(๐‘ฅ๐‘–), ๐œ(๐‘ฅ๐‘—)]

= ๐‘š๐‘Ž๐‘ฅ[๐œฬ…(๐‘ฅ๐‘–), ๐œฬ…(๐‘ฅ๐‘—)]

i.e. ๏ฟฝฬ…๏ฟฝ(๐‘ฅ๐‘–, ๐‘ฅ๐‘—) โ‰ค ๐‘š๐‘Ž๐‘ฅ[๐œฬ…(๐‘ฅ๐‘–), ๐œฬ…(๐‘ฅ๐‘—)]

Definition:2.5 Complement of an strong intuitionstic product fuzzy graph is defined

by

๐œŽ: ๐‘‰ โ†’ [0,1] and ๐œ: ๐‘‰ โ†’ [0,1] such that ๐œŽ = ๐œŽ and ๐œฬ… = ๐œ

Page 5: On Complement Of Intuitionstic Product Fuzzy Graphs

On Complement Of Intuitionstic Product Fuzzy Graphs 5385

And ๐œ‡: ๐‘‰ ร— ๐‘‰ โ†’ [0,1] and ๐›พ: ๐‘‰ ร— ๐‘‰ โ†’ [0,1] such that

๏ฟฝฬ…๏ฟฝ(๐‘ฅ๐‘–, ๐‘ฅ๐‘—) = ๐‘๐‘Ÿ๐‘œ๐‘‘๐‘ข๐‘๐‘ก[๐œŽ(๐‘ฅ๐‘–), ๐œŽ(๐‘ฅ๐‘—)] โˆ’ ๐œ‡(๐‘ฅ๐‘– , ๐‘ฅ๐‘—)

= 0

Since ๐œ‡(๐‘ฅ๐‘–, ๐‘ฅ๐‘—) = ๐‘๐‘Ÿ๐‘œ๐‘‘๐‘ข๐‘๐‘ก[๐œŽ(๐‘ฅ๐‘–), ๐œŽ(๐‘ฅ๐‘—)] โˆ€(๐‘ฅ๐‘–, ๐‘ฅ๐‘—) โˆˆ ๐ธ

And ๏ฟฝฬ…๏ฟฝ(๐‘ฅ๐‘–, ๐‘ฅ๐‘—) = ๐‘š๐‘Ž๐‘ฅ[๐œ(๐‘ฅ๐‘–), ๐œ(๐‘ฅ๐‘—)] โˆ’ ๐›พ(๐‘ฅ๐‘– , ๐‘ฅ๐‘—)

= 0

Since ๐›พ(๐‘ฅ๐‘– , ๐‘ฅ๐‘—) = ๐‘๐‘Ÿ๐‘œ๐‘‘๐‘ข๐‘๐‘ก[๐œ(๐‘ฅ๐‘–), ๐œ(๐‘ฅ๐‘—)] โˆ€(๐‘ฅ๐‘–, ๐‘ฅ๐‘—) โˆˆ ๐ธ

Definition:2.6 Complement of an complete intuitionstic product fuzzy graph is

defined by

๐œŽ: ๐‘‰ โ†’ [0,1] and ๐œ: ๐‘‰ โ†’ [0,1] such that ๐œŽ = ๐œŽ and ๐œฬ… = ๐œ

And ๐œ‡: ๐‘‰ ร— ๐‘‰ โ†’ [0,1] and ๐›พ: ๐‘‰ ร— ๐‘‰ โ†’ [0,1] such that

๏ฟฝฬ…๏ฟฝ(๐‘ฅ๐‘–, ๐‘ฅ๐‘—) = ๐‘๐‘Ÿ๐‘œ๐‘‘๐‘ข๐‘๐‘ก[๐œŽ(๐‘ฅ๐‘–), ๐œŽ(๐‘ฅ๐‘—)] โˆ’ ๐œ‡(๐‘ฅ๐‘– , ๐‘ฅ๐‘—)

= 0

Since ๐œ‡(๐‘ฅ๐‘– , ๐‘ฅ๐‘—) = ๐‘๐‘Ÿ๐‘œ๐‘‘๐‘ข๐‘๐‘ก[๐œŽ(๐‘ฅ๐‘–), ๐œŽ(๐‘ฅ๐‘—)] โˆ€๐‘ฅ๐‘– , ๐‘ฅ๐‘— โˆˆ ๐‘‰

And ๏ฟฝฬ…๏ฟฝ(๐‘ฅ๐‘–, ๐‘ฅ๐‘—) = ๐‘š๐‘Ž๐‘ฅ[๐œ(๐‘ฅ๐‘–), ๐œ(๐‘ฅ๐‘—)] โˆ’ ๐›พ(๐‘ฅ๐‘– , ๐‘ฅ๐‘—)

= 0

Since ๐›พ(๐‘ฅ๐‘–, ๐‘ฅ๐‘—) = ๐‘๐‘Ÿ๐‘œ๐‘‘๐‘ข๐‘๐‘ก[๐œ(๐‘ฅ๐‘–), ๐œ(๐‘ฅ๐‘—)] โˆ€๐‘ฅ๐‘–, ๐‘ฅ๐‘— โˆˆ ๐‘‰.

Definition:2.7 Let ๐บ1: {(๐œŽ1, ฯ„1), ๐œ‡1, ฮณ1)} and ๐บ1: {(๐œŽ2, ฯ„2), ๐œ‡2, ฮณ2)} be two

intuitionstic product fuzzy graph with crisp graph ๐บ1: (๐‘‰1, ๐ธ2) and ๐บ2: (๐‘‰2, ๐ธ2) res.

Then the ring sum of two intuitionstic product fuzzy ๐บ1: (๐œŽ1, ๐œ‡1) and ๐บ2: (๐œŽ2, ๐œ‡2) is

denoted by ๐บ = ๐บ1โจ๐บ2: {(๐œŽ1โจ๐œŽ2, ฯ„1โจฯ„2), (๐œ‡1โจ๐œ‡2, ฮณ1โจฮณ2)} is defined as

The function ๐œŽ: ๐‘‰ โ†’ [0,1] and ๐œ: ๐‘‰ โ†’ [0,1] denote the degree of membership and

nonmembership of the elements xi โˆˆ V respectively such that

0 โ‰ค {ฯƒ(xi) + ฯ„(xi)} โ‰ค 1 โˆ€xi โˆˆ V , (i = 1,2, โ€ฆโ€ฆโ€ฆn)

(ฯƒ1โจฯƒ2)x = {

(ฯƒ1)x if x โˆˆ V1 โˆ’ V2 (ฯƒ

2)x if x โˆˆ V2 โˆ’ V1

max{ฯƒ1(x), ฯƒ2(x)} ifx โˆˆ V1 โˆฉ V2

(๐œ1โจ๐œ2)๐‘ฅ = {

(๐œ1)๐‘ฅ ๐‘–๐‘“ ๐‘ฅ โˆˆ ๐‘‰1 โˆ’ ๐‘‰2 (๐œ2)๐‘ฅ ๐‘–๐‘“ ๐‘ฅ โˆˆ ๐‘‰2 โˆ’ ๐‘‰1

๐‘š๐‘Ž๐‘ฅ{๐œ1(๐‘ฅ), ๐œ2(๐‘ฅ)} ๐‘–๐‘“๐‘ฅ โˆˆ ๐‘‰1 โˆฉ ๐‘‰2

Page 6: On Complement Of Intuitionstic Product Fuzzy Graphs

5386 Y. Vaishnaw and Sanjay Sharma

And (๐œ‡1โจ๐œ‡2)๐‘ฅ๐‘ฆ = {๐œ‡1(๐‘ฅ๐‘ฆ) ๐‘–๐‘“ ๐‘ฅ๐‘ฆ โˆˆ ๐ธ1 โˆ’ ๐ธ2๐œ‡2(๐‘ฅ๐‘ฆ) ๐‘–๐‘“ ๐‘ฅ๐‘ฆ โˆˆ ๐ธ2 โˆ’ ๐ธ10 ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’

(๐›พ1โจ๐›พ2)๐‘ฅ๐‘ฆ = {๐›พ1(๐‘ฅ๐‘ฆ) ๐‘–๐‘“ ๐‘ฅ๐‘ฆ โˆˆ ๐ธ1 โˆ’ ๐ธ2๐›พ2(๐‘ฅ๐‘ฆ) ๐‘–๐‘“ ๐‘ฅ๐‘ฆ โˆˆ ๐ธ2 โˆ’ ๐ธ10 ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’

Theorem 2.8 Let G1: {(ฯƒ1, ฯ„1), ฮผ1, ฮณ1)} and G1: {(ฯƒ2, ฯ„2), ฮผ2, ฮณ2)} with 0 โ‰ค

{ฯƒ(xi) + ฯ„(xi)} โ‰ค 1 โˆ€xi โˆˆ V be two intuitionstic product fuzzy graph of crisp graph

G1: (V1, E2) and G2: (V2, E2) res. Then the ring sum of two intuitionstic product fuzzy

denoted by G = G1โจG2: {(ฯƒ1โจฯƒ2, ฯ„1โจฯ„2), (ฮผ1โจฮผ2, ฮณ1โจฮณ

2)} is also an intuitionstic

product fuzzy graph.

Proof: Since G1: {(ฯƒ1, ฯ„1),ฮผ1, ฮณ1)} and G1: {(ฯƒ2, ฯ„2), ฮผ2, ฮณ2)} be two intuitionstic

product fuzzy graph with 0 โ‰ค {ฯƒ(xi) + ฯ„(xi)} โ‰ค 1 โˆ€xi โˆˆ V of crisp graph

G1: (V1, E2) and G2: (V2, E2) res. Then we have to show that G =

G1โจG2: {(ฯƒ1โจฯƒ2, ฯ„1โจฯ„2), (ฮผ1โจฮผ2, ฮณ1โจฮณ

2)} for this it is sufficient to show that

i) (ฮผ1โจฮผ

2)xy โ‰ค {(ฯƒ1โจฯƒ2)x ร— (ฯƒ1โจฯƒ2)y}

ii) (ฮณ1โจฮณ

2)xy โ‰ค {(ฯ„1โจฯ„2)xโ‹(ฯ„1โจฯ„2)y} In each case.

Case-1 If xy โˆˆ E1 โˆ’ E2 and x, y โˆˆ V1 โˆ’ V2 then

(ฮผ1โจฮผ

2)xy = ฮผ

1(xy)

โ‰ค [ฯƒ1(x) ร— ฯƒ1(y)]

= [(ฯƒ1 โˆช ฯƒ2)x ร— (ฯƒ1 โˆช ฯƒ2)y] โˆ€ x, y โˆˆ V1 โˆ’ V2

= [(ฯƒ1โจฯƒ2)x ร— (ฯƒ1โจฯƒ2)y]

i.e (ฮผ1โจฮผ

2)xy โ‰ค [(ฯƒ1โจฯƒ2)x ร— (ฯƒ1โจฯƒ2)y] โˆ€ x, y โˆˆ V1 โˆ’ V2

And xy โˆˆ E1 โˆ’ E2 and x, y โˆˆ V1 โˆ’ V2 then

(ฮณ1โจฮณ

2)xy = ฮณ

1(xy)

โ‰ค max[ฯ„1(x), ฯ„1(y)]

= max[(ฯ„1 โˆช ฯ„2)x, (ฯ„1 โˆช ฯ„2)y] โˆ€ x, y โˆˆ V1 โˆ’ V2

= max[(ฯ„1โจฯ„2)x, (ฯ„1โจฯ„2)y]

i.e (ฮณ1โจฮณ

2)xy โ‰ค max[(ฯ„1โจฯ„2)x, (ฯ„1โจฯ„2)y] โˆ€ x, y โˆˆ V1 โˆ’ V2

Case-2 If xy โˆˆ E2 โˆ’ E1 and x, y โˆˆ V2 โˆ’ V1 then

Page 7: On Complement Of Intuitionstic Product Fuzzy Graphs

On Complement Of Intuitionstic Product Fuzzy Graphs 5387

(ฮผ1โจฮผ

2)xy = ฮผ

2(xy)

โ‰ค [ฯƒ2(x) ร— ฯƒ2(y)]

= [(ฯƒ1 โˆช ฯƒ2)x ร— (ฯƒ1 โˆช ฯƒ2)y] โˆ€x, y โˆˆ V2 โˆ’ V1

= [(ฯƒ1โจฯƒ2)x ร— (ฯƒ1โจฯƒ2)y]

i.e (ฮผ1โจฮผ

2)xy โ‰ค [(ฯƒ1โจฯƒ2)x ร— (ฯƒ1โจฯƒ2)y] โˆ€ x, y โˆˆ V2 โˆ’ V1

And xy โˆˆ E2 โˆ’ E1 and x, y โˆˆ V2 โˆ’ V1 then

(ฮณ1โจฮณ

2)xy = ฮณ

2(xy)

โ‰ค max[ฯ„2(x), ฯ„2(y)]

= max[(ฯ„1 โˆช ฯ„2)x, (ฯ„1 โˆช ฯ„2)y] โˆ€ x, y โˆˆ

V2 โˆ’ V1

= max[(ฯ„1โจฯ„2)x, (ฯ„1โจฯ„2)y]

i.e (ฮณ1โจฮณ

2)xy โ‰ค max[(ฯ„1โจฯ„2)x, (ฯ„1โจฯ„2)y] โˆ€ x, y โˆˆ V2 โˆ’ V1

Case-3 If xy โˆˆ E1 โˆ’ E2 and x, y โˆˆ V1 โˆ’ V2 then

(ฮผ1โจฮผ

2)xy = ฮผ

1(uv)

โ‰ค [max(ฯƒ1(x),ฯƒ2(x)) ร— max(ฯƒ1(y),ฯƒ2(y))]

= [(ฯƒ1 โˆช ฯƒ2)x ร— (ฯƒ1 โˆช ฯƒ2)y]

= [(ฯƒ1โจฯƒ2)x ร— (ฯƒ1โจฯƒ2)y]

i.e (ฮผ1โจฮผ

2)xy โ‰ค [(ฯƒ1โจฯƒ2)x ร— (ฯƒ1โจฯƒ2)y] for xy โˆˆ E1 โˆ’ E2 and x, y โˆˆ V1 โˆ’ V2

And (ฮณ1โจฮณ

2)xy = ฮณ

1(xy)

โ‰ค [max(ฯ„1(x), ฯ„2(x))โ‹max(ฯ„1(y), ฯ„2(y))]

= max[(ฯ„1 โˆช ฯ„2)x, (ฯ„1 โˆช ฯ„2)y]

= max[(ฯ„1โจฯ„2)x, (ฯ„1โจฯƒ2)y]

i.e (ฮณ1โจฮณ

2)xy โ‰ค max[(ฯ„1โจฯ„2)x, (ฯ„1โจฯ„2)y] for xy โˆˆ E1 โˆ’ E2 and x, y โˆˆ V1 โˆ’ V2

Similarly we can show that if xy โˆˆ E2 โˆ’ E1 and x, y โˆˆ V2 โˆ’ V1then

(ฮผ1โจฮผ

2)xy โ‰ค [(ฯƒ1โจฯƒ2)x ร— (ฯƒ1โจฯƒ2)y] and

(ฮณ1โจฮณ

2)xy โ‰ค max[(ฯ„1โจฯ„2)x, (ฯ„1โจฯ„2)y]

This completes the proof of the proposition.

Page 8: On Complement Of Intuitionstic Product Fuzzy Graphs

5388 Y. Vaishnaw and Sanjay Sharma

Example 2.9

Fig.2.10 Fig.2.11

Fig.2.12

Table 2.13 Membership table for fig. 2.10,2.11 and 2.12

Membership degree for vertices Membership degree for edges

For Graph

๐บ1: {(๐œŽ1, ฯ„1), ๐œ‡1, ฮณ1)}

For Graph

G1: {(ฯƒ2, ฯ„2), ฮผ2, ฮณ2)}

For Graph

G โˆถ G1โจG2

For

Graph

G1

For Graph

G2

For Graph

G โˆถ G1โจG2

(๐œŽ1, ฯ„1)(x)=(0.4,0.3) (๐œŽ2, ฯ„2)(u)=(0.7,0.2) (๐œŽ1, ฯ„1)(x)=(0.4,0.3) (0.11,0.3) (0.39,0.2) (0.11,0.3)

(๐œŽ1, ฯ„1)(y)=(0.3,0.1) (๐œŽ2, ฯ„2)(v)=(0.6,0.1) (๐œŽ1, ฯ„1)(y)=(0.3,0.1) (0.14,0.2) (0.27,0.3) (0.14,0.2)

(๐œŽ1, ฯ„1)(z)=(0.6,0.2) (๐œŽ2, ฯ„2)(z)=(0.5,0.3) (๐œŽ2, ฯ„2)(u)=(0.7,0.2) (0.19,0.3) (0.29,0.3) (0.19,0.3)

โˆ’โˆ’โˆ’โˆ’โˆ’ โˆ’โˆ’โˆ’โˆ’โˆ’ (๐œŽ2, ฯ„2)(v)=(0.6,0.1) โˆ’โˆ’ โˆ’ โˆ’โˆ’โˆ’

โˆ’

(0.39,0.2)

โˆ’โˆ’โˆ’โˆ’โˆ’ โˆ’โˆ’โˆ’โˆ’โˆ’ (๐œŽ, ฯ„)(z)=(0.6,0.3) โˆ’โˆ’ โˆ’ โˆ’โˆ’โˆ’ (0.27,0.3)

โˆ’โˆ’โˆ’โˆ’โˆ’ โˆ’โˆ’โˆ’โˆ’โˆ’ โˆ’โˆ’โˆ’โˆ’โˆ’ โˆ’โˆ’ โˆ’ โˆ’โˆ’โˆ’ (0.29,0.3)

(๐œŽ1, ฯ„1)(x)=(0.4,0.3)

(๐œŽ1, ฯ„1)(y)=(0.3,0.1)

(๐œŽ1, ฯ„1)(z)=(0.6,0.2)

(0.11,0.3)

(0.19,0.3)

(0.14,0.2) (๐œŽ2, ฯ„2)(z)=(0.5,0.3)

(๐œŽ2, ฯ„2)(v)=(0.6,0.1)

(๐œŽ2, ฯ„2)(u)=(0.7,0.2)

(0.29,0.3

)

(0.27,0.3

)

(0.39,0.2)

(๐œŽ, ฯ„)(x)=(0.4,0.3)

(๐œŽ, ฯ„)(y)=(0.3,0.1)

(๐œŽ, ฯ„)(z)=(0.6,0.3)

(0.11,0.3)

(0.19,0.3)

(0.14,0.2) (๐œŽ, ฯ„)(v)=(0.6,0.1)

(๐œŽ, ฯ„)(u)=(0.7,0.2)

(0.29,0.3

)

(0.27,0.3

)

(0.39,0.2)

Page 9: On Complement Of Intuitionstic Product Fuzzy Graphs

On Complement Of Intuitionstic Product Fuzzy Graphs 5389

Theorem: 2.14 Let G1: {(ฯƒ1, ฯ„1),ฮผ1, ฮณ1)} and G1: {(ฯƒ2, ฯ„2), ฮผ2, ฮณ2)} with 0 โ‰ค

{ฯƒ(xi) + ฯ„(xi)} โ‰ค 1 โˆ€xi โˆˆ V and V1 โˆฉ V2 = โˆ…be two (k1, k2) regular intuitionstic

product fuzzy graph of crisp graph G1: (V1, E2) and G2: (V2, E2) res. Then G =

G1โจG2: {(ฯƒ1โจฯƒ2, ฯ„1โจฯ„2), (ฮผ1โจฮผ2, ฮณ1โจฮณ

2)} is also a (k1, k2) regular intuitionstic

product fuzzy graph.

Proof: Given that G1: {(ฯƒ1, ฯ„1),ฮผ1, ฮณ1)} and G1: {(ฯƒ2, ฯ„2), ฮผ2, ฮณ2)} with 0 โ‰ค

{ฯƒ(xi) + ฯ„(xi)} โ‰ค 1 โˆ€xi โˆˆ V and V1 โˆฉ V2 = โˆ…be two (k1, k2) regular intuitionstic

product fuzzy graph.Then

๐๐†๐Ÿ(๐ฑ) = (k1, k2) โˆ€x โˆˆ V1 and

๐๐†๐Ÿ(๐ฒ) = (k1, k2) โˆ€y โˆˆ V2

Now given that V1 โˆฉ V2 = โˆ… then

d๐†๐Ÿโจ๐†๐Ÿ(๐ฑ) = ๐๐†๐ŸโŠ•๐†๐Ÿ(๐ฑ) + โˆ‘ {(ฯƒ

1(x) ร— ฯƒ2(y)xyโˆˆEโ€ฒ ), (ฯ„1(x) โˆจ ฯ„2(y)}

= ๐๐†๐ŸโŠ•๐†๐Ÿ(๐ฑ) + ๐ŸŽ

(by Definition of ring sum of intuitionstic product fuzzy graph)

= dG1(x) โˆ€x โˆˆ V1

dG1(x) = (k1, k2)

i.e. dG1โŠ•G2(x) = (k1, k2) โˆ€x โˆˆ V1 โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ(1)

And dG1โŠ•G2(y) = dG1โŠ•G2

(y) + โˆ‘ {(ฯƒ1(x) ร— ฯƒ2(y)xyโˆˆEโ€ฒ ), (ฯ„1(x) โˆจ ฯ„2(y)}

= dG1โŠ•G2(y) + 0

(by Definition of ring sum of intuitionstic product fuzzy graph)

= dG2(y) โˆ€y โˆˆ V2

dG2(y) = (k1, k2)

i.e. dG1โŠ•G2(y) = (k1, k2) โˆ€y โˆˆ V2 โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ(2)

Hence by equation (1) and (2) we have

dG1โŠ•G2(x) = dG1โŠ•G2

(y)

So G = G1โจG2: {(ฯƒ1โจฯƒ2, ฯ„1โจฯ„2), (ฮผ1โจฮผ2, ฮณ1โจฮณ

2)} is a (k1, k2) regular

intuitionstic product fuzzy graph.

Theorem:2.15 Let G1: {(ฯƒ1, ฯ„1),ฮผ1, ฮณ1)} and G1: {(ฯƒ2, ฯ„2), ฮผ2, ฮณ2)} with 0 โ‰ค

{ฯƒ(xi) + ฯ„(xi)} โ‰ค 1 โˆ€xi โˆˆ V and V1 โˆฉ V2 = โˆ… and G =

Page 10: On Complement Of Intuitionstic Product Fuzzy Graphs

5390 Y. Vaishnaw and Sanjay Sharma

G1โจG2: {(ฯƒ1โจฯƒ2, ฯ„1โจฯ„2), (ฮผ1โจฮผ2, ฮณ1โจฮณ

2)} is a (k1, k2) regular intuitionstic

product fuzzy graph then G1: {(ฯƒ1, ฯ„1),ฮผ1, ฮณ1)} and

G1: {(ฯƒ2, ฯ„2),ฮผ2, ฮณ2)} are also (k1, k2) regular intuitionstic product fuzzy graph.

Proof: Given hat G = G1โจG2: {(ฯƒ1โจฯƒ2, ฯ„1โจฯ„2), (ฮผ1โจฮผ2, ฮณ1โจฮณ

2)} is a (k1, k2)

regular intuitionstic product fuzzy graph with V1 โˆฉ V2 = โˆ… then we have to show that

G1: {(ฯƒ1, ฯ„1), ฮผ1, ฮณ1)} and G1: {(ฯƒ2, ฯ„2), ฮผ2, ฮณ2)} are also (k1, k2) regular intuitionstic

product fuzzy graph.

Now given that V1 โˆฉ V2 = โˆ… then

๐๐†๐ŸโŠ•๐†๐Ÿ(๐ฑ) = ๐๐†๐Ÿ(๐ฑ) + โˆ‘ {(ฯƒ

1(x) ร— ฯƒ2(y)xyโˆˆEโ€ฒ ), (ฯ„1(x) โˆจ ฯ„2(y)}

= ๐๐†๐Ÿ(๐ฑ) + ๐ŸŽ

(by Definition of ring sum of intuitionstic product fuzzy graph)

(k1, k2) = ๐๐†๐Ÿ(๐ฑ) โˆ€x โˆˆ V1

Since G1โจG2 is (k1, k2) regular intuitionstic product fuzzy graph

i.e. dG1(x) = (k1, k2) โˆ€x โˆˆ V1โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ(1)

And dG1โŠ•G2(y) = dG2(y) + โˆ‘ {(ฯƒ

1(x) ร— ฯƒ2(y)xyโˆˆEโ€ฒ ), (ฯ„1(x) โˆจ ฯ„2(y)}

(by Definition of ring sum of intuitionstic product fuzzy graph)

dG1โŠ•G2(y) = dG2(y) + 0

dG2(y) = (k1, k2) โˆ€y โˆˆ V2

Since G1โจG2 is (k1, k2) regular intuitionistic product fuzzy graph

i.e.

dG2(y) = (k1, k2) โˆ€y โˆˆ V2 โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ(2)

Hence; by equation (1) and (2)

G1: {(ฯƒ1, ฯ„1), ฮผ1, ฮณ1)} and G2: {(ฯƒ2, ฯ„2), ฮผ2, ฮณ2)} are also (k1, k2) regular intuitionstic

product fuzzy graph.

CONCLUSION

The notion of product fuzzy graph has generalized for intuitionistic product fuzzy

graph and definition of complement and ring sum of two intuitionistic product fuzzy

graph have provided with example. Further we have proved that, If two product fuzzy

graph are (k1, k2) regular intuitionistic product fuzzy graph then ring sum of regular

Page 11: On Complement Of Intuitionstic Product Fuzzy Graphs

On Complement Of Intuitionstic Product Fuzzy Graphs 5391

intuitionistic product fuzzy graph is also a (k1, k2) regular intuitionstic product fuzzy

graph and conversely.

REFERENCES

[1] A. Nagoor Gani and J. Malarvizhi โ€œ Isomorphism on Fuzzy Graphsโ€ International

Journal of Computational and Mathematical Sciences 2:4 2008.

[2] A. Nagoor Gani and S. R. Latha; โ€œ On Irregular fuzzy graphsโ€ Applied Mathematical

Sciences,vol. 6, 2012, No. 11, 517-523.

[3] A. Nagoor Gani and K. Radha, โ€œOn Regular Fuzzy Graphsโ€ Journal of Physical

Sciences, Vol. 12, 33-40, 2010.

[4] A. Rosenfeld and fuzzy graphs. In Fuzzy Sets and their applications to Congnitive

and Dicision processes. Zadeh L. A., Fu K. S.Shimura M., Eds. Acdemic Press. New

York,1975, 77-95.

[5] Johan N. Mordeson and Chang-Shyh Peng, operations on fuzzy graph, Information

science 79, 159-170 (1994)

[6] J. N. Mordeson P. S. Nair, Fuzzy Graphs and Fuzzy Hyper graphs, physica-Verlag,

Heidelberg, 2000.

[7] L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965) 338-353.

[8] M. S. Sunitha and A. Vijaya Kumar, Complement of fuzzy graph Indian J. pure

appl. Math. 33(9),1451-1464,2002.

[9 ] Mehidi Eatemadi, Ali Etemadi & Mohammad-Mehdi Ebadzadeh; โ€œFinding the

Isomorphic graph with the use of algorithms based on DNA, International Journal of

Advanced Computre Science, Vol.1, Mo. 3 pp 106-109, Sep. 2011.

[10] R. T. Yeh and S. Y. Banh. Fuzzy relations, fuzzy graphs and their applications to

clustering analysis. In fuzzy sets and their applications to Cognitive and Decision

Processes Zadeh. L. A. Fu K. S., Shimara, M. Eds Academic Press, New York.

(1975)

[11] S. Ismail Mohideen1, A. Nagoor Gani2, B. Fathima Kani3, C.Yasmin4 โ€œ Properties

of Operations on Regular Intuitionistic Fuzzy Graphsโ€ International Journal of

Engineering Science and Computing, April 2016 Volume 6 Issue No. 4

[ 12] V. Ramaswamy and Poornima B. โ€œ Product fuzzy graphsโ€ IJCSNS International Journal

of computer science and network security, vol.9 No.1,2009.

[13] Y. Vaishnaw and A.S. Ranadive โ€œ On isomorphism between fuzzy graphsโ€

Chhattisgarh Journal of science and technology, volume 3 & 4 (2007),

[14] Y. Vaishnaw and S. Sharma โ€œ Isomorphism on Product Fuzzy Graphโ€ International

Journal of Mathematical Sciences and Engineering Application IJMSEA),Volume 6

Page 12: On Complement Of Intuitionstic Product Fuzzy Graphs

5392 Y. Vaishnaw and Sanjay Sharma

No. III May 2012.

[15] Y. Vaishnaw and S. Sharma โ€œ Ring Sum of Fuzzy Graph and Isomorphism resultsโ€

International Journal of Mathematics and Applied Statisticsโ€ Volume 3,No. 1(2012).