Omri Barak

39
Omri Barak ollaborators: Larry Abbott David Sussillo Misha Tsodyks Sloan-Swartz July 12, 2011 Messy nice stuff & Nice messy stuff

description

Messy nice stuff & Nice messy stuff. Omri Barak. Collaborators: Larry Abbott David Sussillo Misha Tsodyks. Sloan-Swartz July 12, 2011. Neural representation. Representation of task parameters by neural population. We know that large populations of neurons are involved. - PowerPoint PPT Presentation

Transcript of Omri Barak

Page 1: Omri Barak

Omri Barak

Collaborators:Larry AbbottDavid SussilloMisha Tsodyks

Sloan-SwartzJuly 12, 2011

Messy nice stuff&

Nice messy stuff

Page 2: Omri Barak

Neural representation

• Representation of task parameters by neural population.

• We know that large populations of neurons are involved.

• Yet we look for and are inspired by impressive single neurons.

• Case study: Delayed vibrotactile discrimination (from Ranulfo Romo’s lab)

Page 3: Omri Barak

f1 f2

time (sec)

Romo & Salinas, Nat Neurosci Rev, 2003

Page 4: Omri Barak

f1 f2

f1>f2?Y N

time (sec)

Romo & Salinas, Nat Neurosci Rev, 2003

Page 5: Omri Barak

Romo task

• Encoding of analog variable• Memory of analog variable• Arithmetic operation “f1-f2”

Page 6: Omri Barak

Romo, Brody, Hernandez, Lemus. Nature 1999Machens, Romo, Brody. Science 2005

Page 7: Omri Barak

• Striking tuning properties• Lead to “simple / low dimensional” models• “Typical” neurons are used to define

model populations.

Page 8: Omri Barak

Existing models

Machens et al. 2005

Miller et al. 2006Barak et al. 2010

Miller et al. 2003

Not shown: VergutsDeco

Singh and Eliasmith 2006

Page 9: Omri Barak

But… Are all cells that good?

Barak et al. 2010

Brody et al. 2003

35% of the neurons flip their sign

-6 -4 -2 0 2 4 6 8-3

-2

-1

0

1

2

3

Stimulus tuning

Del

ay tu

ning

Jun et al. 2010

prestim -1.5 0 0.5 1.5 2.5 3.5 40

20

40

Time (sec)

10 Hz22 Hz34 Hz

Page 10: Omri Barak

Echo state network

Jaeger 2001Maass et al 2002Buonomano and Merzenich 1995

Page 11: Omri Barak

Echo state network

N

ii

Outi

FBi

N

jjiji

i

rwz

zwrJgxdtdx

1

1

x

r

-4 -2 0 2 4-1

-0.5

0

0.5

1

-2 0 2 40

0.5

1

1.5

2

x

+ Noise

N = 1000 / 2000K = 100 (sparseness)g = 1.5

Page 12: Omri Barak

Implementing the Romo task

f1 f2

f

r

Sussillo and Abbott 2009Jaeger and Haas 2004

Page 13: Omri Barak

Input(f1,f2)

Output

Page 14: Omri Barak

Input(f1,f2)

Output

Unit activity

Page 15: Omri Barak

It works, but…

• How does it work?– After the training, we have a network that is

almost a black box.• Relation to experimental data.

Page 16: Omri Barak

Hypothesis

• Consider the state of the network in 1000-D as the trial evolves

Page 17: Omri Barak

00.5

1 0

0.5

10

0.5

1f1

f2

time (sec)

Page 18: Omri Barak

Hypothesis

• Focus only at the end of the 2nd stimulus.• For each (f1,f2) pair, there is a point in

1000-D space.

Page 19: Omri Barak

0.5 1 1.5 20.5

1

1.5

2

0.51

1.52 0.5

1

1.5

2

-1

0

1

0.51

1.52 0.5

1

1.5

2-2

0

2

Page 20: Omri Barak

Hypothesis

• Focus only at the end of the 2nd stimulus.• For each (f1,f2) pair, there is a point in

1000-D space.• So there is a 2D manifold in the 1000-D

space.• Can the dynamics (after learning) draw a

line through this manifold?

Page 21: Omri Barak

0.5 1 1.5 20.5

1

1.5

2

0.51

1.52 0.5

1

1.5

2

-1

0

1

0.51

1.52 0.5

1

1.5

2-2

0

2

Page 22: Omri Barak

Dynamics or just fancy readout?

0 20 40 60 80 100 1200

0.5

1

1.5

2

2.5

3

3.5

4

Yes - YesYes - NoNo - NoFixed - YesFixed - No D

istance in state space

• The two responses are different in network activity, not just through the particular readout we chose.

Page 23: Omri Barak

Saddle point

Page 24: Omri Barak

Searching for a saddle in 1000D

N

ii

Outi

FBi

N

jjiji

i

rwz

zwrJgxdtdx

1

1

ii

FBi

N

jjijii

xfxF

zwrJgxxf

2

1

)()(

)(Vector function:

Scalar function:

Page 25: Omri Barak

Searching for a saddle in 1000D

Page 26: Omri Barak

1

Num

ber o

f uns

tabl

e ei

genv

alue

s

Distance along trajectory

Num

ber o

f un

stab

le e

igen

valu

es

Norm of fixed point

Page 27: Omri Barak

Saddle point

Page 28: Omri Barak

Saddle point

Page 29: Omri Barak

Slightly more realistic

• Positive firing rates• Avoid fixed point between trials. • Introduce reset signal.• Chaotic activity in delay period

= 0

Page 30: Omri Barak

It works

Page 31: Omri Barak

Nice persistent neurons

0 20 40 60 800

0.5

1

1.5

0 20 40 60 800

0.2

0.4

0.6

0.8

1

1.2

1.4

Time

Act

ivity

Page 32: Omri Barak

a1-a2 plane

Romo and Salinas 2003

-2 0 2-2

0

2

-2 0 2-2

0

2

-2 0 2-2

0

2

-2 0 2-2

0

2

f1 tuning

f 2 tu

ning

Page 33: Omri Barak

Problems / predictions

• Reset signal• Generalization

Page 34: Omri Barak

Reset

There is a reset (Barak et al 2010, Churchland et al)

There is no reset, and performance shows it (Buonomano et al 2007)

Time (sec)

Cor

rela

tion

Correlation between trials with different frequencies

Page 35: Omri Barak

Generalization

• Interpolation vs. Extrapolation

f1

f 2

Page 36: Omri Barak

Generalization

• Interpolation vs. Extrapolation

f1

f 2

Page 37: Omri Barak

Generalization

• Interpolation vs. Extrapolation

f1

f 2

Page 38: Omri Barak

Extrapolation

Delosh et al 1997

Page 39: Omri Barak

Conclusions

• Response properties of individual neurons can be misleading.

• An echo state network can solve decision making tasks.

• Dynamical systems analysis can reveal function of echo state networks.

• Need to find a middle ground.