OFDM and MC-CDMA for Broadband Multi-user Communications ...

63
OFDM and MC-CDMA for Broadband Multi-user Communications, WLANs and Broadcasting by L. Hanzo, M. M ¨ unster, B.J. Choi and T. Keller We dedicate this monograph to the numerous contributors of this field, many of whom are listed in the Author Index

Transcript of OFDM and MC-CDMA for Broadband Multi-user Communications ...

Page 1: OFDM and MC-CDMA for Broadband Multi-user Communications ...

OFDM and MC-CDMAfor Broadband Multi-user Communications, WLANs

and Broadcasting

by

L. Hanzo, M. Munster, B.J. Choi and T. Keller

We dedicate this monograph to the numerous contributors of this field, manyof whom are listed in the Author Index

Page 2: OFDM and MC-CDMA for Broadband Multi-user Communications ...

About the AuthorsLajos Hanzo received his degree in electronics in 1976 and his doc-torate in 1983. During his career in telecommunications he has heldvarious research and academic posts in Hungary, Germany and the UK.Since 1986 he has been with the Department of Electronics and Com-puter Science, University of Southampton, UK, where he holds the chairin telecommunications. He has co-authored 10 books on mobile radiocommunications, published about 400 research papers, organised andchaired conference sessions, presented overview lectures and has beenawarded a number of distinctions. Currently he heads an academic re-

search team, working on a range of research projects in the field of wireless multimedia com-munications sponsored by industry, the Engineering and Physical Sciences Research Council(EPSRC) UK, the European IST Programme and the Mobile Virtual Centre of Excellence(VCE), UK. He is an enthusiastic supporter of industrial and academic liaison and he of-fers a range of industrial courses. He is also an IEEE Distinguished Lecturer. For furtherinformation on research in progress and associated publications please refer to http://www-mobile.ecs.soton.ac.uk

Dr. Byoung-Jo Choi received his BSc and MSc degrees in ElectricalEngineering from KAIST, Korea, in 1990 and 1992, respectively. He hasbeen working for LG Electronics, Korea, since Jan.,1992, where he wasinvolved in developing the KoreaSat monitoring system, Digital DBStransmission system and W-CDMA based Wireless Local Loop (WLL)system. He was awarded the PhD degree in Mobile Communicationsat the University of Southampton, UK, where he was as a postdoctoralresearch assistant from Sep. 2001 to Aug. 2002. He is a recipient ofthe British Chevening Scholarship awarded by the British Council, UK.

His current research interests are associated with mobile communication systems design withempasis on adaptive modulation aided OFDM, MC-CDMA and W-CDMA.

Thomas Keller studied Electrical Engineering at the University of Karl-sruhe, Ecole Superieure d’Ingenieurs en Electronique et Electrotech-nique, Paris, and the University of Southampton. He graduated witha Dipl.-Ing. degree in 1995. Between 1995 and 1999 he had been withthe Wireless Multimedia Communications Group at the University ofSouthampton, where he completed his PhD in mobile communications.His areas of interest include adaptive OFDM transmission, widebandchannel estimation, CDMA and error correction coding. He recentlyjoined Ubinetics, Cambridge, UK, where he is involved in the research

vii

Page 3: OFDM and MC-CDMA for Broadband Multi-user Communications ...

viii

and development of third-genertion wireless systems. Dr. Keller co-authored two mono-graphs and about 30 various research papers.

Page 4: OFDM and MC-CDMA for Broadband Multi-user Communications ...

Other Wiley and IEEE PressBooks on Related Topics1

• R. Steele, L. Hanzo (Ed): Mobile Radio Communications: Second and Third Gener-ation Cellular and WATM Systems, John Wiley-IEEE Press, 2nd edition, 1999, ISBN07 273-1406-8, p 1064

• L. Hanzo, W. Webb, and T. Keller, Single- and Multi-Carrier Quadrature AmplitudeModulation: Principles and Applications for Personal Communications, WLANs andBroadcasting. IEEE Press, 2000.

• L. Hanzo, F.C.A. Somerville, J.P. Woodard: Voice Compression and Communications:Principles and Applications for Fixed and Wireless Channels; IEEE Press-John Wiley,2001, p 642

• L. Hanzo, P. Cherriman, J. Streit: Wireless Video Communications: Second to ThirdGeneration and Beyond, IEEE Press, 2001, p 1093

• L. Hanzo, T.H. Liew, B.L. Yeap: Turbo Coding, Turbo Equalisation and Space-TimeCoding, John Wiley, 2002, p 751

• J.S. Blogh, L. Hanzo: Third-Generation Systems and Intelligent Wireless Networking:Smart Antennas and Adaptive Modulation, John Wiley, 2002, p408

• L. Hanzo, C.H. Wong, M.S. Yee: Adaptive wireless transceivers: Turbo-Coded, Turbo-Equalised and Space-Time Coded TDMA, CDMA and OFDM systems, John Wiley,2002, p 737

1For detailed contents please refer to http://www-mobile.ecs.soton.ac.uk)

ix

Page 5: OFDM and MC-CDMA for Broadband Multi-user Communications ...

Contents

About the Authors v

Other Wiley and IEEE Press Books on Related Topics ix

Acknowledgments 1

1 Prologue 31.1 Motivation of the Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.2 Orthogonal Frequency Division Multiplexing History . . . . . . . . . . . . . 7

1.2.1 Early Classic Contributions . . . . . . . . . . . . . . . . . . . . . . 71.2.2 Peak-to-mean power ratio . . . . . . . . . . . . . . . . . . . . . . . 81.2.3 Synchronisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91.2.4 OFDM/CDMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91.2.5 Decision-Directed Channel Estimation . . . . . . . . . . . . . . . . . 121.2.6 Detection Techniques for Multi-User SDMA-OFDM . . . . . . . . . 151.2.7 OFDM applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Outline of the book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181.4 Chapter Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 21

I OFDM System Design 23

2 Introduction to OFDM 252.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252.2 Principles of QAM-OFDM . . . . . . . . . . . . . . . . . . . . . . . . . . . 272.3 Modulation by DFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292.4 Transmission via Bandlimited Channels . . . . . . . . . . . . . . . . . . . . 342.5 Generalised Nyquist Criterion . . . . . . . . . . . . . . . . . . . . . . . . . 362.6 Basic OFDM Modem Implementations . . . . . . . . . . . . . . . . . . . . . 412.7 Cyclic OFDM Symbol Extension . . . . . . . . . . . . . . . . . . . . . . . . 432.8 Reducing MDI by Compensation . . . . . . . . . . . . . . . . . . . . . . . . 44

2.8.1 Transient system analysis . . . . . . . . . . . . . . . . . . . . . . . . 44

xi

Page 6: OFDM and MC-CDMA for Broadband Multi-user Communications ...

xii CONTENTS

2.8.2 Recursive MDI compensation . . . . . . . . . . . . . . . . . . . . . 462.9 Decision-directed Adaptive Channel Equalisation . . . . . . . . . . . . . . . 482.10 OFDM Bandwidth Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . 492.11 Chapter Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 51

3 OFDM Transmission over Gaussian Channels 533.1 Orthogonal Frequency Division Multiplexing . . . . . . . . . . . . . . . . . 54

3.1.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543.1.1.1 Peak-to-mean power ratio . . . . . . . . . . . . . . . . . . 553.1.1.2 Synchronisation . . . . . . . . . . . . . . . . . . . . . . . 553.1.1.3 OFDM/CDMA . . . . . . . . . . . . . . . . . . . . . . . 553.1.1.4 Adaptive antennas . . . . . . . . . . . . . . . . . . . . . . 563.1.1.5 OFDM applications . . . . . . . . . . . . . . . . . . . . . 56

3.2 Choice of the OFDM Modulation . . . . . . . . . . . . . . . . . . . . . . . . 563.3 OFDM System Performance over AWGN Channels . . . . . . . . . . . . . . 573.4 Clipping Amplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4.1 OFDM signal amplitude statistics . . . . . . . . . . . . . . . . . . . 583.4.2 Clipping amplifier simulations . . . . . . . . . . . . . . . . . . . . . 59

3.4.2.1 Introduction to peak-power reduction techniques . . . . . . 603.4.2.2 BER performance using clipping amplifiers . . . . . . . . 613.4.2.3 Signal spectrum with clipping amplifier . . . . . . . . . . . 62

3.4.3 Clipping amplification - summary . . . . . . . . . . . . . . . . . . . 643.5 Analogue-to-Digital Conversion . . . . . . . . . . . . . . . . . . . . . . . . 643.6 Phase Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.6.1 Effects of phase noise . . . . . . . . . . . . . . . . . . . . . . . . . 673.6.2 Phase noise simulations . . . . . . . . . . . . . . . . . . . . . . . . 68

3.6.2.1 White phase noise model . . . . . . . . . . . . . . . . . . 683.6.2.1.1 Serial modem . . . . . . . . . . . . . . . . . . . 693.6.2.1.2 OFDM modem . . . . . . . . . . . . . . . . . . 69

3.6.2.2 Coloured phase noise model . . . . . . . . . . . . . . . . . 713.6.3 Phase noise - Summary . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.7 Chapter Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 74

4 OFDM Transmission over Wideband Channels 754.1 The Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.1.1 The wireless asynchronous transfer mode system . . . . . . . . . . . 764.1.1.1 The WATM channel . . . . . . . . . . . . . . . . . . . . . 764.1.1.2 The shortened WATM channel . . . . . . . . . . . . . . . 78

4.1.2 The wireless local area network system . . . . . . . . . . . . . . . . 784.1.2.1 The WLAN channel . . . . . . . . . . . . . . . . . . . . . 79

4.1.3 The UMTS system . . . . . . . . . . . . . . . . . . . . . . . . . . . 794.1.3.1 The UMTS type channel . . . . . . . . . . . . . . . . . . 79

4.2 Effects of Time Dispersive Channels on OFDM . . . . . . . . . . . . . . . . 804.2.1 Effects of the stationary time dispersive channel . . . . . . . . . . . . 814.2.2 Non-stationary channel . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2.2.1 Summary of time-variant channels . . . . . . . . . . . . . 83

Page 7: OFDM and MC-CDMA for Broadband Multi-user Communications ...

CONTENTS xiii

4.2.3 Signalling over time dispersive OFDM channels . . . . . . . . . . . 834.3 Channel Transfer Function Estimation . . . . . . . . . . . . . . . . . . . . . 84

4.3.1 Frequency domain channel transfer function estimation . . . . . . . . 844.3.1.1 Pilot symbol assisted schemes . . . . . . . . . . . . . . . . 84

4.3.1.1.1 Linear interpolation for PSAM . . . . . . . . . . 854.3.1.1.2 Ideal lowpass interpolation for PSAM . . . . . . 874.3.1.1.3 Summary . . . . . . . . . . . . . . . . . . . . . 90

4.3.2 Time domain channel estimation . . . . . . . . . . . . . . . . . . . . 904.4 System Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4.1 Static time dispersive channel . . . . . . . . . . . . . . . . . . . . . 924.4.1.1 Perfect channel estimation . . . . . . . . . . . . . . . . . . 924.4.1.2 Differentially coded modulation . . . . . . . . . . . . . . . 954.4.1.3 Pilot symbol assisted modulation . . . . . . . . . . . . . . 97

4.4.2 Slowly varying time-dispersive channel . . . . . . . . . . . . . . . . 1024.4.2.1 Perfect channel estimation . . . . . . . . . . . . . . . . . . 1034.4.2.2 Pilot symbol assisted modulation . . . . . . . . . . . . . . 104

4.5 Chapter Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 104

5 Time and Frequency Domain Synchronisation 1095.1 Performance with Frequency and Timing Errors . . . . . . . . . . . . . . . . 109

5.1.1 Frequency shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1095.1.1.1 The spectrum of the OFDM signal . . . . . . . . . . . . . 1105.1.1.2 Effects of frequency mismatch on different modulation

schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . 1145.1.1.2.1 Coherent modulation . . . . . . . . . . . . . . . 1145.1.1.2.2 PSAM . . . . . . . . . . . . . . . . . . . . . . . 1145.1.1.2.3 Differential modulation . . . . . . . . . . . . . . 1155.1.1.2.4 Frequency error - summary . . . . . . . . . . . . 116

5.1.2 Time domain synchronisation errors . . . . . . . . . . . . . . . . . . 1165.1.2.1 Coherent demodulation . . . . . . . . . . . . . . . . . . . 1175.1.2.2 Pilot symbol assisted modulation . . . . . . . . . . . . . . 1175.1.2.3 Differential modulation . . . . . . . . . . . . . . . . . . . 118

5.1.2.3.1 Time-domain synchronisation errors - summary . 1205.2 Synchronisation Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.2.1 Coarse frame and OFDM symbol synchronisation . . . . . . . . . . . 1225.2.2 Fine symbol tracking . . . . . . . . . . . . . . . . . . . . . . . . . . 1225.2.3 Frequency acquisition . . . . . . . . . . . . . . . . . . . . . . . . . 1225.2.4 Frequency tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . 1235.2.5 Synchronisation by autocorrelation . . . . . . . . . . . . . . . . . . 1235.2.6 Multiple Access Frame Structure . . . . . . . . . . . . . . . . . . . . 123

5.2.6.1 The reference symbol . . . . . . . . . . . . . . . . . . . . 1245.2.6.2 The correlation functions . . . . . . . . . . . . . . . . . . 125

5.2.7 Frequency tracking and OFDM symbol synchronisation . . . . . . . 1265.2.7.1 OFDM symbol synchronisation . . . . . . . . . . . . . . . 1265.2.7.2 Frequency tracking . . . . . . . . . . . . . . . . . . . . . 126

5.2.8 Frequency acquisition and frame synchronisation . . . . . . . . . . . 128

Page 8: OFDM and MC-CDMA for Broadband Multi-user Communications ...

xiv CONTENTS

5.2.8.1 Frame synchronisation . . . . . . . . . . . . . . . . . . . . 1285.2.8.2 Frequency acquisition . . . . . . . . . . . . . . . . . . . . 1285.2.8.3 Block diagram of the synchronisation algorithms . . . . . . 129

5.2.9 Synchronisation using pilots . . . . . . . . . . . . . . . . . . . . . . 1305.2.9.1 The reference symbol . . . . . . . . . . . . . . . . . . . . 1305.2.9.2 Frequency acquisition . . . . . . . . . . . . . . . . . . . . 1305.2.9.3 Performance of the pilot based frequency acquisition in

AWGN Channels . . . . . . . . . . . . . . . . . . . . . . 1335.2.9.4 Alternative frequency error estimation for frequency-

domain pilot tones . . . . . . . . . . . . . . . . . . . . . . 1375.3 Comparison of the Frequency Acquisition Algorithms . . . . . . . . . . . . . 1395.4 BER Performance with Frequency Synchronisation . . . . . . . . . . . . . . 1435.5 Chapter Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 1445.6 Appendix: OFDM Synchronisation Performance . . . . . . . . . . . . . . . 145

5.6.1 Frequency synchronisation in an AWGN channel . . . . . . . . . . . 1455.6.1.1 One phasor in AWGN environment . . . . . . . . . . . . . 145

5.6.1.1.1 Cartesian coordinates . . . . . . . . . . . . . . . 1455.6.1.1.2 Polar coordinates . . . . . . . . . . . . . . . . . 145

5.6.1.2 Product of two noisy phasors . . . . . . . . . . . . . . . . 1465.6.1.2.1 Joint probability density . . . . . . . . . . . . . . 1465.6.1.2.2 Phase distribution . . . . . . . . . . . . . . . . . 1475.6.1.2.3 Numerical integration . . . . . . . . . . . . . . . 147

6 Adaptive Single- and Multi-user OFDM 1516.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1516.1.2 Adaptive techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.1.2.1 Channel quality estimation . . . . . . . . . . . . . . . . . 1536.1.2.2 Parameter adaptation . . . . . . . . . . . . . . . . . . . . 1546.1.2.3 Signalling the AOFDM parameters . . . . . . . . . . . . . 154

6.1.3 System aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1566.2 Adaptive Modulation for OFDM . . . . . . . . . . . . . . . . . . . . . . . . 156

6.2.1 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1566.2.2 Channel model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1576.2.3 Channel transfer function variations . . . . . . . . . . . . . . . . . . 1586.2.4 Choice of the modulation modes . . . . . . . . . . . . . . . . . . . . 158

6.2.4.1 Fixed threshold adaptation algorithm . . . . . . . . . . . . 1596.2.4.2 Sub-band BER estimator adaptation algorithm . . . . . . . 161

6.2.5 Constant throughput adaptive OFDM . . . . . . . . . . . . . . . . . 1626.2.6 AOFDM mode signalling and blind detection . . . . . . . . . . . . . 164

6.2.6.1 Signalling . . . . . . . . . . . . . . . . . . . . . . . . . . 1646.2.6.2 Blind detection by SNR estimation . . . . . . . . . . . . . 1666.2.6.3 Blind detection by multi-mode trellis decoder . . . . . . . 166

6.2.7 Sub-band adaptive OFDM and turbo channel coding . . . . . . . . . 1696.2.8 Effects of the Doppler frequency . . . . . . . . . . . . . . . . . . . . 1706.2.9 Channel transfer function estimation . . . . . . . . . . . . . . . . . . 174

Page 9: OFDM and MC-CDMA for Broadband Multi-user Communications ...

CONTENTS xv

6.3 Adaptive OFDM Speech System . . . . . . . . . . . . . . . . . . . . . . . . 1746.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1746.3.2 System overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.3.2.1 System parameters . . . . . . . . . . . . . . . . . . . . . . 1766.3.3 Constant throughput adaptive modulation . . . . . . . . . . . . . . . 177

6.3.3.1 Constant-rate BER performance . . . . . . . . . . . . . . . 1776.3.4 Multimode adaptation . . . . . . . . . . . . . . . . . . . . . . . . . 178

6.3.4.1 Mode switching . . . . . . . . . . . . . . . . . . . . . . . 1806.3.5 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

6.3.5.1 Frame error results . . . . . . . . . . . . . . . . . . . . . . 1816.3.5.2 Audio segmental SNR . . . . . . . . . . . . . . . . . . . . 182

6.4 Pre-equalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1826.4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1846.4.2 Pre-equalisation with sub-band blocking . . . . . . . . . . . . . . . . 1866.4.3 Adaptive modulation with spectral predistortion . . . . . . . . . . . . 188

6.5 Comparison of the Adaptive Techniques . . . . . . . . . . . . . . . . . . . . 1916.6 Near-optimum Power- and Bit-allocation in OFDM . . . . . . . . . . . . . . 192

6.6.1 State-of-the-art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1926.6.2 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . 1936.6.3 Power and bit allocation algorithm . . . . . . . . . . . . . . . . . . . 194

6.7 Multi-User AOFDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1976.7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1976.7.2 Adaptive transceiver architecture . . . . . . . . . . . . . . . . . . . . 1976.7.3 Simulation results - perfect channel knowledge . . . . . . . . . . . . 2006.7.4 Pilot-based channel parameter estimation . . . . . . . . . . . . . . . 203

6.8 Chapter Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 206

7 Block-Coded Adaptive OFDM 2097.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

7.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2097.1.2 Choice of error correction codes . . . . . . . . . . . . . . . . . . . . 210

7.2 Redundant Residue Number System Codes . . . . . . . . . . . . . . . . . . 2107.2.1 Performance in an AWGN channel . . . . . . . . . . . . . . . . . . . 212

7.2.1.1 Performance in a fading time dispersive channel . . . . . . 2137.2.1.2 Adaptive RRNS-coded OFDM . . . . . . . . . . . . . . . 213

7.2.2 ARRNS/AOFDM transceivers . . . . . . . . . . . . . . . . . . . . . 2197.2.3 Soft decision RRNS decoding . . . . . . . . . . . . . . . . . . . . . 221

7.3 Turbo BCH Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2217.3.1 Adaptive TBCH coding . . . . . . . . . . . . . . . . . . . . . . . . 2237.3.2 Joint ATBCH/AOFDM algorithm . . . . . . . . . . . . . . . . . . . 225

7.4 Signalling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2257.5 Chapter Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 226

Page 10: OFDM and MC-CDMA for Broadband Multi-user Communications ...

xvi CONTENTS

II OFDM versus MC-CDMA Systems, Their Spreading Codes andPeak Factor Reduction 229

8 OFDM versus MC-CDMA 2318.1 Amalgamating DS-CDMA and OFDM . . . . . . . . . . . . . . . . . . . . . 231

8.1.1 The DS-CDMA Component . . . . . . . . . . . . . . . . . . . . . . 2318.1.2 The OFDM Component . . . . . . . . . . . . . . . . . . . . . . . . 234

8.2 Multi-Carrier CDMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2388.2.1 MC-CDMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2388.2.2 MC-DS-CDMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2418.2.3 MT-CDMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

8.3 Further Research Topics in MC-CDMA . . . . . . . . . . . . . . . . . . . . 2438.4 Chapter Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 243

9 Basic Spreading Sequences 2459.1 PN Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

9.1.1 Maximal Length Sequences . . . . . . . . . . . . . . . . . . . . . . 2459.1.2 Gold Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2479.1.3 Kasami Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

9.2 Orthogonal Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2499.2.1 Walsh Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2499.2.2 Orthogonal Gold Codes . . . . . . . . . . . . . . . . . . . . . . . . 2509.2.3 Multi-rate Orthogonal Gold Codes . . . . . . . . . . . . . . . . . . . 252

9.3 Chapter Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 255

10 MC-CDMA Performance in Synchronous Environments 25710.1 The Frequency Selective Channel Model . . . . . . . . . . . . . . . . . . . . 25810.2 The System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26010.3 Single User Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

10.3.1 Maximal Ratio Combining . . . . . . . . . . . . . . . . . . . . . . . 26210.3.2 Equal Gain Combining . . . . . . . . . . . . . . . . . . . . . . . . . 26610.3.3 Orthogonality Restoring Combining . . . . . . . . . . . . . . . . . . 268

10.4 Multi User Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26910.4.1 Maximum Likelihood Detection . . . . . . . . . . . . . . . . . . . . 270

10.5 Chapter Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 271

11 Advanced Peak Factor Reduction Techniques 27311.1 Introdunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27311.2 Measures of Peakiness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27511.3 Special Sequences for Reducing Amplitude Variations . . . . . . . . . . . . 276

11.3.1 Shapiro-Rudin Sequences . . . . . . . . . . . . . . . . . . . . . . . 27611.3.2 Golay Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27811.3.3 M-Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27911.3.4 Newman Phases and Schroeder Phases . . . . . . . . . . . . . . . . . 28011.3.5 Barker Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28311.3.6 Comparison of Various Schemes . . . . . . . . . . . . . . . . . . . . 284

11.4 Crest Factor Reduction Mapping Schemes for OFDM . . . . . . . . . . . . . 285

Page 11: OFDM and MC-CDMA for Broadband Multi-user Communications ...

CONTENTS xvii

11.4.1 Some Properties of the Peak Factors in OFDM . . . . . . . . . . . . 28511.4.2 CF-Reduction Block Coding Scheme . . . . . . . . . . . . . . . . . 28711.4.3 Selected Mapping Based CF-Reduction . . . . . . . . . . . . . . . . 28911.4.4 Partial Transmit Sequences . . . . . . . . . . . . . . . . . . . . . . . 290

11.5 Peak Factors in Multi-Carrier CDMA . . . . . . . . . . . . . . . . . . . . . 29011.5.1 System Model and Envelope Power . . . . . . . . . . . . . . . . . . 29111.5.2 Spreading Sequences and Crest Factors . . . . . . . . . . . . . . . . 296

11.5.2.1 Single-code Signal . . . . . . . . . . . . . . . . . . . . . . 29611.5.2.2 Shapiro-Rudin-based Spreading Sequences . . . . . . . . . 30111.5.2.3 Peak Factor Distribution of Multi-Code MC-CDMA . . . . 310

11.5.3 Clipping Amplifier and BER Comparison . . . . . . . . . . . . . . . 31311.5.3.1 Nonlinear Power Amplifier Model . . . . . . . . . . . . . 31311.5.3.2 Clipping Effects on Output Power . . . . . . . . . . . . . . 31511.5.3.3 Effects of Clipping on the Bit Error Ratio . . . . . . . . . . 31711.5.3.4 Clipping Effects on Frequency Spectrum . . . . . . . . . . 322

11.5.4 Diversity Considerations . . . . . . . . . . . . . . . . . . . . . . . . 32411.6 Chapter Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 32511.7 Appendix: Peak-to-mean Envelope Power Ratio of OFDM Systems . . . . . 326

11.7.1 PMEPR Analysis of BPSK Modulated OFDM . . . . . . . . . . . . 32611.7.2 PMEPR Properties of BPSK Modulated OFDM . . . . . . . . . . . . 32711.7.3 PMEPR Calculation of BPSK Modulated OFDM . . . . . . . . . . . 33811.7.4 PMEPR Properties of QPSK Modulated OFDM . . . . . . . . . . . . 339

12 Adaptive Modulation 34312.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34312.2 Increasing the Average Transmit Power as a Fading Counter-Measure . . . . 34412.3 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

12.3.1 General Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34912.3.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

12.3.2.1 Five-Mode AQAM . . . . . . . . . . . . . . . . . . . . . 34912.3.2.2 Seven-Mode Adaptive Star-QAM . . . . . . . . . . . . . . 35012.3.2.3 Five-Mode APSK . . . . . . . . . . . . . . . . . . . . . . 35112.3.2.4 Ten-Mode AQAM . . . . . . . . . . . . . . . . . . . . . . 351

12.3.3 Characteristic Parameters . . . . . . . . . . . . . . . . . . . . . . . . 35112.3.3.1 Closed Form Expressions for Transmission over Nakagami

Fading Channels . . . . . . . . . . . . . . . . . . . . . . . 35312.4 Optimum Switching Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

12.4.1 Limiting the Peak Instantaneous BEP . . . . . . . . . . . . . . . . . 35512.4.2 Torrance’s Switching Levels . . . . . . . . . . . . . . . . . . . . . . 35812.4.3 Cost Function Optimisation as a Function of the Average SNR . . . . 36112.4.4 Lagrangian Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 364

12.5 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37412.5.1 Narrow-band Nakagami-m Fading Channel . . . . . . . . . . . . . . 374

12.5.1.1 Adaptive PSK Modulation Schemes . . . . . . . . . . . . 37412.5.1.2 Adaptive Coherent Star QAM Schemes . . . . . . . . . . . 38112.5.1.3 Adaptive Coherent Square QAM Modulation Schemes . . . 386

Page 12: OFDM and MC-CDMA for Broadband Multi-user Communications ...

xviii CONTENTS

12.5.2 Performance over Narrow-band Rayleigh Channels Using AntennaDiversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392

12.5.3 Performance over Wideband Rayleigh Channels using Antenna Di-versity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394

12.5.4 Uncoded Adaptive Multi-Carrier Schemes . . . . . . . . . . . . . . . 39812.5.5 Concatenated Space-Time Block Coded and Turbo Coded Symbol-

by-Symbol Adaptive OFDM and Multi-Carrier CDMA . . . . . . . . 40012.6 Chapter Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 40512.7 Appendix: Mode Specific Average BEP of Adaptive Modulation . . . . . . . 40612.8 Appendix: BER Analysis of Type-I Star-QAM . . . . . . . . . . . . . . . . 408

12.8.1 Coherent Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 40912.9 Appendix: Two-Dimensional Rake Receiver . . . . . . . . . . . . . . . . . . 418

12.9.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41812.9.2 BER Analysis of Fixed-mode Square QAM . . . . . . . . . . . . . . 420

13 Successive Partial Despreading Based Multi-Code MC-CDMA 42513.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42513.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42613.3 The Sequential Partial Despreading Concept . . . . . . . . . . . . . . . . . . 42813.4 AWGN Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431

13.4.1 Type I Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43113.4.2 Type II Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43213.4.3 Type III Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43813.4.4 Summary and Discussions . . . . . . . . . . . . . . . . . . . . . . . 443

13.5 Effects of Impulse Noise or Narrow Band Jamming . . . . . . . . . . . . . . 44513.5.1 Conventional BPSK System without Spreading . . . . . . . . . . . . 44513.5.2 Conventional Despreading Scheme . . . . . . . . . . . . . . . . . . 44513.5.3 SPD Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44913.5.4 Type I Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45213.5.5 Type II Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45613.5.6 Type III Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45913.5.7 Summary and Discussions . . . . . . . . . . . . . . . . . . . . . . . 464

13.6 Chapter Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 464

III Advanced Topics: Channel Estimation and Multi-user OFDMSystems 467

14 Pilot Assisted Channel Estimation for Single-User OFDM 47314.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473

14.1.1 Classification of channel estimation techniques . . . . . . . . . . . . 47514.2 The Stochastic Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . 477

14.2.1 Model of the Channel Impulse Response . . . . . . . . . . . . . . . 47814.2.2 Auto-Correlation Function of the CIR: rh(∆t, τ) . . . . . . . . . . . 479

Page 13: OFDM and MC-CDMA for Broadband Multi-user Communications ...

CONTENTS xix

14.2.3 Spaced-Time Spaced-Frequency Correlation Function = FourierTransform of the CIR’s ACF with Respect to the Multipath DelayVariable: rH(∆t,∆f) . . . . . . . . . . . . . . . . . . . . . . . . . 479

14.2.4 Fourier Transform of the CIR’s ACF with Respect to the MultipathDelay- and Spaced-Time Variables: SH(fd,∆f) . . . . . . . . . . . 480

14.2.5 Scattering Function = Fourier Transform of the CIR’s ACF with Re-spect to the Time-Delay: Sh(fd, τ) . . . . . . . . . . . . . . . . . . 481

14.2.6 Separability of the Channel’s Spaced-Time Spaced-Frequency Cor-relation Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481

14.3 Channel Model for Monte-Carlo Simulations . . . . . . . . . . . . . . . . . 48314.3.1 The Indoor WATM Model . . . . . . . . . . . . . . . . . . . . . . . 483

14.4 Introduction to 2D-Signal Processing . . . . . . . . . . . . . . . . . . . . . . 48414.4.1 Description of a 2D-Sequence by a Periodicity Matrix . . . . . . . . 484

14.5 Maximum Pilot Distances for a Rectangular Pilot Grid . . . . . . . . . . . . 48614.5.1 Sampling in the Frequency-Direction . . . . . . . . . . . . . . . . . 48614.5.2 Sampling in the Time-Direction . . . . . . . . . . . . . . . . . . . . 487

14.6 2D-Pilot Pattern Assisted 2D-FIR Wiener Filter Aided Channel Estimation . . 48814.6.1 Derivation of the Optimum Estimator Coefficients and Estimator

MSE for Matched and Mismatched Channel Statistics . . . . . . . . 48814.6.1.1 Linear Channel Transfer Factor Estimate . . . . . . . . . . 48914.6.1.2 Estimator MSE and Cost-Function . . . . . . . . . . . . . 49114.6.1.3 Optimum Estimator Coefficients and Minimum Estimator

MSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49214.6.1.4 Estimator Coefficients for Mismatched Channel Statistics . 493

14.6.2 Robust Estimator Design . . . . . . . . . . . . . . . . . . . . . . . . 49314.6.2.1 Uniform Scattering Function and its Associated Spaced-

Time Spaced-Frequency Correlation Function . . . . . . . 49414.6.2.2 Relevance of the Shift-Parameter . . . . . . . . . . . . . . 49514.6.2.3 Application to a Robust Estimator . . . . . . . . . . . . . . 495

14.6.3 Complexity Reduction . . . . . . . . . . . . . . . . . . . . . . . . . 49614.6.3.1 Number of Pilot Subcarriers in the Estimator’s Input Block 49614.6.3.2 Selection of Subsets of Pilot Subcarriers . . . . . . . . . . 497

14.6.4 MSE Performance of 2D-FIR Wiener Filtering . . . . . . . . . . . . 49714.6.4.1 Simulation Parameters - Design of the Pilot Grid and the

Uniform Scattering Function used in the Calculation of Fil-ter Coefficients . . . . . . . . . . . . . . . . . . . . . . . . 497

14.6.4.2 Evolution of the Estimator MSE over a Period of the Rect-angular Pilot Grid . . . . . . . . . . . . . . . . . . . . . . 499

14.6.4.3 Influence of the Pilot Grid Density and the Number of Fil-ter Taps on the Estimator’s MSE . . . . . . . . . . . . . . 500

14.6.5 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . 50214.6.6 Summary and Conclusions on 2D-FIR Wiener Filtering . . . . . . . . 502

14.7 Cascaded 1D-FIR Wiener filtering . . . . . . . . . . . . . . . . . . . . . . . 50414.7.1 Derivation of the Optimum Estimator Coefficients and Estimator

MSE for both Matched and Mismatched Channel Statistics . . . . . . 505

Page 14: OFDM and MC-CDMA for Broadband Multi-user Communications ...

xx CONTENTS

14.7.1.1 First-Stage Channel Estimates - Interpolation in theFrequency-Direction . . . . . . . . . . . . . . . . . . . . . 505

14.7.1.1.1 Linear Channel Transfer Factor Estimate . . . . . 50514.7.1.1.2 Estimator Coefficients for Mismatched Channel

Statistics . . . . . . . . . . . . . . . . . . . . . . 50614.7.1.1.3 Estimator MSE . . . . . . . . . . . . . . . . . . 506

14.7.1.2 Second-Stage Channel Estimates - Interpolation in theTime-Direction . . . . . . . . . . . . . . . . . . . . . . . 507

14.7.1.2.1 Linear Channel Transfer Factor Estimate . . . . . 50714.7.1.2.2 Estimator Coefficients for Mismatched Channel

Statistics . . . . . . . . . . . . . . . . . . . . . . 50814.7.1.2.3 Estimator MSE . . . . . . . . . . . . . . . . . . 509

14.7.1.3 Simplification of the Cascaded 1D-FIR Wiener Filter . . . 51014.7.2 MSE Performance of the Cascaded 1D-FIR Wiener Filter . . . . . . . 510

14.7.2.1 Comparison to 2D-FIR Wiener Filtering . . . . . . . . . . 51114.7.2.2 Misadjustment of Multipath- and Doppler Spread . . . . . 51314.7.2.3 Misadjustment of the SNR . . . . . . . . . . . . . . . . . 51414.7.2.4 Impact of Imperfect Synchronization . . . . . . . . . . . . 51614.7.2.5 Mismatch of the Multipath Intensity Profile’s Shape . . . . 520

14.7.3 MSE and BER Performance Evaluation by Monte Carlo Simulations . 52314.7.3.1 Simulation Parameters . . . . . . . . . . . . . . . . . . . . 52414.7.3.2 MSE Simulation Results . . . . . . . . . . . . . . . . . . . 52614.7.3.3 BER Simulation Results . . . . . . . . . . . . . . . . . . . 527

14.7.4 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52814.7.4.1 Computational Complexity . . . . . . . . . . . . . . . . . 52814.7.4.2 Number of Coefficient Vectors per SNR Level for Decou-

pled Cascaded 1D-FIR Filters . . . . . . . . . . . . . . . . 52914.7.5 Summary and Conclusions on Cascaded 1D-FIR Wiener Filtering . . 530

14.8 Chapter Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 532

Symbols in Chapter 14: Pilot-Assisted Channel Estimation for Single-User OFDM 532

List of General Symbols 536

15 Decision-Directed Channel Estimation for Single-User OFDM 53715.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53715.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540

15.2.1 Decision-Directed A Posteriori Least-Squares Channel Estimation . . 54115.2.2 Enhancement of the A Posteriori Least-Squares Channel Transfer

Factor Estimates by One-Dimensional MMSE Estimation . . . . . . 54315.2.2.1 Structure of the 1D-MMSE Channel Estimator . . . . . . . 54415.2.2.2 Estimator MSE for Mismatched Channel Conditions . . . . 545

15.2.3 Enhancement of the A Posteriori Least-Squares Channel TransferFactor Estimates by Two-Dimensional MMSE Estimation . . . . . . 54515.2.3.1 Structure of the 2D-MMSE Estimator . . . . . . . . . . . . 54615.2.3.2 Estimator MSE for Mismatched Channel Statistics . . . . . 547

Page 15: OFDM and MC-CDMA for Broadband Multi-user Communications ...

CONTENTS xxi

15.2.3.3 Motivation of Time-Direction Channel Prediction Filtering 54915.2.4 MMSE A Priori Time-Direction Channel Prediction Filtering . . . . 551

15.2.4.1 Linear Prediction of the CIR-Related Taps . . . . . . . . . 55215.2.4.2 Definition of the CIR-related Taps’ Auto-Correlation Ma-

trix and Cross-Correlation Vector . . . . . . . . . . . . . . 55315.2.4.3 Derivation of the Wiener Equation using the Gradient Ap-

proach or the Orthogonality Principle . . . . . . . . . . . . 55415.2.4.3.1 Gradient Approach . . . . . . . . . . . . . . . . 55415.2.4.3.2 Orthogonality Principle . . . . . . . . . . . . . . 555

15.2.4.4 Optimum Predictor Coefficients and Minimum CIR-RelatedDomain Predictor MSE . . . . . . . . . . . . . . . . . . . 555

15.2.4.5 Optimum Predictor Coefficients for Mismatched ChannelStatistics . . . . . . . . . . . . . . . . . . . . . . . . . . . 556

15.2.4.6 Average Channel Predictor MSE in the Frequency-Domain 55715.2.5 Channel Statistics for A Priori Time-Direction Channel Prediction

Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55815.2.5.1 Robust A Priori Time-Direction Channel Prediction Filtering559

15.2.5.1.1 Review of Robust Channel Estimation . . . . . . 55915.2.5.1.2 Design of the Auto-Correlation Matrix and

Cross-Correlation Vector of a Robust ChannelPredictor . . . . . . . . . . . . . . . . . . . . . . 559

15.2.5.2 Adaptive A Priori Time-Direction Channel Prediction Fil-tering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560

15.3 Performance of Decision-Directed Channel Prediction Aided OFDM . . . . . 56115.3.1 MSE Performance of a Robust Decision-Directed Channel Predictor

in the Context of Error-Free Symbol Decisions . . . . . . . . . . . . 56215.3.1.1 MSE Performance under Matched Channel Conditions . . 56315.3.1.2 MSE Performance under Mismatched Channel Conditions

with Respect to the Doppler Frequency . . . . . . . . . . . 56315.3.1.3 MSE Performance under Mismatched Channel SNR Con-

ditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56715.3.1.4 MSE Performance under Mismatched Multipath Spread

Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 56815.3.1.5 Conclusions on the MSE Performance of Robust Decision-

Directed Channel Prediction in the Context of Error-FreeSymbol Decisions . . . . . . . . . . . . . . . . . . . . . . 569

15.3.2 MSE Performance of an Adaptive Decision-Directed Channel Pre-dictor in the Context of Error-Free Symbol Decisions . . . . . . . . . 56915.3.2.1 MSE Performance under Matched Channel Conditions as

a Function of the Number of Samples invoked in the Pre-dictor Design . . . . . . . . . . . . . . . . . . . . . . . . 570

15.3.2.2 MSE Performance in Comparison to that of the RobustChannel Transfer Function Predictor . . . . . . . . . . . . 572

15.3.2.3 MSE Performance for Various Multipath Intensity Profiles . 57315.3.2.4 Conclusions on Adaptive Decision-Directed Channel Pre-

diction in the Context of Error-Free Symbol Decisions . . . 574

Page 16: OFDM and MC-CDMA for Broadband Multi-user Communications ...

xxii CONTENTS

15.3.3 MSE Performance of a Robust Decision-Directed Channel Predictorin the Context of an Uncoded System . . . . . . . . . . . . . . . . . 57515.3.3.1 MSE Performance for a Frame-Invariant Fading Channel

and for Error-Free Symbol Decisions . . . . . . . . . . . . 57715.3.3.2 MSE Performance for a Frame-Invariant Fading Channel

and Sliced Symbol Decisions . . . . . . . . . . . . . . . . 57815.3.3.3 MSE Performance for a Frame-Variant Fading Channel

and for Sliced Symbol Decisions . . . . . . . . . . . . . . 57815.3.3.4 Conclusions on the MSE Performance of a Robust

Decision-Directed Channel Predictor in the Context of anUncoded System . . . . . . . . . . . . . . . . . . . . . . . 579

15.3.4 BER Performance of an Uncoded System Employing Robust De-cision-Directed Channel Prediction . . . . . . . . . . . . . . . . . . 58015.3.4.1 BER Performance for BPSK and QPSK . . . . . . . . . . 58015.3.4.2 BER Performance for 16QAM . . . . . . . . . . . . . . . 58015.3.4.3 Conclusions on the BER Performance of an Uncoded Sys-

tem employing Robust Decision-Directed Channel Prediction58315.3.5 BER Performance of a Turbo-Coded System employing Robust

Decision-Directed Channel Prediction . . . . . . . . . . . . . . . . . 58315.3.5.1 Influence of the ICI Variance on the Subcarrier SNR . . . . 58415.3.5.2 BER Performance for BPSK Modulation in the Context of

an Undecoded Reference . . . . . . . . . . . . . . . . . . 58415.3.5.3 BER Performance for QPSK Modulation and 16QAM in

the Context of an Undecoded Reference . . . . . . . . . . 58615.3.5.4 BER Performance for QPSK Modulation in the Context of

a Decoded Reference . . . . . . . . . . . . . . . . . . . . 58815.3.5.5 Conclusions on the BER Performance of a Turbo-Coded

System employing Robust Decision-Directed Channel Pre-diction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589

15.4 Robust Decision-Directed Channel Prediction Assisted Adaptive OFDM . . . 59015.4.1 Transceiver Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 591

15.4.1.1 Modulation Mode Adaptation . . . . . . . . . . . . . . . . 59215.4.2 BER Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 593

15.4.2.1 Motivation of Channel Transfer Function Prediction As-sisted AOFDM . . . . . . . . . . . . . . . . . . . . . . . . 593

15.4.2.2 BER Performance of the Uncoded System . . . . . . . . . 59515.4.2.3 BER Performance of the Turbo-Coded System . . . . . . . 597

15.4.3 Conclusions on Robust Decision-Directed Channel Prediction As-sisted AOFDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599

15.5 Chapter Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 59915.5.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59915.5.2 Performance Assessment . . . . . . . . . . . . . . . . . . . . . . . . 60015.5.3 Adaptive OFDM Transceiver . . . . . . . . . . . . . . . . . . . . . . 601

Symbols in Chapter 15: Decision-Directed Channel Estimation for Single-UserOFDM 602

Page 17: OFDM and MC-CDMA for Broadband Multi-user Communications ...

CONTENTS xxiii

16 Channel Estimation for Multi-User OFDM 60916.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60916.2 The SDMA Signal Model on a Subcarrier Basis . . . . . . . . . . . . . . . . 61216.3 Multi-User Multiple Reception Antenna OFDM Scenario . . . . . . . . . . . 61316.4 Least-Squares Error Decision-Directed Channel Estimation . . . . . . . . . . 615

16.4.1 Derivation of the LS-Estimator . . . . . . . . . . . . . . . . . . . . . 61516.4.1.1 The SDMA Signal Model on a Receiver Antenna Basis . . 61516.4.1.2 Sub-Space Based Approach . . . . . . . . . . . . . . . . . 616

16.4.1.2.1 Low-Rank Approximation of the i-th User’s Vec-tor of Different Subcarriers’ Channel TransferFactors . . . . . . . . . . . . . . . . . . . . . . . 616

16.4.1.2.2 Determination of the LS-DDCE Coefficients Us-ing the Gradient Approach . . . . . . . . . . . . 618

16.4.1.2.3 Necessary Condition for Identification of the LS-DDCE Coefficients . . . . . . . . . . . . . . . . 620

16.4.1.2.4 Implementation by QR Decomposition . . . . . . 62016.4.2 Least-Squares Channel Estimation MSE in the Context of Both

Sample-Spaced and Non-Sample-Spaced CIRs . . . . . . . . . . . . 62116.4.2.1 Correlation Matrix of the Channel Transfer Factor Estimates 62216.4.2.2 Sample-Spaced CIRs . . . . . . . . . . . . . . . . . . . . 623

16.4.2.2.1 Auto-Correlation Matrix of the Channel TransferFactor Estimation Errors . . . . . . . . . . . . . 623

16.4.2.2.2 Properties of Optimum Training Sequences . . . 62416.4.2.2.3 A Posteriori Estimation MSE Using Optimum

Training Sequences . . . . . . . . . . . . . . . . 62616.4.2.3 Non-Sample-Spaced CIRs . . . . . . . . . . . . . . . . . . 627

16.4.2.3.1 Cross-Correlation Matrix of the Channel Trans-fer Factor Estimates in the Context of OptimumTraining Sequences . . . . . . . . . . . . . . . . 627

16.4.2.3.2 Auto-Correlation Matrix of the Channel Trans-fer Factor Estimates in the Context of OptimumTraining Sequences . . . . . . . . . . . . . . . . 628

16.4.2.3.3 Channel Estimation MSE in the Context of Opti-mum Training Sequences . . . . . . . . . . . . . 629

16.4.3 A Priori Channel Transfer Function Estimation MSE Enhancementby Linear Prediction of the A Posteriori CIR-Related Tap Estimates . 630

16.4.4 Simplified Approach to LS-Assisted DDCE . . . . . . . . . . . . . . 63016.4.5 Complexity Analysis of the Original- and Simplified LS-Assisted

DDCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63216.4.5.1 Complexity of the Original LS-Assisted DDCE . . . . . . 632

16.4.5.1.1 Complexity Associated with Assembling MatrixQ[n] . . . . . . . . . . . . . . . . . . . . . . . . 632

16.4.5.1.2 Complexity Associated with Assembling Vectorp[n] . . . . . . . . . . . . . . . . . . . . . . . . 633

Page 18: OFDM and MC-CDMA for Broadband Multi-user Communications ...

xxiv CONTENTS

16.4.5.1.3 Complexity Associated with Solving the LS Sys-tem Equations for the Vector of CIR-Related TapEstimates hapt,K0 [n] . . . . . . . . . . . . . . . 633

16.4.5.1.4 Total Complexity . . . . . . . . . . . . . . . . . 63416.4.5.2 Complexity of the Simplified LS-Assisted DDCE . . . . . 635

16.4.6 Conclusions on the Original- and Simplified LS-Assisted DDCE . . . 63616.5 Frequency-Domain Parallel Interference Cancellation Aided DDCE . . . . . 637

16.5.1 The Recursive Channel Estimator . . . . . . . . . . . . . . . . . . . 63716.5.1.1 A Priori and A Posteriori Channel Estimates . . . . . . . . 63816.5.1.2 A Priori Channel Prediction Filtering . . . . . . . . . . . . 63916.5.1.3 A Priori Channel Estimation MSE . . . . . . . . . . . . . 64116.5.1.4 A Posteriori Channel Estimation MSE . . . . . . . . . . . 64416.5.1.5 Stability Analysis of the Recursive Channel Estimator . . . 64516.5.1.6 Iterative Calculation of the CIR-Related Tap Predictor Co-

efficients . . . . . . . . . . . . . . . . . . . . . . . . . . . 64616.5.1.6.1 Simplified Approach for Identical User Statistics 64816.5.1.6.2 Closed Form Solution for Identical User Statis-

tics and One-Tap CIR-Related Tap PredictionFiltering . . . . . . . . . . . . . . . . . . . . . . 649

16.5.1.7 Channel Statistics . . . . . . . . . . . . . . . . . . . . . . 64916.5.2 Performance Assessment . . . . . . . . . . . . . . . . . . . . . . . . 651

16.5.2.1 Evolution of the A Priori Channel Estimation MSE in aSimplified 2-Tap CIR-Related Tap Prediction Scenario . . . 652

16.5.2.2 A Priori Channel Estimation MSE in the Context of Ideal,Error-Free Symbol Decisions Assuming a Sample-SpacedCIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652

16.5.2.2.1 Optimum Recursive versus Sub-Optimum Transver-sal CIR-Related Tap Predictor Coefficients - OneTap . . . . . . . . . . . . . . . . . . . . . . . . . 653

16.5.2.2.2 Optimum Recursive- versus Sub-Optimum Transver-sal CIR-related Tap Predictor Coefficients -Higher Order . . . . . . . . . . . . . . . . . . . 655

16.5.2.2.3 Influence of the Number of Simultaneous Usersin the Context of the Optimum Recursive CIR-Related Tap Predictor Coefficients . . . . . . . . 655

16.5.2.2.4 Influence of the OFDM Symbol NormalizedDoppler Frequency . . . . . . . . . . . . . . . . 656

16.5.2.2.5 Influence of a Mismatch of the OFDM SymbolNormalized Doppler Frequency . . . . . . . . . . 657

16.5.2.2.6 Performance Comparison to Li’s LS-AssistedDDCE . . . . . . . . . . . . . . . . . . . . . . . 660

16.5.2.3 Effects of a Non-Sample Spaced CIR in the Context ofIdeal, Error-Free Symbol Decisions . . . . . . . . . . . . . 662

16.5.2.3.1 Sparse Profiles . . . . . . . . . . . . . . . . . . . 66216.5.2.3.2 Uniform Profiles . . . . . . . . . . . . . . . . . 66416.5.2.3.3 Exponential Profiles . . . . . . . . . . . . . . . . 666

Page 19: OFDM and MC-CDMA for Broadband Multi-user Communications ...

CONTENTS xxv

16.5.2.3.4 A Priori Channel Estimation MSE for a Non-Sample Spaced CIR . . . . . . . . . . . . . . . . 667

16.5.2.3.5 A Priori Channel Transfer Factor EstimationMSE for a Non-Sample Spaced CIR on a Sub-carrier Basis . . . . . . . . . . . . . . . . . . . . 668

16.5.2.4 A Priori Channel Estimation MSE and System BER in theContext of Imperfect, Error-Contaminated Symbol Deci-sions Assuming a Sample-Spaced CIR . . . . . . . . . . . 670

16.5.2.4.1 Effects of Error-Contaminated Symbol Decisions 67116.5.2.4.2 MSE and BER Performance in an Uncoded Sce-

nario . . . . . . . . . . . . . . . . . . . . . . . . 67216.5.2.4.3 BER Performance in the Turbo Coded Scenario . 674

16.5.3 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . 67416.5.3.1 A Posteriori Channel Estimation Complexity . . . . . . . . 67516.5.3.2 A Priori Channel Estimation Complexity . . . . . . . . . . 675

16.5.4 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 67716.5.4.1 Summary and Conclusion on the PIC-Assisted DDCE’s

Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 67716.5.4.2 Summary and Conclusions on the Performance Assess-

ment of the PIC-Assisted DDCE . . . . . . . . . . . . . . 67816.5.4.2.1 Performance of the PIC-Assisted DDCE in the

Context of Sample-Spaced CIRs and Error-FreeSymbol Decisions . . . . . . . . . . . . . . . . . 678

16.5.4.2.2 Performance of the PIC-Assisted DDCE in theContext of Non-Sample-Spaced CIRs and Error-Free Symbol Decisions . . . . . . . . . . . . . . 680

16.5.4.2.3 Performance of the PIC-Assisted DDCE in theContext of Sample-Spaced CIRs and Imperfect,Error-Contaminated Symbol Decisions . . . . . . 680

16.5.4.3 Summary and Conclusion on the PIC-Assisted DDCE’sComputational Complexity . . . . . . . . . . . . . . . . . 681

16.6 RLS-Adaptive Parallel Interference Cancellation Aided DDCE . . . . . . . . 68116.6.1 Single-User RLS-Adaptive CIR-Related Tap Prediction . . . . . . . . 682

16.6.1.1 Review of the RLS Algorithm . . . . . . . . . . . . . . . . 68316.6.1.2 Potential Simplification by Ensemble Averaging . . . . . . 68416.6.1.3 MSE Performance Assessment . . . . . . . . . . . . . . . 68516.6.1.4 Complexity Study . . . . . . . . . . . . . . . . . . . . . . 686

16.6.2 RLS-Adaptive PIC-Assisted DDCE for Multi-User OFDM . . . . . . 68716.6.2.1 MSE Performance Assessment . . . . . . . . . . . . . . . 688

16.6.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69016.7 Chapter Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 691

Symbols in Chapter 16: Decision-Directed Channel Estimation for Multi-UserOFDM 692

Page 20: OFDM and MC-CDMA for Broadband Multi-user Communications ...

xxvi CONTENTS

17 Detection Techniques for Multi-User SDMA-OFDM 70517.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705

17.1.1 Classification of Multi-User Detection Techniques . . . . . . . . . . 70517.1.2 Outline of Chapter 17 . . . . . . . . . . . . . . . . . . . . . . . . . 70917.1.3 SDMA-MIMO Channel Model . . . . . . . . . . . . . . . . . . . . . 710

17.2 Linear Detection Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 71117.2.1 Characterization of the Linear Combiner’s Output Signal . . . . . . . 712

17.2.1.1 Description of the Different Signal Components . . . . . . 71317.2.1.2 Statistical Characterization . . . . . . . . . . . . . . . . . 71317.2.1.3 Performance Measures . . . . . . . . . . . . . . . . . . . 714

17.2.2 Least-Squares Error Detector . . . . . . . . . . . . . . . . . . . . . . 71517.2.2.1 Simplified Model of the Received Signal . . . . . . . . . . 71517.2.2.2 Least-Squares Error Cost-Function . . . . . . . . . . . . . 71517.2.2.3 Recovery of the Transmitted Signals by the Gradient Ap-

proach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71617.2.2.4 Condition for Identification . . . . . . . . . . . . . . . . . 71717.2.2.5 Squared Estimation Error in the Received Signals’ Domain 71817.2.2.6 Mean-Square Estimation Error in the Transmitted Signals’

Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . 71817.2.3 Minimum Mean-Square Error Detector . . . . . . . . . . . . . . . . 719

17.2.3.1 Mean-Square Error Cost-Function . . . . . . . . . . . . . 71917.2.3.2 Recovery of the Transmitted Signals by the Gradient Ap-

proach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72017.2.3.2.1 Right-Inverse Related Form of the MMSE Com-

biner . . . . . . . . . . . . . . . . . . . . . . . . 72017.2.3.2.2 Left-Inverse Related Form of the MMSE Combiner721

17.2.3.3 Mean-Square Estimation Error in the Transmitted Signals’Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . 722

17.2.3.4 Optimum Weight Vector in Standard Form . . . . . . . . . 72317.2.3.5 Relation between MMSE and MV combining . . . . . . . 723

17.2.4 Demodulation of the Different Users’ Combiner Output Signals . . . 72417.2.4.1 Approximation of a Specific User’s Combiner Output Sig-

nal as a Sample of a Complex Gaussian Distribution . . . . 72417.2.4.2 Determination of a Specific User’s Transmitted Symbol by

Maximizing the A Posteriori Probability . . . . . . . . . . 72517.2.5 Generation of Soft-Bit Information for Turbo-Decoding . . . . . . . 727

17.2.5.1 Simplification by Maximum Approximation . . . . . . . . 72817.2.6 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 729

17.2.6.1 MSE and BER Performance Comparison of LS, MMSEand MVDR Detection . . . . . . . . . . . . . . . . . . . . 730

17.2.6.2 SINR Performance of MMSE Detection for DifferentNumbers of Users and Reception Antennas . . . . . . . . . 731

17.2.6.3 BER Performance of MMSE Detection for Different Num-bers of Users and Reception Antennas . . . . . . . . . . . 731

17.2.6.4 BER Performance of Turbo-Coded MMSE Detection-Assisted SDMA-OFDM . . . . . . . . . . . . . . . . . . . 732

Page 21: OFDM and MC-CDMA for Broadband Multi-user Communications ...

CONTENTS xxvii

17.2.7 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 73317.2.7.1 LS Combining . . . . . . . . . . . . . . . . . . . . . . . . 734

17.2.7.1.1 LS Combining without Generating the WeightMatrix . . . . . . . . . . . . . . . . . . . . . . . 734

17.2.7.1.2 LS Combining Generating the Weight Matrix . . 73517.2.7.2 MMSE Combining . . . . . . . . . . . . . . . . . . . . . 735

17.2.7.2.1 Left-Inverse Related Form of MMSE Combiningwithout Generating the Weight Matrix . . . . . . 736

17.2.7.2.2 Left-Inverse Related Form of MMSE CombiningGenerating the Weight Matrix . . . . . . . . . . 736

17.2.7.3 Demodulation of the Linear Combiner’s Output Signal . . . 73617.2.7.4 Simplified Complexity Formulae to be used in the Com-

parison of the Different Detectors . . . . . . . . . . . . . . 73717.2.8 Conclusions on Linear Detection Techniques . . . . . . . . . . . . . 738

17.3 Non-Linear Detection Techniques . . . . . . . . . . . . . . . . . . . . . . . 73917.3.1 SIC Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 740

17.3.1.1 Standard SIC . . . . . . . . . . . . . . . . . . . . . . . . . 74217.3.1.2 M-SIC and its Derivatives . . . . . . . . . . . . . . . . . . 745

17.3.1.2.1 M-SIC . . . . . . . . . . . . . . . . . . . . . . . 74617.3.1.2.2 Partial M-SIC . . . . . . . . . . . . . . . . . . . 74717.3.1.2.3 Selective-Decision-Insertion Aided M-SIC . . . . 747

17.3.1.3 Generation of Soft-Bit Information for Turbo-Decoding . . 74817.3.1.3.1 Generation of Rudimentary Soft-Bits . . . . . . . 74817.3.1.3.2 Generation of Weighted Soft-Bits . . . . . . . . . 748

17.3.1.4 Performance Analysis . . . . . . . . . . . . . . . . . . . . 75017.3.1.4.1 BER and SER Performance of Standard SIC and

M-SIC for Different Numbers of Users and Re-ceiver Antennas . . . . . . . . . . . . . . . . . . 750

17.3.1.4.2 SER Performance of Standard SIC and M-SICon a Per-Detection Stage Basis . . . . . . . . . . 752

17.3.1.4.3 SER Performance of Standard SIC and M-SICon a Per-Detection Stage Basis for an Error-FreeReference . . . . . . . . . . . . . . . . . . . . . 753

17.3.1.4.4 Evaluation of the Error-Propagation-Related EventProbabilities . . . . . . . . . . . . . . . . . . . . 754

17.3.1.4.5 SER Performance of the Partial M-SIC . . . . . . 75617.3.1.4.6 SER Performance of Selective-Decision-Insertion

Aided M-SIC . . . . . . . . . . . . . . . . . . . 75817.3.1.4.7 BER Performance of Turbo-Coded SIC Detection-

Assisted SDMA-OFDM . . . . . . . . . . . . . 75817.3.1.5 Complexity Analysis . . . . . . . . . . . . . . . . . . . . 760

17.3.1.5.1 Complexity of Standard SIC . . . . . . . . . . . 76117.3.1.5.2 Complexity of M-SIC . . . . . . . . . . . . . . . 76417.3.1.5.3 Complexity of Partial M-SIC . . . . . . . . . . . 76617.3.1.5.4 Complexity Comparison of the Different SIC

Detectors . . . . . . . . . . . . . . . . . . . . . 767

Page 22: OFDM and MC-CDMA for Broadband Multi-user Communications ...

xxviii CONTENTS

17.3.1.6 Summary and Conclusions on SIC Detection Techniques . 77017.3.2 PIC Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 772

17.3.2.1 Uncoded PIC . . . . . . . . . . . . . . . . . . . . . . . . 77417.3.2.2 Turbo-Coded PIC . . . . . . . . . . . . . . . . . . . . . . 77717.3.2.3 Performance Analysis . . . . . . . . . . . . . . . . . . . . 778

17.3.2.3.1 BER Performance of Uncoded PIC Detection-Assisted SDMA-OFDM for Different Numbersof Users and Receiver Antennas . . . . . . . . . 778

17.3.2.3.2 BER Performance of Turbo-Coded PIC Detection-Assisted SDMA-OFDM for Different Numbersof Users and Receiver Antennas . . . . . . . . . 780

17.3.2.4 Complexity Analysis . . . . . . . . . . . . . . . . . . . . 78117.3.2.5 Summary and Conclusions on PIC Detection . . . . . . . . 783

17.3.3 ML Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78517.3.3.1 Standard ML Detection . . . . . . . . . . . . . . . . . . . 786

17.3.3.1.1 Representation of the Vector of Received Signalsas a Sample of a Multi-Variate Complex Gaus-sian Distribution Function . . . . . . . . . . . . . 786

17.3.3.1.2 Determination of the Vector of Transmitted Sym-bols by Maximizing the A Posteriori Probability . 786

17.3.3.2 Transform-Based ML Detection . . . . . . . . . . . . . . . 78817.3.3.3 ML-Assisted Soft-Bit Generation for Turbo-Decoding . . . 789

17.3.3.3.1 Standard ML-Assisted Soft-Bit Generation . . . . 78917.3.3.3.2 Simplification by Maximum Approximation . . . 790

17.3.3.4 Performance Analysis . . . . . . . . . . . . . . . . . . . . 79117.3.3.4.1 BER Performance of ML Detection-Assisted

SDMA-OFDM for Different Numbers of Usersand Reception Antennas . . . . . . . . . . . . . 791

17.3.3.4.2 BER Performance of Turbo-Coded ML Detection-Assisted SDMA-OFDM for Different Numbersof Users and Reception Antennas . . . . . . . . . 793

17.3.3.5 Complexity Analysis . . . . . . . . . . . . . . . . . . . . 79417.3.3.5.1 Complexity of Standard ML Detection . . . . . . 79417.3.3.5.2 Complexity of Transform-Based ML Detection . 79517.3.3.5.3 Complexity of ML-Assisted Maximum Approx-

imation Based Soft-Bit Generation . . . . . . . . 79617.3.3.6 Summary and Conclusions on ML Detection . . . . . . . . 797

17.3.4 Final Comparison of the Different Detection Techniques . . . . . . . 79817.3.4.1 BER Performance Comparison of the Different Detection

Techniques in Uncoded and Turbo-Coded Scenarios . . . . 79817.3.4.2 Complexity Comparison of the Different Detection Tech-

niques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80017.4 Performance Enhancement . . . . . . . . . . . . . . . . . . . . . . . . . . . 802

17.4.1 Adaptive Modulation Assisted SDMA-OFDM . . . . . . . . . . . . 80217.4.1.1 Outline of the Adaptive Single-User Receiver . . . . . . . 80217.4.1.2 Outline of the Adaptive Multi-User SDMA-OFDM Receiver 803

Page 23: OFDM and MC-CDMA for Broadband Multi-user Communications ...

CONTENTS xxix

17.4.1.3 Performance Assessment . . . . . . . . . . . . . . . . . . 80517.4.1.4 Summary and Conclusions . . . . . . . . . . . . . . . . . 807

17.4.2 Walsh-Hadamard Transform Spreading Assisted SDMA-OFDM . . . 80817.4.2.1 Outline of WHTS Assisted Single User OFDM Receiver . 809

17.4.2.1.1 Properties of the Walsh-Hadamard Transform . . 81017.4.2.1.2 Receiver Design . . . . . . . . . . . . . . . . . . 810

17.4.2.2 Outline of the WHTS Assisted Multi-User SDMA-OFDMReceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . 813

17.4.2.3 Performance Assessment . . . . . . . . . . . . . . . . . . 81617.4.2.3.1 Single-User WHTS-OFDM . . . . . . . . . . . . 81617.4.2.3.2 Multi-User SDMA-WHTS-OFDM . . . . . . . . 817

17.4.2.4 Summary and Conclusions . . . . . . . . . . . . . . . . . 81917.5 Chapter Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 820

17.5.1 Review of the Motivation for Multiple Reception Antenna SDMAReceivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 820

17.5.2 Summary and Conclusions Related to Linear Detectors . . . . . . . . 82117.5.3 Summary and Conclusions Related to Non-Linear Detectors . . . . . 822

17.5.3.1 SIC Detection . . . . . . . . . . . . . . . . . . . . . . . . 82217.5.3.2 PIC Detection . . . . . . . . . . . . . . . . . . . . . . . . 82417.5.3.3 ML Detection . . . . . . . . . . . . . . . . . . . . . . . . 82617.5.3.4 Overall Comparison of the Different Detection Techniques 82717.5.3.5 Summary and Conclusions Related to Performance En-

hancement Techniques . . . . . . . . . . . . . . . . . . . . 82717.5.3.5.1 Adaptive Modulation Assisted SDMA-OFDM . . 82817.5.3.5.2 Walsh-Hadamard Transform Spreading Assisted

SDMA-OFDM . . . . . . . . . . . . . . . . . . 828

Symbols in Chapter 17: MUD Techniques for SDMA-OFDM 829

18 OFDM Based Wireless Video System Design 83118.1 Adaptive Turbo-coded OFDM-Based Videotelephony . . . . . . . . . . . . . 831

18.1.1 Motivation and Background . . . . . . . . . . . . . . . . . . . . . . 83118.1.2 AOFDM Modem Mode Adaptation and Signaling . . . . . . . . . . . 83318.1.3 AOFDM Subband BER Estimation . . . . . . . . . . . . . . . . . . 83318.1.4 Video Compression and Transmission Aspects . . . . . . . . . . . . 83418.1.5 Comparison of Subband-Adaptive OFDM and Fixed Mode

OFDM Transceivers . . . . . . . . . . . . . . . . . . . . . . . . . . 83418.1.6 Subband-Adaptive OFDM Transceivers Having Different

Target Bit Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84018.1.7 Time-Variant Target Bit Rate OFDM Transceivers . . . . . . . . . . 844

18.2 Multi-user OFDM/H.263 HIPERLAN-like Video Telephony . . . . . . . . . 85118.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85118.2.2 The Video System . . . . . . . . . . . . . . . . . . . . . . . . . . . 853

18.2.2.1 OFDM transceiver . . . . . . . . . . . . . . . . . . . . . . 85318.2.2.2 Video Transmission Regime . . . . . . . . . . . . . . . . . 856

18.2.3 The OFDM Signal Model . . . . . . . . . . . . . . . . . . . . . . . 856

Page 24: OFDM and MC-CDMA for Broadband Multi-user Communications ...

xxx CONTENTS

18.2.4 Co-Channel Interference Cancellation Techniques . . . . . . . . . . 85818.2.5 Video System Performance Results . . . . . . . . . . . . . . . . . . 860

18.3 Chapter Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 868

19 Conclusions of the Book and Further Research Problems 86919.1 Summary and Conclusions of Part I . . . . . . . . . . . . . . . . . . . . . . 869

19.1.1 Summary of Part I . . . . . . . . . . . . . . . . . . . . . . . . . . . 86919.1.2 Conclusions of Part I . . . . . . . . . . . . . . . . . . . . . . . . . . 870

19.2 Summary and Conclusions of Part II . . . . . . . . . . . . . . . . . . . . . . 87119.2.1 Summary of Part II . . . . . . . . . . . . . . . . . . . . . . . . . . . 87119.2.2 Conclusions of Part II . . . . . . . . . . . . . . . . . . . . . . . . . 873

19.3 Summary and Conclusions of Part III . . . . . . . . . . . . . . . . . . . . . 88019.3.1 Pilot-Assisted Channel Estimation for Single-User OFDM . . . . . . 88019.3.2 Decision-Directed Channel Estimation for Single-User OFDM . . . . 881

19.3.2.1 Complexity Reduction by CIR-Related Domain Filtering . 88219.3.2.2 Compensation of the Channel’s Time-Variance by CIR-

Related Tap Prediction Filtering . . . . . . . . . . . . . . . 88319.3.2.3 Subject for Future Research: Successive Adaptivity of

KLT and CIR-Related Tap Prediction Filtering . . . . . . . 88419.3.3 Channel Estimation for Multi-User SDMA-OFDM . . . . . . . . . . 885

19.3.3.1 LS-Assisted DDCE . . . . . . . . . . . . . . . . . . . . . 88619.3.3.2 PIC-Assisted DDCE . . . . . . . . . . . . . . . . . . . . . 886

19.3.4 Uplink Detection Techniques for SDMA-OFDM . . . . . . . . . . . 88819.3.4.1 SIC Detection . . . . . . . . . . . . . . . . . . . . . . . . 88819.3.4.2 PIC Detection . . . . . . . . . . . . . . . . . . . . . . . . 88919.3.4.3 Improvement of MMSE- and PIC-Detection by Adaptive

Modulation or WHT Spreading . . . . . . . . . . . . . . . 88919.3.5 OFDM Based Wireless Video System Design . . . . . . . . . . . . . 889

19.4 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 890

Glossary 893

Bibliography 897

Page 25: OFDM and MC-CDMA for Broadband Multi-user Communications ...

AcknowledgmentsWe are indebted to our many colleagues who have enhanced our understanding of the subject,in particular to Prof. Emeritus Raymond Steele. These colleagues and valued friends, too nu-merous to be mentioned, have influenced our views concerning various aspects of wirelessmultimedia communications. We thank them for the enlightenment gained from our collab-orations on various projects, papers and books. We are grateful to Steve Braithwaite, JanBrecht, Jon Blogh, Marco Breiling, Marco del Buono, Sheng Chen, Peter Cherriman, Stan-ley Chia, Byoung Jo Choi, Joseph Cheung, Sheyam Lal Dhomeja, Dirk Didascalou, LimDongmin, Stephan Ernst, Peter Fortune, Eddie Green, David Greenwood, Hee Thong How,Thomas Keller, Ee Lin Kuan, W. H. Lam, C. C. Lee, Xiao Lin, Chee Siong Lee, Tong-Hooi Liew, Matthias Munster, Vincent Roger-Marchart, Jason Ng, Michael Ng, M. A. Nofal,Jeff Reeve, Redwan Salami, Clare Somerville, Rob Stedman, David Stewart, Jurgen Streit,Jeff Torrance, Spyros Vlahoyiannatos, William Webb, Stephan Weiss, John Williams, JasonWoodard, Choong Hin Wong, Henry Wong, James Wong, Lie-Liang Yang, Bee-Leong Yeap,Mong-Suan Yee, Kai Yen, Andy Yuen, and many others with whom we enjoyed an associa-tion.

We also acknowledge our valuable associations with the Virtual Centre of Excellence(VCE) in Mobile Communications, in particular with its chief executive, Dr Walter Tuttlebee,and other leading members of the VCE, namely Dr Keith Baughan, Prof. Hamid Aghvami,Prof. Ed Candy, Prof. John Dunlop, Prof. Barry Evans, Prof. Peter Grant, Dr Mike Barnard,Prof. Joseph McGeehan, Prof. Steve McLaughlin and many other valued colleagues. Oursincere thanks are also due to the EPSRC, UK for supporting our research. We would alsolike to thank Dr Joao Da Silva, Dr Jorge Pereira, Dr Bartholome Arroyo, Dr Bernard Barani,Dr Demosthenes Ikonomou, Dr Fabrizio Sestini and other valued colleagues from the Com-mission of the European Communities, Brussels, Belgium.

We feel particularly indebted to Denise Harvey for her skilful assistance in correcting thefinal manuscript in LaTeX. Without the kind support of Mark Hammond, Sarah Hinton, ZoePinnock and their colleagues at the Wiley editorial office in Chichester, UK this monographwould never have reached the readers. Finally, our sincere gratitude is due to the numerousauthors listed in the Author Index — as well as to those whose work was not cited owing tospace limitations — for their contributions to the state of the art, without whom this bookwould not have materialised.

Lajos Hanzo, Matthias Munster, Buyong-Jo Choi and Thomas KellerDepartment of Electronics and Computer Science

University of Southampton

1

Page 26: OFDM and MC-CDMA for Broadband Multi-user Communications ...

Glossary

ACF Auto-correlation Function

ACTS Advanced Communications Technologies and Services - a Eu-ropean research programme

ADSL Asynchronous Digital Subscriber Loop

AOFDM Adaptive Orthogonal Frequency Division Multiplexing

APR A Priori

APT A Posteriori

AWGN Additive White Gaussian Noise

BER Bit-Error Ratio

BLAST Bell Labs Space-Time architecture

BPOS Bit per OFDM Symbol

BPSK Binary Phase-Shift Keying

BS Basestation

CDF Cumulative Distribution Function

CDMA Code-Division Multiple Access

CE Channel Estimation

CIR Channel Impulse Response

DAB Digital Audio Broadcasting

DDCE Decision-Directed Channel Estimation

893

Page 27: OFDM and MC-CDMA for Broadband Multi-user Communications ...

894 Glossary

DDCP Decision-Directed Channel Prediction

DFT Discrete Fourier Transform

DMUX Demultiplexer

DTTB Digital Terrestrial Television Broadcast

D-BLAST Diagonal BLAST

EM Expectation Maximization

EVD EigenValue Decomposition

FDM Frequency Division Multiplexing

FDMA Frequency Division Multiple Access

FEC Forward Error Correction

FFT Fast Fourier Transform

FIR Finite Impulse Response

HF High-Frequency

ICI Inter-subCarrier Interference

IDFT Inverse Discrete Fourier Transform

IFFT Inverse Fast Fourier Transform

IIR Infinite Impulse Response

ISI Inter-Symbol Interference

IWHT Inverse Walsh Hadamard Transform

KLT Karhunen-Loeve Transform

LLR Log-Likelihood Ratio

LS Least-Squares

LSE Least-Squares Error

MA Multiple Access

MC Multi-Carrier

MIMO Multiple-Input Multiple-Output

ML Maximum Likelihood

Page 28: OFDM and MC-CDMA for Broadband Multi-user Communications ...

Glossary 895

MLSE Maximum Likelihood Sequence Estimation

MMSE Minimum Mean-Square Error

MSE Mean-Square Error

MU Multi-User

MUD Multi-User Detection

MUI Multi-User Interference

MUX Multiplexer

MV Minimum Variance

MVDR Minimum Variance Distortionless Response

OFDM Orthogonal Frequency Division Multiplexing

PAPR Peak-to-Average Power Ratio

PDF Probability Density Function

PIC Parallel Interference Cancellation

PSAM Pilot Symbol Aided Modulation

PSD Power Spectral Density

PSK Phase-Shift Keying

QAM Quadrature Amplitude Modulation

QPSK Quadrature Phase-Shift Keying

RLS Recursive Least-Squares

RNS Residue Number System

SB Subband

SDM Space-Division Multiplexing

SDMA Space-Division Multiple Access

SDI Selective Decision Insertion

SER Symbol Error Ratio

SIC Successive Interference Cancellation

SINR Signal-to-Interference-plus-Noise Ratio

Page 29: OFDM and MC-CDMA for Broadband Multi-user Communications ...

896 Glossary

SIR Signal-to-Interference Ratio

SMI Sample Matrix Inversion

SNR Signal-to-Noise Ratio

STC Space-Time Coding

SVD Singular-Value Decomposition

TCM Trellis-Coded Modulation

TDD Time-Division Duplexing

TDMA Time-Division Multiple Access

TTCM Turbo-Trellis Coded Modulation

V-BLAST Vertical BLAST

WATM Wireless Asynchronous Transfer Mode

WHT Walsh-Hadamard Transform

WHTS Walsh-Hadamard Transform Spreading

ZF Zero-Forcing

1D One-Dimensional

2D Two-Dimensional

Page 30: OFDM and MC-CDMA for Broadband Multi-user Communications ...

Bibliography

[1] R. W. Chang, “Synthesis of band-limited orthogonal signals for multichannel datatransmission,” Bell Systems Technical Journal, vol. 46, pp. 1775–1796, December1966.

[2] L. Hanzo, W. Webb, and T. Keller, Single- and Multi-carrier Quadrature AmplitudeModulation. New York, USA: IEEE Press-John Wiley, April 2000.

[3] W. Webb and R. Steele, “Variable rate QAM for mobile radio,” IEEE Transactions onCommunications, vol. 43, pp. 2223–2230, July 1995.

[4] L. Hanzo, “Bandwidth-efficient wireless multimedia communications,” Proceedingsof the IEEE, vol. 86, pp. 1342–1382, July 1998.

[5] S. Nanda, K. Balachandran, and S. Kumar, “Adaptation techniques in wireless packetdata services,” IEEE Communications Magazine, vol. 38, pp. 54–64, January 2000.

[6] L. Hanzo, F. Somerville, and J. Woodard, Voice Compression and Communications:Principles and Applications for Fixed and Wireless Channels. IEEE Press and JohnWiley, 2001. (For detailed contents and sample chapters please refer to http://www-mobile.ecs.soton.ac.uk.).

[7] L. Hanzo, P. Cherriman, and J. Streit, Wireless Video Communications: From Secondto Third Generation Systems, WLANs and Beyond. IEEE Press and John Wiley, 2001.(For detailed contents please refer to http://www-mobile.ecs.soton.ac.uk.).

[8] M. Zimmermann and A. Kirsch, “The AN/GSC-10/KATHRYN/variable rate data mo-dem for HF radio,” IEEE Transactions on Communication Technology, vol. CCM–15,pp. 197–205, April 1967.

[9] S. B. Weinstein and P. M. Ebert, “Data transmission by frequency division multiplex-ing using the discrete fourier transform,” IEEE Transactions on Communication Tech-nology, vol. COM–19, pp. 628–634, October 1971.

[10] L. Cimini, “Analysis and simulation of a digital mobile channel using orthogonalfrequency division multiplexing,” IEEE Transactions on Communications, vol. 33,pp. 665–675, July 1985.

[11] M. Alard and R. Lassalle, “Principles of modulation and channel coding for digitalbroadcasting for mobile receivers,” EBU Review, Technical No. 224, pp. 47–69, August1987.

897

Page 31: OFDM and MC-CDMA for Broadband Multi-user Communications ...

898 BIBLIOGRAPHY

[12] Proceedings of 1st International Symposium,DAB, (Montreux, Switzerland), June1992.

[13] A. Peled and A. Ruiz, “Frequency domain data transmission using reduced computa-tional complexity algorithms,” in Proceedings of International Conference on Acous-tics, Speech, and Signal Processing, ICASSP’80, vol. 3, (Denver, CO, USA), pp. 964–967, IEEE, 9–11 April 1980.

[14] B. Hirosaki, “An orthogonally multiplexed QAM system using the discrete fouriertransform,” IEEE Transactions on Communications, vol. COM-29, pp. 983–989, July1981.

[15] H. Kolb, “Untersuchungen uber ein digitales mehrfrequenzverfahren zur datenubertra-gung,” in Ausgewahlte Arbeiten uber Nachrichtensysteme, no. 50, UniversitatErlangen-Nurnberg, 1982.

[16] H. Schussler, “Ein digitales Mehrfrequenzverfahren zur Datenubertragung,” inProfessoren-Konferenz, Stand und Entwicklungsaussichten der Daten und Telekom-munikation, (Darmstadt, Germany), pp. 179–196, 1983.

[17] K. Preuss, “Ein Parallelverfahren zur schnellen Datenubertragung Im Ortsnetz,” inAusgewahlte Arbeiten uber Nachrichtensysteme, no. 56, Universitat Erlangen-Nurn-berg, 1984.

[18] R. Ruckriem, “Realisierung und messtechnische Untersuchung an einem digitalen Par-allelverfahren zur Datenubertragung im Fernsprechkanal,” in Ausgewahlte Arbeitenuber Nachrichtensysteme, no. 59, Universitat Erlangen-Nurnberg, 1985.

[19] I. Kalet, “The multitone channel,” IEEE Transactions on Communications, vol. 37,pp. 119–124, February 1989.

[20] B. Hirosaki, “An analysis of automatic equalizers for orthogonally multiplexed QAMsystems,” IEEE Transactions on Communications, vol. COM-28, pp. 73–83, January1980.

[21] P. Bello, “Selective fading limitations of the KATHRYN modem and some system de-sign considerations,” IEEE Trabsactions on Communications Technology, vol. COM–13, pp. 320–333, September 1965.

[22] E. Powers and M. Zimmermann, “A digital implementation of a multichannel datamodem,” in Proceedings of the IEEE International Conference on Communications,(Philadelphia, USA), 1968.

[23] R. Chang and R. Gibby, “A theoretical study of performance of an orthogonal mul-tiplexing data transmission scheme,” IEEE Transactions on Communication Technol-ogy, vol. COM–16, pp. 529–540, August 1968.

[24] B. R. Saltzberg, “Performance of an efficient parallel data transmission system,” IEEETransactions on Communication Technology, pp. 805–813, December 1967.

[25] K. Fazel and G. Fettweis, eds., Multi-Carrier Spread-Spectrum. Dordrecht: Kluwer,1997. ISBN 0-7923-9973-0.

[26] F. Classen and H. Meyr, “Synchronisation algorithms for an OFDM system for mobilecommunications,” in Codierung fur Quelle, Kanal und Ubertragung, no. 130 in ITGFachbericht, (Berlin), pp. 105–113, VDE–Verlag, 1994.

Page 32: OFDM and MC-CDMA for Broadband Multi-user Communications ...

BIBLIOGRAPHY 899

[27] F. Classen and H. Meyr, “Frequency synchronisation algorithms for OFDM systemssuitable for communication over frequency selective fading channels,” in Proceedingsof IEEE VTC ’94, (Stockholm, Sweden), pp. 1655–1659, IEEE, 8–10 June 1994.

[28] R. van Nee and R. Prasad, OFDM for wireless multimedia communications. London:Artech House Publishers, 2000.

[29] P. Vandenameele, L. van der Perre, and M. Engels, Space division multiple access forwireless local area networks. Kluwer, 2001.

[30] S. Shepherd, P. van Eetvelt, C. Wyatt-Millington, and S. Barton, “Simple codingscheme to reduce peak factor in QPSK multicarrier modulation,” Electronics Letters,vol. 31, pp. 1131–1132, July 1995.

[31] A. E. Jones, T. A. Wilkinson, and S. K. Barton, “Block coding scheme for reduction ofpeak to mean envelope power ratio of multicarrier transmission schemes,” ElectronicsLetters, vol. 30, pp. 2098–2099, December 1994.

[32] D. Wulich, “Reduction of peak to mean ratio of multicarrier modulation by cycliccoding,” Electronics Letters, vol. 32, pp. 432–433, 1996.

[33] S. Muller and J. Huber, “Vergleich von OFDM–Verfahren mit reduzierter Spitzenleis-tung,” in 2. OFDM–Fachgesprach in Braunschweig, 1997.

[34] M. Pauli and H.-P. Kuchenbecker, “Neue Aspekte zur Reduzierung der durch Nichtlin-earitaten hervorgerufenen Außerbandstrahlung eines OFDM–Signals,” in 2. OFDM–Fachgesprach in Braunschweig, 1997.

[35] T. May and H. Rohling, “Reduktion von Nachbarkanalstorungen in OFDM–Funkubertragungssystemen,” in 2. OFDM–Fachgesprach in Braunschweig, 1997.

[36] D. Wulich, “Peak factor in orthogonal multicarrier modulation with variable levels,”Electronics Letters, vol. 32, no. 20, pp. 1859–1861, 1996.

[37] H. Schmidt and K. Kammeyer, “Adaptive Subtragerselektion zur Reduktion des Crestfaktors bei OFDM,” in 3. OFDM Fachgesprach in Braunschweig, 1998.

[38] R. Dinis and A. G. ao, “Performance evaluation of OFDM transmission with conven-tional and 2-branch combining power amplification schemes,” in Proceeding of IEEEGlobal Telecommunications Conference, Globecom 96, (London, UK), pp. 734–739,IEEE, 18–22 November 1996.

[39] R. Dinis, P. Montezuma, and A. G. ao, “Performance trade-offs with quasi-linearlyamplified OFDM through a 2-branch combining technique,” in Proceedings of IEEEVTC’96, (Atlanta, GA, USA), pp. 899–903, IEEE, 28 April–1 May 1996.

[40] R. Dinis, A. G. ao, and J. Fernandes, “Adaptive transmission techniques for the mo-bile broadband system,” in Proceeding of ACTS Mobile Communication Summit ’97,(Aalborg, Denmark), pp. 757–762, ACTS, 7–10 October 1997.

[41] B. Daneshrad, L. Cimini Jr., and M. Carloni, “Clustered-OFDM transmitter imple-mentation,” in Proceedings of IEEE International Symposium on Personal, Indoor,and Mobile Radio Communications (PIMRC’96), (Taipei, Taiwan), pp. 1064–1068,IEEE, 15–18 October 1996.

[42] M. Okada, H. Nishijima, and S. Komaki, “A maximum likelihood decision based non-linear distortion compensator for multi-carrier modulated signals,” IEICE Transactionson Communications, vol. E81B, no. 4, pp. 737–744, 1998.

Page 33: OFDM and MC-CDMA for Broadband Multi-user Communications ...

900 BIBLIOGRAPHY

[43] R. Dinis and A. G. ao, “Performance evaluation of a multicarrier modulation techniqueallowing strongly nonlinear amplification,” in Proceedings of ICC 1998, pp. 791–796,IEEE, 1998.

[44] T. Pollet, M. van Bladel, and M. Moeneclaey, “BER sensitivity of OFDM systems tocarrier frequency offset and wiener phase noise,” IEEE Transactions on Communica-tions, vol. 43, pp. 191–193, February/March/April 1995.

[45] H. Nikookar and R. Prasad, “On the sensitivity of multicarrier transmission overmultipath channels to phase noise and frequency offset,” in Proceedings of IEEEInternational Symposium on Personal, Indoor, and Mobile Radio Communications(PIMRC’96), (Taipei, Taiwan), pp. 68–72, IEEE, 15–18 October 1996.

[46] W. Warner and C. Leung, “OFDM/FM frame synchronization for mobile radio datacommunication,” IEEE Transactions on Vehicular Technology, vol. 42, pp. 302–313,August 1993.

[47] H. Sari, G. Karam, and I. Jeanclaude, “Transmission techniques for digital terrestrialTV broadcasting,” IEEE Communications Magazine, pp. 100–109, February 1995.

[48] P. Moose, “A technique for orthogonal frequency division multiplexing frequency off-set correction,” IEEE Transactions on Communications, vol. 42, pp. 2908–2914, Oc-tober 1994.

[49] K. Bruninghaus and H. Rohling, “Verfahren zur Rahmensynchronisation in einemOFDM-System,” in 3. OFDM Fachgesprach in Braunschweig, 1998.

[50] F. Daffara and O. Adami, “A new frequency detector for orthogonal multicarriertransmission techniques,” in Proceedings of IEEE Vehicular Technology Conference(VTC’95), (Chicago, USA), pp. 804–809, IEEE, 15–28 July 1995.

[51] M. Sandell, J.-J. van de Beek, and P. Borjesson, “Timing and frequency synchronisa-tion in OFDM systems using the cyclic prefix,” in Proceedings of International Sym-posium on Synchronisation, (Essen, Germany), pp. 16–19, 14–15 December 1995.

[52] N. Yee, J.-P. Linnartz, and G. Fettweis, “Multicarrier CDMA in indoor wireless radionetworks,” in PIMRC’93, pp. 109–113, 1993.

[53] A. Chouly, A. Brajal, and S. Jourdan, “Orthogonal multicarrier techniques appliedto direct sequence spread spectrum CDMA systems,” in Proceedings of the IEEEGlobal Telecommunications Conference 1993, (Houston, TX, USA), pp. 1723–1728,29 November – 2 December 1993.

[54] G. Fettweis, A. Bahai, and K. Anvari, “On multi-carrier code division multiple access(MC-CDMA) modem design,” in Proceedings of IEEE VTC ’94, (Stockholm, Swe-den), pp. 1670–1674, IEEE, 8–10 June 1994.

[55] K. Fazel and L. Papke, “On the performance of convolutionally-coded CDMA/OFDMfor mobile communication system,” in PIMRC’93, pp. 468–472, 1993.

[56] R. Prasad and S. Hara, “Overview of multicarrier CDMA,” IEEE CommunicationsMagazine, pp. 126–133, December 1997.

[57] B.-J. Choi, E.-L. Kuan, and L. Hanzo, “Crest–factor study of MC-CDMA and OFDM,”in Proceeding of VTC’99 (Fall), vol. 1, (Amsterdam, Netherlands), pp. 233–237, IEEE,19–22 September 1999.

Page 34: OFDM and MC-CDMA for Broadband Multi-user Communications ...

BIBLIOGRAPHY 901

[58] P. Hoher, “TCM on frequency-selective land-mobile fading channels,” in InternationalWorkshop on Digital Communications, (Tirrenia, Italy), pp. 317–328, September 1991.

[59] J. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “Equalizer training algorithms formulticarrier modulation systems.,” in International Conference on Communications,(Geneva, Switzerland), pp. 761–765, IEEE, May 1993.

[60] S. K. Wilson, R. E. Khayata, and J. M. Cioffi, “16QAM Modulation with OrthogonalFrequency Division Multiplexing in a Rayleigh-Fading Environment,” in VehicularTechnology Conference, vol. 3, (Stockholm, Sweden), pp. 1660–1664, IEEE, June1994.

[61] J.-J. van de Beek, O. Edfors, M. Sandell, S. K. Wilson, and P. O. Borjesson, “Onchannel estimation in OFDM systems,” in Proceedings of Vehicular Technology Con-ference, vol. 2, (Chicago, IL USA), pp. 815–819, IEEE, July 1995.

[62] O. Edfors, M. Sandell, J. J. v. .d. Beek, S. K. Wilson, and P. O. Borjesson, “OFDMChannel Estimation by Singular Value Decomposition,” in Proceedings of VehicularTechnology Conference, vol. 2, (Atlanta, GA USA), pp. 923–927, IEEE, April 28 -May 1 1996.

[63] P. Frenger and A. Svensson, “A Decision Directed Coherent Detector for OFDM,”in Proceedings of Vehicular Technology Conference, vol. 3, (Atlanta, GA USA),pp. 1584–1588, IEEE, Apr 28 - May 1 1996.

[64] V. Mignone and A. Morello, “CD3-OFDM: A Novel Demodulation Scheme for Fixedand Mobile Receivers,” IEEE Transactions on Communications, vol. 44, pp. 1144–1151, September 1996.

[65] F. Tufvesson and T. Maseng, “Pilot Assisted Channel Estimation for OFDM in Mo-bile Cellular Systems,” in Proceedings of Vehicular Technology Conference, vol. 3,(Phoenix, Arizona), pp. 1639–1643, IEEE, May 4-7 1997.

[66] P. Hoher, S. Kaiser, and P. Robertson, “Two-dimensional pilot-symbol-aided channelestimation by Wiener filtering,” in International Conference on Acoustics, Speech andSignal Processing, (Munich, Germany), pp. 1845–1848, IEEE, April 1997.

[67] P. Hoher, S. Kaiser, and P. Robertson, “Pilot–symbol–aided channel estimation in timeand frequency,” in Proceedings of Global Telecommunications Conference: The Mini–Conf., (Phoenix, AZ), pp. 90–96, IEEE, November 1997.

[68] Y. Li, L. J. Cimini, and N. R. Sollenberger, “Robust Channel Estimation for OFDMSystems with Rapid Dispersive Fading Channels,” IEEE Transactions on Communica-tions, vol. 46, pp. 902–915, April 1998.

[69] O. Edfors, M. Sandell, J.-J. v. d. Beek, S. K. Wilson, and P. O. Borjesson, “OFDMChannel Estimation by Singular Value Decomposition,” IEEE Transactions on Com-munications, vol. 46, pp. 931–939, April 1998.

[70] F. Tufvesson, M. Faulkner, and T. Maseng, “Pre-Compensation for Rayleigh FadingChannels in Time Division Duplex OFDM Systems,” in Proceedings of 6th Interna-tional Workshop on Intelligent Signal Processing and Communications Systems, (Mel-bourne, Australia), pp. 57–33, IEEE, November 5-6 1998.

Page 35: OFDM and MC-CDMA for Broadband Multi-user Communications ...

902 BIBLIOGRAPHY

[71] M. Itami, M. Kuwabara, M. Yamashita, H. Ohta, and K. Itoh, “Equalization of Or-thogonal Frequency Division Multiplexed Signal by Pilot Symbol Assisted MultipathEstimation,” in Proceedings of Global Telecommunications Conference, vol. 1, (Syd-ney, Australia), pp. 225–230, IEEE, November 8-12 1998.

[72] E. Al-Susa and R. F. Ormondroyd, “A Predictor-Based Decision Feedback ChannelEstimation Method for COFDM with High Resilience to Rapid Time-Variations,” inProceedings of Vehicular Technology Conference, vol. 1, (Amsterdam, Netherlands),pp. 273–278, IEEE, September 19-22 1999.

[73] B. Yang, K. B. Letaief, R. S. Cheng, and Z. Cao, “Robust and Improved Channel Esti-mation for OFDM Systems in Frequency Selective Fading Channels,” in Proceedingsof Global Telecommunications Conference, vol. 5, (Rio de Janeiro, Brazil), pp. 2499–2503, IEEE, December 5-9 1999.

[74] Y. Li, “Pilot-Symbol-Aided Channel Estimation for OFDM in Wireless Systems,”IEEE Transactions on Vehicular Technology, vol. 49, pp. 1207–1215, July 2000.

[75] B. Yang, K. B. Letaief, R. S. Cheng, and Z. Cao, “Channel Estimation for OFDMTransmission in Multipath Fading Channels Based on Parametric Channel Modeling,”IEEE Transactions on Communications, vol. 49, pp. 467–479, March 2001.

[76] S. Zhou and G. B. Giannakis, “Finite-Alphabet Based Channel Estimation for OFDMand Related Multicarrier Systems,” IEEE Transactions on Communications, vol. 49,pp. 1402–1414, August 2001.

[77] X. Wang and K. J. R. Liu, “OFDM Channel Estimation Based on Time-FrequencyPolynomial Model of Fading Multipath Channel,” in Proceedings of Vehicular Tech-nology Conference, vol. 1, (Atlantic City, NJ USA), pp. 460–464, IEEE, October 7-112001.

[78] B. Yang, Z. Cao, and K. B. Letaief, “Analysis of Low-Complexity Windowed DFT-Based MMSE Channel Estimator for OFDM Systems,” IEEE Transactions on Com-munications, vol. 49, pp. 1977–1987, November 2001.

[79] B. Lu and X. Wang, “Bayesian Blind Turbo Receiver for Coded OFDM Systems withFrequency Offset and Frequency-Selective Fading,” IEEE Journal on Selected Areasin Communications, vol. 19, pp. 2516–2527, December 2001.

[80] Y. Li and N. R. Sollenberger, “Clustered OFDM with Channel Estimation for HighRate Wireless Data,” IEEE Transactions on Communications, vol. 49, pp. 2071–2076,December 2001.

[81] M. Morelli and U. Mengali, “A Comparison of Pilot-Aided Channel Estimation Meth-ods for OFDM Systems,” IEEE Transactions on Signal Processing, vol. 49, pp. 3065–3073, December 2001.

[82] M.-X. Chang and Y. T. Su, “Model-Based Channel Estimation for OFDM Signals inRayleigh Fading,” IEEE Transactions on Communications, vol. 50, pp. 540–544, April2002.

[83] M. C. Necker and G. L. Stuber, “Totally Blind Channel Estimation for OFDM overFast Varying Mobile Channels,” in Proceedings of International Conference on Com-munications, (New York, NY USA), IEEE, April 28 - May 2 2002.

Page 36: OFDM and MC-CDMA for Broadband Multi-user Communications ...

BIBLIOGRAPHY 903

[84] B. Yang, Z. Cao, and K. B. Letaief, “Low Complexity Channel Estimator Based onWindowed DFT and Scalar Wiener Filter for OFDM Systems,” in Proceedings of In-ternational Conference on Communications, vol. 6, (Helsinki, Finnland), pp. 1643–1647, IEEE, June 11-14 2001.

[85] J. R. Deller, J. G. Proakis, and J. H. L. Hansen, Discrete-Time Processing of SpeechSignals. Macmillan Publishing Company, 1993.

[86] L. Hanzo, F. C. A. Somerville, and J. P. Woodard, Voice Compression and Communi-cations. IEEE Press Wiley Inter-Science, 2001.

[87] A. Duel-Hallen, S. Hu, and H. Hallen, “Long Range Prediction of Fading Signals,”IEEE Signal Processing Magazine, vol. 17, pp. 62–75, May 2000.

[88] F. Tufvesson, Design of Wireless Communication Systems - Issues on Synchronization,Channel Estimation and Multi-Carrier Systems. Department of Applied Electronics,Lund University, Sweden, 2000.

[89] W. H. Press, S. A. Teukolshy, W. T. Vetterling, and B. P. Flannery, Numerical Recipesin C. Cambridge University Press, 1992.

[90] T. K. Moon and W. C. Stirling, Mathematical Methods and Algorithms for SignalProcessing. Prentice Hall, 2000.

[91] Y. Li, N. Seshadri, and S. Ariyavisitakul, “Channel Estimation for OFDM Systemswith Transmitter Diversity in Mobile Wireless Channels,” IEEE Journal on SelectedAreas in Communications, vol. 17, pp. 461–471, March 1999.

[92] W. G. Jeon, K. H. Paik, and Y. S. Cho, “An Efficient Channel Estimation Technique forOFDM Systems with Transmitter Diversity,” in Proceedings of International Sympo-sium on Personal, Indoor and Mobile Radio Communications, vol. 2, (Hilton LondonMetropole Hotel, London, UK), pp. 1246–1250, IEEE, September 18-21 2000.

[93] Y. Li, “Optimum Training Sequences for OFDM Systems with Multiple Transmit An-tennas,” in Proc. of Global Telecommunications Conference, vol. 3, (San Francisco,United States), pp. 1478–1482, IEEE, November 27 - December 1 2000.

[94] A. N. Mody and G. L. Stuber, “Parameter Estimation for OFDM with Transmit Re-ceive Diversity,” in Proceedings of Vehicular Technology Conference, vol. 2, (Rhodes,Greece), pp. 820–824, IEEE, May 6-9 2001.

[95] Y. Gong and K. B. Letaief, “Low Rank Channel Estimation for Space-Time CodedWideband OFDM Systems,” in Proceedings of Vehicular Technology Conference,vol. 2, (Atlantic City Convention Center, Atlantic City, NJ USA), pp. 772–776, IEEE,October 7-11 2001.

[96] W. Jeon, K. H. Paik, and Y. S. Cho, “Two-Dimensional MMSE Channel Estimationfor OFDM Systems with Transmitter Diversity,” in Proceedings of Vehicular Technol-ogy Conference, vol. 3, (Atlantic City Convention Center, Atlantic City, NJ USA),pp. 1682–1685, IEEE, October 7-11 2001.

[97] F. W. Vook and T. A. Thomas, “MMSE Multi-User Channel Estimation for Broad-band Wireless Communications,” in Proceedings of Global Telecommunications Con-ference, vol. 1, (San Antonio, Texas, USA), pp. 470–474, IEEE, November 25-292001.

Page 37: OFDM and MC-CDMA for Broadband Multi-user Communications ...

904 BIBLIOGRAPHY

[98] Y. Xie and C. N. Georghiades, “An EM-based Channel Estimation Algorithm forOFDM with Transmitter Diversity,” in Proceedings of Global TelecommunicationsConference, vol. 2, (San Antonio, Texas, USA), pp. 871–875, IEEE, November 25-29 2001.

[99] Y. Li, “Simplified Channel Estimation for OFDM Systems with Multiple Transmit An-tennas,” IEEE Transactions on Wireless Communications, vol. 1, pp. 67–75, January2002.

[100] Bolcskei, J. R. W. Heath, and A. J. Paulray, “Blind Channel Identification and Equal-ization in OFDM-Based Multi-Antenna Systems,” IEEE Transactions on Signal Pro-cessing, vol. 50, pp. 96–109, January 2002.

[101] H. Minn, D. I. Kim, and V. K. Bhargava, “A Reduced Complexity Channel Estima-tion for OFDM Systems with Transmit Diversity in Mobile Wireless Channels,” IEEETransactions on Wireless Communications, vol. 50, pp. 799–807, May 2002.

[102] S. B. Slimane, “Channel Estimation for HIPERLAN/2 with Transmitter Diversity,” inInternational Conference on Communications, (New York, NY USA), IEEE, April 28- May 2 2002.

[103] C. Komninakis, C. Fragouli, A. H. Sayed, and R. D. Wesel, “Multi-Input Multi-OutputFading Channel Tracking and Equalization Using Kalman Estimation,” IEEE Trans-actions on Signal Processing, vol. 50, pp. 1065–1076, May 2002.

[104] G. J. Foschini, “Layered Space-Time Architecture for Wireless Communication in aFading Environment when using Multi-Element Antennas”,” Bell Labs Technical Jour-nal, vol. Autumn, pp. 41–59, 1996.

[105] F. Vook and K. Baum, “Adaptive antennas for OFDM,” in Proceedings of IEEE Vehic-ular Technology Conference (VTC’98), vol. 2, (Ottawa, Canada), pp. 608–610, IEEE,18–21 May 1998.

[106] X. Wang and H. V. Poor, “Robust Adaptive Array for Wireless Communications,”IEEE Transactions on Communications, vol. 16, pp. 1352–1366, October 1998.

[107] K.-K. Wong, R. S.-K. Cheng, K. B. Letaief, and R. D. Murch, “Adaptive Anten-nas at the Mobile and Base Station in an OFDM/TDMA System,” in Proceedingsof Global Telecommunications Conference, vol. 1, (Sydney, Australia), pp. 183–190,IEEE, November 8-12 1998.

[108] Y. Li and N. R. Sollenberger, “Interference Suppression in OFDM Systems usingAdaptive Antenna Arrays,” in Proceedings of Global Telecommunications Conference,vol. 1, (Sydney, Australia), pp. 213–218, IEEE, November 8-12 1998.

[109] G. D. Golden, G. J. Foschini, R. A. Valenzuela, and P. W. Wolniansky, “Detection Al-gorithms and Initial Laboratory Results using V-BLAST Space-Time CommunicationArchitecture,” IEE Electronics Letters, vol. 35, pp. 14–16, January 1999.

[110] Y. Li and N. R. Sollenberger, “Adaptive Antenna Arrays for OFDM Systems withCochannel Interference,” IEEE Transactions on Communications, vol. 47, pp. 217–229, February 1999.

[111] P. Vandenameele, L. Van der Perre, M. Engels, and H. Man, “A novel class of uplinkOFDM/SDMA algorithms for WLAN,” in Proceedings of Global Telecommunications

Page 38: OFDM and MC-CDMA for Broadband Multi-user Communications ...

BIBLIOGRAPHY 905

Conference — Globecom’99, vol. 1, (Rio de Janeiro, Brazil), pp. 6–10, IEEE, 5–9December 1999.

[112] M. Speth, A. Senst, and H. Meyr, “Low complexity space-frequency MLSE for multi-user COFDM,” in Proceedings of Global Telecommunications Conference — Globe-com’99, vol. 1, (Rio de Janeiro, Brazil), pp. 2395–2399, IEEE, 5–9 December 1999.

[113] C. Z. W. H. Sweatman, J. S. Thompson, B. Mulgrew, and P. M. Grant, “A Compar-ison of Detection Algorithms including BLAST for Wireless Communication usingMultiple Antennas,” in Proceedings of International Symposium on Personal, Indoorand Mobile Radio Communications, vol. 1, (Hilton London Metropole Hotel, London,UK), pp. 698–703, IEEE, September 18-21 2000.

[114] R. van Nee, A. van Zelst, and G. Awater, “Maximum Likelihood Decoding in a Space-Division Multiplexing System,” in Proceedings of Vehicular Technology Conference,vol. 1, (Tokyo, Japan), pp. 6–10, IEEE, May 15-18 2000.

[115] G. Awater, A. van Zelst, and R. van Nee, “Reduced Complexity Space DivisionMultiplexing Receivers,” in Proceedings of Vehicular Technology Conference, vol. 1,(Tokyo, Japan), pp. 11–15, IEEE, May 15-18 2000.

[116] A. van Zelst, R. van Nee, and G. A. Awater, “Space Division Multiplexing (SDM) forOFDM systems,” in Proceedings of Vehicular Technology Conference, vol. 2, (Tokyo,Japan), pp. 1070–1074, IEEE, May 15-18 2000.

[117] P. Vandenameele, L. V. D. Perre, M. G. E. Engels, B. Gyselinckx, and H. J. D. Man,“A Combined OFDM/SDMA Approach,” IEEE Journal on Selected Areas in Commu-nications, vol. 18, pp. 2312–2321, November 2000.

[118] X. Li, H. C. Huang, A. Lozano, and G. J. Foschini, “Reduced-Complexity DetectionAlgorithms for Systems Using Multi-Element Arrays,” in Proc. of Global Telecommu-nications Conference, vol. 2, (San Francisco, United States), pp. 1072–1076, IEEE,November 27 - December 1 2000.

[119] C. M. Degen, C. M. Walke, A. Lecomte, and B. Rembold, “Adaptive MIMO Tech-niques for the UTRA-TDD Mode,” in Proceedings of Vehicular Technology Confer-ence, vol. 1, (Rhodes, Greece), pp. 108–112, IEEE, May 6-9 2001.

[120] X. Zhu and R. D. Murch, “Multi-Input Multi-Output Maximum Likelihood Detectionfor a Wireless System,” in Proceedings of Vehicular Technology Conference, vol. 1,(Rhodes, Greece), pp. 137–141, IEEE, May 6-9 2001.

[121] J. Li, K. B. Letaief, R. S. Cheng, and Z. Cao, “Joint Adaptive Power Control andDetection in OFDM/SDMA Wireless LANs,” in Proceedings of Vehicular TechnologyConference, vol. 1, (Rhodes, Greece), pp. 746–750, IEEE, May 6-9 2001.

[122] F. Rashid-Farrokhi, K. J. R. Liu, and L. Tassiulas, “Transmit Beamforming and PowerControl for Cellular Wireless Systems,” IEEE Journal on Selected Areas in Communi-cations, vol. 16, pp. 1437–1450, October 1998.

[123] A. van Zelst, R. van Nee, and G. A. Awater, “Turbo-BLAST and its Performance,” inProceedings of Vehicular Technology Conference, vol. 2, (Rhodes, Greece), pp. 1282–1286, IEEE, May 6-9 2001.

Page 39: OFDM and MC-CDMA for Broadband Multi-user Communications ...

906 BIBLIOGRAPHY

[124] A. Benjebbour, H. Murata, and S. Yoshida, “Performance of Iterative Successive De-tection Algorithm with Space-Time Transmission,” in Proceedings of Vehicular Tech-nology Conference, vol. 2, (Rhodes, Greece), pp. 1287–1291, IEEE, May 6-9 2001.

[125] M. Sellathurai and S. Haykin, “A Simplified Diagonal BLAST Architecture with It-erative Parallel-Interference Cancellation Receivers,” in Proceedings of InternationalConference on Communications, vol. 10, (Helsinki, Finnland), pp. 3067–3071, IEEE,June 11-14 2001.

[126] A. Bhargave, R. J. P. Figueiredo, and T. Eltoft, “A Detection Algorithm for the V-BLAST System,” in Proceedings of Global Telecommunications Conference, vol. 1,(San Antonio, Texas, USA), pp. 494–498, IEEE, November 25-29 2001.

[127] S. Thoen, L. Deneire, L. V. D. Perre, and M. Engels, “Constrained Least SquaresDetector for OFDM/SDMA-based Wireless Networks,” in Proceedings of GlobalTelecommunications Conference, vol. 2, (San Antonio, Texas, USA), pp. 866–870,IEEE, November 25-29 2001.

[128] Y. Li and Z.-Q. Luo, “Parallel Detection for V-BLAST System,” in Proceedings ofInternational Conference on Communications, (New York, NY USA), IEEE, April 28- May 2 2002.

[129] Y. Li and N. Sollenberger, “Interference suppression in OFDM systems using adaptiveantenna arrays,” in Proceeding of Globecom’98, (Sydney, Australia), pp. 213–218,IEEE, 8–12 November 1998.

[130] Y. Li and N. Sollenberger, “Adaptive antenna arrays for OFDM systems with cochan-nel interference,” IEEE Transactions on Communications, vol. 47, pp. 217–229,February 1999.

[131] Y. Li, L. Cimini, and N. Sollenberger, “Robust channel estimation for OFDM sys-tems with rapid dispersive fading channels,” IEEE Transactions on Communications,vol. 46, pp. 902–915, April 1998.

[132] C. Kim, S. Choi, and Y. Cho, “Adaptive beamforming for an OFDM sytem,” in Pro-ceeding of VTC’99 (Spring), (Houston, TX, USA), IEEE, 16–20 May 1999.

[133] L. Lin, L. Cimini Jr., and J.-I. Chuang, “Turbo codes for OFDM with antenna di-versity,” in Proceeding of VTC’99 (Spring), (Houston, TX, USA), IEEE, 16–20 May1999.

[134] M. Munster, T. Keller, and L. Hanzo, “Co–channel interference suppression assistedadaptive OFDM in interference limited environments,” in Proceeding of VTC’99(Fall), vol. 1, (Amsterdam, Netherlands), pp. 284–288, IEEE, 19–22 September 1999.

[135] S. Verdu, Multiuser Detection. Cambridge University Press, 1998.

[136] J. Litva and T.-Y. Lo, Digital Beamforming in Wireless Communications. London:Artech House Publishers, 1996.

[137] P. Vandenameele, L. Van der Perre, M. Engels, B. Gyselinckx, and H. Man, “A novelclass of uplink OFDM/SDMA algorithms: A statistical performance analysis,” inProceedings of Vehicular Technology Conference, vol. 1, (Amsterdam, Netherlands),pp. 324–328, IEEE, 19–22 September 1999.

Page 40: OFDM and MC-CDMA for Broadband Multi-user Communications ...

BIBLIOGRAPHY 907

[138] F. Mueller-Roemer, “Directions in audio broadcasting,” Journal Audio EngineeringSociety, vol. 41, pp. 158–173, March 1993.

[139] G. Plenge, “DAB — a new radio broadcasting system — state of development andways for its introduction,” Rundfunktech. Mitt., vol. 35, no. 2, 1991.

[140] ETSI, Digital Audio Broadcasting (DAB), 2nd ed., May 1997. ETS 300 401.

[141] ETSI, Digital Video Broadcasting (DVB); Framing structure, channel coding and mod-ulation for digital terrestrial television, August 1997. EN 300 744 V1.1.2.

[142] P. Chow, J. Tu, and J. Cioffi, “A discrete multitone transceiver system for HDSL ap-plications,” IEEE journal on selected areas in communications, vol. 9, pp. 895–908,August 1991.

[143] P. Chow, J. Tu, and J. Cioffi, “Performance evaluation of a multichannel transceiversystem for ADSL and VHDSL services,” IEEE journal on selected areas in communi-cations, vol. 9, pp. 909–919, August 1991.

[144] K. Sistanizadeh, P. Chow, and J. Cioffi, “Multi-tone transmission for asymmetric digi-tal subscriber lines (ADSL),” in Proceedings of ICC’93, pp. 756–760, IEEE, 1993.

[145] ANSI, ANSI/T1E1.4/94-007, Asymmetric Digital Subscriber Line (ADSL) Metallic In-terface., August 1997.

[146] A. Burr and P. Brown, “Application of OFDM to powerline telecommunications,” in3rd International Symposium On Power-Line Communications, (Lancaster, UK), 30March – 1 April 1999.

[147] M. Deinzer and M. Stoger, “Integrated PLC-modem based on OFDM,” in 3rd Inter-national Symposium On Power-Line Communications, (Lancaster, UK), 30 March – 1April 1999.

[148] R. Prasad and H. Harada, “A novel OFDM based wireless ATM system for futurebroadband multimedia communications,” in Proceeding of ACTS Mobile Communica-tion Summit ’97, (Aalborg, Denmark), pp. 757–762, ACTS, 7–10 October 1997.

[149] C. Ciotti and J. Borowski, “The AC006 MEDIAN project — overview and state–of–the–art,” in Proc. ACTS Summit ’96, (Granada, Spain), pp. 362–367, 27–29 November1996.

[150] J. Borowski, S. Zeisberg, J. Hubner, K. Koora, E. Bogenfeld, and B. Kull, “Perfor-mance of OFDM and comparable single carrier system in MEDIAN demonstrator60GHz channel,” in Proceeding of ACTS Mobile Communication Summit ’97, (Aal-borg, Denmark), pp. 653–658, ACTS, 7–10 October 1997.

[151] M. D. Benedetto, P. Mandarini, and L. Piazzo, “Effects of a mismatch in the in–phaseand in–quadrature paths, and of phase noise, in QDCPSK-OFDM modems,” in Pro-ceeding of ACTS Mobile Communication Summit ’97, (Aalborg, Denmark), pp. 769–774, ACTS, 7–10 October 1997.

[152] T. Rautio, M. Pietikainen, J. Niemi, J. Rautio, K. Rautiola, and A. Mammela, “Archi-tecture and implementation of the 150 Mbit/s OFDM modem (invited paper),” in IEEEBenelux Joint Chapter on Communications and Vehicular Technology, 6th Symposiumon Vehicular Technology and Communications, (Helsinki, Finland), p. 11, 12–13 Oc-tober 1998.

Page 41: OFDM and MC-CDMA for Broadband Multi-user Communications ...

908 BIBLIOGRAPHY

[153] J. Ala-Laurila and G. Awater, “The magic WAND — wireless ATM network demond-trator system,” in Proceeding of ACTS Mobile Communication Summit ’97, (Aalborg,Denmark), pp. 356–362, ACTS, 7–10 October 1997.

[154] J. Aldis, E. Busking, T. Kleijne, R. Kopmeiners, R. van Nee, R. Mann-Pelz, andT. Mark, “Magic into reality, building the WAND modem,” in Proceeding of ACTSMobile Communication Summit ’97, (Aalborg, Denmark), pp. 775–780, ACTS, 7–10October 1997.

[155] E. Hallmann and H. Rohling, “OFDM-Vorschlage fur UMTS,” in 3. OFDM Fachge-sprach in Braunschweig, 1998.

[156] “Universal mobile telecommunications system (UMTS); UMTS terrestrial radio ac-cess (UTRA); concept evaluation,” tech. rep., ETSI, 1997. TR 101 146.

[157] O. Edfors, Low-Complexity Algorithms in Digital Receivers. Lulea University of Tech-nology, 1996.

[158] M. Sandell, Design and analysis of estimators for multicarrier modulation and ultra-sonic imaging. Lulea University of Technology, 1996.

[159] M. Munster and L. Hanzo, “MMSE Channel Prediction For Symbol-by-symbol Adap-tive OFDM Systems,” in 5th International OFDM-Workshop 2000, pp. 35/1–35/6,Technische Universitat Hamburg-Harburg, September 2000.

[160] M. Munster and L. Hanzo, “MMSE Channel Prediction Assisted Symbol-by-SymbolAdaptive OFDM,” in Proceedings of International Conference on Communications,(Birmingham, Alabama), IEEE, April 28 - May 2 2002.

[161] M. Munster and L. Hanzo, “Parallel Interference Cancellation Assisted Decision-Directed Channel Estimation for Multi-User OFDM,” in 6th International OFDM-Workshop 2000, (Hotel Hafen Hamburg, Germany), pp. 35/1–35/5, Technische Uni-versitat Hamburg-Harburg, September 18-19 2001.

[162] M. Munster and L. Hanzo, “PIC-Assisted Decision-Directed Channel Estimation forMulti-User OFDM Environments,” in accepted for publication in Proceedings of Ve-hicular Technology Conference, IEEE, September 2002.

[163] M. Munster and L. Hanzo, “Co-Channel Interference Cancellation Techniques for An-tenna Array Assisted Multiuser OFDM Systems,” in Proceedings of 3G-’2000 Confer-ence, vol. 1, (London, Great Britain), pp. 256–260, IEE, IEE, March 27-29 2000.

[164] L. Hanzo, W. Webb, and T. Keller, Single- and Multi-Carrier Quadrature AmplitudeModulation: Principles and Applications for Personal Communications, WLANs andBroadcasting. IEEE Press, 2000.

[165] H. Kolb Private Communications.

[166] J. Lindner Private Communications.

[167] D. Schnidman, “A generalized nyquist criterion and an optimum linear receiver for apulse modulation system,” Bell Systems Technical Journal, pp. 2163–2177, November1967.

[168] W. V. Etten, “An optimum linear receiver for multiple channel digital transmissionsystems,” IEEE Transactions on Communications, vol. COM-23, pp. 828–834, August1975.

Page 42: OFDM and MC-CDMA for Broadband Multi-user Communications ...

BIBLIOGRAPHY 909

[169] A. Kaye and D. George, “Transmission of multiplexed PAM signals over multiplechannel and diversity systems,” IEEE Tranactions on Communications Technology,vol. COM-18, pp. 520–525, October 1970.

[170] M. Aaron and D. Tufts, “Intersymbol interference and error probability,” IEEE Trans-actions on Information Theory, vol. IT-12, pp. 26–34, January 1966.

[171] D. Tufts, “Nyquist’s problem: The joint optimization of transmitter and receiver inpulse amplitude modulation,” Proceedings of IEEE, vol. 53, pp. 248–259, March 1965.

[172] H. Schuler, Digitale Systeme zur Signalverarbeitung. Berlin, Heidelberg, and NewYork: Springer Verlag, 1974.

[173] J. K. Cavers, “An Analysis of Pilot Symbol Assisted Modulation for Rayleigh Fad-ing Channels,” IEEE Transactions on Vehicular Technology, vol. 40, pp. 686–693,November 1991.

[174] H. Harmuth, Transmission of Information by Orthogonal Time Functions. Berlin:Springer Verlag, 1969.

[175] H. Harmuth, “On the transmission of information by orthogonal time functions,” AIEE,July 1960.

[176] J. Proakis, Digital communications. McGraw-Hill, 1995.

[177] R. O’Neill and L. Lopes, “Performance of amplitude limited multitone signals,” inProceedings of IEEE VTC ’94, (Stockholm, Sweden), IEEE, 8–10 June 1994.

[178] X. Li and L. Cimini, “Effects of clipping and filtering on the performance of OFDM,”in Proceedings of IEEE VTC’97, (Phoenix, AZ, USA), pp. 1634–1638, IEEE, 4–7 May1997.

[179] A. Garcia and M. Calvo, “Phase noise and sub–carrier spacing effects on the perfor-mance of an OFDM communications system,” IEEE Communications Letters, vol. 2,pp. 11–13, January 1998.

[180] W. Robins, Phase Noise in signal sources, vol. 9 of IEE Telecommunication series.Peter Peregrinus Ltd., 1982.

[181] C. Tellambura, Y. Guo, and S. Barton, “Equaliser performance for HIPERLAN inindoor channels,” Wireless Personal Communications, vol. 3, no. 4, pp. 397–410, 1996.

[182] T. Ojanpera, M. Gudmundson, P. Jung, J. Skold, R. Pirhonen, G. Kramer, andA. Toskala, “FRAMES: - hybrid multiple access technology,” in Proceedings of IEEEISSSTA’96, (Mainz, Germany), pp. 334–338, IEEE, September 1996.

[183] M. Failli, “Digital land mobile radio communications COST 207,” tech. rep., EuropeanCommission, 1989.

[184] J. Torrance and L. Hanzo, “Comparative study of pilot symbol assisted modemschemes,” in Proceedings of IEE Conference on Radio Receivers and Associated Sys-tems (RRAS’95), (Bath, UK), pp. 36–41, IEE, 26–28 September 1995.

[185] K. Fazel, S. Kaiser, P. Robertson, and M. Ruf, “A concept of digital terrestrial televi-sion broadcasting,” Wireless Personal Communications, vol. 2, pp. 9–27, 1995.

[186] J. Kuronen, V.-P. Kaasila, and A. Mammela, “An all-digital symbol tracking algorithmin an OFDM system by using the cyclic prefix,” in Proc. ACTS Summit ’96, (Granada,Spain), pp. 340–345, 27–29 November 1996.

Page 43: OFDM and MC-CDMA for Broadband Multi-user Communications ...

910 BIBLIOGRAPHY

[187] M. Kiviranta and A. Mammela, “Coarse frame synchronization structures in OFDM,”in Proc. ACTS Summit ’96, (Granada, Spain), pp. 464–470, 27–29 November 1996.

[188] Z. Li and A. Mammela, “An all digital frequency synchronization scheme for OFDMsystems,” in Proceedings of the IEEE International Symposium on Personal, Indoorand Mobile Radio Communications (PIMRC), (Helsinki, Finland), pp. 327–331, 1–4September 1997.

[189] J. Bingham, “Method and apparatus for correcting for clock and carrier frequencyoffset, and phase jitter in multicarrier modems.” U.S. Patent No. 5206886, 27 April1993.

[190] T. de Couasnon, R. Monnier, and J. Rault, “OFDM for digital TV broadcasting,” SignalProcessing, vol. 39, pp. 1–32, 1994.

[191] P. Mandarini and A. Falaschi, “SYNC proposals.” MEDIAN Design Note, January1996.

[192] T. Keller and L. Hanzo, “Orthogonal frequency division multiplex synchronisationtechniques for wireless local area networks,” in Proceedings of IEEE InternationalSymposium on Personal, Indoor, and Mobile Radio Communications (PIMRC’96),vol. 3, (Taipei, Taiwan), pp. 963–967, IEEE, 15–18 October 1996.

[193] R. Steele and W. Webb, “Variable rate QAM for data transmission over Rayleigh fad-ing channels,” in Proceeedings of Wireless ’91, (Calgary, Alberta), pp. 1–14, IEEE,1991.

[194] H. Matsuoka, S. Sampei, N. Morinaga, and Y. Kamio, “Adaptive modulation systemwith variable coding rate concatenated code for high quality multi-media communica-tions systems,” in Proceedings of IEEE VTC’96, vol. 1, (Atlanta, GA, USA), pp. 487–491, IEEE, 28 April–1 May 1996.

[195] S.-G. Chua and A. Goldsmith, “Variable-rate variable-power mQAM for fading chan-nels,” in Proceedings of IEEE VTC’96, (Atlanta, GA, USA), pp. 815–819, IEEE, 28April–1 May 1996.

[196] D. Pearce, A. Burr, and T. Tozer, “Comparison of counter-measures against slowRayleigh fading for TDMA systems,” in IEE Colloquium on Advanced TDMA Tech-niques and Applications, (London, UK), pp. 9/1–9/6, IEE, 28 October 1996. digest1996/234.

[197] V. Lau and M. Macleod, “Variable rate adaptive trellis coded QAM for high bandwidthefficiency applications in Rayleigh fading channels,” in Proceedings of IEEE VehicularTechnology Conference (VTC’98), (Ottawa, Canada), pp. 348–352, IEEE, 18–21 May1998.

[198] J. Torrance and L. Hanzo, “Latency and networking aspects of adaptive modems overslow indoors Rayleigh fading channels,” IEEE Transactions on Vehicular Technology,vol. 48, no. 4, pp. 1237–1251, 1998.

[199] J. Torrance, L. Hanzo, and T. Keller, “Interference aspects of adaptive modems overslow Rayleigh fading channels,” IEEE Transactions on Vehicular Technology, vol. 48,pp. 1527–1545, September 1999.

Page 44: OFDM and MC-CDMA for Broadband Multi-user Communications ...

BIBLIOGRAPHY 911

[200] A. Czylwik, “Adaptive OFDM for wideband radio channels,” in Proceeding of IEEEGlobal Telecommunications Conference, Globecom 96, (London, UK), pp. 713–718,IEEE, 18–22 November 1996.

[201] P. Chow, J. Cioffi, and J. Bingham, “A practical discrete multitone transceiver loadingalgorithm for data transmission over spectrally shaped channels,” IEEE Transactionson Communications, vol. 48, pp. 772–775, 1995.

[202] L. Hanzo, C. Wong, and M. Yee, Adaptive Wireless Transceivers. John Wi-ley, IEEE Press, 2002. (For detailed contents, please refer to http://www-mobile.ecs.soton.ac.uk.).

[203] L. Hanzo, T. Liew, and B. Yeap, Turbo Coding, Turbo Equalisation and Space-TimeCoding. John Wiley, IEEE Press, 2002. (For detailed contents, please refer tohttp://www-mobile.ecs.soton.ac.uk.).

[204] J. Blogh and L. Hanzo, 3G Systems and Intelligent Networking. John Wi-ley and IEEE Press, 2002. (For detailed contents, please refer to http://www-mobile.ecs.soton.ac.uk.).

[205] J. Torrance, Adaptive Full Response Digital Modulation for Wireless CommunicationsSystems. PhD thesis, Department of Electronics and Computer Science, University ofSouthampton, UK, 1997.

[206] K. Miya, O. Kato, K. Homma, T. Kitade, M. Hayashi, and T. Ue, “Wideband CDMAsystems in TDD-mode operation for IMT-2000,” IEICE Transactions on Communica-tions, vol. E81-B, pp. 1317–1326, July 1998.

[207] O. Kato, K. Miya, K. Homma, T. Kitade, M. Hayashi, and M. Watanabe, “Experimen-tal performance results of coherent wideband DS-CDMA with TDD scheme,” IEICETransactions on Communications., vol. E81-B, pp. 1337–1344, July 1998.

[208] T. Keller and L. Hanzo, “Blind-detection assisted sub-band adaptive turbo-codedOFDM schemes,” in Proceeding of VTC’99 (Spring), (Houston, TX, USA), pp. 489–493, IEEE, 16–20 May 1999.

[209] J. Torrance and L. Hanzo, “Optimisation of switching levels for adaptive modulationin a slow Rayleigh fading channel,” Electronics Letters, vol. 32, pp. 1167–1169, 20June 1996.

[210] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near shannon limit error-correctingcoding and decoding: Turbo codes,” in Proceedings of the International Conferenceon Communications, (Geneva, Switzerland), pp. 1064–1070, May 1993.

[211] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes forminimising symbol error rate,” IEEE Transactions on Information Theory, vol. 20,pp. 284–287, March 1974.

[212] T. Keller, M. Muenster, and L. Hanzo, “A burst–by–burst adaptive OFDM widebandspeech transceiver.” submitted to IEEE JSAC, 1999.

[213] T. Keller, J. Woodard, and L. Hanzo, “Turbo-coded parallel modem techniques forpersonal communications,” in Proceedings of IEEE VTC’97, (Phoenix, AZ, USA),pp. 2158–2162, IEEE, 4–7 May 1997.

Page 45: OFDM and MC-CDMA for Broadband Multi-user Communications ...

912 BIBLIOGRAPHY

[214] T. Keller and L. Hanzo, “Adaptive orthogonal frequency division multiplexingschemes,” in Proceeding of ACTS Mobile Communication Summit ’98, (Rhodes,Greece), pp. 794–799, ACTS, 8–11 June 1998.

[215] C. E. Shannon, “Communication in the presence of noise,” Proceedings of the I.R.E.,vol. 37, pp. 10–22, January 1949.

[216] L. Piazzo, “A fast algorithm for near-optimum power and bit allocation in OFDMsystems.” to appear in Electronics Letters, December 1999.

[217] T. Willink and P. Wittke, “Optimization and performance evaluation of multicarriertransmission,” IEEE Transactions on Information Theory, vol. 43, pp. 426–440, March1997.

[218] R. Fischer and J. Huber, “A new loading algorithm for discrete multitone transmis-sion,” in Proceeding of IEEE Global Telecommunications Conference, Globecom 96,(London, UK), pp. 713–718, IEEE, 18–22 November 1996.

[219] S. Lai, R. Cheng, K. Letaief, and R. Murch, “Adaptive trellis coded mqam and poweroptimization for ofdm transmission,” in Proceedings of VTC’99 (Spring), (Houston,TX, USA), IEEE, 16–20 May 1999.

[220] D. Hughes-Hartogs, “Ensemble modem structure for imperfect transmission media.”U.S Patents Nos. 4,679,227 (July 1988) 4,731,816 (March 1988) and 4,833,796 (May1989).

[221] J. Bingham, “Multicarrier modulation for data transmission: an idea whose time hascome,” IEEE Communications Magazine, pp. 5–14, May 1990.

[222] L. Godara, “Applications of antenna arrays to mobile communications, part II: Beam-forming and direction-of-arrival considerations,” Proceedings of the IEEE, vol. 85,pp. 1193–1245, August 1997.

[223] Y. Li, “Pilot-symbol-aided channel estimation for OFDM in wireless systems,” in Pro-ceedings of VTC’99 (Spring), (Houston, TX, USA), IEEE, 16–20 May 1999.

[224] N. Szabo and R. Tanaka, Residue Arithmetic and Its Applications to Computer Tech-nology. New York, USA: McGraw-Hill, 1967.

[225] R. Watson and C. Hastings, “Self-checked computation using residue arithmetic,” Pro-ceedings of the IEEE, vol. 54, pp. 1920–1931, December 1966.

[226] R. Pyndiah, “Iterative decoding of product codes: Block turbo codes,” in Proceedingsof the International Symposium on Turbo Codes & Related Topics, (Brest, France),pp. 71–79, 3–5 September 1997.

[227] P. Adde, R. Pyndiah, O. Raoul, and J.-R. Inisan, “Block turbo decoder design,” inProceedings of the International Symposium on Turbo Codes & Related Topics, (Brest,France), pp. 166–169, 3–5 September 1997.

[228] W. Jenkins and B. Leon, “The use of residue number system in the design of finite im-pulse response filters,” IEEE Transactions on Circuits Systems, vol. CAS-24, pp. 191–201, April 1977.

[229] M. Soderstrand, “A high-speed, low-cost, recursive digital filter using residue numberarithmetic,” Proceedings of IEEE, vol. 65, pp. 1065–1067, July 1977.

Page 46: OFDM and MC-CDMA for Broadband Multi-user Communications ...

BIBLIOGRAPHY 913

[230] M. Soderstrand and E. Fields, “Multipliers for residue number arithmetic digital fil-ters,” Electronics Letters, vol. 13, pp. 164–166, March 1977.

[231] M. Soderstrand, W. Jenkins, and G. Jullien, Residue Number System Arithmetic: Mod-ern Applications in Digital Signal Processing. New York, USA: IEEE Press, 1986.

[232] E. Claudio, G. Orlandi, and F. Piazza, “A Systolic Redundant Residue Arithmetic ErrorCorrection Circuit,” IEEE Transactions on Computers, vol. 42, pp. 427–432, April1993.

[233] H. Krishna, K.-Y. Lin, and J.-D. Sun, “A coding theory approach to error control inredundant residue number systems - part I: theory and single error correction,” IEEETransactions on Circuits Systems, vol. 39, pp. 8–17, January 1992.

[234] J.-D. Sun and H. Krishna, “A coding theory approach to error control in redundantresidue number systems — part II: multiple error detection and correction,” IEEETransactions on Circuits Systems, vol. 39, pp. 18–34, January 1992.

[235] T. Liew, L.-L. Yang, and L. Hanzo, “Soft-decision redundant residue number systembased error correction coding,” in Proceeding of VTC’99 (Fall), (Amsterdam, Nether-lands), pp. 2974–2978, IEEE, 19–22 September 1999.

[236] L.-L. Yang and L. Hanzo, “Residue number system arithmetic assisted m-ary modula-tion,” IEEE Communications Letters, vol. 3, pp. 28–30, February 1999.

[237] L.-L. Yang and L. Hanzo, “Performance of residue number system based DS-CDMAover multipath fading channels using orthogonal sequences,” ETT, vol. 9, pp. 525–536,November–December 1998.

[238] H. Krishna and J.-D. Sun, “On theory and fast algorithms for error correction in residuenumber system product codes,” IEEE Transactions on Comput., vol. 42, pp. 840–852,July 1993.

[239] D. Chase, “A class of algorithms for decoding block codes with channel measurementinformation,” IEEE Transactions on Information Theory, vol. IT-18, pp. 170–182, Jan-uary 1972.

[240] J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary block and convolu-tional codes,” IEEE Transactions on Information Theory, vol. 42, pp. 429–445, March1996.

[241] H. Nickl, J. Hagenauer, and F. Burkett, “Approaching shannon’s capacity limit by0.27 dB using simple hamming codes,” IEEE Communications Letters, vol. 1, pp. 130–132, September 1997.

[242] T. Liew, C. Wong, and L. Hanzo, “Block turbo coded burst-by-burst adaptivemodems,” in Proceedings of Microcoll’99, Budapest, Hungary, pp. 59–62, 21–24March 1999.

[243] B. Yeap, T. Liew, J. Hamorsky, and L. Hanzo, “Comparative study of turbo equalis-ers using convolutional codes and block-based turbo-codes for GMSK modulation,” inProceedings of VTC 1999 Fall, (Amsterdam, Holland), pp. 2974–2978, 19-22 Septem-ber 1999.

[244] M. Yee, T. Liew, and L. Hanzo, “Radial basis function decision feedback equalisationassisted block turbo burst-by-burst adaptive modems,” in Proceedings of VTC ’99 Fall,(Amsterdam, Holland), pp. 1600–1604, 19-22 September 1999.

Page 47: OFDM and MC-CDMA for Broadband Multi-user Communications ...

914 BIBLIOGRAPHY

[245] C. Wong, T. Liew, and L. Hanzo, “Turbo coded burst by burst adaptive widebandmodulation with blind modem mode detection,” in Proceeding of ACTS Mobile Com-munication Summit ’99, (Sorrento, Italy), pp. 303–308, ACTS, 8–11 June 1999.

[246] A. Viterbi, CDMA: Principles of Spread Spectrum Communication. Reading MA,USA: Addison-Wesley, June 1995. ISBN 0201633744.

[247] L. Miller and J. Lee, CDMA Systems Engineering Handbook. London, UK: ArtechHouse, 1998.

[248] R. A. Scholtz, “The origins of spread spectrum communications,” IEEE Transactionson Communications, vol. 30, no. 5, pp. 822–854, 1982.

[249] G. R. Cooper and R. W. Nettleton, “A spread-spectrum technique for high-capacitymobile communications,” IEEE Transactions on Vehicular Technology, vol. 27,pp. 264–275, November 1978.

[250] O. C. Yue, “Spread spectrum mobile radio, 1977-1982,” IEEE Transactions on Vehic-ular Technology, vol. 32, pp. 98–105, February 1983.

[251] M. Simon, J. Omura, R. Scholtz, and B. Levitt, Spread Spectrum CommunicationsHandbook. New York, USA: McGraw-Hill, 1994.

[252] Y. Yoon, R. Kohno, and H. Imai, “A SSMA system with cochannel interference can-cellation with multipath fading channels,” IEEE Journal on Selected Areas in Commu-nications, vol. 11, pp. 1067–1075, September 1993.

[253] K. Gilhousen, I. Jacobs, R. Padovani, A. Viterbi, L. Weaver Jr., and C. Wheatley III,“On the capacity of a cellular CDMA system,” IEEE Transactions on Vehicular Tech-nology, vol. 40, pp. 303–312, May 1991.

[254] P. Patel and J. Holtzman, “Analysis of a simple successive interference cancellationscheme in a DS/CDMA system,” IEEE Journal on Selected Areas in Communications,vol. 12, pp. 796–807, June 1994.

[255] R. Lupas and S. Verdu, “Linear multiuser detectors for synchronous code divison mul-tiple access channels,” IEEE Transactions on Information Theory, vol. 35, pp. 123–136, January 1989.

[256] P. Jung and J. Blanz, “Joint detection with coherent receiver antenna diversity inCDMA mobile radio systems,” IEEE Transactions on Vehicular Technology, vol. 44,pp. 76–88, February 1995.

[257] J. Thompson, P. Grant, and B. Mulgrew, “Smart antenna arrays for CDMA systems,”IEEE Personal Communications Magazine, vol. 3, pp. 16–25, October 1996.

[258] R. Steele and L. Hanzo, eds., Mobile Radio Communications. New York, USA: IEEEPress - John Wiley & Sons, 2nd ed., 1999.

[259] K. Feher, Wireless digital communications: Modulation and spread spectrum. Engle-wood Cliffs, NJ: Prentice-Hall, 1995.

[260] R. Kohno, R. Meidan, and L. Milstein, “Spread spectrum access methods for wirelesscommunication,” IEEE Communications Magazine, vol. 33, pp. 58–67, January 1995.

[261] R. Price and E. Green Jr., “A communication technique for multipath channels,” Pro-ceedings of the IRE, vol. 46, pp. 555–570, March 1958.

Page 48: OFDM and MC-CDMA for Broadband Multi-user Communications ...

BIBLIOGRAPHY 915

[262] U. Grob, A. L. Welti, E. Zollinger, R. Kung, and H. Kaufmann, “Microcellular direct-sequence spread-spectrum radio system using n-path rake receiver,” IEEE Journal onSelected Areas in Communications, vol. 8, no. 5, pp. 772–780, 1990.

[263] P. W. Baier, “A critical review of CDMA,” in Proceedings of the IEEE Vehicular Tech-nology Conference (VTC), (Atlanta, GA, USA), pp. 6–10, 28 April–1 May 1996.

[264] Telcomm. Industry Association (TIA), Washington, DC, USA, Mobile station — Basestation compatibility standard for dual-mode wideband spread spectrum cellular sys-tem, EIA/TIA Interim Standard IS-95, July 1993.

[265] S. Verdu, Multiuser Detection. Cambridge, UK: Cambridge University Press, 1998.

[266] E. Kuan and L. Hanzo, “Burst-by-burst adaptive multiuser detection cdma: A frame-work for existing and future wireless standards,” Proceedings of the IEEE, December2002.

[267] R. Prasad, Universal Wireless Personal Communications. London, UK: Artech HousePublishers, 1998.

[268] S. Glisic and B. Vucetic, Spread Spectrum CDMA Systems for Wireless Communica-tions. London, UK: Artech House, April 1997. ISBN 0890068585.

[269] G. Woodward and B. Vucetic, “Adaptive detection for DS-CDMA,” Proceedings of theIEEE, vol. 86, pp. 1413–1434, July 1998.

[270] S. Moshavi, “Multi-user detection for DS-CDMA communications,” IEEE Communi-cations Magazine, vol. 34, pp. 124–136, October 1996.

[271] A. Duel-Hallen, J. Holtzman, and Z. Zvonar, “Multiuser detection for cdma systems,”IEEE Personal Communications, vol. 2, pp. 46–58, April 1995.

[272] J. Laster and J. Reed, “Interference rejection in digital wireless communications,”IEEE Signal Processing Magazine, vol. 14, pp. 37–62, May 1997.

[273] J. Thompson, P. Grant, and B. Mulgrew, “Performance of antenna array receiver algo-rithms for CDMA,” in Proceedings of the IEEE Global Telecommunications Confer-ence (GLOBECOM), (London, UK), pp. 570–574, 18–22 November 1996.

[274] A. Naguib and A. Paulraj, “Performance of wireless CDMA with m-ary orthogonalmodulation and cell site antenna arrays,” IEEE Journal on Selected Areas in Commu-nications, vol. 14, pp. 1770–1783, December 1996.

[275] L. Godara, “Applications of antenna arrays to mobile communications, part I: Perfor-mance improvement, feasibility, and system considerations,” Proceedings of the IEEE,vol. 85, pp. 1029–1060, July 1997.

[276] R. Kohno, H. Imai, M. Hatori, and S. Pasupathy, “Combination of adaptive arrayantenna and a canceller of interference for direct-sequence spread-specturn multiple-access system,” IEEE Journal on Selected Areas in Communications, vol. 8, pp. 675–681, May 1998.

[277] A. J. Viterbi, A. M. Viterbi, and E. Zehavi, “Performance of power-controlledwideband terrestrial digital communication,” IEEE Transactions on Communications,vol. 41, no. 4, pp. 559–569, 1993.

Page 49: OFDM and MC-CDMA for Broadband Multi-user Communications ...

916 BIBLIOGRAPHY

[278] F. Simpson and J. Holtzman, “Direct sequence CDMA power control, interleaving, andcoding,” IEEE Journal on Selected Areas in Communications, vol. 11, pp. 1085–1095,September 1993.

[279] S. Ariyavisitakul and L. Chang, “Signal and interference statistics of a CDMA sys-tem with feedback power control,” IEEE Transactions on Communications, vol. 41,pp. 1626–1634, November 1993.

[280] S. Ariyavisitakul, “Signal and interference statistics of a CDMA system with feedbackpower control - Part II,” IEEE Transactions on Communications, vol. 42, no. 2/3/4,pp. 597–605, 1994.

[281] J. G. Proakis, Digital Communications. Mc-Graw Hill International Editions, 3rd ed.,1995.

[282] R. W. Chang and R. A. Gibby, “A theoretical study of performance of an orthogonalmultiplexing data transmission scheme,” IEEE Transactions on Communication Tech-nology, vol. 16, no. 4, pp. 529–540, 1968.

[283] P. V. Eetvelt, S. J. Shepherd, and S. K. Barton, “The distribution of peak factor inQPSK multi-carrier modulation,” Wireless Personal Communications, vol. 2, pp. 87–96, 1995.

[284] V. M. DaSilva and E. S. Sousa, “Performance of orthogonal CDMA codes for quasi-synchronous communication systems,” in Proceedings of IEEE ICUPC 1993, (Ottawa,Canada), pp. 995–999, October 1993.

[285] L. Vandendorpe, “Multitone direct sequence CDMA system in an indoor wireless envi-ronment,” in Proceedings of IEEE SCVT 1993, (Delft, The Netherlands), pp. 4.1:1–8,October 1993.

[286] R. Prasad and S. Hara, “Overview of multi-carrier CDMA,” in Proceedings of the IEEEInternational Symposium on Spread Spectrum Techniques and Applications (ISSSTA),(Mainz, Germany), pp. 107–114, 22–25 September 1996.

[287] D. Scott, P. Grant, S. McLaughlin, G. Povey, and D. Cruickshank, “Research in recon-figurable terminal design for mobile and personal communications,” tech. rep., De-partment of Electrical Engineering, The University of Edinburgh, March 1997.

[288] N. Yee and J. P. Linnartz, “MICRO 93-101: Multi-carrier CDMA in an indoor wirelessradio channel,” tech. rep., University of California at Berkeley, 1994.

[289] L.-L. Yang and L. Hanzo, “Performance of generalized multicarrier DS-CDMA overNakagami-m fading channels,” IEEE Transactions on Communications, (http://www-mobile.ecs.soton.ac.uk/lly), vol. 50, pp. 956–966, June 2002.

[290] L.-L. Yang and L. Hanzo, “Slow frequency-hopping multicarrier DS-CDMAfor trans-mission over Nakagami multipath fading channels,” IEEE Journal on Selected Areasin Communications, vol. 19, no. 7, pp. 1211–1221, 2001.

[291] E. A. Sourour and M. Nakagawa, “Performance of orthogonal multicarrier CDMA ina multipath fading channel,” IEEE Transactions on Communications, vol. 44, pp. 356–367, March 1996.

[292] L.-L. Yang and L. Hanzo, “Slow frequency-hopping multicarrier DS-CDMA,” in Inter-national Symposium on Wireless Personal Multimedia Communications (WPMC’99),(Amsterdam, The Netherlands), pp. 224–229, September:21–23 1999.

Page 50: OFDM and MC-CDMA for Broadband Multi-user Communications ...

BIBLIOGRAPHY 917

[293] L.-L. Yang and L. Hanzo, “Blind soft-detection assisted frequency-hopping multicar-rier DS-CDMA systems,” in Proceedings of IEEE GLOBECOM’99, (Rio de Janeiro,Brazil), pp. 842–846, December:5-9 1999.

[294] S. Slimane, “MC-CDMA with quadrature spreading for wireless communication sys-tems,” European Transactions on Telecommunications, vol. 9, pp. 371–378, July–August 1998.

[295] I. Kalet, “The multitone channel,” IEEE Transactions on Communications, vol. 37,pp. 119–124, February 1989.

[296] R.-Y. Li and G. Stette, “Time-limited orthogonal multicarrier modulationschemes,” IEEE Transactions on Communications, vol. 43, pp. 1269–1272, Febru-ary/March/April 1995.

[297] L. Goldfeld and D. Wulich, “Multicarrier modulation system with erasures-correctingdecoding for nakagami fading channels,” European Trans. on Telecommunications,vol. 8, pp. 591–595, November–December 1997.

[298] E. Sousa, “Performance of a direct sequence spread spectrum multiple access sys-tem utilizing unequal carrier frequencies,” IEICE Transactions on Communications,vol. E76-B, pp. 906–912, August 1993.

[299] B. Saltzberg, “Performance of an efficient parallel data transmission system,” IEEETransactions on Communication Technology, vol. 15, pp. 805–811, December 1967.

[300] C. Baum and K. Conner, “A multicarrier transmission scheme for wireless local com-munications,” IEEE Journal on Selected Areas in Communications, vol. 14, pp. 512–529, April 1996.

[301] V. Dasilva and E. Sousa, “Multicarrier orthogonal CDMA signals for quasi-synchronous communication systems,” IEEE Journal on Selected Areas in Commu-nications, vol. 12, pp. 842–852, June 1994.

[302] L. Vandendorpe and O. V. de Wiel, “MIMO DEF equalization for multitone DS/SSsystems over multipath channels,” IEEE Journal on Selected Areas in Communica-tions, vol. 14, pp. 502–511, April 1996.

[303] N. Al-Dhahir and J. Cioffi, “A bandwidth-optimized reduced-complexity equalizedmulticarrier transceiver,” IEEE Transactions on Communications, vol. 45, pp. 948–956, August 1997.

[304] P. Jung, F. Berens, and J. Plechinger, “A generalized view on multicarrier CDMAmobile radio systems with joint detection (Part i),” FREQUENZ, vol. 51, pp. 174–184,July–August 1997.

[305] S. Hara and R. Prasad, “Design and performance of multicarrier CDMA system infrequency-selective Rayleigh fading channels,” IEEE Transactions on Vehicular Tech-nology, vol. 48, pp. 1584–1595, September 1999.

[306] V. Tarokh and H. Jafarkhani, “On the computation and reduction of the peak-to-average power ratio in multicarrier communications,” IEEE Transactions on Commu-nications, vol. 48, pp. 37–44, January 2000.

[307] D. Wulich and L. Goldfied, “Reduction of peak factor in orthogonal multicarrier mod-ulation by amplitude limiting and coding,” IEEE Transactions on Communications,vol. 47, pp. 18–21, January 1999.

Page 51: OFDM and MC-CDMA for Broadband Multi-user Communications ...

918 BIBLIOGRAPHY

[308] H.-W. Kang, Y.-S. Cho, and D.-H. Youn, “On compensating nonlinear distortions of anOFDM system using an efficient adaptive predistorter,” IEEE Transactions on Com-munications, vol. 47, pp. 522–526, April 1999.

[309] Y.-H. Kim, I. Song, Seokho, and S.-R. Park, “A multicarrier CDMA system with adap-tive subchannel allocation for forward links,” IEEE Transactions on Vehicular Tech-nology, vol. 48, pp. 1428–1436, September 1999.

[310] X. Gui and T.-S. Ng, “Performance of asynchronous orthogonal multicarrier CDMAsystem in frequency selective fading channel,” IEEE Transactions on Communica-tions, vol. 47, pp. 1084–1091, July 1999.

[311] T.-M. Lok, T.-F. Wong, and J. Lehnert, “Blind adaptive signal reception for MC-CDMA systems in Rayleigh fading channels,” IEEE Transactions on Communications,vol. 47, pp. 464–471, March 1999.

[312] B. Rainbolt and S. Miller, “Multicarrier CDMA for cellular overlay systems,” IEEEJournal on Selected Areas in Communications, vol. 17, pp. 1807–1814, October 1999.

[313] S.-M. Tseng and M. Bell, “Asynchronous multicarrier DS-CDMA using mutually or-thogonal complementary sets of sequences,” IEEE Transactions on Communications,vol. 48, pp. 53–59, January 2000.

[314] D. Rowitch and L. Milstein, “Convolutionally coded multicarrier DS-CDMA systemsin a multipath fading channel – Part I: Performance analysis,” IEEE Transactions onCommunications, vol. 47, pp. 1570–1582, October 1999.

[315] D. Rowitch and L. Milstein, “Convolutionally coded multicarrier DS-CDMA systemsin a multipath fading channel – Part II: Narrow-band interference suppression,” IEEETransactions on Communications, vol. 47, pp. 1729–1736, November 1999.

[316] D.-W. Lee and L. Milstein, “Comparison of multicarrier DS-CDMA broadcast sys-tems in a multipath fading channel,” IEEE Transactions on Communications, vol. 47,pp. 1897–1904, December 1999.

[317] N. Yee, J.-P. Linnartz, and G. Fettweis, “Multi-carrier CDMA in indoor wireless radionetwork,” IEICE Transactions on Communications, vol. E77-B, pp. 900–904, July1994.

[318] S. Kondo and L. Milstein, “On the use of multicarrier direct sequence spread spectrumsystems,” in Proceedings of IEEE MILCOM’93, (Boston, MA), pp. 52–56, Oct. 1993.

[319] V. M. DaSilva and E. S. Sousa, “Performance of orthogonal CDMA codes for quasi-synchronous communication systems,” in Proceedings of IEEE ICUPC’93, (Ottawa,Canada), pp. 995–999, Oct. 1993.

[320] L. Vandendorpe, “Multitone direct sequence CDMA system in an indoor wireless envi-ronment,” in Proceedings of IEEE First Symposium of Communications and VehicularTechnology in the Benelux, Delft, The Netherlands, pp. 4.1–1–4.1–8, Oct. 1993.

[321] L. L. Yang and L. Hanzo, “Blind joint soft-detection assisted slow frequency-hoppingmulti-carrier DS-CDMA,” IEEE Transactions on Communication, vol. 48, no. 9,pp. 1520–1529, 2000.

[322] D.-W. Lee and L. Milstein, “Analysis of a multicarrier DS-CDMA code-acquisitionsystem,” IEEE Transactions on Communications, vol. 47, pp. 1233–1244, August1999.

Page 52: OFDM and MC-CDMA for Broadband Multi-user Communications ...

BIBLIOGRAPHY 919

[323] B. Steiner, “Time domain uplink channel estimation in multicarrier-CDMA mobileradio system concepts,” in Multi-Carrier Spread-Spectrum (K. Fazel and G. Fettweis,eds.), pp. 153–160, Kluwer Academic Publishers, 1997.

[324] K. W. Yip and T. S. Ng, “Tight error bounds for asynchronous multicarrier cdmaand their application,” IEEE Communications Letters, vol. 2, pp. 295–297, Novem-ber 1998.

[325] S. Kondo and L. Milstein, “Performance of multicarrier DS CDMA systems,” IEEETransactions on Communications, vol. 44, pp. 238–246, February 1996.

[326] B. M. Popovic, “Spreading sequences for multicarrier CDMA systems,” IEEE Trans-actions on Comminications, vol. 47, no. 6, pp. 918–926, 1999.

[327] P. Jung, P. Berens, and J. Plechinger, “Uplink spectral efficiency of multicarrier jointdetection code division multiple access based cellular radio systems,” Electronics Let-ters, vol. 33, no. 8, pp. 664–665, 1997.

[328] D.-W. Lee, H. Lee, and J.-S. Kim, “Performance of a modified multicarrier direct se-quence CDMA system,” Electronics and Telecommunications Research Institute Jour-nal, vol. 19, pp. 1–11, April 1997.

[329] L. Rasmussen and T. Lim, “Detection techniques for direct sequence and multicar-rier variable rate for broadband CDMA,” in Proceedings of the ICCS/ISPACS ’96,pp. 1526–1530, 1996.

[330] P. Jung, F. Berens, and J. Plechinger, “Joint detection for multicarrier CDMA mobileradio systems - Part II: Detection techniques,” in Proceedings of IEEE ISSSTA 1996,vol. 3, (Mainz, Germany), pp. 996–1000, September 1996.

[331] Y. Sanada and M. Nakagawa, “A multiuser interference cancellation technique utiliz-ing convolutional codes and multicarrier modulation for wireless indoor communica-tions,” IEEE Journal on Selected Areas in Communications, vol. 14, pp. 1500–1509,October 1996.

[332] Q. Chen, E. S. Sousa, and S. Pasupathy, “Multicarrier CDMA with adaptive frequencyhopping for mobile radio systems,” IEEE Journal on Selected Areas in Communica-tions, vol. 14, pp. 1852–1857, December 1996.

[333] T. Ojanpera and R. Prasad, “An overview of air interface multiple access for IMT-2000/UMTS,” IEEE Communications Magazine, vol. 36, pp. 82–95, September 1998.

[334] R. L. Peterson, R. E. Ziemer, and D. E. Borth, Introduction to Spread Spectrum Com-munications. Prentice Hall International Editions, 1995.

[335] S. W. Golomb, Shift Register Sequences. Holden-Day, 1967.

[336] F. Adachi, K. Ohno, A. Higashi, T. Dohi, and Y. Okumura, “Coherent multicode DS-CDMA mobile Radio Access,” IEICE Transactions on Communications, vol. E79-B,pp. 1316–1324, September 1996.

[337] S. C. Bang, “ETRI wideband CDMA system for IMT-2000,” in Presentation materialin 1st IMT-2000 Workshop, (Seoul, Korea), pp. II–1–1 – II–1–21, KIET, August 1997.

[338] H. Rohling, K. Bruninghaus, and R. Grunheid, “Comparison of multiple accessschemes for an OFDM downlink system,” in Multi-Carrier Spread-Spectrum (K. Fazeland G. P. Fettweis, eds.), pp. 23–30, Kluwer Academic Publishers, 1997.

Page 53: OFDM and MC-CDMA for Broadband Multi-user Communications ...

920 BIBLIOGRAPHY

[339] R. Prasad, CDMA for Wireless Personal Communications. London: Artech House,May 1996. ISBN 0890065713.

[340] M. Schnell and S. Kaiser, “Diversity considerations forMC-CDMA systems in mobilecommunications,” in Proceedings of IEEE ISSSTA 1996, pp. 131–135, 1996.

[341] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipiesin C. Cambridge University Press, 1992.

[342] M. R. Schroeder, “Synthesis of low-peak-factor signals and binary sequences with lowautocorrelation,” IEEE Transactions on Information Theory, pp. 85–89, 1970.

[343] E. V. der Ouderaa, J. Schoukens, and J. Renneboog, “Peak factor minimization using atime-frequency domain swapping algorithm,” IEEE Transactions on Instrumentationand Measurement, vol. 37, pp. 145–147, March 1988.

[344] L. J. Greenstein and P. J. Fitzgerald, “Phasing multitone signals to minimize peakfactors,” IEEE Transactions on Communications, vol. 29, no. 7, pp. 1072–1074, 1981.

[345] R. W. Bauml, R. F. H. Fischer, and J. B. Huber, “Reducing the peak-to-average powerratio of multicarrier modulation by selected mapping,” Electronics Letters, vol. 32,pp. 2056–2057, October 1996.

[346] X. Li and J. A. Ritcey, “M-sequences for OFDM peak-to-average power ratio reductionand error correction,” Electronics Letters, vol. 33, pp. 554–555, March 1997.

[347] J. Jedwab, “Comment : M-sequences for OFDM peak-to-average power ratio reduc-tion and error correction,” Electronics Letters, vol. 33, pp. 1293–1294, July 1997.

[348] C. Tellambura, “Use of m-sequences for OFDM peak-to-average power ratio reduc-tion,” Electronics Letters, vol. 33, pp. 1300–1301, July 1997.

[349] S. Narahashi and T. Nojima, “New phasing scheme of N-multiple carriers for reduc-ing peak-to-average power ratio,” Electronics Letters, vol. 30, pp. 1382–1383, August1994.

[350] M. Friese, “Multicarrier modulation with low peak-to-average power ratio,” Electron-ics Letters, vol. 32, pp. 713–714, April 1996.

[351] P. V. Eetvelt, G. Wade, and M. Tomlinson, “Peak to average power reduction forOFDM schemes by selective scrambling,” Electronics Letters, vol. 32, pp. 1963–1964,October 1996.

[352] J. A. Davis and J. Jedwab, “Peak-to-mean power control and error correction forOFDM transmission using Golay sequences and Reed-Muller codes,” Electronics Let-ters, vol. 33, no. 4, pp. 267–268, 1997.

[353] S. Boyd, “Multitone signals with low crest factor,” IEEE Transactions on Circuits andSystems, vol. 33, pp. 1018–1022, October 1986.

[354] W. Rudin, “Some theorems on Fourier coefficients,” Proceedings of American Mathe-matics Society, vol. 10, pp. 855–859, December 1959.

[355] D. J. Newman, “An L1 extrimal problem for polynomials,” Proceedings of AmericanMathematics Society, vol. 16, pp. 1287–1290, December 1965.

[356] B. M. Popovic, “Synthesis of power efficient multitone signals with flat amplitudespectrum,” IEEE Transactions on Communications, vol. 39, no. 7, pp. 1031–1033,1991.

Page 54: OFDM and MC-CDMA for Broadband Multi-user Communications ...

BIBLIOGRAPHY 921

[357] H. S. Shapiro, “Extremal problems for polynomials and power series,” Master’s thesis,Massachusetts Institute of Technology, 1951.

[358] M. Golay, “Complementary series,,” IRE Transactions on Information Theory, vol. IT-7, pp. 82–87, 1961.

[359] C. Tellambura, “Upper bound on peak factor of n-multiple carriers,” Electronics Let-ters, vol. 33, pp. 1608–1609, September 1997.

[360] C.-C. Tseng and C. L. Liu, “Complementary sets of sequences,” IEEE Transactionson Information Theory, vol. 18, pp. 644–652, September 1972.

[361] R. Sivaswamy, “Multiphase complementarty codes,” IEEE Transactions on Informa-tion Theory, vol. 24, pp. 546–552, September 1978.

[362] R. L. Frank, “Polyphase complementary codes,” IEEE Transactions on InformationTheory, vol. 26, pp. 641–647, November 1980.

[363] D. Wulich and L. Goldfeld, “Reduction of peak factor in orthogonal multcarrier mod-ulation by amplitude limiting and coding,” IEEE Transactions on Communications,vol. 47, no. 1, pp. 18–21, 1999.

[364] R. H. Barker, “Group synchronizing of binary digital systems,” in CommunicationTheory, pp. 273–287, 1953.

[365] R. H. Pettit, “Pulse sequences with good autocorrelation properties,” The MicrowaveJournal, pp. 63–67, February 1967.

[366] R. Turyn and J. Storer, “On binary sequences,” Proceedings of American MathematicsSociety, vol. 12, pp. 394–399, June 1961.

[367] S. W. Golomb and R. A. Scholtz, “Generalized Barker sequences,” IEEE Transactionson Information Theory, vol. 4, pp. 533–537, October 1965.

[368] D. J. G. Mestdagh and P. M. P. Spruyt, “A method to reduce the probability of clippingin DMT-based transceivers,” IEEE Transactions on Communications, vol. 44, no. 10,pp. 1234–1238, 1996.

[369] D. J. G. Mestdagh, P. M. P. Spruyt, and B. Biran, “Effect of amplitude clipping inDMT-ADSL transceivers,” Electronics Letters, vol. 29, pp. 1354–1355, July 1993.

[370] S. J. Shepherd, J. Oriss, and S. K. Barton, “Asymptotic limits in peak envelope powerreduction by redundant coding in orthogonal frequency-division multiplex modula-tion,” IEEE Transactions on Communications, vol. 46, no. 1, pp. 5–10, 1998.

[371] M. Breiling, S. H. Muller-Weinfurtner, and J. B. Huber, “Peak-power reduction inOFDM without explicit side information,” in Proceedings of International OFDMWorkshop 2000, (Hamburg, Germany), September 2000.

[372] S. H. Muller and J. B. Huber, “OFDM with reduced peak-to-mean power ratio by opti-mum combination of partial transmit sequences,” Electronics Letters, vol. 33, pp. 368–369, February 1997.

[373] C. Tellambura, “Phase optimisation criterion for reducing peak-to-average power ratioin OFDM,” Electronics Letters, vol. 34, pp. 169–170, January 1998.

[374] J. Kreyszig, Advanced engineering mathematics. Wiley, 7th edition ed., 1993.

Page 55: OFDM and MC-CDMA for Broadband Multi-user Communications ...

922 BIBLIOGRAPHY

[375] R. C. Heimiller, “Phase shift pulse codes with good periodic correlation properties,”IRE Transactions on Information Theory, vol. 7, pp. 254–257, October 1961.

[376] R. L. Frank, “Phase shift pulse codes with good periodic correlation properties,” IRETransactions on Information Theory, vol. 8, pp. 381–382, October 1962.

[377] R. L. Frank, “Polyphase codes with good nonperiodic correlation properties,” IEEETransactions on Information Theory, vol. 9, pp. 43–45, 1963.

[378] D. C. Chu, “Polyphase codes with good periodic correlation properties,” IEEE Trans-actions on Information Theory, vol. 18, pp. 531–532, July 1972.

[379] R. L. Frank, “Comments on polyphase codes with good correlation properties,” IEEETransactions on Information Theory, vol. 19, p. 244, March 1973.

[380] B. M. Popovic, “Comment: Merit factor of Chu and Frank sequences,” ElectronicsLetters, vol. 27, pp. 776–777, April 1991.

[381] M. Antweiler and L. Bomer, “Reply: Merit factor of Chu and Frank sequences,” Elec-tronics Letters, vol. 27, pp. 777–778, April 1991.

[382] M. Antweiler and L. Bomer, “Merit factor of Chu and Frank sequences,” ElectronicsLetters, vol. 26, pp. 2068–2070, December 1990.

[383] R. Gold, “Optimal binary sequences for spread spectrum multiplexing,” IEEE Trans-actions on Information Theory, vol. 13, pp. 619–621, October 1967.

[384] R. Sivaswamy, “Digital and analog subcomplementary sequences for pulse compres-sion,” IEEE Transactions on Aerospace and Electronic Systems, vol. 14, pp. 343–350,March 1978.

[385] E. Costa, M. Midrio, and S. Pupolin, “Impact of amplifier nonlinearities on OFDMtransmission system performance,” IEEE Communications Letters, vol. 3, pp. 37–39,February 1999.

[386] G. Santella and F. Mazzanga, “A model for performance evaluation in M-QAM-OFDMschemes in presence of non-linear distortions,” in Proceedings of IEEE VTC 1995,pp. 830–834, July 1995.

[387] C. Rapp, “Effects of HPA-nonlinearity on 4-DPSK-OFDM-signal for digital soundbroadcasting system,” in Proceedings of 2nd European Conference on Satellite Com-munications, (Liege, Belgium), ESA-SP-332, October 1991.

[388] P802.11a/D6.0, Draft supplement to standard for tellecommunications and informa-tion exchange between systems - LAN/MAN specific requirements - Part 11: WirelessMAC and PHY specifications: High Speed Physical Layer in the 5 GHz Band, May1999.

[389] D. V. Sarwate, “Bounds on crosscorrelation and autocorrelation of sequences,” IEEETransactions on Information Theory, vol. 25, pp. 720–724, November 1979.

[390] J. F. Hayes, “Adaptive feedback communications,” IEEE Transactions on Communi-cation Technology, vol. 16, no. 1, pp. 29–34, 1968.

[391] J. K. Cavers, “Variable rate transmission for rayleigh fading channels,” IEEE Transac-tions on Communications Technology, vol. COM-20, pp. 15–22, February 1972.

Page 56: OFDM and MC-CDMA for Broadband Multi-user Communications ...

BIBLIOGRAPHY 923

[392] W. T. Webb and R. Steele, “Variable rate QAM for mobile radio,” IEEE Transactionson Communications, vol. 43, no. 7, pp. 2223–2230, 1995.

[393] M. Moher and J. Lodge, “TCMP—a modulation and coding strategy for rician fadingchannels,” IEEE Journal on Selected Areas in Communications, vol. 7, pp. 1347–1355,December 1989.

[394] S. Sampei and T. Sunaga, “Rayleigh fading compensation for QAM in land mobileradio communications,” IEEE Transactions on Vehicular Technology, vol. 42, pp. 137–147, May 1993.

[395] S. Otsuki, S. Sampei, and N. Morinaga, “Square QAM adaptive modula-tion/TDMA/TDD systems using modulation level estimation with Walsh function,”Electronics Letters, vol. 31, pp. 169–171, February 1995.

[396] W. Lee, “Estimate of channel capacity in Rayleigh fading environment,” IEEE Trans-actions on Vehicular Technology, vol. 39, pp. 187–189, August 1990.

[397] A. Goldsmith and P. Varaiya, “Capacity of fading channels with channel side informa-tion,” IEEE Transactions on Information Theory, vol. 43, pp. 1986–1992, November1997.

[398] M. S. Alouini and A. J. Goldsmith, “Capacity of Rayleigh fading channels under dif-ferent adaptive transmission and diversity-combining technique,” IEEE Transactionson Vehicular Technology, vol. 48, pp. 1165–1181, July 1999.

[399] A. Goldsmith and S. Chua, “Variable rate variable power MQAM for fading channels,”IEEE Transactions on Communications, vol. 45, pp. 1218–1230, October 1997.

[400] M. S. Alouini, X. Tand, and A. J. Goldsmith, “An adaptive modulation scheme forsimultaneous voice and data transmission over fading channels,” IEEE Journal on Se-lected Areas in Communications, vol. 17, pp. 837–850, May 1999.

[401] D. Yoon, K. Cho, and J. Lee, “Bit error probability of M-ary Quadrature AmplitudeModulation,” in Proc. IEEE VTC 2000-Fall, vol. 5, pp. 2422–2427, IEEE, September2000.

[402] C. Wong and L. Hanzo, “Upper-bound performance of a wideband burst-by-burstadaptive modem,” IEEE Transactions on Communications, vol. 48, pp. 367–369,March 2000.

[403] E. L. Kuan, C. H. Wong, and L. Hanzo, “Burst-by-burst adaptive joint-detectionCDMA,” in Proc. of IEEE VTC’99 Fall, vol. 2, (Amsterdam, Netherland), pp. 1628–1632, September 1999.

[404] K. J. Hole, H. Holm, and G. E. Oien, “Adaptive multidimensional coded modula-tion over flat fading channels,” IEEE Journal on Selected Areas in Communications,vol. 18, pp. 1153–1158, July 2000.

[405] J. Torrance and L. Hanzo, “Upper bound performance of adaptive modulation in a slowRayleigh fading channel,” Electronics Letters, vol. 32, pp. 718–719, 11 April 1996.

[406] M. Nakagami, “The m-distribution - A general formula of intensity distribution ofrapid fading,” in Statistical Methods in Radio Wave Propagation (W. C. Hoffman,ed.), pp. 3–36, Pergamon Press, 1960.

Page 57: OFDM and MC-CDMA for Broadband Multi-user Communications ...

924 BIBLIOGRAPHY

[407] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products. New York,USA: Academic Press, 1980.

[408] J. Lu, K. B. Letaief, C. I. J. Chuang, and M. L. Lio, “M-PSK and M-QAM BERcomputation using signal-space concepts,” IEEE Transactions on Communications,vol. 47, no. 2, pp. 181–184, 1999.

[409] T. Keller and L. Hanzo, “Adaptive modulation technique for duplex OFDM transmis-sion,” IEEE Transactions on Vehicular Technology, vol. 49, pp. 1893–1906, September2000.

[410] B. J. Choi, M. Munster, L. L. Yang, and L. Hanzo, “Performance of Rake receiverassisted adaptive-modulation based CDMA over frequency selective slow Rayleighfading channel,” Electronics Letters, vol. 37, pp. 247–249, February 2001.

[411] G. S. G. Beveridge and R. S. Schechter, Optimization: Theory and Practice. McGraw-Hill, 1970.

[412] W. Jakes Jr., ed., Microwave Mobile Communications. New York, USA: John Wiley& Sons, 1974.

[413] “COST 207 : Digital land mobile radio communications, final report,” tech. rep., Lux-embourg, 1989.

[414] M. K. Simon and M. S. Alouini, Digital Communication over Fading Channels: AUnified Approach to Performance Analysis. John Wiley & Sons, Inc., 2000. ISBN0471317799.

[415] C. Y. Wong, R. S. Cheng, K. B. Letaief, and R. D. Murch, “Multiuser OFDM withadaptive subcarrier, bit, and power allocation,” IEEE Journal on Selected Areas inCommunications, vol. 17, pp. 1747–1758, October 1999.

[416] T. Keller and L. Hanzo, “Adaptive multicarrier modulation: A convenient frameworkfor time-frequency processing in wireless communications,” Proceedings of the IEEE,vol. 88, pp. 611–642, May 2000.

[417] A. Klein, G. Kaleh, and P. Baier, “Zero forcing and minimum mean square error equal-ization for multiuser detection in code division multiple access channels,” IEEE Trans-actions on Vehicular Technology, vol. 45, pp. 276–287, May 1996.

[418] B. J. Choi, T. H. Liew, and L. Hanzo, “Concatenated space-time block coded andturbo coded symbol-by-symbol adaptive OFDM and multi-carrier CDMA systems,”in Proceedings of IEEE VTC 2001-Spring, p. P.528, IEEE, May 2001.

[419] B. Vucetic, “An adaptive coding scheme for time-varying channels,” IEEE Transac-tions on Communications, vol. 39, no. 5, pp. 653–663, 1991.

[420] H. Imai and S. Hirakawa, “A new multi-level coding method using error correctingcodes,” IEEE Transactions on Information Theory, vol. 23, pp. 371–377, May 1977.

[421] G. Ungerboeck, “Channel coding with multilevel/phase signals,” IEEE Transactionson Information Theory, vol. IT-28, pp. 55–67, January 1982.

[422] S. M. Alamouti and S. Kallel, “Adaptive trellis-coded multiple-phased-shift keyingRayleigh fading channels,” IEEE Transactions on Communications, vol. 42, pp. 2305–2341, June 1994.

Page 58: OFDM and MC-CDMA for Broadband Multi-user Communications ...

BIBLIOGRAPHY 925

[423] S. Chua and A. Goldsmith, “Adaptive coded modulation for fading channels,” IEEETransactions on Communications, vol. 46, pp. 595–602, May 1998.

[424] T. Keller, T. Liew, and L. Hanzo, “Adaptive rate RRNS coded OFDM transmissionfor mobile communication channels,” in Proceedings of VTC 2000 Spring, (Tokyo,Japan), pp. 230–234, 15-18 May 2000.

[425] T. Keller, T. H. Liew, and L. Hanzo, “Adaptive redundant residue number system codedmulticarrier modulation,” IEEE Journal on Selected Areas in Communications, vol. 18,pp. 1292–2301, November 2000.

[426] T. Liew, C. Wong, and L. Hanzo, “Block turbo coded burst-by-burst adaptivemodems,” in Proceedings of Microcoll’99, (Budapest, Hungary), pp. 59–62, 21-24March 1999.

[427] C. Wong, T. Liew, and L. Hanzo, “Turbo coded burst by burst adaptive wideband mod-ulation with blind modem mode detection,” in ACTS Mobile Communications Summit,(Sorrento, Italy), pp. 303–308, 8-11 June 1999.

[428] V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space-Time Codes for High DataRate Wireless Communication: Performance Criterion and Code Construction,” IEEETransactions on Information Theory, vol. 44, pp. 744–765, March 1998.

[429] S. M. Alamouti, “A simple transmit diversity technique for wireless communications,”IEEE Journal on Selected Areas in Communications, vol. 16, pp. 1451–1458, October1998.

[430] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-time block coding for wirelesscommunications: Performance results,” IEEE Journal on Selected Areas in Communi-cations, vol. 17, pp. 451–460, March 1999.

[431] C. Berrou and A. Glavieux, “Near optimum error correcting coding and decoding:Turbo codes,” IEEE Transactions on Communications, vol. 44, pp. 1261–1271, Octo-ber 1996.

[432] W. T. Webb and L. Hanzo, Modern Quadrature Amplitude Modulation : Principlesand Applications for Fixed and Wireless Channels. London: IEEE Press, and JohnWiley & Sons, 1994.

[433] Y. Chow, A. Nix, and J. McGeehan, “Analysis of 16-APSK modulation in AWGNand rayleigh fading channel,” Electronics Letters, vol. 28, pp. 1608–1610, November1992.

[434] F. Adachi and M. Sawahashi, “Performance analysis of various 16 level modulationschemes under Rrayleigh fading,” Electronics Letters, vol. 28, pp. 1579–1581, Novem-ber 1992.

[435] F. Adachi, “Error rate analysis of differentially encoded and detected 16APSK underrician fading,” IEEE Transactions on Vehicular Technology, vol. 45, pp. 1–12, Febru-ary 1996.

[436] Y. C. Chow, A. R. Nix, and J. P. McGeehan, “Diversity improvement for 16-DAPSKin Rayleigh fading channel,” Electronics Letters, vol. 29, pp. 387–389, February 1993.

[437] Y. C. Chow, A. R. Nix, and J. P. McGeehan, “Error analysis for circular 16-DAPSKin frquency-selective Rayleigh fading channels with diversity reception,” ElectronicsLetters, vol. 30, pp. 2006–2007, November 1994.

Page 59: OFDM and MC-CDMA for Broadband Multi-user Communications ...

926 BIBLIOGRAPHY

[438] C. M. Lo and W. H. Lam, “Performance analysis of bandwidth efficient coherent mod-ulation schems with L-fold MRC and SC in Nakagami-m fading channels,” in Pro-ceedings of IEEE PIMRC 2000, vol. 1, pp. 572–576, September 2000.

[439] S. Benedetto, E. Biglierri, and V. Castellani, Digital Transmission Theory. Prentice-Hall, 1987.

[440] Z. Dlugaszewski and K. Wesolowski, “WHT/OFDM - an imporved OFDM transmis-sion method for selective fading channels,” in Proceedings of IEEE SCVT 2000, (Leu-ven, Belgium), pp. 71–74, 19 October 2000.

[441] Z. Dlugaszewski and K. Wesolowski, “Performance of several OFDM transceivers inthe indoor radio channels in 17 ghz band,” in Proceedings of IEEE VTC 2001 Spring,p. P.644, IEEE, May 2001.

[442] S. Verdu, “Minimum probability of error for asynchronous Gaussian multiple-accesschannel,” IEEE Transactions on Communications, vol. 32, pp. 85–96, January 1986.

[443] K. M. Wong, J. Wu, T. N. Davidson, Q. Jin, and P. C. Ching, “Performance of waveletpacket-division multiplexing in impulsive and Gaussian noise,” IEEE Transactions onCommunication, vol. 48, no. 7, pp. 1083–1086, 2000.

[444] M. Ghosh, “Analysis of the effect of impulse noise on multicarrier and single carrierQAM systems,” IEEE Transactions on Communications, vol. 44, no. 2, pp. 145–147,1996.

[445] Q. Wang, T. A. Gulliver, L. J. Mason, and V. K. Bhargava, “Performance ofSFH/MDPSK in tone interference and Gaussian noise,” IEEE Transactions on Com-munications, vol. 42, no. 2/3/4, pp. 1450–1454, 1994.

[446] G. E. Atkin and I. F. Blake, “Performance of multitone FFH/MFSK systems in thepresence of jamming,” IEEE Transactions on Communications, vol. 35, no. 2, pp. 428–435, 1989.

[447] L. B. Milstein and P. K. Das, “An analysis of a real-time transform domain filter-ing digital communication system - Part i: Narrow-band interference rejection,” IEEETransactions on Communications, vol. 28, no. 6, pp. 816–824, 1980.

[448] A. Papoulis, Probability, Random Variables, and Stochastic Processes. McGraw-Hill,3 ed., 1991.

[449] M. R. Spiegel, Mathematical Handbook of Formulas and Tables. McGraw-Hill BookCompany, 1968.

[450] W. X. Zheng, “Design of adaptive envelope-constrained filters in the presence of im-pulsive noise,” IEEE Transactions on Circuits and Systems II, vol. 48, pp. 188–192,February 2001.

[451] Y. Zhang and R. S. Blum, “Iterative multiuser detection for turbo-coded synchronouscdma in gaussian and non-gaussian impulsive noise,” IEEE Transactions on Commu-nication Technology, vol. 49, no. 3, pp. 397–400, 2001.

[452] M. Moeneclaey, M. V. Bladel, and H. Sari, “Sensitivity of multiple-access tech-niques to narrow-band interference,” IEEE Transactions on Communication Technol-ogy, vol. 49, no. 3, pp. 497–505, 2001.

Page 60: OFDM and MC-CDMA for Broadband Multi-user Communications ...

BIBLIOGRAPHY 927

[453] K. Cheun and T. Jung, “Performance of asynchronous fhss-ma networks under rayleighfading and tone jamming,” IEEE Transactions on Communications, vol. 49, no. 3,pp. 405–408, 2001.

[454] Y. Li, “Pilot-symbol-aided channel estimation for OFDM in wireless systems,” in Proc.of Vehicular Technology Conference, (Houston, Texas), p. 1999, IEEE, May 1999.

[455] R. M. Mersereau and T. C. Speake, “The Processing of Periodically Sampled Multidi-mensional Signals,” IEEE Transactions on Acoustics, Speech and Signal Processing,vol. ASSP-31, pp. 188–194, February 1983.

[456] D. E. Dudgeon and R. M. Mersereau, Multidimensional Digital Signal Processing.Prentice Hall, Inc., 1984.

[457] P. Hoher, S. Kaiser, and P. Robertson, “Pilot-symbol-aided Channel Estimation in Timeand Frequency,” in Proceedings of International Workshop on Multi-Carrier Spread-Spectrum, pp. 169–178, K.Fazel and G. P. Fettweis (Eds.), Kluver Academic Publish-ers, April 1997.

[458] H. D. Luke, Signalubertragung. Springer-Verlag Berlin Heidelberg New York, 1995.

[459] R. Steele and L. Hanzo, Mobile Radio Communications. John Wiley & Sons, LTD,Chichester, 1999.

[460] P. A. Bello, “Time-frequency duality,” IEEE Transactions on Information Theory,vol. 10, pp. 18–33, January 1964.

[461] T. Keller, Adaptive OFDM techniques for personal communications systems and lo-cal area networks. PhD Thesis, Department of Electronics and Computer Science,University of Southampton, United Kingdom, 1999.

[462] T. Chen and P. P. Vaidyanathan, “The Role of Integer Matrices in MultidimensionalMultirate Systems,” IEEE Transactions on Signal Processing, vol. 41, pp. 1035–1047,March 1993.

[463] C. C. M. Duffee, The Theory of Matrices. Verlag Julius Springer, 1933.

[464] M. Newman, Integral Matrices. Academic Press, Inc., 1972.

[465] S. Kaiser, Multi-Carrier CDMA Mobile Radio Systems - Analysis and Optimization ofDetection, Decoding and Channel Estimation. VDI Verlag GmbH, 1998.

[466] S. Weiss and R. W. Stewart, On Adaptive Filtering in Oversampled Subbands. ShakerVerlag GmbH, Aachen, Germany, 1998.

[467] S. Haykin, Adaptive Filter Theory. Prentice Hall, Inc., 1996.

[468] G. Grosche, V. Ziegler, and D. Ziegler, Taschenbuch der Mathematik. BSB B. G. Teub-ner Verlagsgesellschaft, Leipzig, 1989.

[469] J. W. C. Jakes, Mobile Microwave Communications. John Wiley & Sons, New York,1974.

[470] M. Munster and L. Hanzo, “First-Order Channel Parameter Estimation Assisted Can-cellation of Channel Variation-Induced Inter-Subcarrier Interference in OFDM Sys-tems,” in Proceedings of EUROCON ’2001, vol. 1, (Bratislava, Czech), pp. 1–5, IEEE,July 2001.

Page 61: OFDM and MC-CDMA for Broadband Multi-user Communications ...

928 BIBLIOGRAPHY

[471] A. Chini, Y. Wu, M. El-Tanany, and S. Mahmoud, “Filtered Decision Feedback Chan-nel Estimation for OFDM Based DTV Terrestrial Broadcasting System,” IEEE Trans-actions on Broadcasting, vol. 44, pp. 2–11, Mar 1998.

[472] G. Strang, Linear Algebra and Its Applications, 2nd edition. Academic Press, 1980.

[473] “EN 300 744, V1.1.2, Digital Video Broadcasting (DVB); Framing structure, chan-nel coding and modulation for digital terrestrial television,” in European Standard(Telecommunications Series), pp. 26–28, ETSI, ETSI, 1997.

[474] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near shannon limit error-correctingcoding and decoding: Turbo codes,” in Proc. of International Conference on Commu-nications, (Geneva, Switzerland), pp. 1064–1070, IEEE, May 1993.

[475] C. Berrou and A. Glavieux, “Near optimum error correcting coding and decoding:turbo codes,” IEEE Transactions on Communications, vol. 44, pp. 1261–1271, October1996.

[476] H. Rohling and R. Gruenheid, “Adaptive Coding and Modulation in an OFDM-TDMACommunication System,” in Proceedings of Vehicular Technology Conference, vol. 2,(Ottawa, Canada), pp. 773–776, IEEE, May 18-21 1998.

[477] D. Hughes-Hartogs, “Ensemble modem structure for imperfect transmission media,”U.S. Patents Nos. 4,679,222 (July 1987), 4,731,816 (March 1988) and 4,833,796 (May1989).

[478] T. Keller and L. Hanzo, “ Blind-detection Assisted Sub-band Adaptive Turbo-CodedOFDM Schemes,” in Proc. of Vehicular Technology Conference, (Houston, USA),pp. 489–493, IEEE, May 1999.

[479] F. Rashid-Farrokhi, L. Tassiulas, and K. J. R. Liu, “Joint Optimal Power Control andBeamforming in Wireless Networks Using Antenna Arrays,” IEEE Transactions onCommunications, vol. 46, pp. 1313–1324, October 1998.

[480] F. R. Gantmacher, The Theory of Matrices, vol. 2. New York: Chelsea, 1990.

[481] W. Fischer and I. Lieb, Funktionentheorie. Vieweg Verlag, Braunschweig, Germany,1983.

[482] S. M. Kay, Fundamentals of Statistical Signal Processing, Estimation Theory. PrenticeHall, New Jersey, 1993.

[483] K. Fazel and G. Fettweis, Multi-carrier Spread Spectrum & Related Topics, ISBN 0-7923-7740-0. Kluwer, 2000.

[484] H. Bogucka, “Application of the New Joint Complex Hadamard Transform - InverseFourier Transform in a OFDM/CDMA Wireless Communication System,” in Proceed-ings of Vehicular Technology Conference, vol. 5, (Amsterdam, Netherlands), pp. 2929–2933, IEEE, September 19-22 1999.

[485] A. Goldsmith and S. Chua, “Variable-rate variable-power MQAM for fading chan-nels,” IEEE Transactions on Communications, vol. 45, pp. 1218–1230, October 1997.

[486] M. Yee and L. Hanzo, “Upper-bound performance of radial basis function de-cision feedback equalised burst-by-burst adaptive modulation,” in Proceedings ofECMCS’99, CD-ROM, (Krakow, Poland), 24–26 June 1999.

Page 62: OFDM and MC-CDMA for Broadband Multi-user Communications ...

BIBLIOGRAPHY 929

[487] E. Kuan, C. Wong, and L. Hanzo, “Burst-by-burst adaptive joint detection CDMA,” inProceeding of VTC’99 (Spring), (Houston, TX, USA), IEEE, 16–20 May 1999.

[488] H. Rohling and R. Grunheid, “Peformance of an OFDM-TDMA mobile communica-tion system,” in Proceeding of IEEE Global Telecommunications Conference, Globe-com 96, (London, UK), pp. 1589–1593, IEEE, 18–22 November 1996.

[489] P. Cherriman, T. Keller, and L. Hanzo, “Constant-rate turbo-coded and block-codedorthogonal frequency division multiplex videophony over UMTS,” in Proceeding ofGlobecom’98, vol. 5, (Sydney, Australia), pp. 2848–2852, IEEE, 8–12 November1998.

[490] J. Woodard, T. Keller, and L. Hanzo, “Turbo-coded orthogonal frequency divisionmultiplex transmission of 8 kbps encoded speech,” in Proceeding of ACTS MobileCommunication Summit ’97, (Aalborg, Denmark), pp. 894–899, ACTS, 7–10 October1997.

[491] P. Cherriman and L. Hanzo, “Programmable H.263-based wireless video transceiversfor interference-limited environments,” IEEE Transactions on Circuits and Systems forVideo Technology, vol. 8, pp. 275–286, June 1998.

[492] B. J. Choi and L. Hanzo, “Performance analysis of Rake receiver assisted adaptiveQAM using antenna diversity over frequency selective Rayleigh channels,” Submittedto IEEE Journal on Selected Areas in Communications, January 2001.

[493] B. J. Choi and L. Hanzo, “Optimum mode-switching levels for adaptive modulationsystems,” in Submitted to IEEE GLOBECOM 2001, 2001.

[494] T. H. Liew, B. J. Choi, and L. Hanzo, “Space-time block coded and space-time trelliscoded OFDM,” in Proceedings of IEEE VTC 2001-Spring, p. P.533, IEEE, May 2001.

[495] C. E. Davila, “Blind Adaptive Estimation of KLT Basis Vectors,” IEEE Transactionson Signal Processing, vol. 49, pp. 1364–1369, July 2001.

[496] A. Rezayee and S. Gazor, “An Adaptive KLT Approach for Speech Enhancement,”IEEE Transactions on Speech and Audio Processing, vol. 9, pp. 87–95, February 2001.

[497] Y. Li, J. C. Chuang, and N. R. Sollenberger, “Transmitter Diversity for OFDM Sys-tems and Its Impact on High-Rate Data Wireless Networks,” IEEE Journal on SelectedAreas in Communications, vol. 17, pp. 1233–1243, July 1999.

[498] B. Lu and X. Wang, “Iterative Receivers for Multi-User Space-Time Coding Systems,”IEEE Journal on Selected Areas in Communications, vol. 18, pp. 2322–2335, Novem-ber 2000.

[499] M. L. Honig and W. X. Xiao, “Performance of Reduced-Rank Linear InterferenceCancellation,” IEEE Transactions on Information Theory, vol. 47, pp. 1928–1946,July 2001.

[500] D. R. Brown, M. Motani, V. V. Veeravalli, H. V. Poor, and J. C. R. Johnson, “Onthe Performance of Linear Parallel Interference Cancellation,” IEEE Transactions onInformation Theory, vol. 47, pp. 1957–1970, July 2001.

[501] A. Grant and C. Schlegel, “Convergence of Linear Interference Cancellation MultiuserReceivers,” IEEE Transactions on Communications, vol. 49, pp. 1824–1834, October2001.

Page 63: OFDM and MC-CDMA for Broadband Multi-user Communications ...

930 BIBLIOGRAPHY

[502] H. Dai and H. V. Poor, “Turbo Multiuser Detection for Coded DMT VDSL Systems,”IEEE Journal on Selected Areas in Communications, vol. 20, pp. 351–362, February2002.

[503] K.-W. Cheong, W.-J. Choi, and J. M. Cioffi, “Multiuser Soft Interference Canceler viaIterative Decoding for DSL Applications,” IEEE Journal on Selected Areas in Com-munications, vol. 20, pp. 363–371, February 2002.

[504] A. Lampe, R. Schober, W. Gerstacker, and J. Huber, “A Novel Iterative Multiuser De-tector for Complex Modulation Schemes,” IEEE Journal on Selected Areas in Com-munications, vol. 20, pp. 339–350, February 2002.

[505] B. Lu, X. Wang, and Y. Li, “Iterative Receivers for Space-Time Block-Coded OFDMSystems in Dispersive Fading Channels,” IEEE Transactions on Wireless Communica-tions, vol. 1, pp. 213–225, April 2002.