ocw.snu.ac.kr › sites › default › files › NOTE › 6310.pdf - Ship Stability - Part.1-IV...

120
SDAL @ Advanced Ship Design Automation Lab. http://asdal.snu.ac.kr Seoul National Univ. 2009 Fall, Ship Stability Naval Architecture & Ocean Engineering SDAL @ Advanced Ship Design Automation Lab. http://asdal.snu.ac.kr Seoul National Univ. - Ship Stability - Part.1-IV Pressure Integration Technique 2009 Prof. Kyu-Yeul Lee Department of Naval Architecture and Ocean Engineering, Seoul National University

Transcript of ocw.snu.ac.kr › sites › default › files › NOTE › 6310.pdf - Ship Stability - Part.1-IV...

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

Nav

al A

rch

itec

ture

& O

cean

En

gin

eeri

ng

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

- Ship Stability -

Part.1-IV Pressure Integration Technique

2009

Prof. Kyu-Yeul Lee

Department of Naval Architecture and Ocean Engineering,Seoul National University

2009 Fall, Ship Stability

Righting Moment

Overview of “Ship Stability”

Force & Moment on a Floating BodyNewton’s 2nd Law Euler Equation

Stability Criteria

Damage Stability- MARPOL regulation

Pressure Integration Technique

Calculation Method to find GZ with respect to IMO regulation

sinGZ GM φ= ,GM KB BM KG= + −

sinL LGZ GM θ= , L LGM KB BM KG= + −

- Overview of Ship Stability

BF GZ×Transverse Righting Moment :

B LF GZ×Longitudinal Righting Moment :

<Method ②>

GZ Calculation

( )G BGZ y y= − +

( )L G BGZ x x= − +

<Method ①>

Z≡

K

z′

O

CL

y

z M

φ

restoringτ

G

FG

B B1

≡ NFB

1By

Gy

φ

φ

FB: Buoyancy forceφ : Angle of Heel, θ : Angle of Trim(xG,yG,zG) : Center of gravity in waterplane fixed frame(xB,yB,zB) : Center of buoyancy in waterplane fixed fra

y'G , y'B in body fixed frame

Rotational Transformation!yG , yB in waterplane fixed frame

Fundamental of Ship Stability

• Properties which is related to hull form of the ship

Hydrostatic Values

Intact Stability- IMO Requirement (GZ)- Grain Stability- Floodable Length

2/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

- Contents -Part.1-I Fundamentals of ship stability

Ch.1 Overview of Ship StabilityCh.2 Physics for Ship StabilityCh.3 Hydrostatic Pressure, Force and Moment on a floating bodyCh.4 Concept of Righting MomentCh.5 Hydrostatic Values

Part.1-II Righting MomentCh.6 Transverse Righting MomentCh.7 Longitudinal Righting MomentCh.8 Heeling Moment caused by Fluid in Tanks

Part.1-III Stability CriteriaCh.9 Intact StabilityCh.10 Damage Stability

Part.1-IV Pressure Integration TechniqueCh.11 Calculation of Static Equilibrium PositionCh.12 Governing Equation of Force and Moment with Immersion, Heel and TrimCh.13 Partial derivatives of force and moments with immersion, heel, and trim

3/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

Nav

al A

rch

itec

ture

& O

cean

En

gin

eeri

ng

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

- Ship Stability -

Ch.11 Calculation of Static Equilibrium Position

2009

Prof. Kyu-Yeul Lee

Department of Naval Architecture and Ocean Engineering,Seoul National University

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

Sec.1 Example : Immersion in Static Equilibrium

after Cargo Being Loaded

Sec.2 Example : Immersion and Heel in Static Equilibrium

after Cargo Being Loaded

Sec.3 Example : Immersion and Heel in Static Equilibrium

after Cargo Hold Being Flooded

5/120

2009 Fall, Ship Stability

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

CLx

y′

, ′x

yPlan View

300L m=

50B m=O

w

Example : Immersion in Static Equilibrium after Cargo Being Loaded (1)

Given : loading 300,000 [kN] cargo on deck above the intersection point centerline and LCFMass of ship : 1,350,000 [kN]

ξ3 : Immersion

Find : ship’s attitude in static equilibrium

Example ) Find a ship’s attitude in Static Equilibrium after Cargo Being Loaded.( Origin of waterplane fixed frame is located in the intersection point

between centerline and LCF )

CL

,

( ) ( )

( ) ( )

( ) ( )

Gravity G

Buoyancy B

Ext Static Ext

F F

F F

F F

r r

r r

r r

w

Assumption : considering force with immersion only( due to cargo being loaded on the intersection point

between centerline and LCF. No heel, no trim)

3, ( [0,0, ,0,0,0] )Tξ=r

LCF

x′ y′∇

, ′z z

O

Section View

,yx

*3 ?ξ =

ξ3* : immersion in

static equilibriumO-xyz frame: Waterplane fixed frameO'-x'y'z' frame: Body fixed frame

Position vector of the origin of the body fixed frame with respect to thewaterplane fixed frame

26.5626.56 10m40m

50m

( )03 0ξ =

6/120

2009 Fall, Ship Stability

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

w

Example : Immersion in Static Equilibrium after Cargo Being Loaded (2)

Given : loading 300,000 [kN] cargo on deck above the intersection point centerline and LCFMass of ship : 137,755 [Mg]

Section View

ξ3 : Immersion

Find : ship’s attitude in static equilibrium

Example ) Find a ship’s attitude in Static Equilibrium after Cargo Being Loaded.( Origin of waterplane fixed frame is located in the intersection point between centerline and LCF )

x′y′

, ′z z

x( )03 0ξ =

,y

CL

O

<Attitude : ξ3(0) >

(0) (0) ( (00)3

)33 3( ) ( ) ( )( )z G ExtBF F F Fξ ξξ ξ += +

Initial condition with cargo being loaded

<Attitude : ξ3* >

Static equilibrium condition ( = Total forces and moments must be ‘zero’)

*3( ) 0zF ξ =

* * * *3 3 3 3, ( ) ( ) ( ) ( )z G B Extwh ere F F F Fξ ξ ξ ξ= + +

We want to find *3ξ

Assumption : considering force with immersion only 3, ( [0,0, ,0,0,0] )Tξ=r

w

CL

x′ y′,O′∇

, ′z z

x

Section View

,yO

*3 ?ξ =

Given : (0)3

(0)3( ), ExtF ξξ

,

( ) ( )

( ) ( )

( ) ( )

Gravity G

Buoyancy B

Ext Static Ext

F F

F F

F F

r r

r r

r r

(0)3( )ExtF wξ = −

( )03 0ξ =

!

7/120

2009 Fall, Ship Stability

Example : Immersion in Static Equilibrium after Cargo Being Loaded (3)

ξ3 : Immersion

<Example> in case of force with immersion onlyGoverning equation

Given : Find : (0) (0) (0) (0)3 3 3 3, ( ) ( ) ( ) ( )z G B Extwh ere F F F Fξ ξ ξ ξ= + +

* * * *3 3 3 3, ( ) ( ) ( ) ( )z G B Extwh ere F F F Fξ ξ ξ ξ= + +

*3ξ(0) (0)

3 3, ( )ExtFξ ξ

(0) (0)* (0) (0) (0)3 3

3 3 3 33 3

( ) ( )( ) ( ) B Extz z

F RFF F ξ ξξ ξ ξ ξξ ξ

∂ ∂= + ∆ + ∆ +

∂ ∂

*3( ) 0zF ξ =

Why Taylor series expansion ? Nonlinear equation

* (0) (0)3 3 3, ( )ξ ξ ξ+ ∆≈

* (0) (0)3 3 3, ( )ξ ξ ξ= + ∆

Linearization(0) (0)

* (0) (0) (0)3 33 3 3 3

3 3

( ) ( )( ) ( ) B Extz z

F FF F ξ ξξ ξ ξ ξξ ξ

∂ ∂+ ∆ + ∆

∂ ∂≈

Approximation

(0)* (0) (0)3

3 3 33

)( ) ( ) zz z

F RF F ξξ ξ ξξ

∂ (= + ∆ +

(0) (0) (0)* (0) (0) (0) (0)3 3 3

3 3 3 3 33 3 3

( ) ( ) ( )( ) ( ) G B Extz z

F FF F RFξ ξ ξξ ξ ξ ξ ξξ ξ ξ

∂ ∂ ∂= + ∆ + ∆ + ∆ +

∂ ∂ ∂

w

CL

x′ y′

, ′z z

x( )03 0ξ =

Section View

,y

*3 ?ξ =

Taylor series expansion

Assumption : 33

, ( )BWP

F g Aρ ξξ

∂= − ⋅

∂Buoyancy force is proportional to AWP

(AWP : waterplane area of ship)

Opposite direction

3

, 0ExtFξ

∂=

Weight of cargo does not change with respect to immersion

Known :

* (0) (0) (0)3 3 3 3, ( ) ( ) ( )z z WPwhere F F g Aξ ξ ρ ξ ξ= − ⋅ ⋅∆Governing

equation*

3( ) 0zF ξ = We want to find *3ξ

FExt is independent of ξ3

( FG is not changed with immersion)

8/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

w

Example : Immersion in Static Equilibrium after Cargo Being Loaded (4)

(0) (0) (0) (0)3 3 3 3( ) ( ) ( ) ( )z G B ExtF F F Fξ ξ ξ ξ= + + : Total force

* (0) (0) (0)3 3 3 3( ) ( ) ( )z z WPF F gAξ ξ ρ ξ ξ= − ⋅∆

* * * *3 3 3 3, ( ) ( ) ( ) ( )z G B Extwh ere F F F Fξ ξ ξ ξ= + +

Given : Find :

Governing equation

(0) (0)3 3, ( )ExtFξ ξ *

*3( ) 0zF ξ =

1

1

1,350,000[ ] 1,350,000[ ] 300,000[ ]kN kN kN= − −

(0)3( ) 300,000 [ ]ExtF kNξ = −

300,000 [ ]kN= −

(0)3

(0)3

( )

( )BV

F g dVξ

ξ ρ= ∫∫∫

(0) (0) (0) (0)3 3 3 3( ) ( ) ( ) ( )z G B ExtF F F Fξ ξ ξ ξ= + +

300,000ExtF w

kN= −

= −* (0) (0)3 3 3( )ξ ξ ξ+ ∆≈

x′y′

, ′z z

x ( )03 0ξ =

Section View

,y

ξ3 : Immersion

CLx

y′

, ′x

yPlan View

LCF w

ξ3*←ξ3

(0)

10m40m

50m

(0) (0) (0)3 3 3

1 ( ( ) 4 0 )( ) ( )2 sg B T Lρ ξ ξ ξ = + ⋅ ⋅

(0)3(section area) ( )g Lρ ξ= ⋅ ⋅

( )110 50 40 10 300 1,350,000[ ]2

kN = ⋅ + ⋅ ⋅ =

(0)3( ) 1,350,000[ ]GF kNξ = −

9/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

w

Example : Immersion in Static Equilibrium after Cargo Being Loaded (5)

( )03( )WPA

g dx dyξ

ρ= − ⋅ ∫∫

* (0) (0) (0)3 3 3 3( ) ( ) ( )z z WPF F gAξ ξ ρ ξ ξ= − ⋅∆

* * * *3 3 3 3, ( ) ( ) ( ) ( )z G B Extwh ere F F F Fξ ξ ξ ξ= + +

Given : Find :

Governing equation

(0) (0)3 3, ( )ExtFξ ξ *

*3( ) 0zF ξ =

2

( )03( )WPg Aρ ξ− ⋅2

3, ( 10 [kN/m ])gρ ≈

* (0) (0)3 3 3( )ξ ξ ξ+ ∆≈

x′y′

, ′z z

x ( )03 0ξ =

Section View

,y

ξ3 : Immersion

( )03( )WPA ξ

CLx

y′

, ′x

yPlan View

LCF w

300L m=

( )03( ) 50sB mξ =

ξ3*←ξ3

(0)

WPArea A=

310[ / ] 50[ ] 300[ ]kN m m m= − ⋅ ⋅

150,000 [ / ]kN m= −

( ) ( )0 03 3( ) ( )sg B Lρ ξ ξ= − ⋅ ⋅

(AWP : waterplane area of ship)

B(breadth of AWP) : dependent on ξ3L (length of AWP) : independent of ξ3 → constant

( )03( )sg B Lρ ξ= − ⋅ ⋅

( )03( ) 50B mξ =

300,000ExtF w

kN= −

= −

10/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

w

x′y′

w

Example : Immersion in Static Equilibrium after Cargo Being Loaded (6)

* (0) (0) (0)3 3 3 3( ) ( ) ( )z z WPF F gAξ ξ ρ ξ ξ= − ⋅∆

* * * *3 3 3 3, ( ) ( ) ( ) ( )z G B Extwh ere F F F Fξ ξ ξ ξ= + +

Given : Find :

Governing equation

(0) (0)3 3, ( )ExtFξ ξ *

*3( ) 0zF ξ =

3

* (0) (0)3 3 3( )ξ ξ ξ+ ∆≈x′

y′∇

, ′z z

x ( )03 0ξ =

Section View

,y

ξ3 : Immersion

ξ3*←ξ3

(0)

(AWP : waterplane area of ship)(0)3( ) 300,000 [ ]zF kNξ = −1

1 2

(0)3( ) 150,000 [ / ]WPg A kN mρ ξ− ⋅ = −2

3

( )( )

* (0)0 3 3

3 03

( ) ( )( )

z z

WP

F FgA

ξ ξξρ ξ

−∆ =

( ) ( )0 03 3 0[m] 2[m] 2 [m]ξ ξ+ ∆ = − = −

(0)3ξ∆ : change of immersion

ξ3* ←ξ3

(0) +∆ξ3(0)

, ′z z

x

Section View

,y( )0 (0)

3 3ξ ξ+ ∆

( ) ( ) ?0 0

3 3( ) 0zF ξ ξ+ ∆ =Static equilibrium? Check!

We want to find *3ξ

( ) ( )0 0*3 3 3

?ξ ξ ξ+ ∆=

0 ( 300,000[ ]) 2 [m]150,000[ / ]

kNkN m

− −= = −

300,000ExtF w

kN= −

= −

If we assume that Fz(ξ3*) =0

( )0(1) (0)3 3 3, ( ( ) ( ) 10[m] ( 2[m]) 12.0[ ])T T mξ ξ ξ= − ∆ = − − =

11/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

( ) ( )0 0(0) (0)3 3 3 3( ) ( ) ( )G B ExtF F Fξ ξ ξ ξ= + + ∆ +

( ) ( ) ( ) ( ) ( ) ( )0 0 0 0 0 03 3 3 3 3 3( ) ( ) ( )z G BF F Fξ ξ ξ ξ ξ ξ+ ∆ = + ∆ + + ∆

6,000[ ]kN=

( ) ( )0 03 3( )BF ξ ξ+ ∆

( ) ( )0 03 3( )GF ξ ξ+ ∆

( ) ( )0 03 3( )zF ξ ξ+ ∆

( ) ( )0 03 3( )ExtF ξ ξ+ ∆ (0)

3( )ExtF ξ=

(0)3( )GF ξ=

( )13( )g Vρ ξ= ⋅

* (0) (0) (0)3 3 3 3( ) ( ) ( )z z WPF F gAξ ξ ρ ξ ξ= − ⋅∆

* * * *3 3 3 3, ( ) ( ) ( ) ( )z G B Extwh ere F F F Fξ ξ ξ ξ= + +

Given : Find :

Governing equation

(0) (0)3 3, ( )ExtFξ ξ *

*3( ) 0zF ξ =

* (0) (0)3 3 3( )ξ ξ ξ+ ∆≈4

( ) ( )0 03 3( ) 0zF ξ ξ+ ∆ =

Static equilibrium?Check!

( ) ( )0 0*3 3 3ξ ξ ξ+ ∆=

( ) ( )0 03 3( )ExtF ξ ξ+ + ∆

( ) ( )0 03 3( ) 0zF ξ ξ+ ∆ ≠ ( ) ( )0 0*

3 3 3ξ ξ ξ+ ∆≠

( ) ( )0 0(1)3 3 3ξ ξ ξ+ ∆≡

x′y′

w

ξ3* ←ξ3

(0) +∆ξ3(0)

, ′z z

x

Section View

,y( )0 (0)

3 3ξ ξ+ ∆

? ?

Example : Immersion in Static Equilibrium after Cargo Being Loaded (7)

Re-define

* (1) (1) (1)3 3 3 3( ) ( ) ( )z z WPF F gAξ ξ ρ ξ ξ= − ⋅∆

How can we do?

※If the ship has vertical wall, the displacement volume is 1,650,000 [kN]. → No iteration ξ*=ξ3

(0) +∆ξ3(0)

26.56

※ displacement volume V( ξ3(1))

( )1 (1)3 3( ) 40 2 ( ) tan 26.56

40 2 12 tan 26.56 52[ ]

B T

m

ξ ξ= + ⋅ ⋅

= + ⋅ ⋅ =

( ) ( )1 1 (1)3 3 3

3

( ) 0.5 (40 ( )) ( ) 300

0.5 (40 52) 12 300 165,600 [ ]

V B T

m

ξ ξ ξ= ⋅ + ⋅ ⋅

= ⋅ + ⋅ ⋅ =4

300,000ExtF w

kN= −

= −

1,350,000[ ] 1,656,000[ ] 300,000[ ]kN kN kN= − + −

( )13( )sB ξ

(1)3( )T ξ

4012.0=

3 310[ / ] 165,600[ ]kN m m= × 1,656,000[ ]kN=(1)3( )

12.0T ξ=

12/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

x′y′

w* (1) (1) (1)

3 3 3 3( ) ( ) ( )z z WPF F gAξ ξ ρ ξ ξ= − ⋅∆

* * * *3 3 3 3, ( ) ( ) ( ) ( )z G B Extwh ere F F F Fξ ξ ξ ξ= + +

Given : Find :

Governing equation

(0) (0)3 3, ( )ExtFξ ξ *

*3( ) 0zF ξ =Section View

ξ3 : Immersion

ξ3* ←ξ3

(1)

(AWP : waterplane area of ship)

1

, ′z z

x ,y(1)3ξ

CL

(1) (1) (1) (1)3 3 3 3( ) ( ) ( ) ( )z G B ExtF F F Fξ ξ ξ ξ= + +1

2 ( )13( )WPgAρ ξ−

310[ / ] 52[ ] 300[ ]kN m m m= − ⋅ ⋅

,(in previous calculation)

CLx

y′

, ′x

yPlan View

LCF w

300L m=

( )13( ) 52sB mξ =

WPArea A=( )1

3( )WPA

g dx dyξ

ρ= − ⋅ ∫∫( )1

3( )sg B Lρ ξ= − ⋅ ⋅

2

156,000 [ / ]kN m= −

3, ( 10 [kN/m ])gρ ≈

6,000 [ ]kN=

Example : Immersion in Static Equilibrium after Cargo Being Loaded (8)

26.56

300,000ExtF w

kN= −

= −

(2) (1) (1)3 3 3( )ξ ξ ξ+ ∆=

(in previous calculation)

13/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

CL

x′y′

w* (1) (1) (1)

3 3 3 3( ) ( ) ( )z z WPF F gAξ ξ ρ ξ ξ= − ⋅∆

* * * *3 3 3 3, ( ) ( ) ( ) ( )z G B Extwh ere F F F Fξ ξ ξ ξ= + +

Given : Find :

Governing equation

(0) (0)3 3, ( )ExtFξ ξ *

*3( ) 0zF ξ =Section View

ξ3 : Immersion

ξ3* ←ξ3

(1)

1

, ′z z

x ,y(1)3ξ

CL

2

3

( )( )

* (1)1 3 3

3 13

( ) ( )( )

0.034 [ ]

z z

WP

F FgA

m

ξ ξξρ ξ

−∆ =

−=

( ) ( ) ( )2 1 13 3 3 2[ ] 0.034[ ]

1.966 [ ]m m

mξ ξ ξ= + ∆ = − +

= −

(1)3ξ∆

(1)3( ) 6,000 [ ]zF kNξ =1

(1)3( ) 156,000 [ / ]WPgA kN mρ ξ− = −2

x′y′

w

Section Viewξ3* ←ξ3

(2)

, ′z z

x ,y(2)3ξ

Static equilibrium? Check!

We want to find *3ξ

3

( )2*3 3ξ ξ=

? ( )23( ) 0zF ξ =

?

Example : Immersion in Static Equilibrium after Cargo Being Loaded (9)

(2) (1) (1)3 3 3( )ξ ξ ξ+ ∆=

(AWP : waterplane area of ship)

0 6,000[ ]156,000[ / ]

kNkN m

−=

If we assume that Fz(ξ3*) =0

( )2(2) (0)3 3 3, ( ( ) ( ) 10[ ] ( 1.966[ ]) 11.966[ ])T T m m mξ ξ ξ= − = − − =

14/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

* (1) (1) (1)3 3 3 3( ) ( ) ( )z z WPF F gAξ ξ ρ ξ ξ= − ⋅∆

* * * *3 3 3 3, ( ) ( ) ( ) ( )z G B Extwh ere F F F Fξ ξ ξ ξ= + +

Given : Find :

Governing equation

(0) (0)3 3, ( )ExtFξ ξ *

*3( ) 0zF ξ =

4

( )23( ) 0zF ξ =

Static equilibrium?Check!

( )2*3 3ξ ξ=

( )23( )zF ξ ε< , 1,000ε ≡

( )2*3 3ξ ξ=

End of iteration

(2)3( )BF ξ

(2)3( )GF ξ

(2)3( )ExtF ξ

(2)3( )zF ξ

(1)3( )GF ξ=

(1)3( )ExtF ξ=

(2) (2) (2) (2)3 3 3 3( ) ( ) ( ) ( )z G B ExtF F F Fξ ξ ξ ξ= + +

(1) (2) (1)3 3 3( ) ( ) ( )G B ExtF F Fξ ξ ξ= + +

640 [ ]kN=attitude in static equilibrium

, ( 0,1, 2,3...)k =

CL

x′y′

w

Section Viewξ3

* ←ξ3(2)

, ′z z

x ,y(2)3ξ

? ?

Example : Immersion in Static Equilibrium after Cargo Being Loaded (10)

※If the ship has vertical wall, The displacement volume is 1,650,000 [kN]. → No iteration ξ*=ξ3

(2)

ε : Tolerance

300,000ExtF w

kN= −

= −

(2) (1) (1)3 3 3( )ξ ξ ξ+ ∆=

※ displacement volume V( ξ3(2))

4

(2) (2)3 3( ) 40 2 ( ) tan 26.56

40 2 11.966 tan 26.56 51.963[ ]B T

mξ ξ= + ⋅ ⋅

= + ⋅ ⋅ =

( )1(2) (1)3 3 3

3

( ) 0.5 (40 ( )) ( ) 3000.5 (40 51.963) 11.966 300 165,064 [ ]

V B Tm

ξ ξ ξ= ⋅ + ⋅ ⋅

= ⋅ + ⋅ ⋅ =

( )13( )sB ξ

(1)3( )T ξ

4012.0=

( )23( )g Vρ ξ= ⋅

3 310[ / ] 165,064[ ]kN m m= × 1,650,640[ ]kN=

1,350,000[ ] 1,650,640[ ] 300,000[ ]kN kN kN= − + −

15/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

Example : Immersion in Static Equilibrium after Cargo Being Loaded (11)

ξ3* ←ξ3

(0)300,000

ExtF wkN

= −= −

x′y′

w

, ′z z

x ( )03 0ξ =

Section View

,y

CL

x′y′

w

∇x ,y

(1)3 2ξ = −

CL

, ′z zξ3* ←ξ3

(1)

x′y′

w∇

, ′z z

x ,y(2)3 1.966ξ = −

CL

ξ3* ←ξ3

(2)

(0) (0)3( [0,0, ,0,0,0])ξ=r

(1) (1)3( [0,0, ,0,0,0])ξ=r

(2) (2)3( [0,0, ,0,0,0])ξ=r

Immersion

Immersion

-300,000 -1,350,000 1,350,000 -300,000

[ ]ZF kN [ ]GF kN [ ]BF kN [ ]ExtF kN

6,000 -1,350,000 1,656,000 -300,000

[ ]ZF kN [ ]GF kN [ ]BF kN [ ]ExtF kN

640 1,350,000 1,650,640 -300,000

[ ]ZF kN [ ]GF kN [ ]BF kN [ ]ExtF kN

( )23( ) 640zF εξ = < , ( 1,000)ε =

( )2*3 3ξ ξ=

attitude in static equilibrium

End of iteration

16/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

Sec.1 Example : Immersion in Static Equilibrium

after Cargo Being Loaded

Sec.2 Example : Immersion and Heel in Static Equilibrium

after Cargo Being Loaded

Sec.3 Example : Immersion and Heel in Static Equilibrium

after Cargo Hold Being Flooded

17/120

2009 Fall, Ship Stability

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

w g

y

z

LC

,O O′

z′

Example : Immersion and Heel in Static Equilibrium after Cargo Being Loaded (1)

Given : loading 40,000 [kN] cargo on bottom shell in right-side of LCFWeight of ship : 360,000 [kN]

Find : Immersion and trim of ship in static equilibrium

Example ) Find a ship’s attitude in Static Equilibrium after Cargo Being Loaded.( Origin of waterplane fixed frame is located in the intersection point

between centerline and LCF(Longitudinal center of floating) )

Assumption : considering force and transverse momentwith immersion and heel

( due to cargo being loaded on LCF. No trim) 3 4, ( [0,0, , ,0,0] )Tξ ξ=r

O-xyz frame: Waterplane fixed frameO'-x'y'z' frame: Body fixed frame

Position vector of the origin of the body fixed frame with respect to the waterplane fixed frame

Rotation vector of the origin of the body fixed frame with respect to thewaterplane fixed frame

y

z

LC

Section view(Front view)

OBaseline

K

G

, z′

, y′Bw g

,O O′Immersion

y′

G

w g B ξ3* : immersion in

static equilibrium

y

z

LC

,O O′

z′

y′

G

w g B

*4 ?ξ

Plan view (Top view)

x

y

LC

20m

,O O′G , x′

, y′

, B

100m ξ4* : heel in

static equilibrium

Heel

*3 ?ξ

18/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

G : Center of gravity of ship

B : Center of buoyancy of ship

Cargo information- w (weight) : 40,000 kN

- g (center of gravity of cargo) : (0,-10,-4.5)

100L m=

x

zElevation view (port-view)

Baseline,O O′

G

APFP

w, x′

, z′

g , B

40sB m=

30D m=9T m= y

z

LC

Section View(Front view)

,O O′Baseline

K

G

w

, z′

, y′g B

Example : Immersion and Heel in Static Equilibrium after Cargo Being Loaded (2)

Principal Dimension

- L (length) : 100 m, Bs (breadth) : 40m, T (draft) : 9m, D (depth) : 30m

20m

Plan view(Top View)

x

y

LC,O O′ G

w, x′

, y′

, B

O-xyz : Waterplane fixed frame

O'-x'y'z': Body fixed frame

g

19/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

( FG is not changed with immersion)

Example : Immersion and Heel in Static Equilibrium after Cargo Being Loaded (3)

<Example> in case of force with immersion and heel Governing equation of forceGiven : Find : (0) (0) (0) (0) (0) (0) (0) (0)

3 4 3 4 3 4 3 4, ( , ) ( , ) ( , ) ( , )z G B Extwh ere F F F Fξ ξ ξ ξ ξ ξ ξ ξ= + +

* * * * * * * *3 4 3 4 3 4 3 4, ( , ) ( , ) ( , ) ( , )z G B Extwh ere F F F Fξ ξ ξ ξ ξ ξ ξ ξ= + +

*3ξ(0) (0) (0) (0)

3 4 3 4, , ( , )ExtFξ ξ ξ ξ

(0) (0)(0) (0)* * (0) (0) 3 43 4

3 4 3 4(0) (0)3 3

3 3

( , )( , )( , ) ( , ) ExtB

z z RFFF F ξ ξξ ξξ ξ ξ ξ ξ ξ

ξ ξ∂∂

= + ∆ + ∆ +∂ ∂

* *3 4( , ) 0zF ξ ξ =

* (0) (0)3 3 3, ( )ξ ξ ξ+ ∆≈

* (0) (0)3 3 3, ( )ξ ξ ξ= + ∆

Linearization(0) (0)(0) (0)

* * (0) (0) 3 43 43 4 3 4

(0) (0)3 3

3 3

( , )( , )( , ) ( , ) ExtB

z zFFF F ξ ξξ ξ

ξ ξ ξ ξ ξ ξξ ξ

∂∂= + ∆ + ∆

∂ ∂

Approximation

(0) (0) (0) (0)* * (0) (0) 3 4 3 4

3 4 3 4(0) (0)3 4

3 4

( , ) ( , )( , ) ( , ) z z

z zF FF F Rξ ξ ξ ξ

ξ ξ ξ ξ ξ ξξ ξ

∂ ∂= + ∆ + ∆ +

∂ ∂(0) (0) (0) (0)(0) (0)

* * (0) (0) 3 4 3 43 43 4 3 4

(0) (0) (0)3 3 3

3 3 3

( , ) ( , )( , )( , ) ( , ) G ExtB

z zF FFF RF ξ ξ ξ ξξ ξ

ξ ξ ξ ξ ξ ξ ξξ ξ ξ

∂ ∂∂= + ∆ + ∆ + ∆ +

∂ ∂ ∂

Taylor series expansion

Assumption : 3 43 4

3

( , ), ( , )BWP

F gAξ ξ ρ ξ ξξ

∂= −

∂Buoyancy force is proportional to AWP

(AWP : waterplane area of ship)

Opposite direction

3 4

3

( , ), 0ExtF ξ ξξ

∂=

Weight of cargo does not change with respect to immersion

Known :

* * (0) (0) (0)3 4 3 4 4

(0) (0)3 3( , ) ( , ), ( , )z z WPwhere F F gAξ ξ ξ ξ ξρ ξ ξ= − ⋅ ∆

Governing equation of force

* *3 4( , ) 0,zF ξ ξ =

FExt is independent of ξ3

This term is not considered in this example

Given : Find : (0) (0) (0) (0) (0) (0) (0) (0)3 4 3 4 3 4 3 4, ( , ) ( , ) ( , ) ( , )z G B Extwh ere F F F Fξ ξ ξ ξ ξ ξ ξ ξ= + + *

3ξ(0) (0) (0) (0)3 4 3 4, , ( , )ExtFξ ξ ξ ξ

20/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

Example : Immersion and Heel in Static Equilibrium after Cargo Being Loaded (4)

<Example> in case of transverse moment with immersion and heel Governing equation of Transverse moment

Given : Find : (0) (0) (0) (0) (0) (0) (0) (0)3 4 3 4 3 4 3 4,( , ) ( , ) ( , ) ( , ), T TG TB T Extwhere M M M Mξ ξ ξ ξ ξ ξ ξ ξ= + +

* * * * * * * *3 4 3 4 3 4 , 3 4, ( , ) ( , ) ( , ) ( , )T TG TB T Extwhere M M M Mξ ξ ξ ξ ξ ξ ξ ξ= + +

*4ξ(0) (0) (0) (0)

3 4 , 3 4, , ( , )T ExtMξ ξ ξ ξ

* *3 4( , ) 0TM ξ ξ =

* (0) (0)4 4 4, ( )ξ ξ ξ+ ∆≈

* (0) (0)4 4 4, ( )ξ ξ ξ= + ∆

Linearization(0) (0)(0) (0) (0) (0)

3 4* * (0) (0) 3 4 3 43 4 3 4

,(0) (0) (0)4 4 4

4 4 4

( , )( , ) ( , )( , ) ( , ) T ExtTG TB

T T

MM MM M

ξ ξξ ξ ξ ξξ ξ ξ ξ ξ ξ ξ

ξ ξ ξ∂∂ ∂

= + ∆ + ∆ + ∆∂ ∂ ∂

Approximation

(0) (0) (0) (0)* * (0) (0) 3 4 3 4

3 4 3 4(0) (0)3 4

3 4

( , ) ( , )( , ) ( , ) T T

T TM M

M M Rξ ξ ξ ξξ ξ ξ ξ ξ ξ

ξ ξ∂ ∂

= + ∆ + ∆ +∂ ∂

(0) (0)(0) (0) (0) (0)3 4* * (0) (0) 3 4 3 4

3 4 3 4,(0) (0) (0)

4 4 44 4 4

( , )( , ) ( , )( , ) ( , ) T ExtTG TB

T T

MM MM M R

ξ ξξ ξ ξ ξξ ξ ξ ξ ξ ξ ξ

ξ ξ ξ∂∂ ∂

= + ∆ + ∆ + ∆ +∂ ∂ ∂

Taylor series expansion

We want to find *3ξ

This term is not considered in this example.

3 43 4 3 4 3 4

4

( , )( , ) ( , ) ( , ),TB

B B TM F z gIξ ξ

ξ ξ ξ ξ ξ ξρξ

∂= − ⋅ −

3 43 4 3 4

4

( , )( , ) ( , ),TG

G GM F zξ ξ

ξ ξ ξ ξξ

∂= − ⋅

3 43 4 3 4

,

4

( , )( , ) ( , )T Ext

Ext Ext

MF z

ξ ξξ ξ ξ ξ

ξ∂

= − ⋅∂

zG: Z coordinate of the center of mass of the ship IT: 2nd moment of waterplane area with respect to x axis of the waterplane fixed framezB: Z coordinate of the center of buoyancy

zExt: Z coordinate of the point acting the external force

* * * * * * * *3 4 3 4 3 4 3 4,( , ) ( , ) ( , ) ( , ), T TG TB T Extwhere M M M Mξ ξ ξ ξ ξ ξ ξ ξ= + +Governing equation

of transverse moment* *

3 4( , ) 0TM ξ ξ =

Given : (0) (0) (0) (0)3 4 , 3 4, , ( , )T ExtMξ ξ ξ ξ Find : *

4ξ(1) (0) (0)

4 4 4, ( )ξ ξ ξ+ ∆=

(0) (0) (0) (0) (0) (0) (0) (0)3 4 3 4 3 4 3 4* * (0) (0)

3 4 3 4 (0) (0) (0) (0) (0) (0)3 4 3 4 3 4

(0)4

( , ) ( , ) ( , ) ( , )( , )

( , ) ( , ) ( , )( , ) G G B B

T TT Ext Ext

F z F zM M

gI F zξ ξ ξ ξ ξ ξ ξ ξ

ξ ξξ ξ ξ ξ ξ ξ

ξ ξ ξρ

− ⋅ − ⋅= + ∆ − − ⋅

21/120

2009 Fall, Ship Stability

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

(ref.) Transverse moment of gravity with heel

Transverse moment of gravity

3 4 4( , )TGM ξ ξ ξ+ ∆

( )3 4 3 4 4 3 4 4( , ) ( , ) cos ( , ) sinG G GF y zξ ξ ξ ξ ξ ξ ξ ξ= ⋅ ⋅ ∆ − ⋅ ∆

3 4 3 4 3 4 4( , ) ( , ) ( , )TG G GM F zξ ξ ξ ξ ξ ξ ξ= − ⋅ ⋅ ∆3 4( , )TGM ξ ξ

If is small4ξ∆

Transformation

3 4 4 3 4 4( , ) ( , )G GF yξ ξ ξ ξ ξ ξ= + ∆ ⋅ + ∆

3 4 4 3 4

3 4 4 3 4 4 3 4 4

3 4 4 3 4 4 3 4 4

( , ) ( , )

( , ) ( , )cos ( , )sin

( , ) ( , )cos ( , )sin

G G

G G G

G G G

x xy y zz z y

ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ ξ ξ ξ

+ ∆ =

+ ∆ = ∆ − ∆ + ∆ = ∆ + ∆

3 4 4 3 4

3 4 4 4 4 3 4

3 4 4 4 4 3 4

( , ) 1 0 0 ( , )( , ) 0 cos sin ( , )( , ) 0 sin cos ( , )

G G

G G

G G

x xy yz z

ξ ξ ξ ξ ξξ ξ ξ ξ ξ ξ ξξ ξ ξ ξ ξ ξ ξ

+ ∆ + ∆ = ∆ − ∆ + ∆ ∆ ∆

3 4 3 4 3 4 3 4 4( , ) ( , ) ( , ) ( , )G G G GF y F zξ ξ ξ ξ ξ ξ ξ ξ ξ= ⋅ − ⋅ ⋅ ∆( )3 4 3 4 3 4 4( , ) ( , ) ( , )G G GF y zξ ξ ξ ξ ξ ξ ξ≈ ⋅ − ⋅ ∆

3 4 3 4 4( , ) ( , )G GF yξ ξ ξ ξ ξ= ⋅ + ∆

4

TGMξ

∂∂

=

y

z

LC

z′

y′

4ξ∆

,O O′

Section view

GF

3 4 4( , )G ξ ξ ξ+ ∆3 4( , )G ξ ξ

22/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

Example : Immersion and Heel in Static Equilibrium after Cargo Being Loaded (5)

Governing equation* *

3 4( , ) 0TM ξ ξ = * * * * * * * *3 4 3 4 3 4 3 4,( , ) ( , ) ( , ) ( , ), T TG TB T Extwhere M M M Mξ ξ ξ ξ ξ ξ ξ ξ= + +

(0) (0) (0) (0) (0) (0) (0) (0)3 4 3 4 3 4 3 4* * (0) (0)

3 4 3 4 (0) (0) (0) (0) (0) (0)3 4 3 4 3 4

(0)4

( , ) ( , ) ( , ) ( , )( , )

( , ) ( , ) ( , )( , ) G G B B

T TT Ext Ext

F z F zM M

gI F zξ ξ ξ ξ ξ ξ ξ ξ

ξ ξξ ξ ξ ξ ξ ξ

ξ ξ ξρ

− ⋅ − ⋅= + ∆ − − ⋅

zG: Z coordinate of the center of mass of the ship

IT: 2nd moment of waterplane area with respect to x axis of the waterplane fixed frame

zB: Z coordinate of the center of buoyancyzExt: Z coordinate of the point acting the external force

K

O

CL

y

z,

φ

G Z

FG

B B1

≡ N

FB

restoringτ

M

O'

Comparison with classical hydrostatics

restoring BF GZτ = ⋅

sinBF GM φ≈ ⋅ ⋅

[ ] sinBF KB BM KG φ= ⋅ + − ⋅

KB OB OK= −

For example

5[ ]Bz OK m= − =(0,0,6), (0,0, 5), 10[ ]G B T m− =

( )KG OG OK= −

O'

CL

z, z′

K

B

G

BaseLine

O y, y′

KBKG

( )Gz OK= −

( ) ( ) sinB B GF z OK BM z OK φ = ⋅ − + − − ⋅

[ ] sinB B GF z BM z φ= ⋅ + − ⋅continue…

assume that is smallφ

( ) ( ) sinBF OB OK BM OG OK φ = ⋅ − + − − ⋅

5[ ] ( 1 0 )[ ] 5[ ]m m m= − − − =

6[ ] ( 10[ ]) 16[ ]m m m= − − =

OK zB OB=

zGOG =

23/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

Governing equationof transverse moment

* *3 4( , ) 0TM ξ ξ = * * * * * * * *

3 4 3 4 3 4 3 4,( , ) ( , ) ( , ) ( , ), T TG TB T Extwhere M M M Mξ ξ ξ ξ ξ ξ ξ ξ= + +(0) (0) (0) (0) (0) (0) (0) (0)3 4 3 4 3 4 3 4* * (0) (0)

3 4 3 4 (0) (0) (0) (0) (0) (0)3 4 3 4 3 4

(0)4

( , ) ( , ) ( , ) ( , )( , )

( , ) ( , ) ( , )( , ) G G B B

T TT Ext Ext

F z F zM M

gI F zξ ξ ξ ξ ξ ξ ξ ξ

ξ ξξ ξ ξ ξ ξ ξ

ξ ξ ξρ

− ⋅ − ⋅= + ∆ − − ⋅

Example : Immersion and Heel in Static Equilibrium after Cargo Being Loaded (6)

zG: Z coordinate of the center of mass of the ship

IT: 2nd moment of waterplane area with respect to x axis of the waterplane fixed frameV: Displacement volume

zB: Z coordinate of the center of buoyancyzExt: Z coordinate of the point acting the external force

K

O'

CL

y

z,

φ

G Z

FG

B B1

≡ N

FB

restoringτ

M

O

Comparison with classical hydrostatics

restoring BF GZτ = ⋅

[ ] sinB B GF z BM z φ= ⋅ + − ⋅

sinTB B G

IF z zV

φ = ⋅ + − ⋅

TIBMV

=

sinTB B B G

IF z g V F zV

ρ φ = ⋅ + ⋅ − ⋅ ⋅ in static equilibrium

0G BF F+ =

[ ] sinB B T G GF z g I F zρ φ= ⋅ + ⋅ + ⋅ ⋅

Linearizationsinφ φ≈[ ]G G B B TF z F z g Iρ φ≈ ⋅ + ⋅ + ⋅ ⋅

In similar way, if FExt are applied, then FExt⋅ zExt would be included

[ ]G G B B T Ext ExtF z F z g I F zρ φ= ⋅ + ⋅ + ⋅ + ⋅ ⋅Match! except sign?

BF gVρ=

B GF F∴ = −

[ ] sinG G B B TF z F z g Iρ φ= ⋅ + ⋅ + ⋅ ⋅

24/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

Governing equationof transverse moment

* *3 4( , ) 0TM ξ ξ = * * * * * * * *

3 4 3 4 3 4 3 4,( , ) ( , ) ( , ) ( , ), T TG TB T Extwhere M M M Mξ ξ ξ ξ ξ ξ ξ ξ= + +(0) (0) (0) (0) (0) (0) (0) (0)3 4 3 4 3 4 3 4* * (0) (0)

3 4 3 4 (0) (0) (0) (0) (0) (0)3 4 3 4 3 4

(0)4

( , ) ( , ) ( , ) ( , )( , )

( , ) ( , ) ( , )( , ) G G B B

T TT Ext Ext

F z F zM M

gI F zξ ξ ξ ξ ξ ξ ξ ξ

ξ ξξ ξ ξ ξ ξ ξ

ξ ξ ξρ

− ⋅ − ⋅= + ∆ − − ⋅

Example : Immersion and Heel in Static Equilibrium after Cargo Being Loaded (7)

Comparison with classical hydrostatics ( (+), (-) sign )

Defined that clockwise direction is positive.

In classical hydrostatics In pressure integration technique

Defined that counter-clockwise direction is positive.

K

O'

CL

y

z,

-∆ξ4

G Z

B0 B1

≡ N

M

O

restoring BF GZτ = ⋅

[ ] 4( )G G B B T Ext ExtF z F z g I F zρ ξ= ⋅ + ⋅ + ⋅ + ⋅ −∆⋅

[ ] ( )4G G B B T Ext ExtF z F z g I F zρ ξ= − ⋅ − ⋅ − ⋅ ⋅ ∆− ⋅Match!

if we consider opposite definition of heel angle ( )4φ ξ= −∆

+ +

K

O'

CL

y

z,

+φG Z

B0 B1

≡ N

M

O

restoringτ restoringτ

[ ]G G B B T Ext ExtF z F z g I F zρ φ= ⋅ + ⋅ + ⋅ + ⋅ ⋅

25/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

Example : Immersion and Heel in Static Equilibrium after Cargo Being Loaded (8)

m: Mass of the ship, zG: Z coordinate of the center of mass of the ship

IT: 2nd moment of Waterplane area with respect to x axis of the waterplane fixed frameV: Displacement volume

zB: Z coordinate of the center of buoyancyzExt: Z coordinate of the point acting the external force

Comparison with classical hydrostatics

[ ] ( )4G G B B T Ext ExtF z F z g I F zρ ξ= − ⋅ − ⋅ − ⋅ ⋅ ∆− ⋅

But, external forces are not always negative or positive z direction.

ex) wind, current, mooring…

so, sign of FExt is determined, after a kind of FExt is determined.

Buoyancy force FB is always positive in z direction, so we could let BF gVρ=

and gravity force of ship FG is always negative in z direction, so GF mg= −

[ ] ( )4G G B B T Ext ExtF z F z g I F zρ ξ= − ⋅ − ⋅ − ⋅ ⋅ ∆− ⋅

Governing equation

Governing equationof transverse moment

* *3 4( , ) 0TM ξ ξ = * * * * * * * *

3 4 3 4 3 4 3 4,( , ) ( , ) ( , ) ( , ), T TG TB T Extwhere M M M Mξ ξ ξ ξ ξ ξ ξ ξ= + +(0) (0) (0) (0) (0) (0) (0) (0)3 4 3 4 3 4 3 4* * (0) (0)

3 4 3 4 (0) (0) (0) (0) (0) (0)3 4 3 4 3 4

(0)4

( , ) ( , ) ( , ) ( , )( , )

( , ) ( , ) ( , )( , ) G G B B

T TT Ext Ext

F z F zM M

gI F zξ ξ ξ ξ ξ ξ ξ ξ

ξ ξξ ξ ξ ξ ξ ξ

ξ ξ ξρ

− ⋅ − ⋅= + ∆ − − ⋅

26/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

Example : Immersion and Heel in Static Equilibrium after Cargo Being Loaded (9)

<Notation>* * (0) (0) (0)

3 4 3 4 4(0) (0)3 3( , ) ( , ), ( , )z z WPwhere F F gAξ ξ ξ ξ ξρ ξ ξ= − ⋅ ∆

Governing equation of force

* *3 4( , ) 0,zF ξ ξ =

Given : Find : (0) (0) (0) (0) (0) (0) (0) (0)3 4 3 4 3 4 3 4, ( , ) ( , ) ( , ) ( , )z G B Extwh ere F F F Fξ ξ ξ ξ ξ ξ ξ ξ= + + *

3ξ(0) (0) (0) (0)3 4 3 4, , ( , )ExtFξ ξ ξ ξ

(0) (0)3 4( , )zF ξ ξ (0,0)

3,4( )zF ξ

<Definition of notation>

(2) (1) (1)3 4 5( , , )zF ξ ξ ξ (2,1,1)

3,4,5( )zF ξ (2,1,1)3,4,5( )zF ξ

Immersion2nd Step

Attitude

Heel1st Step Trim

1st Step

* (0,0) (0,0) (0)3,4 3,4 3,4 3( ) ( ) ( ), z z WPwhere F F gAξ ξ ξρ ξ= − ⋅∆

Governing equation of force

*3,4( ) 0,zF ξ =

Given : Find : (0,0) (0,0) (0,0) (0,0)3,4 3,4 3,4 3,4( ) ( ) ( ) ( ), , z G B Extwh ere F F F Fξ ξ ξ ξ= + + *

3ξ(0) (0) (0,0)3 4 3,4( ), , ExtF ξξ ξ

We want to find *3ξ

* * * *3,4 3,4 3,4 , 3,4( ) ( ) ( ) ( ), T TG TB T Extwhere M M M Mξ ξ ξ ξ= + +Governing equation

of transverse moment*3,4( ) 0TM ξ =

Given : (0) (0) (0,0)3 4 , 3,4( ), , T ExtM ξξ ξ Find : *

(0,0) (0,0) (0,0)3,4 3,4 3,4* (0,0) (0)

3,4 3,4 4(0,0) (0,0) (0,0)3,4 3,4 3,4

( ) ( ) ( )( ) ( )

( ) ( ) ( )G B B

T TT Ext Ext

mg z F zM M

gI F z

ξ ξ ξξ ξ

ξ ξ ξξ

ρ

⋅ − ⋅= + ∆ − − ⋅

By similar way, governing equation of transverse moment is below

27/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

ξ3 : immersionξ4 : heel

Example : Immersion and Heel in Static Equilibrium after Cargo Being Loaded (10)

* (0,0) (0,0) (0)3,4 3,4 3,4 3( ) ( ) ( ), z z WPwhere F F gAξ ξ ξρ ξ= − ⋅∆

* * * *3,4 3,4 3,4 3,4( ) ( ) ( ) ( ), z G B Extwh ere F F F Fξ ξ ξ ξ= + +

Given : Find :

Governing equation of force

(0) (0) (0,0)3 4 3,4, , ( )ExtFξ ξ ξ *

*3,4( ) 0,zF ξ =

1

(1) (0) (0)3 3 3( )ξ ξ ξ+ ∆=

0 step, Immersion

(0,0) (0,0) (0,0) (0,0)3,4 3,4 3,4 3,4( ) ( ) ( ) ( )z G B ExtF F F Fξ ξ ξ ξ= + +

: Total force

1

(0,0) 43,4( ) 4.0 10 [ ]ExtF w kNξ = − = − ×

y

z

LC40 m

30 m

9m=

Section view

,O O′Baseline

G

w

, z′

, y′g B

Plan view

x

y

LC

20m

,O O′G

w

, x′

, y′

, B

44.0 10w kN= ×

(0,0)3,4

(0,0)3,4

( )

( )BV

F g dVξ

ξ ρ= ⋅ ∫∫∫

(0,0) 53,4( ) 3.6 10 [ ]GF kNξ = − ×

5 5 43.6 10 [ ] 3.6 10 [ ] 4.0 10 [ ]kN kN kN= − × + × − ×44.0 10 [ ]kN= − ×

100m

(0,0)3,4( )ExtF wξ = −

(0) (0) (0)3 4( [0,0, , ,0,0] )Tξ ξ=r

(0) (1) (0)3 4( [0,0, , ,0,0] )Tξ ξ=r

Immersion(0)3ξ∆ 0 step

(0,0) (0,0) (0,0)3,4 3,4 3,4( ) ( ) ( )sg L B Tξ ξ ξρ= ⋅ ⋅ ⋅

10[ ] 100[ ] 40[ ] 9[ ]m m m m= ⋅ ⋅ ⋅53.6 10 [ ]kN= ×

(0,0)3,4( )T ξ

g(0,0) (0,0) (0,0) (0,0)3,4 3,4 3,4 3,4( ) ( ) ( ) ( )z G B ExtF F F Fξ ξ ξ ξ= + +

28/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

* (0,0) (0,0) (0)3,4 3,4 3,4 3( ) ( ) ( ), z z WPwhere F F gAξ ξ ξρ ξ= − ⋅∆

* * * *3,4 3,4 3,4 3,4( ) ( ) ( ) ( ), z G B Extwh ere F F F Fξ ξ ξ ξ= + +

Given : Find :

Governing equation of force

(0) (0) (0,0)3 4 3,4, , ( )ExtFξ ξ ξ *

*3,4( ) 0,zF ξ =

(1) (0) (0)3 3 3( )ξ ξ ξ+ ∆=

(0,0)3,4( )WPg A ξρ−

Example : Immersion and Heel in Static Equilibrium after Cargo Being Loaded (11)

2

0 step, Immersion

2y

z

LC40[ ]m

9m

Section view

,O O′Baseline

G

w

, z′

, y′g B

Plan view

x

y

LCj i

20m,O O′ G

w, x′

, y′

, B

(0,0)3,4( )WPA

g dx dyξ

ρ= − ⋅ ∫∫

(0,0) (0,0)3,4 3,4( ) ( )sg B Lξ ξρ= − ⋅ ⋅

WPArea A=

WPArea A=

310[ / ] 40[ ] 100[ ]kN m m m= − ⋅ ⋅

44.0 10 [ / ]kN m= − ×

(0,0)3,4( ) 100L mξ =

(0) (0) (0)3 4( [0,0, , ,0,0] )Tξ ξ=r

(0) (1) (0)3 4( [0,0, , ,0,0] )Tξ ξ=r

Immersion(0)3ξ∆ 0 step

(0,0)3,4( ) 20sB mξ =

ξ3 : immersionξ4 : heel

29/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

* (0,0) (0,0) (0)3,4 3,4 3,4 3( ) ( ) ( ), z z WPwhere F F gAξ ξ ξρ ξ= − ⋅∆

* * * *3,4 3,4 3,4 3,4( ) ( ) ( ) ( ), z G B Extwh ere F F F Fξ ξ ξ ξ= + +

Given : Find :

Governing equation of force

(0) (0) (0,0)3 4 3,4, , ( )ExtFξ ξ ξ *

*3,4( ) 0,zF ξ =

(1) (0) (0)3 3 3( )ξ ξ ξ+ ∆=

y

z

LC

Section view

,O O′

, z′

y′Baselinew 1g

K

Example : Immersion and Heel in Static Equilibrium after Cargo Being Loaded (12)

3

0 step, Immersion

y

z

LC

Section view

,O O′Baseline

G

w

, z′

, y′g B

(0,0) 43,4( ) 4.0 10 [ ]zF kNξ = − ×1

(0,0) 43,4( ) 4.0 10 [ / ]WPgA kN mξρ− = − ×2

* (0,0)3,4 3,4(0)

3 (0,0)3,4

( ) ( )

( )z z

WP

F FgA

ξ ξ

ξξ

ρ−

∆ =−

(0)3ξ∆3 : change of immersion

1 2

( ) ( ) ( )1 0 03 3 3 0 1 1 [ ]mξ ξ ξ= + ∆ = − = −

We want to find *3ξ

Static equilibrium? Check!

9m=

( )1*3 3ξ ξ=

? (1,0)3,4( ) 0zF ξ =

?10m

If we assume that Fz(ξ3,4*) =0

4

4

0[ ] ( 4.0 10 )[ ] 1[ ]4.0 10 [ ]

kN kN mkN

− − ×= = −

− ×

(0) (0) (0)3 4( [0,0, , ,0,0] )Tξ ξ=r

(0) (1) (0)3 4( [0,0, , ,0,0] )Tξ ξ=r

Immersion(0)3ξ∆ 0 step

1G

1B

(0,0)3,4( )T ξ

ξ3 : immersionξ4 : heel

30/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

* (0,0) (0,0) (0)3,4 3,4 3,4 3( ) ( ) ( ), z z WPwhere F F gAξ ξ ξρ ξ= − ⋅∆

* * * *3,4 3,4 3,4 3,4( ) ( ) ( ) ( ), z G B Extwh ere F F F Fξ ξ ξ ξ= + +

Given : Find :

Governing equation of force

(0) (0) (0,0)3 4 3,4, , ( )ExtFξ ξ ξ *

*3,4( ) 0,zF ξ =

(1) (0) (0)3 3 3( )ξ ξ ξ+ ∆=

Baseline

G

w 1g

Example : Immersion and Heel in Static Equilibrium after Cargo Being Loaded (13)

0 step, Immersion

y

z

LC

Section view

,O O′

, z′

y′B

(1,0)3,4( ) 0zF ξ =

Static equilibrium?Check!

( )1*3 3ξ ξ=

(0)3ξ∆

(1,0)3,4( )BF ξ

(1,0)3,4( )GF ξ

(1,0) (1,0) (1,0) (1,0)3,4 3,4 3,4 3,4( ) ( ) ( ) ( )z G B ExtF F F Fξ ξ ξ ξ= ++

(1,0)3,4( )ExtF ξ (0,0) 4

3,4( ) 4.0 10 [ ]ExtF kNξ= = − ×

(0,0) 53,4( ) 3.6 10 [ ]GF kNξ= = − ×

(1,0)3,4( )g V ξρ= ⋅

3 4 310[ / ] 4.0 10 [ ]kN m m= × ×

(1, 0)3, 4

(1,0)3,4

( )

( )V

V dVξ

ξ = ∫∫∫

54.0 10 [ ]kN= ×

(1,0)3,4( )zF ξ (1,0) (1,0) (1,0)

3,4 3,4 3,4( ) ( ) ( )G B ExtF F Fξ ξ ξ= ++5 5 43.6 10 [ ] 4.0 10 [ ] 4.0 10 [ ]kN kN kN= − × + × − ×

0[ ]kN=

4(1,0)3,4( ) 0zF ξ = ( )1*

3 3ξ ξ=

If ξ4(1) is also ξ4

*, then the iteration ends.

4

Check ξ4(1)

10m=

(0) (0) (0)3 4( [0,0, , ,0,0] )Tξ ξ=r

(0) (1) (0)3 4( [0,0, , ,0,0] )Tξ ξ=r

Immersion(0)3ξ∆ 0 step

4 3100[ ] 40[ ] 10[ ] 4.0 10 [ ]m m m m= ⋅ ⋅ = ×44.0 10w kN= ×

(1,0)3,4( )ExtF wξ = −

?

?

(1,0)3,4( )T ξ

(1,0) (1,0) (1,0)3,4 3,4 3,4( ) ( ) ( )sL B Tξ ξ ξ= ⋅ ⋅

In this example

ξ3 : immersionξ4 : heel

31/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

* * * *3,4 3,4 3,4 , 3,4( ) ( ) ( ) ( ), T TG TB T Extwhere M M M Mξ ξ ξ ξ= + +

Governing equationof transverse moment

*3,4( ) 0TM ξ =

Example : Immersion and Heel in Static Equilibrium after Cargo Being Loaded (14)

0 step

(0) (0) (0)3 4( [0,0, , ,0,0])ξ ξ=r

(0) (1) (0)3 4( [0,0, , ,0,0])ξ ξ=r

Immersion

Heel

LC

O′

(0,0)3,4( )G ξ

w

,z z′

,y y′(0,0)3,4( )g ξ

(0,0)3,4( )B ξ

O -40,000 -360,000 360,000 -40,000

-400,000 0 0 -400,000

[ ]ZF kN [ ]GF kN [ ]BF kN [ ]ExtF kN

[ ]TM kN m⋅ [ ]TGM kN m⋅ [ ]TBM kN m⋅ , [ ]T ExtM kN m⋅

* * * *3,4 3,4 3,4 3,4( ) ( ) ( ) ( ), z G B Extwh ere F F F Fξ ξ ξ ξ= + +

Governing equationof force

*3,4( ) 0zF ξ =

0 -360,000 400,000 -40,000

-400,000 0 0 -400,000

[ ]ZF kN [ ]GF kN [ ]BF kN [ ]ExtF kN

[ ]TM kN m⋅ [ ]TGM kN m⋅ [ ]TBM kN m⋅ , [ ]T ExtM kN m⋅

(1) (1) (1)3 4( [0,0, , ,0,0])ξ ξ=rNext step

End of Immersion 0 step.

Start Heel 0 step.

(1,0)3,4( )G ξ

w(1,0)3,4( )g ξ

y

,z z′

LC

O

y′(1,0)3,4( )B ξ

(0)3ξ∆

O′

(0) (0) (0)3 4( [0,0, , ,0,0] )Tξ ξ=r

(0) (1) (0)3 4( [0,0, , ,0,0] )Tξ ξ=r

Immersion(0)3ξ∆ 0 step

ξ3 : immersionξ4 : heel

32/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

Example : Immersion and Heel in Static Equilibrium after Cargo Being Loaded (15)

y

z

LC

,O O′

(0,0)3,4( )G ξ

w

, z′

, y′(0,0)3,4( )g ξ

(0,0)3,4( )B ξ9[ ]m=

(0,0)3,4( )T ξ

y

,z z′

LC

O (0)3ξ∆

y′w(1,0)3,4( )g ξ

O′10m=

(1,0)3,4( )T ξ

(0,0)3,4(0,0)3,4(0,0)3,4

( )

( )

( )

xyz

ξ

ξ

ξ

Transformation G, gto waterplane fixed frame

(0,0)3,4( ) (0,0,6)G ξ =

(0,0)3,4( ) (0, 10, 4.5)g ξ = − −

(1,0)3,4( ) (0,0,5)G ξ =

(1,0)3,4( ) (0, 10, 5.5)g ξ = − −

0 step, Heel(1,0)3,4(1,0)3,4(1,0)3,4

( )

( )

( )

xyz

ξ

ξ

ξ

=

(0)3

00

ξ

+ ∆

(0,0)3,4(0,0)3,4(0,0) (0)3,4 3

( )( )( )

00

G

G

G

xyz

ξ

ξ

ξ ξ

= + ∆

(1,0)3,4(1,0)3,4(1,0)3,4

( )( )( )

G

G

G

xyz

ξ

ξ

ξ

(1) (0) (0)3 3 3ξ ξ ξ= + ∆

0 00 06 1

= + −

(0,0)3,4(0,0)3,4(0,0) (0)3,4 3

( )( )( )

00

g

g

g

xyz

ξ

ξ

ξ ξ

= + ∆

(1,0)3,4(1,0)3,4(1,0)3,4

( )( )( )

g

g

g

xyz

ξ

ξ

ξ

0 010 04.5 1

= − + − −

005

=

0105.5

= − −

(0,0)3,4( ) (0,0, 4.5)B ξ = − (1,0)

3,4( ) (0,0, 5)B ξ = −

(1,0)3,4( )B ξ

(1,0)3,4( )G ξ

For center of gravity of ship (1,0)3,4( )G ξ

For center of weight of cargo (1,0)3,4( )g ξ

(0) (1) (0)3 4( [0,0, , ,0,0] )Tξ ξ=r

(0) (1) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 0 step

ξ3 : immersionξ4 : heel

to calculate (1,0)3,4( )TM ξCalculate (1,0) (1,0) (0,0)

3,4 3,4 3,4( ) ( ), ( ),G B gξ ξ ξ0 step, Heel

33/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

Example : Immersion and Heel in Static Equilibrium after Cargo Being Loaded (16)

y

z

LC

,O O′

(0,0)3,4( )G ξ

w

, z′

, y′(0,0)3,4( )g ξ

(0,0)3,4( )B ξ9[ ]m=

(0,0)3,4( )T ξ

y

,z z′

LC

O (0)3ξ∆

y′w(1,0)3,4( )g ξ

O′10m=

(1,0)3,4( )T ξ

(0,0)3,4( ) (0,0,6)G ξ =

(0,0)3,4( ) (0, 10, 4.5)g ξ = − −

(1,0)3,4( ) (0,0,5)G ξ =

(1,0)3,4( ) (0, 10, 5.5)g ξ = − −

(1,0)3,4( )

00

/ 2T ξ

= −

(1,0)3,4(1,0)3,4(1,0)3,4

( )( )( )

B

B

B

xyz

ξ

ξ

ξ

00

10 / 2

= −

005

= −

(0,0)3,4( ) (0,0, 4.5)B ξ = − (1,0)

3,4( ) (0,0, 5)B ξ = −

(1,0)3,4( )B ξ

(1,0)3,4( )G ξ

For center of Buoyancy is calculated by(1,0)3,4( )B ξ

in this example, is located in center of draft.(1,0)3,4( )B ξ

(1,0) (1,0) (1,0), 3,4 , 3,4 , 3,4

(1,0) (1,0) (1,0)3,4 3,4 3,4

( ) ( ) ( )

( ) ( ) ( )( , , )V x V y V zM M M

V V Vξ ξ ξ

ξ ξ ξ

,V xM :1st moment of volume V about x axis in y direction in waterplane fixed frame

(0) (1) (0)3 4( [0,0, , ,0,0] )Tξ ξ=r

(0) (1) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 0 step

ξ3 : immersionξ4 : heel

0 step, Heel

(0,0)3,4(0,0)3,4(0,0)3,4

( )

( )

( )

xyz

ξ

ξ

ξ

Transformation G, gto waterplane fixed frame

0 step, Heel(1,0)3,4(1,0)3,4(1,0)3,4

( )

( )

( )

xyz

ξ

ξ

ξ

=

(0)3

00

ξ

+ ∆ (1) (0) (0)

3 3 3ξ ξ ξ= + ∆

to calculate (1,0)3,4( )TM ξCalculate (1,0) (1,0) (0,0)

3,4 3,4 3,4( ) ( ), ( ),G B gξ ξ ξ

34/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

Example : Immersion and Heel in Static Equilibrium after Cargo Being Loaded (17)

Given : (1) (0) (1,0)

3 4 , 3,4( ), , T ExtM ξξ ξ Find : *4ξ (1) (0) (0)

4 4 4( )ξ ξ ξ+ ∆=

(1,0) (1,0) (1,0)3,4 3,4 3,4(1,0)

3,4 (1,0) (1,0) (1,0)3,4 3,4 3,4

* (0)3,4 4

( ) ( ) ( )( ) ( )

( ) ( ) ( )T B

T TG Ext Ext

gI g V zM M

mg z F z

ξ ξ ξξ ξ

ξ ξ ξ

ρ ρξ

− − ⋅ ⋅= + ∆ + ⋅ − ⋅

Governing equation of transverse moment

*3,4( ) 0TM ξ =

1

(1,0) (1,0) (1,0) (1,0)3,4 3,4 3,4 , 3,4( ) ( ) ( ) ( )T TG TB T ExtM M M Mξ ξ ξ ξ= + +1

(1,0) (1,0) (1,0)3,4 3,4 3,4

5

( ) ( ) ( )

0[ ] ( 3.6 10 )[ ] 0 [ ]TG G GM y F

m kN kN

ξ ξ ξ=

= × − × =(1,0) (1,0) (1,0)3,4 3,4 3,4

5

( ) ( ) ( )

0[ ] (4.0 10 )[ ] 0[ ]TB B BM y F

m kN kN

ξ ξ ξ=

= × × =(1,0) (1,0) (1,0)

, 3,4 3,4 3,4

(1,0) (1,0)3,4 3,4

4 5

( ) ( ) ( )

( ) ( )

[ ] [ ] [ ]10 ( 4.0 10 ) 4.0 10

T Ext Ext Ext

g Ext

m kN kN m

M y F

y F

ξ ξ ξ

ξ ξ

=

=

= − × − × = ×

(1,0)3,4

5( ) 4.0 10 [ ]B kNF ξ = ×(1,0) 43,4( ) 4.0 10 [ ]ExtF kNξ = − ×

(1,0) 53,4( ) 3.6 10 [ ]G NF kξ = − ×

5

5

0 0 4.0 10 [ ]4.0 10 [ ]

kN mkN m

= + + × ⋅

= × ⋅

0 step, Heel

Baseline

G

w g

y

,z z′

LC

Section view

O

y′B

(0) (1) (0)3 4( [0,0, , ,0,0] )Tξ ξ=r

(0) (1) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 0 step

(1,0)3,4( ) (0,0,5)G ξ =

(1,0)3,4( ) (0, 10, 5.5)g ξ = − −

(1,0)3,4( ) (0,0, 5)B ξ = −

(1,0) (1,0) (1,0) (1,0)3,4 3,4 3,4 , 3,4( ) ( ) ( ) ( )T TG TB T ExtM M M Mξ ξ ξ ξ= + +

(1,0)3,4( )G G ξ=(1,0)3,4( )B B ξ=(1,0)3,4( )g g ξ=

O′

ξ3 : immersionξ4 : heel

35/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

Given : (1) (0) (1,0)

3 4 , 3,4( ), , T ExtM ξξ ξ Find : *4ξ (1) (0) (0)

4 4 4( )ξ ξ ξ+ ∆=

(1,0) (1,0) (1,0)3,4 3,4 3,4(1,0)

3,4 (1,0) (1,0) (1,0)3,4 3,4 3,4

* (0)3,4 4

( ) ( ) ( )( ) ( )

( ) ( ) ( )G B

T TT Ext Ext

mg z g V zM M

gI F z

ξ ξ ξξ ξ

ξ ξ ξ

ρξ

ρ

⋅ − ⋅ ⋅= + ∆ − − ⋅

Governing equation of transverse moment

*3,4( ) 0TM ξ =

Example : Immersion and Heel in Static Equilibrium after Cargo Being Loaded (18)

0 step, Heel2

(1, 0)3, 4

(1,0) (1,0) 33,4 3,4(1,0) 2

3,4( )

( ) ( )( )

12WP

sT

A

L BgI g y dx dy g

ξ

ξ ξξρ ρ ρ= =∫∫

(1, 0)3, 4

(1,0) (1,0) (1,0)3,4 3,4 3,4

( )

( ) ( ) ( )B BV

gV z g dV zξ

ξ ξ ξρ ρ⋅ = ⋅ ⋅∫∫∫

(1,0) 53,4( ) 3.6 10 [ ] 5[ ]Gmg z kN mξ⋅ = × ×

m: Mass of the shipzG: Z coordinate of the center of mass of the ship

IT: 2nd moment of waterplane area with respect to x axis of the waterplane fixed frame

V: Displacement volume

zB: Z coordinate of the center of buoyancyzExt: Z coordinate of the point acting the external force

2

33 6100[ ] 40[ ]10[ / ] 5.333 10 [ ]

12[ ]m mkN m kN m

= × = × ⋅

(1,0) (1,0) (1,0) (1,0)3,4 3,4 3,4 3,4( ) ( ) ( ) ( )s Bg L B T zξ ξ ξ ξρ= ⋅ ⋅ ⋅ ⋅

310[ / ] 100[ ] 40[ ] 10[ ] ( 5[ ])kN m m m m m= × × × × −62.0 10 [ ]kN m= − × ⋅

61.8 10 [ ]kN m= × ⋅

(0) (1) (0)3 4( [0,0, , ,0,0] )Tξ ξ=r

(0) (1) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 0 step

(1,0)3,4

5( ) 4.0 10 [kN]BF ξ = ×(1,0) 43,4( ) 4.0 10 [kN]ExtF ξ = − ×

(1,0) 53,4( ) 3.6 10 [kN]GF ξ = − ×

(1,0)3,4( ) (0,0,5)G ξ =

(1,0)3,4( ) (0, 10, 5.5)g ξ = − −

(1,0)3,4( ) (0,0, 5)B ξ = −

,y y′

LC

Plan view

(1,0)3,4( )

40SB

m

ξ

=

,O O′ G

w, B

(1,0)3,4( ) 100L mξ =

,x x′

g

Baseline

G

w g

y

,z z′

LC

Section view

O

y′B(1,0)3,4( )G G ξ=(1,0)3,4( )B B ξ=(1,0)3,4( )g g ξ=

O′

ξ3 : immersionξ4 : heel

36/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

Example : Immersion and Heel in Static Equilibrium after Cargo Being Loaded (19)

0 step, Heel

m: Mass of the shipzG: Z coordinate of the center of mass of the ship

IT: 2nd moment of waterplane area with respect to x axis of the waterplane fixed frame

V: Displacement volume

zB: Z coordinate of the center of buoyancyzExt: Z coordinate of the point acting the external force

2(1,0)3,4( ), (0, 10, 5.5)g ξ = − −

(1,0) (1,0)3,4 3,4( ) ( )Ext ExtF zξ ξ⋅

(1,0) (1,0) (1,0)3,4 3,4 3,4

(1,0) (1,0) (1,0)3,4 3,4 3,4

( ) ( ) ( )

( ) ( ) ( )G B

T Ext Ext

mg z g V z

gI F z

ξ ξ ξ

ξ ξ ξ

ρ

ρ

⋅ − ⋅ ⋅

− − ⋅

6 6

6 5

6

1.8 10 [ ] 2.0 10 [ ]5.333 10 [ ] 2.2 10 [ ]1.7533 10 [ ]

kN m kN mkN m kN mkN m

= × ⋅ + × ⋅

− × ⋅ − × ⋅

= − × ⋅

(1,0) 43,4( ) 4.0 10 [ ]ExtF kNξ = − ×

(0) (1) (0)3 4( [0,0, , ,0,0] )Tξ ξ=r

(0) (1) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 0 step

(1,0) (1,0)3,4 3,4( ) ( )Ext gF zξ ξ= ⋅

( )44.0 10 [ ] 5.5 [ ]kN m= − × × −52.2 10 [ ]kN m= × ⋅

Given : (1) (0) (1,0)

3 4 , 3,4( ), , T ExtM ξξ ξ Find : *4ξ (1) (0) (0)

4 4 4( )ξ ξ ξ+ ∆=

(1,0) (1,0) (1,0)3,4 3,4 3,4(1,0)

3,4 (1,0) (1,0) (1,0)3,4 3,4 3,4

* (0)3,4 4

( ) ( ) ( )( ) ( )

( ) ( ) ( )G B

T TT Ext Ext

mg z g V zM M

gI F z

ξ ξ ξξ ξ

ξ ξ ξ

ρξ

ρ

⋅ − ⋅ ⋅= + ∆ − − ⋅

Governing equation of transverse moment

*3,4( ) 0TM ξ =

2

Baseline

G

w g

y

,z z′

LC

Section view

O

y′B(1,0)3,4( )G G ξ=(1,0)3,4( )B B ξ=(1,0)3,4( )g g ξ=

O′

,y y′

LC

Plan view

(1,0)3,4( )

40SB

m

ξ

=

,O O′ G

w, B

(1,0)3,4( ) 100L mξ =

,x x′

g

ξ3 : immersionξ4 : heel

37/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

Given : (1) (0) (1,0)

3 4 , 3,4( ), , T ExtM ξξ ξ Find : *4ξ (1) (0) (0)

4 4 4( )ξ ξ ξ+ ∆=

(1,0) (1,0) (1,0)3,4 3,4 3,4(1,0)

3,4 (1,0) (1,0) (1,0)3,4 3,4 3,4

* (0)3,4 4

( ) ( ) ( )( ) ( )

( ) ( ) ( )G B

T TT Ext Ext

mg z g V zM M

gI F z

ξ ξ ξξ ξ

ξ ξ ξ

ρξ

ρ

⋅ − ⋅ ⋅= + ∆ − − ⋅

Governing equation of transverse moment

*3,4( ) 0TM ξ =

Example : Immersion and Heel in Static Equilibrium after Cargo Being Loaded (20)

0 step, Heel2 3

1

1(1,0) 53,4( ) 4.0 10 [ ]TM kN mξ = × ⋅

2 (1,0) (1,0) (1,0)3,4 3,4 3,4

(1,0) (1,0) (1,0)3,4 3,4 3,4

6

( ) ( ) ( )

( ) ( ) ( )

1.7533 10 [ ]

G B

T Ext Ext

mg z g V z

gI F z

kN m

ξ ξ ξ

ξ ξ ξ

ρ

ρ

⋅ − ⋅ ⋅

− − ⋅

= − × ⋅* (1, 0)

3,4 3, 4

(1,0) (1,0) (1,0)3,4 3,4 3,4

(1,0) (1,0) (1,0)3,4 3,4 3,4

(0)4

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

T T

G B

T Ext Ext

M M

mg z g V z

gI F z

ξ ξ

ξ ξ ξ

ξ ξ ξ

ξρ

ρ

−=

∆ ⋅ − ⋅ ⋅ − − ⋅

3

Static equilibrium? Check!

We want to find *4ξ

( )1*4 4ξ ξ=

? (1,1)3,4( ) 0TM ξ =

?

5

6

0[ ] 4.0 10 [ ] 0.23rad 13.071.7533 10 [ ]

kN m kN mkN m

⋅ − × ⋅= = =

− × ⋅

If we assume that MT(ξ3,4*) =0

(0) (1) (0)3 4( [0,0, , ,0,0] )Tξ ξ=r

(0) (1) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 0 step

y

z

LC

G y′

g B

(0)4ξ∆

w

O

z′

O′

(1,1)3,4( )G G ξ=(1,1)3,4( )B B ξ=(1,1)3,4( )g g ξ=

(1) (0) (0)4 4 4 0 13.07 13.07ξ ξ ξ= + ∆ = + ° = °

Baseline

G

w g

y

,z z′

LC

Section view

O

y′B(1,0)3,4( )G G ξ=(1,0)3,4( )B B ξ=(1,0)3,4( )g g ξ=

O′

ξ3 : immersionξ4 : heel

38/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

Example : Immersion and Heel in Static Equilibrium after Cargo Being Loaded (21)

y

,z z′

LC

OO′

y′w g10m

immersion(0,0)3,4(0,0)3,4(0,0)3,4

( )

( )

( )

xyz

ξ

ξ

ξ

(1,0)3,4( ) (0,0,5)G ξ =(1,0)3,4( ) (0, 10, 5.5)g ξ = − −

0 step, Immersion(1,0)3,4(1,0)3,4(1,0)3,4

( )

( )

( )

xyz

ξ

ξ

ξ

=

(0)3

00

ξ

+ ∆

(1,0)3,4

(0) (0) (1,0)4 4 3,4(0) (0) (1,0)4 4 3,4

( )( )( )

1 0 00 cos sin0 sin cos

G

G

G

xyz

ξ

ξ

ξ

ξ ξξ ξ

= ∆ − ∆ ∆ ∆

(1,1)3,4(1,1)3,4(1,1)3,4

( )( )( )

G

G

G

xyz

ξ

ξ

ξ

(1) (0) (0)3 3 3ξ ξ ξ= + ∆

01.13

4.87

= −

(1,1)3,4(1,1)3,4(1,1)3,4

( )( )( )

g

g

g

xyz

ξ

ξ

ξ

(0) (0)4 4(0) (0)4 4

1 0 0 00 cos sin 100 sin cos 5.5

ξ ξξ ξ

= ∆ − ∆ − ∆ ∆ −

08.5

7.62

= − −

B

G

(1,0)3,4( ) (0,0, 5)B ξ = −

0 step, Heel

(0) (0)4 4(0) (0)4 4

1 0 00 cos sin0 sin cos

ξ ξξ ξ

= ∆ − ∆ ∆ ∆

(1,1)3,4(1,1)3,4(1,1)3,4

( )

( )

( )

xyz

ξ

ξ

ξ

(1,0)3,4(1,0)3,4(1,0)3,4

( )

( )

( )

xyz

ξ

ξ

ξ

Transformation G, gto waterplane fixed frame

(1) (0) (0)4 4 4ξ ξ ξ= + ∆

(0) (1) (0)3 4( [0,0, , ,0,0] )Tξ ξ=r

(0) (1) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 0 step

heel

(0) (0)4 4(0) (0)4 4

1 0 0 00 cos sin 00 sin cos 5

ξ ξξ ξ

= ∆ − ∆ ∆ ∆

(1,1)3,4( ) (0, 1.13,4.87)G ξ = −

(1,1)3,4( ) (0, 8.5, 7.62)g ξ = − −

(1,0)3,4

(0) (0) (1,0)4 4 3,4(0) (0) (1,0)4 4 3,4

( )( )( )

1 0 00 cos sin0 sin cos

g

g

g

xyz

ξ

ξ

ξ

ξ ξξ ξ

= ∆ − ∆ ∆ ∆

(0)4, ( 13.07 )ξ∆ =

(0)4, ( 13.07 )ξ∆ =

Next

y

z

G

z′

y′

gB

(0)4ξ∆

w

O

(1,0)3,4( )G G ξ=(1,0)3,4( )B B ξ=(1,0)3,4( )g g ξ=

(1,1)3,4( )G G ξ=(1,1)3,4( )B B ξ=(1,1)3,4( )g g ξ=

Transformation G, gto waterplane fixed frame

O′

For center of gravity of ship, (1,1)3,4( )G ξ

For center of weight of cargo, (1,1)3,4( )g ξ

ξ3 : immersionξ4 : heel

For center of Buoyancy is calculated by(1,1)3,4( )B ξ

(1,1) (1,1) (1,1), 3,4 , 3,4 , 3,4

(1,1) (1,1) (1,1)3,4 3,4 3,4

( ) ( ) ( )

( ) ( ) ( )( , , )V x V y V zM M M

V V Vξ ξ ξ

ξ ξ ξ,V xM

:1st moment of volume about x axisin y direction in waterplane fixedframe

in this example, is simply calculated as next page(1,1)3,4( )B ξ

to calculate (1,1)3,4( )TM ξCalculate (1,1) (1,1) (1,1)

3,4 3,4 3,4( ) ( ), ( ),G B gξ ξ ξ

39/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

Given : (1) (0) (1,0)

3 4 , 3,4( ), , T ExtM ξξ ξ Find : *4ξ (1) (0) (0)

4 4 4( )ξ ξ ξ+ ∆=

(1,0) (1,0) (1,0)3,4 3,4 3,4(1,0)

3,4 (1,0) (1,0) (1,0)3,4 3,4 3,4

* (0)3,4 4

( ) ( ) ( )( ) ( )

( ) ( ) ( )G B

T TT Ext Ext

mg z g V zM M

gI F z

ξ ξ ξξ ξ

ξ ξ ξ

ρξ

ρ

⋅ − ⋅ ⋅= + ∆ − − ⋅

Governing equation of transverse moment

*3,4( ) 0TM ξ =

Example : Immersion and Heel in Static Equilibrium after Cargo Being Loaded (22)

0 step, Heel

Static equilibrium? Check!

( )1*4 4ξ ξ=

?

(1,1)3,4( ) 0TM ξ =

?

y

z,z z′ ′′

y′

(0)4 13.07ξ∆ =

(0)4ξ∆

A2

A3

A1

(1,1) (1,1) (1,1)3,4 3,4 3,4( ) ( ) ( )( , , )B B BB x y zξ ξ ξ

(1,1) (1,1)3,4 3,4( ) ( )( , )c cc y zξ ξCentroid of section area

=

Area of A1 in O''-x''y''z'' frame

1A sArea B T′′ ′′= ⋅ 240[ ] 10[ ] 400[ ]m m m= ⋅ =

10[ ]T m′′ =Draft in O''-x''y''z'' frame

(0)3ξ∆

T ′′

sB′′

2 3( )A AArea Area=

{ }0.5 (40 / 2[ ]) (40 / 2)[ ] tan(13.07)m m= ⋅ ⋅ ⋅246.44[ ]m=

Area of A3 (=A2)in O''-x''y''z'' frame

A3

/ 2sB′′

(0)4( / 2) tan( )sB ξ′′ ⋅ ∆

(0)4ξ∆

(0) (1) (0)3 4( [0,0, , ,0,0] )Tξ ξ=r

(0) (1) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 0 step

4

4

(1,1)3,4( )B ξ

{ }(0)40.5 ( / 2) ( / 2) tan( )s sB B ξ′′ ′′= ⋅ ⋅ ∆

y

z

G

z′

y′

gB

(0)4ξ∆

w

OO′

(1,1)3,4( )B B ξ=(1,1)3,4( )g g ξ=

(1,1)3,4( )G G ξ=

Section view

Calculate centroid of section area in O''-x''y''z'' frame,then transformation centroid of section area to waterplane fixed frame.

ξ3 : immersionξ4 : heel

Define new frame O''-x''y''z''Section view

y′′

<Transverse moment of >(1,1)3,4( )ξ

,O O′′

O′

(1,1)3,4of ξ

40/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

Example : Immersion and Heel in Static Equilibrium after Cargo Being Loaded (23)

0 step, Heel

3 3( , )A Ay z′′ ′′ (1)

42 1, tan( )

2 3 2 3s sB B ξ′′ ′′ = ⋅ − ∆ ⋅

( )(40 / 2) (2 / 3), (40 / 2) tan(13.07) (1/ 3)= ⋅ − ⋅ ⋅

Centroid of A3 in O''-x''y''z'' frame,

Centroid of A1 in O''-x''y''z'' frame,

1 1( , )A Ay z′′ ′′

(0) (1) (0)3 4( [0,0, , ,0,0] )Tξ ξ=r

(0) (1) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 0 step

( )13.33, 1.55= −Centroid of A2 in O''-x''y''z'' frame,

2 2( , )A Ay z′′ ′′in similar way ( )13.33,1.55= −

Static equilibrium? Check!

( )1*4 4ξ ξ=

?

A3

/ 2sB′′

(0)4

( / 2)

tan( )sB

ξ

′′

⋅ ∆

(0)4ξ∆

3Ay′′ 3Az′′

10(0, ) (0, ) (0, 5)2 2

T ′′= − = − = −

Given : (1) (0) (1,0)

3 4 , 3,4( ), , T ExtM ξξ ξ Find : *4ξ (1) (0) (0)

4 4 4( )ξ ξ ξ+ ∆=

(1,0) (1,0) (1,0)3,4 3,4 3,4(1,0)

3,4 (1,0) (1,0) (1,0)3,4 3,4 3,4

* (0)3,4 4

( ) ( ) ( )( ) ( )

( ) ( ) ( )G B

T TT Ext Ext

mg z g V zM M

gI F z

ξ ξ ξξ ξ

ξ ξ ξ

ρξ

ρ

⋅ − ⋅ ⋅= + ∆ − − ⋅

Governing equation of transverse moment

*3,4( ) 0TM ξ =

4

4

y

z

G

z′

y′

gB

(0)4ξ∆

w

OO′

(1,1)3,4( )B B ξ=(1,1)3,4( )g g ξ=

(1,1)3,4( )G G ξ=

Section view

(1,1)3,4( ) 0TM ξ =

?

Calculate centroid of section area in O''-x''y''z'' frame,then transformation centroid of section area to waterplane fixed frame.

ξ3 : immersionξ4 : heel

(1,1)3,4of ξ

y

z,z z′ ′′

y′

(0)4 13.07ξ∆ =

(0)4ξ∆

A2

A3

A1

(0)3ξ∆

T ′′

B′′

Define new frame O''-x''y''z''Section view

y′′,O O′′

O′

(1,1) (1,1) (1,1)3,4 3,4 3,4( ) ( ) ( )( , , )B B BB x y zξ ξ ξ

(1,1) (1,1)3,4 3,4( ) ( )( , )c cc y zξ ξCentroid of section area

=(1,1)3,4( )B ξ

<Transverse moment of >(1,1)3,4( )ξ

41/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

Example : Immersion and Heel in Static Equilibrium after Cargo Being Loaded (24)

0 step, Heel

A1 400.00 0.00 -5.00 0.00 -2000.00

A2 46.44 -13.33 1.55 -619.14 71.88

A3 -46.44 13.33 -1.55 -619.14 71.88

Sum 400.00 -1,238.29 -1,856.25

3 3

, ,1 1

3 3

1 1

( , )

,Ai Ai

c c

A y A zi i

Ai Aii i

y z

M M

Area Area

′′ ′′= =

= =

′′ ′′ =

∑ ∑

∑ ∑

, AiA yM ′′ :1st moment of area Ai about x axis in y direction in O''-x''y''z'' frame

, AiA zM ′′ :1st moment of area Ai about y axis in z direction in O''-x''y''z'' frame

( )( , ) 0, 3.1, 4.64c cy z′′ ′′∴ = − −

iAy′′

, ( 1, 2,3)i =

,( )

AiA yM

′′

iAi AArea y′′×,

( )AiA z

M′′

iAi AArea z′′×

(0) (1) (0)3 4( [0,0, , ,0,0] )Tξ ξ=r

(0) (1) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 0 step

1,238.29 1,856.25,400 400

− − =

Static equilibrium? Check!

( )1*4 4ξ ξ=

?

ξ3 : immersionξ4 : heel

AiArea

Centroid of section area in O''-x''y''z'' frame,

( )3.1, 4.64= − −

Given : (1) (0) (1,0)

3 4 , 3,4( ), , T ExtM ξξ ξ Find : *4ξ (1) (0) (0)

4 4 4( )ξ ξ ξ+ ∆=

(1,0) (1,0) (1,0)3,4 3,4 3,4(1,0)

3,4 (1,0) (1,0) (1,0)3,4 3,4 3,4

* (0)3,4 4

( ) ( ) ( )( ) ( )

( ) ( ) ( )G B

T TT Ext Ext

mg z g V zM M

gI F z

ξ ξ ξξ ξ

ξ ξ ξ

ρξ

ρ

⋅ − ⋅ ⋅= + ∆ − − ⋅

Governing equation of transverse moment

*3,4( ) 0TM ξ =

4

4

y

z

G

z′

y′

gB

(0)4ξ∆

w

OO′

(1,1)3,4( )B B ξ=(1,1)3,4( )g g ξ=

(1,1)3,4( )G G ξ=

Section view

(1,1)3,4( ) 0TM ξ =

?

Calculate centroid of section area in O''-x''y''z'' frame,then transformation centroid of section area to waterplane fixed frame.

ξ3 : immersionξ4 : heel

(1,1)3,4of ξ

y

z,z z′ ′′

y′

(0)4 13.07ξ∆ =

(0)4ξ∆

A2

A3

A1

(0)3ξ∆

T ′′

B′′

Define new frame O''-x''y''z''Section view

y′′,O O′′

O′

(1,1) (1,1) (1,1)3,4 3,4 3,4( ) ( ) ( )( , , )B B BB x y zξ ξ ξ

(1,1) (1,1)3,4 3,4( ) ( )( , )c cc y zξ ξCentroid of section area

=(1,1)3,4( )B ξ

<Transverse moment of >(1,1)3,4( )ξ

iAz′′

42/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

Example : Immersion and Heel in Static Equilibrium after Cargo Being Loaded (25)

0 step, Heel

( )( , ) 3.1, 4.64c cy z′′ ′′∴ = − −

(1,1)3,4(1,1)3,4(1,1)3,4

( )( )( )

c

c

c

xyz

ξ

ξ

ξ

=

(1,1)3,4( ) (0, 1.97, 5.22)B ξ∴ = − −

(0) (0)4 4(0) (0)

4 4

1 0 0 00 cos sin 3.10 sin cos 4.64

ξ ξξ ξ

= ∆ − ∆ − ∆ ∆ −

(0)4, ( 13.07 )ξ∆ =

(0) (1) (0)3 4( [0,0, , ,0,0] )Tξ ξ=r

(0) (1) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 0 step

Static equilibrium? Check!

( )1*4 4ξ ξ=

?

Calculate centroid of section area in O''-x''y''z'' frame,

then transformation centroid of section area to waterplane fixed frame.

(1,1) (1,1) (1,1)3,4 3,4 3,4( ) ( ) ( )( , , )c c cx y zξ ξ ξ

01.975.22

= − −

(0) (0)4 4(0) (0)

4 4

1 0 00 cos sin0 sin cos

c

c

c

xyz

ξ ξξ ξ

′′ ′′= ∆ − ∆

′′ ∆ ∆

Given : (1) (0) (1,0)

3 4 , 3,4( ), , T ExtM ξξ ξ Find : *4ξ (1) (0) (0)

4 4 4( )ξ ξ ξ+ ∆=

(1,0) (1,0) (1,0)3,4 3,4 3,4(1,0)

3,4 (1,0) (1,0) (1,0)3,4 3,4 3,4

* (0)3,4 4

( ) ( ) ( )( ) ( )

( ) ( ) ( )G B

T TT Ext Ext

mg z g V zM M

gI F z

ξ ξ ξξ ξ

ξ ξ ξ

ρξ

ρ

⋅ − ⋅ ⋅= + ∆ − − ⋅

Governing equation of transverse moment

*3,4( ) 0TM ξ =

4

4

y

z

G

z′

y′

gB

(0)4ξ∆

w

OO′

(1,1)3,4( )B B ξ=(1,1)3,4( )g g ξ=

(1,1)3,4( )G G ξ=

Section view

(1,1)3,4( ) 0TM ξ =

?

(1,1) (1,1) (1,1)3,4 3,4 3,4( ) ( ) ( )( , , ) (0, 1.97, 5.22)c c cx y zξ ξ ξ∴ = − −

ξ3 : immersionξ4 : heel

(1,1)3,4of ξ

(1,1) (1,1) (1,1)3,4 3,4 3,4( ) ( ) ( )( , , )B B BB x y zξ ξ ξ

(1,1) (1,1)3,4 3,4( ) ( )( , )c cc y zξ ξCentroid of section area

=(1,1)3,4( )B ξ

<Transverse moment of >(1,1)3,4( )ξ

y

z,z z′ ′′

y′

(0)4 13.07ξ∆ =

(0)4ξ∆

A2

A3

A1

(0)3ξ∆

T ′′

B′′

Define new frame O''-x''y''z''Section view

y′′,O O′′

O′

43/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

Example : Immersion and Heel in Static Equilibrium after Cargo Being Loaded (26)

(1,1)3,4( )BF ξ

(1,1)3,4( )GF ξ

(1,1)3,4( )ExtF ξ (0,0)

3,44( ) 4.0 10 [ ]ExtF kNξ= = − ×

(0,0)3,4

5( ) 3.6 10 [ ]GF kNξ= = − ×

3 4 310[ / ] 4.0 10 [ ]kN m m= × ×

(1,1)3,4( )gV ξρ=

54.0 10 [ ]kN= ×

(1,1)3,4

(1,1)3,4

( )

( )V

V dVξ

ξ = ∫∫∫

0 step, Heel

(0) (1) (0)3 4( [0,0, , ,0,0] )Tξ ξ=r

(0) (1) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 0 step

Static equilibrium? Check!

( )1*4 4ξ ξ=

?

(1,1)3,4( )section area L ξ= ×

1

2[ ]400A mArea =

2

2[ ]46.44A mArea =

3

2[ ]46.44A mArea = −2

_ [ ]400A Total mArea =

2 4 3400[ ] 100[ ] 4.0 10 [ ]m m m= × = ×

(1,1)3,4_ ( )Area LA Total ξ= ×

Given : (1) (0) (1,0)

3 4 , 3,4( ), , T ExtM ξξ ξ Find : *4ξ (1) (0) (0)

4 4 4( )ξ ξ ξ+ ∆=

(1,0) (1,0) (1,0)3,4 3,4 3,4(1,0)

3,4 (1,0) (1,0) (1,0)3,4 3,4 3,4

* (0)3,4 4

( ) ( ) ( )( ) ( )

( ) ( ) ( )G B

T TT Ext Ext

mg z g V zM M

gI F z

ξ ξ ξξ ξ

ξ ξ ξ

ρξ

ρ

⋅ − ⋅ ⋅= + ∆ − − ⋅

Governing equation of transverse moment

*3,4( ) 0TM ξ =

4

4

y

z

G

z′

y′

gB

(0)4ξ∆

w

OO′

(1,1)3,4( )B B ξ=(1,1)3,4( )g g ξ=

(1,1)3,4( )G G ξ=

Section view

(1,1)3,4( ) 0TM ξ =

?

Calculate force (1,1) (1,1) (1,1)3,4 3,4 3,4( ), ( ), ( )G B ExtF F Fξ ξ ξ

ξ3 : immersionξ4 : heel

<Transverse moment of >(1,1)3,4( )ξ

44/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

Example : Immersion and Heel in Static Equilibrium after Cargo Being Loaded (27)

0 step, Heel

stImmersion 1 step

<Transverse moment of (ξ3(1),ξ4

(1)) >

(1,1)3,4

(1,1) (1,1)3,4 3,4( ) () )(TB B BM y Fξ ξξ= ⋅

(1,1)3,4

(1,1) (1,1)3,4 3,4( ) () )(TG G GM y Fξ ξξ= ⋅

(1,1) (1,1) (1,1)3,4 3,4 3,4, ( ) ( ) ( )T Ext Ext ExtM y Fξ ξ ξ= ⋅

(1,1)3,4( )TM ξ

4

(1,1)3,4( ) 0TM ξ ≠ ( )1*

4 4ξ ξ≠

(1,1)3,4( ) (0, 1.13,4.87)G ξ = −(1,1)3,4( ) (0, 1.97, 5.22)B ξ = − −(1,1)3,4( ) (0, 8.5, 7.62)g ξ = − −

(1,1)3,4

5( ) 4.0 10 [ ]B kNF ξ = ×

(1,1)3,4

5( ) 3.6 10 [ ]G NF kξ = − ×

(1,1)3,4

4( ) 4.0 10 [ ]ExtF kNξ = − ×

(0) (1) (0)3 4( [0,0, , ,0,0] )Tξ ξ=r

(0) (1) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 0 step

(1,1)3,4

(1,1)3,4

(1,1)3,4 ,( () )( ) T ExBG tT TM M Mξ ξξ= ++

Static equilibrium? Check!

( )1*4 4ξ ξ=

?

5( 1.13) ( 3.6 10 )= − ⋅ − ×54.0709 10 [ ]kN m= × ⋅

5( 1.97) (4.0 10 )− ⋅ ×=57.8638 10 [ ]kN m= − × ⋅

(1,1) (1,1)3,4 3,4( ) ( )g Exty Fξ ξ= ⋅

4( 8.5) ( 4.0 10 )= − ⋅ − ×53.3988 10 [ ]kN m= × ⋅

[ ]kN m⋅5 5 54.0709 10 [ ] 7.8638 10 [ ] 3.3988 10kN m kN m= × ⋅ − × ⋅ + ×43.9415 10 [ ]kN m= − × ⋅

Given : (1) (0) (1,0)

3 4 , 3,4( ), , T ExtM ξξ ξ Find : *4ξ (1) (0) (0)

4 4 4( )ξ ξ ξ+ ∆=

(1,0) (1,0) (1,0)3,4 3,4 3,4(1,0)

3,4 (1,0) (1,0) (1,0)3,4 3,4 3,4

* (0)3,4 4

( ) ( ) ( )( ) ( )

( ) ( ) ( )G B

T TT Ext Ext

mg z g V zM M

gI F z

ξ ξ ξξ ξ

ξ ξ ξ

ρξ

ρ

⋅ − ⋅ ⋅= + ∆ − − ⋅

Governing equation of transverse moment

*3,4( ) 0TM ξ =

4

4

y

z

G

z′

y′

gB

(0)4ξ∆

w

OO′

(1,1)3,4( )B B ξ=(1,1)3,4( )g g ξ=

(1,1)3,4( )G G ξ=

Section view

(1,1)3,4( ) 0TM ξ =

?

ξ3 : immersionξ4 : heel

45/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

Example : Immersion and Heel in Static Equilibrium after Cargo Being Loaded (28)

0 step

(0) (0) (0)3 4( [0,0, , ,0,0])ξ ξ=r

(0) (1) (0)3 4( [0,0, , ,0,0])ξ ξ=r

Immersion

Heel

-40,000 -360,000 360,000 -40,000

-400,000 0 0 -400,000

[ ]ZF kN [ ]GF kN [ ]BF kN [ ]ExtF kN

[ ]TM kN m⋅ [ ]TGM kN m⋅ [ ]TBM kN m⋅ , [ ]T ExtM kN m⋅

0 -360,000 400,000 -40,000

-400,000 0 0 -400,000

[ ]ZF kN [ ]GF kN [ ]BF kN [ ]ExtF kN

[ ]TM kN m⋅ [ ]TGM kN m⋅ [ ]TBM kN m⋅ , [ ]T ExtM kN m⋅

(1) (1) (1)3 4( [0,0, , ,0,0])ξ ξ=r 0 -360,000 400,000 -40,000

-39,415 407,094 -786,388 339,880

[ ]ZF kN [ ]GF kN [ ]BF kN [ ]ExtF kN

[ ]TM kN m⋅ [ ]TGM kN m⋅ [ ]TBM kN m⋅ , [ ]T ExtM kN m⋅

Start Immersion 1st step.End of Heel 0 step.

Immersion

(0) (1) (0)3 4( [0,0, , ,0,0] )Tξ ξ=r

(0) (1) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 0 step

y

z

G

z′

y′

g B

( )04ξ∆

w

OO′

1st step

* * * *3,4 3,4 3,4 , 3,4( ) ( ) ( ) ( ), T TG TB T Extwhere M M M Mξ ξ ξ ξ= + +

Governing equationof transverse moment

*3,4( ) 0TM ξ =

* * * *3,4 3,4 3,4 3,4( ) ( ) ( ) ( ), z G B Extwh ere F F F Fξ ξ ξ ξ= + +

Governing equationof force

*3,4( ) 0zF ξ =

LC

O′

(0,0)3,4( )G ξ

w

,z z′

,y y′(0,0)3,4( )g ξ

(0,0)3,4( )B ξ

O

(1,0)3,4( )G ξ

w(1,0)3,4( )g ξ

y

,z z′

LC

O

y′(1,0)3,4( )B ξ

(0)3ξ∆

O′

ξ3 : immersionξ4 : heel

46/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

y

z

G

z′

y′

gB

w

OO′

Section view* (1,1) (1,1) (1)3,4 3,4 3,4 3( ) ( ) ( ), z z WPwhere F F gAξ ξ ξρ ξ= − ⋅∆

* * * *3,4 3,4 3,4 3,4( ) ( ) ( ) ( ), z G B Extwh ere F F F Fξ ξ ξ ξ= + +

Given : Find :

Governing equation of force

(1) (1) (1,1)3 4 3,4, , ( )ExtFξ ξ ξ

*3,4( ) 0,zF ξ =

(2) (1) (1)3 3 3( )ξ ξ ξ+ ∆=

Example : Immersion and Heel in Static Equilibrium after Cargo Being Loaded (29)

1st step, Immersion

(1,1)3,4( )BF ξ

(1,1)3,4( )GF ξ

(1,1) (1,1) (1,1) (1,1)3,4 3,4 3,4 3,4( ) ( ) ( ) ( )z G B ExtF F F Fξ ξ ξ ξ= + +

(1,1)3,4( )ExtF ξ 44.0 10 [ ]kN= − ×

53.6 10 [ ]kN= − ×

3 4 310[ / ] 4.0 10 [ ]kN m m= × ×

(1,1)3,4( )gV ξρ=

54.0 10 [ ]kN= ×

(1,1) (1,1) (1,1) (1,1)3,4 3,4 3,4 3,4( ) ( ) ( ) ( )z G B ExtF F F Fξ ξ ξ ξ= + +

5 5 43.6 10 [ ] 4.0 10 [ ] 4.0 10 [ ]kN kN kN= − × + × − ×0=

Total force is not changed during heel.

1

1

(1) (1) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

(1) (2) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

Immersion(0)3ξ∆ 1 step

*3ξ

(1,1)3,4( )B B ξ=(1,1)3,4( )g g ξ=

(1,1)3,4( )G G ξ=

ξ3 : immersionξ4 : heel

47/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

* (1,1) (1,1) (1)3,4 3,4 3,4 3( ) ( ) ( ), z z WPwhere F F gAξ ξ ξρ ξ= − ⋅∆

* * * *3,4 3,4 3,4 3,4( ) ( ) ( ) ( ), z G B Extwh ere F F F Fξ ξ ξ ξ= + +

Given : Find :

Governing equation of force

(1) (1) (1,1)3 4 3,4, , ( )ExtFξ ξ ξ

*3,4( ) 0,zF ξ =

(2) (1) (1)3 3 3( )ξ ξ ξ+ ∆=

1

Example : Immersion and Heel in Static Equilibrium after Cargo Being Loaded (30)

* (1,1)3,4 3,4

(1,1)3,4

(1)3

( ) ( )

( )z z

WP

F Fg A

ξ ξ

ξξ

ρ−

∆ =− ⋅

(1,1)3,4( ) 0zF ξ =1

3

3

(1)3 0ξ∆ =

4

(2 ,1)3,4( ) 0zF ξ = ( )2*

3 3ξ ξ=

If ξ4(2) is also ξ4

*, then iteration end.

Check ξ4(2)

4

(2) (1) (1) (1)3 3 3 3ξ ξ ξ ξ= + ∆ =

(2 ,1) (1,1)3,4 3,4( ) ( ) 0z zF Fξ ξ= =

If we assume that Fz(ξ3,4*) =0

1st step, Immersion

(1) (1) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

(1) (2) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

Immersion(0)3ξ∆ 1 step

(1,1)3,4

5( ) 3.6 10 [ ]G NF kξ = − ×(1,1)3,4

5( ) 4.0 10 [ ]B kNF ξ = ×(1,1)3,4

4( ) 4.0 10 [ ]ExtF kNξ = − ×

(2,1)3,4

5( ) 3.6 10 [ ]G NF kξ = − ×(2,1)3,4

5( ) 4.0 10 [ ]B kNF ξ = ×(2,1)3,4

4( ) 4.0 10 [ ]ExtF kNξ = − ×

(1,1)3,4( )

0 (0) 0WPg A ξρ

−= =

− ⋅

*3ξ

y

z

G

z′

y′

gB

w

OO′

Section view

(1,1)3,4( )B B ξ=(1,1)3,4( )g g ξ=

(1,1)3,4( )G G ξ=

ξ3 : immersionξ4 : heel

48/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

0 -360,000 400,000 -40,000

-39,415 407,094 -786,388 339,880

Example : Immersion and Heel in Static Equilibrium after Cargo Being Loaded (31)

1st step

2nd step

(1) (1) (1)3 4( [0,0, , ,0,0])ξ ξ=r

(1) (2) (1)3 4( [0,0, , ,0,0])ξ ξ=r

(2) (2) (2)3 4( [0,0, , ,0,0])ξ ξ=r

Immersion

Heel

[ ]ZF kN [ ]GF kN [ ]BF kN [ ]ExtF kN

[ ]TM kN m⋅ [ ]TGM kN m⋅ [ ]TBM kN m⋅ , [ ]T ExtM kN m⋅

0 -360,000 400,000 -40,000

-39,415 407,094 -786,388 339,880

[ ]ZF kN [ ]GF kN [ ]BF kN [ ]ExtF kN

[ ]TM kN m⋅ [ ]TGM kN m⋅ [ ]TBM kN m⋅ , [ ]T ExtM kN m⋅

End of Immersion 1st step.

Start Heel 1st step.

(1) (1) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

(1) (2) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

Immersion(0)3ξ∆ 1 step

* * * *3,4 3,4 3,4 , 3,4( ) ( ) ( ) ( ), T TG TB T Extwhere M M M Mξ ξ ξ ξ= + +

Governing equationof transverse moment

*3,4( ) 0TM ξ =

* * * *3,4 3,4 3,4 3,4( ) ( ) ( ) ( ), z G B Extwh ere F F F Fξ ξ ξ ξ= + +

Governing equationof force

*3,4( ) 0zF ξ =

y

z

(1,1)3,4( )G ξ

z′

y′

(1,1)3,4( )g ξ

(1,1)3,4( )B ξ

w

OO′

y

z

(2,1)3,4( )G ξ

z′

y′

(2,1)3,4( )g ξ

(2,1)3,4( )B ξ

w

OO′

ξ3 : immersionξ4 : heel

49/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

Example : Immersion and Heel in Static Equilibrium after Cargo Being Loaded (32)

0 step, Heel

(1) (0) (0)4 4 4ξ ξ ξ= + ∆

1st step, Immersion

(0) (0)4 4(0) (0)4 4

1 0 00 cos sin0 sin cos

ξ ξξ ξ

= ∆ − ∆ ∆ ∆

(1,1)3,4(1,1)3,4(1,1)3,4

( )

( )

( )

xyz

ξ

ξ

ξ

(1,0)3,4(1,0)3,4(1,0)3,4

( )

( )

( )

xyz

ξ

ξ

ξ

Transformation G, gto waterplane fixed frame

(2) (1) (1)3 3 3ξ ξ ξ= + ∆

heel

Immersion

(1)3

00ξ

+ ∆

(2,1)3,4(2,1)3,4(2,1)3,4

( )

( )

( )

xyz

ξ

ξ

ξ

=

(1,1)3,4(1,1)3,4(1,1)3,4

( )

( )

( )

xyz

ξ

ξ

ξ

For center of gravity of ship, G (1)3, ( 0)ξ∆ =

(1,1)3,4(1,1)3,4(1,1) (1)3,4 3

( )

( )

( )

00

G

G

G

xyz

ξ

ξ

ξ ξ

= + ∆

(2,1)3,4(2,1)3,4(2,1)3,4

( )

( )

( )

G

G

G

xyz

ξ

ξ

ξ

0 01.13 0

4.87 0

= − +

01.13

4.87

= −

(1,1)3,4( ) (0, 1.13,4.87)G ξ = −

(1,1)3,4( ) (0, 1.97, 5.22)B ξ = − −

(1,1)3,4( ) (0, 8.5, 7.62)g ξ = − −

(2,1)3,4( ) (0, 1.13,4.87)G ξ = −

(2,1)3,4( ) (0, 1.97, 5.22)B ξ = − −

(2,1)3,4( ) (0, 8.5, 7.62)g ξ = − −

(1) (1) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

(1) (2) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

Immersion(0)3ξ∆ 1 step

For center of gravity of weight, g (1)3, ( 0)ξ∆ =

(1,1)3,4(1,1)3,4(1,1) (1)3,4 3

( )

( )

( )

00

g

g

g

xyz

ξ

ξ

ξ ξ

= + ∆

(2,1)3,4(2,1)3,4(2,1)3,4

( )

( )

( )

g

g

g

xyz

ξ

ξ

ξ

0 08.5 0

7.62 0

= − + −

08.5

7.62

= − −

(1,1) (2,1)3,4 3,4( ) ( )(0, 1.97, 5.22)B Bξ ξ= − − =

Transformation G, gto waterplane fixed frame

y

z

G

z′

y′

gB

w

O

(1,1)3,4( )G G ξ=(1,1)3,4( )B B ξ=(1,1)3,4( )g g ξ=

O′

y

z

G

z′

y′

gB

w

O

(2,1)3,4( )G G ξ=(2,1)3,4( )B B ξ=(2,1)3,4( )g g ξ=

O′

ξ3 : immersionξ4 : heel

For center of Buoyancy is calculated by(1,1)3,4( )B ξ

(1,1) (1,1) (1,1), 3,4 , 3,4 , 3,4

(1,1) (1,1) (1,1)3,4 3,4 3,4

( ) ( ) ( )

( ) ( ) ( )( , , )V x V y V zM M M

V V Vξ ξ ξ

ξ ξ ξ,V xM

:1st moment of volume about x axisin y direction in waterplanefixed frame

in this step, is not changed(1,1)3,4( )B ξ

to calculate (2,1)3,4( )TM ξCalculate (2,1) (2,1) (2,1)

3,4 3,4 3,4( ) ( ), ( ),G B gξ ξ ξ1st step, Heel

50/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

Given : (2) (1) (2,1)

3 4 , 3,4, , ( )T ExtMξ ξ ξ Find : *4ξ (2) (1) (1)

4 4 4( )ξ ξ ξ+ ∆=

(2,1) (2,1) (2,1)3,4 3,4 3,4(2,1)

3,4 (2,1) (2,1) (2,1)3,4 3,4 3,4

* (1)3,4 4

( ) ( ) ( )( ) ( )

( ) ( ) ( )G B

T TT Ext Ext

mg z g V zM M

gI F z

ξ ξ ξξ ξ

ξ ξ ξ

ρξ

ρ

⋅ − ⋅ ⋅= + ∆ − − ⋅

Governing equation of transverse moment

*3,4( ) 0TM ξ =

Example : Immersion and Heel in Static Equilibrium after Cargo Being Loaded (33)

1st step, Heel

-Total transverse moment

(2,1)3,

(2,1) (2,1)3,4 3

(2,1)3 ,4,44 ,( ) (( )( ) )TT T ExBTG tM MMMξ ξξ ξ+= +1

,(in previous calculation)

2

(2,1) (2,1)3,4 3,4( ) ( )BgV zξ ξρ ⋅

x

y

LC

Plan view

(2,1)3,4( )sB ξ

O

G

w

(2,1)3,4( ) 100L mξ =

(1) (2) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

(1) (2) (2)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 1 step

12

(2,1)3,4( ), (0, 1.13,4.87)G ξ = −(2,1)3,4( ), (0, 1.97, 5.22)B ξ = − −(2,1)3,4( ), (0, 8.5, 7.62)g ξ = − −

(2,1)3,4

5( ) 3.6 10 [ ]G NF kξ = − ×(2,1)3,4

5( ) 4.0 10 [ ]B kNF ξ = ×(2,1)3,4

4( ) 4.0 10 [ ]ExtF kNξ = − ×

(2,1)3,4( )TM ξ (1,1)

3,4( )TM ξ=

43.9415 10 [ ]kN m= − × ⋅

54.0 10 [ ] 5.22[ ]kN m= − × ×

62.0882 10 [ ]kN m= − × ⋅

y

z

G

z′

y′

gB

(0)4ξ∆

w

OO′

Section view

(2,1)3,4( )B B ξ=(2,1)3,4( )g g ξ=

(2,1)3,4( )G G ξ=

ξ3 : immersionξ4 : heel

(2,1)3,4( )Gmg z ξ⋅

53.6 10 [ ] 4.8704[ ]kN m= × ×

61.7533 10 [ ]kN m= × ⋅

51/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

Example : Immersion and Heel in Static Equilibrium after Cargo Being Loaded (34)

(2,1) (2,1)3,4 3,4( ) ( )Ext ExtF zξ ξ⋅

(2,1) (2,1) (2,1)3,4 3,4 3,4(2,1) (2,1) (2,1)3,4 3,4 3,4

( ) ( ) ( )( ) ( ) ( )

G B

T Ext Ext

mg z g V zgI F z

ξ ξ ξξ ξ ξ

ρρ

⋅ − ⋅ ⋅− − ⋅

6 6

6 5

6

1.7533 10 [ ] 2.0882 10 [ ]5.7704 10 [ ] 3.0477 10 [ ]

2.2335 10 [ ]

kN m kN mkN m kN m

kN m

= × ⋅ + × ⋅− × ⋅ − × ⋅

= − × ⋅

2

1st step, Heel

(1) (2) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

(1) (2) (2)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 1 step

( )44.0 10 [ ] 7.62 [ ]kN m= − × × −

Given : (2) (1) (2,1)

3 4 , 3,4, , ( )T ExtMξ ξ ξ Find : *4ξ (2) (1) (1)

4 4 4( )ξ ξ ξ+ ∆=

(2,1) (2,1) (2,1)3,4 3,4 3,4(2,1)

3,4 (2,1) (2,1) (2,1)3,4 3,4 3,4

* (1)3,4 4

( ) ( ) ( )( ) ( )

( ) ( ) ( )G B

T TT Ext Ext

mg z g V zM M

gI F z

ξ ξ ξξ ξ

ξ ξ ξ

ρξ

ρ

⋅ − ⋅ ⋅= + ∆ − − ⋅

Governing equation of transverse moment

*3,4( ) 0TM ξ =

12

x

y

LC

Plan view

(2,1)3,4( )sB ξ

O

G

w

(2,1)3,4( ) 100L mξ =

y

z

G

z′

y′

gB

w

OO′

Section view

(2,1)3,4( )B B ξ=(2,1)3,4( )g g ξ=

(2,1)3,4( )G G ξ=

(2,1)3,4

5( ) 3.6 10 [ ]G NF kξ = − ×(2,1)3,4

5( ) 4.0 10 [ ]B kNF ξ = ×(2,1)3,4

4( ) 4.0 10 [ ]ExtF kNξ = − ×

ξ3 : immersionξ4 : heel

(2,1)3,4( ), (0, 1.13,4.87)G ξ = −(2,1)3,4( ), (0, 1.97, 5.22)B ξ = − −(2,1)3,4( ), (0, 8.5, 7.62)g ξ = − −

(2,1) (2,1)3,4 3,4(2,1)

3,4

3( ) ( )( )

12s

T

L BgI g

ξ ξξρ ρ=

( )( )(1,0) (1,0)3,4 3,4

304( ) ( ) / cos

12sL B

gξ ξ ξ

ρ∆

=

( )33 100[ ] 40[ ] / cos13.07

10[ / ]12

m mkN m

× °= ×

65.7704 10 [ ]kN m= × ⋅

53.0477 10 [ ]kN m= × ⋅

52/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

Given : (2) (1) (2,1)

3 4 , 3,4, , ( )T ExtMξ ξ ξ Find : *4ξ (2) (1) (1)

4 4 4( )ξ ξ ξ+ ∆=

(2,1) (2,1) (2,1)3,4 3,4 3,4(2,1)

3,4 (2,1) (2,1) (2,1)3,4 3,4 3,4

* (1)3,4 4

( ) ( ) ( )( ) ( )

( ) ( ) ( )G B

T TT Ext Ext

mg z g V zM M

gI F z

ξ ξ ξξ ξ

ξ ξ ξ

ρξ

ρ

⋅ − ⋅ ⋅= + ∆ − − ⋅

Governing equation of transverse moment

*3,4( ) 0TM ξ =

Example : Immersion and Heel in Static Equilibrium after Cargo Being Loaded (35)

-Total transverse moment

[ ]* (2,1)3,4 3,4(1)

4 (2,1) (2,1) (2,1)3,4 3,4 3,4

(2,1) (2,1) (2,1)3,4 3,4 3,4

( ) ( )( ) ( ) ( )

( ) ( ) ( )

T T

G B

T Ext Ext

M Mmg z gV z

gI F z

ξ ξξ

ξ ρ ξ ξ

ρ ξ ξ ξ

−∆ =

⋅ − ⋅ − − ⋅

(2) (1) (1)4 4 4ξ ξ ξ= + ∆

3

Static equilibrium? Check!

We want to find *4ξ

( )2*4 4ξ ξ=

? (2,2)3,4( ) 0TM ξ =

?

1st step, Heel

(1) (2) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

(1) (2) (2)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 1 step

12 3

4

6

0[ ] ( 3.9415 10 [ ])2.2335 10 [ ]

kN m kN mkN m

⋅ − − × ⋅=

− × ⋅0.0176 rad 1.01= − = −

13.07 1.01= −

12.06=

x

y

LC

Plan view

(2,1)3,4( )sB ξ

O

G

w

(2,1)3,4( ) 100L mξ =

y

z

G

z′

y′

gB

w

OO′

Section view

(2,1)3,4( )B B ξ=(2,1)3,4( )g g ξ=

(2,1)3,4( )G G ξ=

(2,1)3,4

5( ) 3.6 10 [ ]G NF kξ = − ×(2,1)3,4

5( ) 4.0 10 [ ]B kNF ξ = ×(2,1)3,4

4( ) 4.0 10 [ ]ExtF kNξ = − ×

ξ3 : immersionξ4 : heel

(2,1)3,4( ), (0, 1.13,4.87)G ξ = −(2,1)3,4( ), (0, 1.97, 5.22)B ξ = − −(2,1)3,4( ), (0, 8.5, 7.62)g ξ = − −

53/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

Example : Immersion and Heel in Static Equilibrium after Cargo Being Loaded (36)

(2,2)3,4( ) (0, 1.04,4.89)G ξ = −

(2,2)3,4( )B ξ =(2,2)3,4( ) (0, 8.63, 7.74)g ξ = − −

z

G

z′

g

y

w

O

BO′

y′

1 step, Immersion

1 step, Heel

(1) (1)4 4(1) (1)4 4

1 0 00 cos sin0 sin cos

ξ ξξ ξ

= ∆ − ∆ ∆ ∆

(2,2)3,4(2,2)3,4(2,2)3,4

( )

( )

( )

xyz

ξ

ξ

ξ

(2,1)3,4(2,1)3,4(2,1)3,4

( )

( )

( )

xyz

ξ

ξ

ξ

Transformation G, gto waterplane fixed frame

(2) (1) (1)4 4 4ξ ξ ξ= + ∆

heel

(2,1)3,4

(1) (1) (2,1)4 4 3,4(1) (1) (2,1)4 4 3,4

1 0 0 ( )0 cos sin ( )0 sin cos ( )

G

G

G

xyz

ξξ ξ ξξ ξ ξ

= ∆ − ∆ ∆ ∆

(2,2)3,4(2,2)3,4(2,2)3,4

( )( )( )

G

G

G

xyz

ξξξ

01.04

4.89

= −

For center of gravity of ship G

For center of weight of cargo g(2,2)3,4(2,2)3,4(2,2)3,4

( )( )( )

g

g

g

xyz

ξξξ

(1) (1)4 4(1) (1)4 4

1 0 0 00 cos sin 8.50 sin cos 7.62

ξ ξξ ξ

= ∆ − ∆ − ∆ ∆ −

08.637.74

= − −

(1) (1)4 4(1) (1)4 4

1 0 0 00 cos sin 1.130 sin cos 4.87

ξ ξξ ξ

= ∆ − ∆ − ∆ ∆

(2,1)3,4

(1) (1) (2,1)4 4 3,4(1) (1) (2,1)4 4 3,4

1 0 0 ( )0 cos sin ( )0 sin cos ( )

g

g

g

xyz

ξξ ξ ξξ ξ ξ

= ∆ − ∆ ∆ ∆

(1)4, ( 1.01 )ξ∆ = −

(1)4, ( 1.01 )ξ∆ = −

Next

y

z

G

z′

y′

gB

(1)4ξ∆

w

O

(2,1)3,4( )G G ξ=(2,1)3,4( )B B ξ=(2,1)3,4( )g g ξ=

O′

(2,2)3,4( )G G ξ=(2,2)3,4( )B B ξ=(2,2)3,4( )g g ξ=

For center of Buoyancy is calculated by(2,2)3,4( )B ξ

(2,2) (2,2) (2,2), 3,4 , 3,4 , 3,4

(2,2) (2,2) (2,2)3,4 3,4 3,4

( ) ( ) ( )

( ) ( ) ( )( , , )V x V y V zM M M

V V Vξ ξ ξ

ξ ξ ξ,V xM

:1st moment of volume about x axisin y direction in waterplanefixed frame

in this example, is simply calculated as next page(2,2)3,4( )B ξ

(2,1)3,4( ) (0, 1.13,4.87)G ξ = −(2,1)3,4( ) (0, 1.97, 5.22)B ξ = − −(2,1)3,4( ) (0, 8.5, 7.62)g ξ = − −

to calculate (2,2)3,4( )TM ξCalculate (2,2) (2,2) (2,2)

3,4 3,4 3,4( ) ( ), ( ),G B gξ ξ ξ

(1) (2) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

(1) (2) (2)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 1 step

ξ3 : immersionξ4 : heel

54/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

Given : (2) (1) (2,1)

3 4 , 3,4, , ( )T ExtMξ ξ ξ Find : *4ξ (2) (1) (1)

4 4 4( )ξ ξ ξ+ ∆=

(2,1) (2,1) (2,1)3,4 3,4 3,4(2,1)

3,4 (2,1) (2,1) (2,1)3,4 3,4 3,4

* (1)3,4 4

( ) ( ) ( )( ) ( )

( ) ( ) ( )G B

T TT Ext Ext

mg z g V zM M

gI F z

ξ ξ ξξ ξ

ξ ξ ξ

ρξ

ρ

⋅ − ⋅ ⋅= + ∆ − − ⋅

Governing equation of transverse moment

*3,4( ) 0TM ξ =

Example : Immersion and Heel in Static Equilibrium after Cargo Being Loaded (37)

4

1st step, Heel

A1 400.00 0.00 -5.00 0.00 -2000.00

A2 42.73 -13.33 1.42 -569.75 60.86

A3 -42.73 13.33 -1.42 -569.75 60.86

Sum 400.00 -1,139.49 -1,878.27

3 3

, ,1 1

3 3

1 1

( , )

,Ai Ai

c c

A y A zi i

Ai Aii i

y z

M M

Area Area

′′ ′′= =

= =

′′ ′′ =

∑ ∑

∑ ∑

(2)4 12.06ξ =

, AiA yM ′′ :1st moment of area Ai about x axis in y direction in O''-x''y''z'' frame,

, AiA zM ′′ :1st moment of area Ai about x axis in z direction in O''-x''y''z'' frame,

( )( , ) 2.85, 4.7c cy z′′ ′′∴ = − −

iAy′′iAz′′

,( )AiA yM

i iA AArea y′′×,( )

AiA zMi iA AArea z′′×

(1) (2) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

(1) (2) (2)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 1 step

Static equilibrium? Check!

( )2*4 4ξ ξ=

?

(2,2)3,4( ) 0TM ξ =

?

iAArea

Centroid of section area inO''-x''y''z'' frame,

( )0, 2.85, 4.7= − −

, ( 1, 2,3)i =

1,139.49 1,878.27,400 400

− − =

z

G

z′

g

y

w

O

BO′

y′( )14ξ∆

(2,2)3,4( )B B ξ=(2,2)3,4( )g g ξ=

(2,2)3,4( )G G ξ=

<Transverse moment of >(2,2) (2,2) (2,2)3,4 3,4 3,4( ) ( ) ( )( , , )B B BB x y zξ ξ ξ

(2,2) (2,2)3,4 3,4( ) ( )( , )c cc y zξ ξCentroid of section area

=(2,2)3,4( )B ξ

Calculate centroid of section area in O''-x''y''z'' frame,then transformation centroid of section area to waterplane fixed frame.

ξ3 : immersionξ4 : heel

(2,2)3,4( )ξ

y

z,z z′ ′′

y′(2)

4ξA2

A3

A1

(0)3ξ∆

T ′′

B′′

Define new frame O''-x''y''z''Section view

y′′,O O′′

O′

(2,2)3,4of ξ

55/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

z

G

z′

g

y

w

O

BO′

y′( )14ξ∆

Example : Immersion and Heel in Static Equilibrium after Cargo Being Loaded (38)

1st step, Heel

(2,2)3,4(2,2)3,4(2,2)3,4

( )( )( )

c

c

c

xyz

ξξξ

=

(2,2)3,4( ) (0, 1.8, 5.19)B ξ∴ = − −

(2) (2)4 4(2) (2)

4 4

1 0 0 00 cos sin 2.850 sin cos 4.7

ξ ξξ ξ

= − − −

(2)4 1, ( )2.06ξ =

(1) (2) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

(1) (2) (2)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 1 step

Static equilibrium? Check!

( )2*4 4ξ ξ=

?

(2,2)3,4( ) 0TM ξ =

?

01.825.19

= − −

(2) (2)4 4(2) (2)

4 4

1 0 00 cos sin0 sin cos

c

c

c

xyz

ξ ξξ ξ

′′ ′′= −

′′

Given : (2) (1) (2,1)

3 4 , 3,4, , ( )T ExtMξ ξ ξ Find : *4ξ (2) (1) (1)

4 4 4( )ξ ξ ξ+ ∆=

(2,1) (2,1) (2,1)3,4 3,4 3,4(2,1)

3,4 (2,1) (2,1) (2,1)3,4 3,4 3,4

* (1)3,4 4

( ) ( ) ( )( ) ( )

( ) ( ) ( )G B

T TT Ext Ext

mg z g V zM M

gI F z

ξ ξ ξξ ξ

ξ ξ ξ

ρξ

ρ

⋅ − ⋅ ⋅= + ∆ − − ⋅

Governing equation of transverse moment

*3,4( ) 0TM ξ =

4

(2,2)3,4( )B B ξ=(2,2)3,4( )g g ξ=

(2,2)3,4( )G G ξ=

( )( , ) 2.85, 4.7c cy z′′ ′′∴ = − −Calculate centroid of section area in body fixed frame,

then transformation centroid of section area to waterplane fixed frame.

(2 ,2) (2,2) (2,2)3,4 3,4 3,4( ) ( ) ( )( , , )c c cx y zξ ξ ξ

<Transverse moment of >(2,2) (2,2) (2,2)3,4 3,4 3,4( ) ( ) ( )( , , )B B BB x y zξ ξ ξ

(2,2) (2,2)3,4 3,4( ) ( )( , )c cc y zξ ξCentroid of section area

=(2,2)3,4( )B ξ

(2 ,2) (2,2) (2,2)3,4 3,4 3,4( ) ( ) ( )( , , ) (0, 1.8, 5.19)c c cx y zξ ξ ξ = − −

ξ3 : immersionξ4 : heel

(2,2)3,4( )ξ

(2)4 12.06ξ =

y

z,z z′ ′′

y′(2)

4ξA2

A3

A1

(0)3ξ∆

T ′′

B′′

Define new frame O''-x''y''z''Section view

y′′,O O′′

O′

(2,2)3,4of ξ

56/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

Example : Immersion and Heel in Static Equilibrium after Cargo Being Loaded (39)

1st step, Heel

(2,2)3,4( )BF ξ

(2,2)3,4( )GF ξ

(2,2)3,4( )zF ξ

(2,2)3,4( )ExtF ξ (0,0)

3,44( ) 4.0 10 [ ]ExtF kNξ= = − ×

(0,0)3,4

5( ) 3.6 10 [ ]GF kNξ= = − ×

3 4 310[ / ] 4.0 10 [ ]kN m m= × ×

(2,2)3,4( )gV ξρ=

54.0 10 [ ]kN= ×

<Transverse moment of >

(1) (2) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

(1) (2) (2)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 1 step

Static equilibrium? Check!

( )2*4 4ξ ξ=

?

(2,2)3,4( ) 0TM ξ =

?

( 2 ,2)3,4

(2,2)3,4

( )

( )V

V dVξ

ξ = ∫∫∫(2,2)3,4( )section area L ξ= ×

1

2[ ]400A mArea =

2

2[ ]43.13A mArea =

3

2[ ]43.13A mArea = −2

_ [ ]400A Total mArea =

2 2 4 2400[m ] 100[m ] 4.0 10 [ ]m= × = ×

(2,2)3,4_ ( )Area LA Total ξ= ×

Given : (2) (1) (2,1)

3 4 , 3,4, , ( )T ExtMξ ξ ξ Find : *4ξ (2) (1) (1)

4 4 4( )ξ ξ ξ+ ∆=

(2,1) (2,1) (2,1)3,4 3,4 3,4(2,1)

3,4 (2,1) (2,1) (2,1)3,4 3,4 3,4

* (1)3,4 4

( ) ( ) ( )( ) ( )

( ) ( ) ( )G B

T TT Ext Ext

mg z g V zM M

gI F z

ξ ξ ξξ ξ

ξ ξ ξ

ρξ

ρ

⋅ − ⋅ ⋅= + ∆ − − ⋅

Governing equation of transverse moment

*3,4( ) 0TM ξ =

4

z

G

z′

g

y

w

O

BO′

y′( )14ξ∆

(2,2)3,4( )B B ξ=(2,2)3,4( )g g ξ=

(2,2)3,4( )G G ξ=

Calculate force (2,2) (2,2) (2,2)3,4 3,4 3,4( ), ( ), ( )G B ExtF F Fξ ξ ξ

(2,2)3,4( ) (0, 1.8, 5.19)B ξ = − −

ξ3 : immersionξ4 : heel

(2,2)3,4( )ξ

(2,2)3,4( ) (0, 1.04,4.89)G ξ = −

(2,2)3,4( ) (0, 8.63, 7.74)g ξ = − −

57/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

z

G

z′

g

y

w

O

BO′

y′( )14ξ∆

Example : Immersion and Heel in Static Equilibrium after Cargo Being Loaded (40)

1st step, Heel

<Transverse moment of (ξ3(2) ,ξ4

(2))>

(2,2)3,4

(2,2) (2,2)3,4 3,4( ) () )(TB B BM y Fξ ξξ ⋅=

(2,2)3,4

(2,2) (2,2)3,4 3,4( ) () )(TG G GM y Fξ ξξ ⋅=

(2,2) (2,2) (2,2), 3,4 3,4 3,4( ) ( ) ( )T Ext g ExtM y Fξ ξ ξ= ⋅

(2,2)3,

(2,2) (2,2)3,4 , 3,4

(2,2)3 44 ,( )) (( )( )TT T ExBTG tM MMMξ ξξ ξ+= +

[ ]kN m⋅

(2) (2)3 4( ),TM ξ ξ ε< , 1,000ε ≡

( )2*4 4ξ ξ=

End of iteration

ε : Tolerance

attitude in static equilibrium

( )2*4 4ξ ξ= ( )2*

3 3,ξ ξ=

(2,2)3,4

5( ) 4.0 10 [ ]B kNF ξ = ×

(2,2)3,4

5( ) 3.6 10 [ ]G NF kξ = − ×

(2,2)3,4

4( ) 4.0 10 [ ]ExtF kNξ = − ×

(2,2)3,4( ) (0, 1.04,4.89)G ξ = −(2,2)3,4( ) (0, 1.8, 5.19)B ξ = − −(2,2)3,4( ) (0, 8.63, 7.74)g ξ = − −

(1) (2) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

(1) (2) (2)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 1 step

Static equilibrium? Check!

( )2*4 4ξ ξ=

?

(2,2)3,4( ) 0TM ξ =

?

4

5( 1.04)[ ] ( 3.6 10 )[ ]m kN= − ⋅ − ×53.7609 10 [ ]kN m= × ⋅

5( 1.8)[ ] (4.0 10 )[ ]m kN= − ⋅ ×57.2189 10 [ ]kN m= − × ⋅

4( 8.63)[ ] ( 4.0 10 )[ ]m kN= − ⋅ − ×53.4521 10 [ ]kN m= × ⋅

5 5 53.7609 10 [ ] 7.2189 10 [ ] 3.4521 10kN m kN m= × ⋅ − × ⋅ + ×

603 [ ]kN m= − ⋅

Given : (2) (1) (2,1)

3 4 , 3,4, , ( )T ExtMξ ξ ξ Find : *4ξ (2) (1) (1)

4 4 4( )ξ ξ ξ+ ∆=

(2,1) (2,1) (2,1)3,4 3,4 3,4(2,1)

3,4 (2,1) (2,1) (2,1)3,4 3,4 3,4

* (1)3,4 4

( ) ( ) ( )( ) ( )

( ) ( ) ( )G B

T TT Ext Ext

mg z g V zM M

gI F z

ξ ξ ξξ ξ

ξ ξ ξ

ρξ

ρ

⋅ − ⋅ ⋅= + ∆ − − ⋅

Governing equation of transverse moment

*3,4( ) 0TM ξ =

4

(2,2)3,4( )B B ξ=(2,2)3,4( )g g ξ=

(2,2)3,4( )G G ξ=

ξ3 : immersionξ4 : heel

58/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

-40,000 -360,000 360,000 -40,000

-400,000 0 0 -400,000

Example : Immersion and Heel in Static Equilibrium after Cargo Being Loaded (41)

(0) (0) (0)3 4( [0,0, , ,0,0])ξ ξ=r

(0) (1) (0)3 4( [0,0, , ,0,0])ξ ξ=r

(1) (1) (1)3 4( [0,0, , ,0,0])ξ ξ=r

Immersion

Heel

[ ]ZF kN [ ]GF kN [ ]BF kN [ ]ExtF kN

[ ]TM kN m⋅ [ ]TGM kN m⋅ [ ]TBM kN m⋅ , [ ]T ExtM kN m⋅

0 -360,000 400,000 -40,000

-400,000 0 0 -400,000

[ ]ZF kN [ ]GF kN [ ]BF kN [ ]ExtF kN

[ ]TM kN m⋅ [ ]TGM kN m⋅ [ ]TBM kN m⋅ , [ ]T ExtM kN m⋅

0 -360,000 400,000 -40,000

-39,415 407,094 -786,388 339,880

[ ]ZF kN [ ]GF kN [ ]BF kN [ ]ExtF kN

[ ]TM kN m⋅ [ ]TGM kN m⋅ [ ]TBM kN m⋅ , [ ]T ExtM kN m⋅Immersion

0 step

1st step

* * * *3,4 3,4 3,4 , 3,4( ) ( ) ( ) ( ), T TG TB T Extwhere M M M Mξ ξ ξ ξ= + +

Governing equationof transverse moment

*3,4( ) 0TM ξ =

* * * *3,4 3,4 3,4 3,4( ) ( ) ( ) ( ), z G B Extwh ere F F F Fξ ξ ξ ξ= + +

Governing equationof force

*3,4( ) 0zF ξ =

y

z

G

z′

y′

g B

( )04ξ∆

w

OO′

LC

O′

(0,0)3,4( )G ξ

w

,z z′

,y y′(0,0)3,4( )g ξ

(0,0)3,4( )B ξ

O

(1,0)3,4( )G ξ

w(1,0)3,4( )g ξ

y

,z z′

LC

O

y′(1,0)3,4( )B ξ

(0)3ξ∆

O′

59/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

0 -360,000 400,000 -40,000

-39,415 407,094 -786,388 339,880

Example : Immersion and Heel in Static Equilibrium after Cargo Being Loaded (42)

(1) (1) (1)3 4( [0,0, , ,0,0])ξ ξ=r

(1) (2) (1)3 4( [0,0, , ,0,0])ξ ξ=r

(2) (2) (2)3 4( [0,0, , ,0,0])ξ ξ=r

Immersion

Heel

[ ]ZF kN [ ]GF kN [ ]BF kN [ ]ExtF kN

[ ]TM kN m⋅ [ ]TGM kN m⋅ [ ]TBM kN m⋅ , [ ]T ExtM kN m⋅

0 -360,000 400,000 -40,000

-39,415 407,094 -786,388 339,880

[ ]ZF kN [ ]GF kN [ ]BF kN [ ]ExtF kN

[ ]TM kN m⋅ [ ]TGM kN m⋅ [ ]TBM kN m⋅ , [ ]T ExtM kN m⋅

0 -360,000 400,000 -40,000

-603 376,091 -721,898 345,205

[ ]ZF kN [ ]GF kN [ ]BF kN [ ]ExtF kN

[ ]TM kN m⋅ [ ]TGM kN m⋅ [ ]TBM kN m⋅ , [ ]T ExtM kN m⋅

End of Heel 1st step. ξ3*=ξ3

(2), ξ4*=ξ4

(2) → END

1st step

2nd step

* * * *3,4 3,4 3,4 , 3,4( ) ( ) ( ) ( ), T TG TB T Extwhere M M M Mξ ξ ξ ξ= + +

Governing equationof transverse moment

*3,4( ) 0TM ξ =

* * * *3,4 3,4 3,4 3,4( ) ( ) ( ) ( ), z G B Extwh ere F F F Fξ ξ ξ ξ= + +

Governing equationof force

*3,4( ) 0zF ξ =

y

z

(1,1)3,4( )G ξ

z′

y′

(1,1)3,4( )g ξ

(1,1)3,4( )B ξ

w

OO′

y

z

(2,1)3,4( )G ξ

z′

y′

(2,1)3,4( )g ξ

(2,1)3,4( )B ξ

w

OO′

z

(2,2)3,4( )G ξ

z′

(2,2)3,4( )g ξ

y

w

O(2,2)3,4( )B ξ

y′( )14ξ∆

60/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

Sec.1 Example : Immersion in Static Equilibrium

after Cargo Being Loaded

Sec.2 Example : Immersion and Heel in Static Equilibrium

after Cargo Being Loaded

Sec.3 Example : Immersion and Heel in Static Equilibrium

after Cargo Hold Being Flooded

61/120

2009 Fall, Ship Stability

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

v g

y

z

LC

,O O′

z′

Example : Immersion and Heel in Static Equilibrium after Cargo Hold Being Flooded (1)

Given : Cargo hold dimensionWeight of ship : 360,000 [kN]

Find : Immersion and trim of ship in static equilibrium

Example) Find a ship’s attitude in Static Equilibrium after cargo hold in right side of midship being flooded. (Origin of waterplane fixed frame is located in the intersection point between centerline and LCF(Longitudinal center of floating))

Assumption : considering force and transverse momentwith immersion and heel

( due to cargo being loaded on LCF. No trim) 3 4, ( [0,0, , ,0,0] )Tξ ξ=r

O-xyz frame: Waterplane fixed frameO'-x'y'z' frame: Body fixed frame

Position vector of the origin of the body fixed frame with respect to the waterplane fixed frame

Rotation vector of the origin of the body fixed frame with respect to thewaterplane fixed frame

y

z

LC

Section view(Front view)

OBaseline

K

G

, z′

, y′Bv g

,O O′Immersion

y′

G

v g B ξ3* : immersion in

static equilibrium

y

z

LC

,O O′

z′

y′

G

w g B

*4 ?ξ

ξ4* : heel in

static equilibrium

Heel

*3 ?ξ

Plan view (Top view)

x

y

LC

20m

,O O′G , x′

, y′

, B

100m

v : flooded volume

62/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

G : Center of gravity of ship

B : Center of buoyancy of ship

Cargo hold dimension- l (length) : 20 [m]

- b (breadth) : 20 [m]

- h (height) : 30 [m]- v (flooded volume)- g (center of gravity of cargo) : (0,-10,-4.5)

40sB m=

30D h m= =

9T m= y

z

LC

Section View(Front view)

OBaseline

K

G

v

, z′

, y′g B

Example : Immersion and Heel in Static Equilibrium after Cargo Hold Being Flooded (2)

Principal Dimension

- L (length) : 100 m, Bs (breadth) : 40m, T (draft) : 9m, D (depth) : 30m

20b m=

Elevation view (port-view)

x

z

Baseline

,O O′G

F.PA.P

v, x′

, z′

B

100L m=

g

Plan view(Top View)

x

y

LC O G

v

, x′

, y′

, B

O-xyz : Waterplane fixed frame

O'-x'y'z': Body fixed frame

g

20l m=63

/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

In case of force with immersion and heel

Governing equationof force

Example : Immersion and Heel in Static Equilibrium after Cargo Hold Being Flooded (3)

Governing equationof force

Given : Find :

*3,4( ) 0,zF ξ = * * * *

3,4 3,4 3,4 3,4( ) ( ) ( ) ( ), z G B Extwh ere F F F Fξ ξ ξ ξ= + +

*3ξ(0) (0) (0,0)

3 4 3,4( ), , ExtF ξξ ξ

(0,0) (0,0)3,4 3,4* (0,0) ( )

3,4 3,4 33 3

( ) ( )( ) ( ) B Ext k

z z

F FF F

ξ ξξ ξ ξ

ξ ξ+

∂ ∂= + ∆ ∂ ∂

(1) (0) (0)3 3 3( )ξ ξ ξ+ ∆=

, ( 0,1, 2,3...)k =

assumption :

3,43,4

3

( )( )B

WP

Fg A

ξξρ

ξ∂

= −∂

① Buoyance force is proportional to AWP

(AWP : waterplane area of ship)

② External force is proportional to aWP

(aWP : waterplane area of flooding volume) 3,43,4

3

( )( )Ext

WP

Fg a

ξξρ

ξ∂

=∂

*3,4( ) 0,zF ξ = * * * *

3,4 3,4 3,4 3,4( ) ( ) ( ) ( ), z G B Extwh ere F F F Fξ ξ ξ ξ= + +

( )* (0,0) (0,0) (0,0) (0)3,4 3,4 3,4 3,4 3( ) ( ) ( ) ( )z z WP WPF F g A g aξ ξ ξ ξρ ρ ξ+= − + ∆

Given : (0) (0) (0,0)3 4 3,4( ), , ExtF ξξ ξ Find : *

3ξ (1) (0) (0)3 3 3( )ξ ξ ξ+ ∆=

, ( 0,1, 2,3...)k =

(Refer to detail derivation in Ch.16.2)

Opposite direction

Same direction

64/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

In case of force with immersion and heel

Governing equationof force

Example : Immersion and Heel in Static Equilibrium after Cargo Hold Being Flooded (4)

Governing equationof transverse moment

Given : Find :

*3,4( ) 0,TM ξ = * * * *

3,4 3,4 3,4 , 3,4( ) ( ) ( ) ( ), z TG TB T Extwhere F M M Mξ ξ ξ ξ= + +

*4ξ(0) (0) (0,0)

3 4 3,4( ), , ExtF ξξ ξ

(0,0) (0,0) (0,0)3,4 3,4 , 3,4* (0,0) ( )

3,4 3,4 44 4 4

( ) ( ) ( )( ) ( ) TG TB T Ext k

T T

M M MM M

ξ ξ ξξ ξ ξ

ξ ξ ξ+

∂ ∂ ∂= + + ∆ ∂ ∂ ∂

(1) (0) (0)4 4 4( )ξ ξ ξ+ ∆=

, ( 0,1, 2,3...)k =

assumption :

*3,4( ) 0,TM ξ = * * * *

3,4 3,4 3,4 , 3,4( ) ( ) ( ) ( ), z TG TB T Extwhere F M M Mξ ξ ξ ξ= + +(0,0) (0,0) (0,0)3,4 3,4 3,4(0,0)

3,4 (0,0) (0,0) (0,0) (0,0)3,4 3,4 3,4 3,4

* (0)3,4 4

( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )G B

T TT Ext Ext T

mg z g V zM M

g I F z g i

ξ ξ ξξ ξ

ξ ξ ξ ξ

ρξ

ρ ρ

⋅ − ⋅ ⋅= + ∆ − ⋅ − ⋅ + ⋅

Given : (0) (0) (0,0)3 4 3,4( ), , ExtF ξξ ξ Find : *

3ξ (1) (0) (0)3 3 3( )ξ ξ ξ+ ∆=

, ( 0,1, 2,3...)k =

3,4 3,43,4

3,4 3,4 3,4 3,44

( )( ) ( ) ( ) ( ) ( ) ( )TB

B B T B T

MF z g I g V z g I

ξξ ξ ξ ξ ξ ξρ ρ ρ

ξ=

∂= − ⋅ − ⋅ − ⋅ ⋅ − ⋅

3,43,4 3,4 3,4

4

( )( ) ( ) ( ),TG

G G G

MF z mg z

ξξ ξ ξ

ξ=

∂= − ⋅ ⋅

, 3,43,4 3, 44 ,

43

( )( ) ( ) ( )T Ext

Ext TExt

MF gz i

ξξ ξξ ρ

ξ+

∂= − ⋅ ⋅

65/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

ξ3 : immersionξ4 : heel

Example : Immersion and Heel in Static Equilibrium after Cargo Hold Being Flooded (5)

( )* (0,0) (0,0) (0,0) (0)3,4 3,4 3,4 3,4 3( ) ( ) ( ) ( )z z WP WPF F g A g aξ ξ ξ ξρ ρ ξ= + − + ∆

* * * *3,4 3,4 3,4 3,4( ) ( ) ( ) ( ), z G B Extwh ere F F F Fξ ξ ξ ξ= + +

Given : Find :

Governing equation of force

(0) (0) (0,0)3 4 3,4, , ( )ExtFξ ξ ξ *

*3,4( ) 0,zF ξ =

(1) (0) (0)3 3 3( )ξ ξ ξ+ ∆=

0 step, Immersion

(0,0) (0,0) (0,0) (0,0)3,4 3,4 3,4 3,4( ) ( ) ( ) ( )z G B ExtF F F Fξ ξ ξ ξ= + + : Total force1

(0,0)3,4

(0,0) (0,0) (0,0) (0,0)3,4 3,4 3,4 3,4

( )

( ) ( ) ( ) ( )Extv

F g dv g l b Tξ

ξ ξ ξ ξρ ρ ⋅ ⋅= − = − ⋅∫∫∫

y

z

LC40 m

30 m

9m=

Section view

,O O′Baseline

G

v

, z′

, y′g B

Plan view

x

y

LC(0,0)3,4( )

20b

=

,O O′G

v

, x′

, y′

, B

(0,0)3,4

(0,0)3,4

( )

( )BV

F g dVξ

ξ ρ= ⋅ ∫∫∫

(0,0) 53,4( ) 3.6 10 [ ]GF kNξ = − ×

5 5 43.6 10 [ ] 3.6 10 [ ] 3.6 10 [ ]kN kN kN= − × + × − ×43.6 10 [ ]kN= − ×

(0,0)3,4( ) 100L mξ =

(0) (0) (0)3 4( [0,0, , ,0,0] )Tξ ξ=r

(0) (1) (0)3 4( [0,0, , ,0,0] )Tξ ξ=r

Immersion(0)3ξ∆ 0 step

(0,0) (0,0) (0,0)3,4 3,4 3,4( ) ( ) ( )sg L B Tξ ξ ξρ= ⋅ ⋅ ⋅

10[ ] 100[ ] 40[ ] 9[ ]m m m m= ⋅ ⋅ ⋅53.6 10 [ ]kN= ×

1

(1,0)3,4( )T ξ

g

(0,0)3,4( )

20l

=

(0,0)3,4( )

40sB

=

(0,0)3,4( )G G ξ=(0,0)3,4( )B B ξ=(0,0)3,4( )g g ξ=

310 [kN/m ] 20[ ] 20[ ] 9[ ]m m m= − × × ×43.6 10 [kN]= − ×

(0,0) (0,0) (0,0) (0,0)3,4 3,4 3,4 3,4( ) ( ) ( ) ( )z G B ExtF F F Fξ ξ ξ ξ= + +

66/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

(0,0) (0,0)3,4 3,4( ) ( )WP WPg A g aξ ξρ ρ+− ⋅ ⋅

ξ3 : immersionξ4 : heel

Example : Immersion and Heel in Static Equilibrium after Cargo Hold Being Flooded (6)

( )* (0,0) (0,0) (0,0) (0)3,4 3,4 3,4 3,4 3( ) ( ) ( ) ( )z z WP WPF F g A g aξ ξ ξ ξρ ρ ξ= + − + ∆

* * * *3,4 3,4 3,4 3,4( ) ( ) ( ) ( ), z G B Extwh ere F F F Fξ ξ ξ ξ= + +

Given : Find :

Governing equation of force

(0) (0) (0,0)3 4 3,4, , ( )ExtFξ ξ ξ *

*3,4( ) 0,zF ξ =

2

(1) (0) (0)3 3 3( )ξ ξ ξ+ ∆=

0 step, Immersion

y

z

LC40 m

30 m

9m=

Section view

,O O′Baseline

G

v

, z′

, y′g B

Plan view

x

y

LC(0,0)3,4( )

20b

=

,O O′G

v

, x′

, y′

, B

(0,0)3,4( ) 100L mξ =

(0) (0) (0)3 4( [0,0, , ,0,0] )Tξ ξ=r

(0) (1) (0)3 4( [0,0, , ,0,0] )Tξ ξ=r

Immersion(0)3ξ∆ 0 step

(0,0)3,4( )T ξ

g

(0,0)3,4( )

40sB

=(0,0)3,4( )

20l

=

2

(0,0)3,4( )WPg A ξρ− ⋅

(0,0)3,4( )WPA

g dx dyξ

ρ= − ⋅ ∫∫

(0,0) (0,0)3,4 3,4( ) ( )sg B Lξ ξρ= − ⋅ ⋅

310[ / ] 40[ ] 100[ ]kN m m m= − ⋅ ⋅

44.0 10 [ / ]kN m= − ×

(0,0)3,4( )WPg a ξρ ⋅

(0,0)3,4( )WPa

g dx dyξ

ρ= ⋅ ∫∫

(0,0) (0,0)3,4 3,4( ) ( )g b lξ ξρ= ⋅ ⋅

310[ / ] 20[ ] 20[ ]kN m m m= ⋅ ⋅

34.0 10 [ / ]kN m= ×

(0,0)3,4( )G G ξ=(0,0)3,4( )B B ξ=(0,0)3,4( )g g ξ=

(0,0) (0,0)3,4 3,4( ) ( )WP WPg A g aξ ξρ ρ+− ⋅ ⋅

4 34.0 10 [ / ] 4.0 10 [ / ]kN m kN m= − × + ×43.6 10 [ / ]kN m= − ×

67/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

GF

ξ3 : immersionξ4 : heel

Example : Immersion and Heel in Static Equilibrium after Cargo Hold Being Flooded (7)

( )* (0,0) (0,0) (0,0) (0)3,4 3,4 3,4 3,4 3( ) ( ) ( ) ( )z z WP WPF F g A g aξ ξ ξ ξρ ρ ξ= + − + ∆

* * * *3,4 3,4 3,4 3,4( ) ( ) ( ) ( ), z G B Extwh ere F F F Fξ ξ ξ ξ= + +

Given : Find :

Governing equation of force

(0) (0) (0,0)3 4 3,4, , ( )ExtFξ ξ ξ *

*3,4( ) 0,zF ξ =

3

(1) (0) (0)3 3 3( )ξ ξ ξ+ ∆=

0 step, Immersion

y

z

LC40 m

30 m

9m=

Section view

,O O′Baseline

G

v

, z′

, y′g B

(0) (0) (0)3 4( [0,0, , ,0,0] )Tξ ξ=r

(0) (1) (0)3 4( [0,0, , ,0,0] )Tξ ξ=r

Immersion(0)3ξ∆ 0 step

(0,0)3,4( )T ξ

1 2

(0,0) 43,4( ) 3.6 10 [kN]zF ξ = − ×1

2

(0)3ξ∆ : change of immersion3

* (0,0)3,4 3,4(0)

3 (0,0) (0,0)3,4 3,4

( ) ( )

( ) ( )z z

WP WP

F Fg A g a

ξ ξ

ξ ξξ

ρ ρ−

∆ =− ⋅ + ⋅

4

4

0[ ] ( 3.6 10 )[ ] 13.6 10 [ / ]

kN kN mkN m

− − ×= = −

− ×

If we assume that Fz(ξ3*,ξ4

*) =0

( ) ( ) ( )1 0 03 3 3 0 1 1 [ ]mξ ξ ξ= + ∆ = − = −We want to find *

Static equilibrium? Check!( )1*

3 3ξ ξ=? (1,0)

3,4( ) 0zF ξ =?

y

z

LC

Section view

,O O′

, z′

y′Baselinew g(0,0)

3,4( )T ξ10 m=

G

B

(0,0) (0,0)3,4 3,4( ) ( )WP WPg A g aξ ξρ ρ+− ⋅ ⋅ 43.6 10 [ / ]kN m= − ×

(0,0)3,4( )G G ξ=(0,0)3,4( )B B ξ=(0,0)3,4( )g g ξ=

(1,0)3,4( )G G ξ=(1,0)3,4( )B B ξ=(1,0)3,4( )g g ξ=

68/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

ξ3 : immersionξ4 : heel

Example : Immersion and Heel in Static Equilibrium after Cargo Hold Being Flooded (8)

( )* (0,0) (0,0) (0,0) (0)3,4 3,4 3,4 3,4 3( ) ( ) ( ) ( )z z WP WPF F g A g aξ ξ ξ ξρ ρ ξ= + − + ∆

* * * *3,4 3,4 3,4 3,4( ) ( ) ( ) ( ), z G B Extwh ere F F F Fξ ξ ξ ξ= + +

Given : Find :

Governing equation of force

(0) (0) (0,0)3 4 3,4, , ( )ExtFξ ξ ξ *

*3,4( ) 0,zF ξ =

4

(1) (0) (0)3 3 3( )ξ ξ ξ+ ∆=

(0) (0) (0)3 4( [0,0, , ,0,0] )Tξ ξ=r

(0) (1) (0)3 4( [0,0, , ,0,0] )Tξ ξ=r

Immersion(0)3ξ∆ 0 step

(1,0)3,4( )BF ξ

(1,0)3,4( )GF ξ

(1,0) (1,0) (1,0) (1,0)3,4 3,4 3,4 3,4( ) ( ) ( ) ( )z G B ExtF F F Fξ ξ ξ ξ= ++

(1,0)3,4( )ExtF ξ (1,0)

3,4( )g v ξρ= − ⋅

(0,0) 53,4( ) 3.6 10 [ ]GF kNξ= = − ×

(1,0)3,4( )g V ξρ= ⋅

3 4 3 510[ / ] 4.0 10 [ ] 4.0 10 [ ]kN m m kN= × × = ×

(1, 0)3, 4

(1,0)3,4

( )

( )V

V dVξ

ξ = ∫∫∫

(1,0)3,4( )zF ξ (1,0) (1,0) (1,0)

3,4 3,4 3,4( ) ( ) ( )G B ExtF F Fξ ξ ξ= ++5 5 43.6 10 [ ] 4.0 10 [ ] 4.0 10 [ ]kN kN kN= − × + × − ×

0[ ]kN=

100[ ] 40[ ] 10[ ]m m m= ⋅ ⋅

(1,0) (1,0) (1,0)3,4 3,4 3,4( ) ( ) ( )sL B Tξ ξ ξ= ⋅ ⋅

In this example

3 4 3 410[ / ] 4.0 10 [ ] 4.0 10 [ ]kN m m kN= − × × = − ×

0 step, Immersion

(1,0)3,4( ) 0zF ξ =

Static equilibrium?Check!

( )1*3 3ξ ξ=

4(1,0)3,4( ) 0zF ξ = ( )1*

3 3ξ ξ=

If ξ4(1) is also ξ4

*, then the iteration ends.

Check ξ4(1)

?

?

y

z

LC

Section view

,O O′

, z′

y′(1,0)3,4( )T ξ

10m

G

B

(0)3ξ∆

4 34.0 10 [ ]m= ×

(1, 0)3, 4

(1,0)3,4

( )

( )v

v dvξ

ξ = ∫∫∫

20[ ] 20[ ] 10[ ]m m m= ⋅ ⋅

(1,0) (1,0) (1,0)3,4 3,4 3,4( ) ( ) ( )l b Tξ ξ ξ= ⋅ ⋅

In this example

3 34.0 10 [ ]m= ×

Baselinev g

69/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

* * * *3,4 3,4 3,4 , 3,4( ) ( ) ( ) ( ), T TG TB T Extwhere M M M Mξ ξ ξ ξ= + +

Governing equationof transverse moment

*3,4( ) 0TM ξ =

Example : Immersion and Heel in Static Equilibrium after Cargo Hold Being Flooded (9)

0 step

(0) (0) (0)3 4( [0,0, , ,0,0])ξ ξ=r

(0) (1) (0)3 4( [0,0, , ,0,0])ξ ξ=r

Immersion

Heel

LC

O′

(0,0)3,4( )G ξ

v

,z z′

,y y′(0,0)3,4( )g ξ

(0,0)3,4( )B ξ

O -40,000 -360,000 360,000 -36,000

-360,000 0 0 -360,000

[ ]ZF kN [ ]GF kN [ ]BF kN [ ]ExtF kN

[ ]TM kN m⋅ [ ]TGM kN m⋅ [ ]TBM kN m⋅ , [ ]T ExtM kN m⋅

* * * *3,4 3,4 3,4 3,4( ) ( ) ( ) ( ), z G B Extwh ere F F F Fξ ξ ξ ξ= + +

Governing equationof force

*3,4( ) 0zF ξ =

0 -360,000 400,000 -40,000

[ ]ZF kN [ ]GF kN [ ]BF kN [ ]ExtF kN

[ ]TM kN m⋅ [ ]TGM kN m⋅ [ ]TBM kN m⋅ , [ ]T ExtM kN m⋅

(1) (1) (1)3 4( [0,0, , ,0,0])ξ ξ=rNext step

End of Immersion 0 step.

Start Heel 0 step.

(1,0)3,4( )G ξ

v(1,0)3,4( )g ξ

y

,z z′

LC

O

y′(1,0)3,4( )B ξ

(0)3ξ∆

O′

(0) (0) (0)3 4( [0,0, , ,0,0] )Tξ ξ=r

(0) (1) (0)3 4( [0,0, , ,0,0] )Tξ ξ=r

Immersion(0)3ξ∆ 0 step

ξ3 : immersionξ4 : heel

70/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

Example : Immersion and Heel in Static Equilibrium after Cargo Hold Being Flooded (10)

y

z

LC

,O O′

(0,0)3,4( )G ξ

v

, z′

, y′(0,0)3,4( )g ξ

(0,0)3,4( )B ξ9[ ]m=

(0,0)3,4( )T ξ

y

,z z′

LC

O (0)3ξ∆

y′v(1,0)3,4( )g ξ

O′10m=

(1,0)3,4( )T ξ

(0,0)3,4(0,0)3,4(0,0)3,4

( )

( )

( )

xyz

ξ

ξ

ξ

Transformation G, gto waterplane fixed frame

(0,0)3,4( ) (0,0,6)G ξ =(0,0)3,4( ) (0, 10, 4.5)g ξ = − −

(1,0)3,4( ) (0,0,5)G ξ =

(1,0)3,4(1,0)3,4(1,0)3,4

( )

( )

( )

xyz

ξ

ξ

ξ

=

(0)3

00

ξ

+ ∆

(0,0)3,4(0,0)3,4(0,0) (0)3,4 3

( )( )( )

00

G

G

G

xyz

ξ

ξ

ξ ξ

= + ∆

(1,0)3,4(1,0)3,4(1,0)3,4

( )( )( )

G

G

G

xyz

ξ

ξ

ξ

(1) (0) (0)3 3 3ξ ξ ξ= + ∆

0 00 06 1

= + −

005

=

(0,0)3,4( ) (0,0, 4.5)B ξ = −

(1,0)3,4( )B ξ

(1,0)3,4( )G ξ

immersion

For center of gravity of ship (1,0)3,4( )G ξ

next

0 step, Heel to calculate (1,0)3,4( )TM ξCalculate (1,0) (1,0) (1,0)

3,4 3,4 3,4( ) ( ), ( ),G B gξ ξ ξ

(0) (1) (0)3 4( [0,0, , ,0,0] )Tξ ξ=r

(0) (1) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 0 step

ξ3 : immersionξ4 : heel

71/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

Example : Immersion and Heel in Static Equilibrium after Cargo Hold Being Flooded (11)

y

z

LC

,O O′

(0,0)3,4( )G ξ

v

, z′

, y′(0,0)3,4( )g ξ

(0,0)3,4( )B ξ9[ ]m=

(0,0)3,4( )T ξ

y

,z z′

LC

O (0)3ξ∆

y′v(1,0)3,4( )g ξ

O′10m=

(1,0)3,4( )T ξ

Transformation G, g to waterplane fixed frame

(0,0)3,4( ) (0,0,6)G ξ =

(0,0)3,4( ) (0, 10, 4.5)g ξ = − −

(1,0)3,4( ) (0,0,5)G ξ =

(1,0)3,4( ) (0, 10, 5)g ξ = − −

0 step, Heel

(1,0)3,4(1,0)3,4

( )( )

0/ 2/ 2

bT

ξ

ξ

= − −

(1,0)3,4(1,0)3,4(1,0)3,4

( )( )( )

g

g

g

xyz

ξ

ξ

ξ

020 / 210 / 2

= − −

0105

= − −

(1,0)3,4( )

00

/ 2T ξ

= −

(1,0)3,4(1,0)3,4(1,0)3,4

( )( )( )

B

B

B

xyz

ξ

ξ

ξ

00

10 / 2

= −

005

= −

(0,0)3,4( ) (0,0, 4.5)B ξ = − (1,0)

3,4( ) (0,0, 5)B ξ = −

(1,0)3,4( )B ξ

(1,0)3,4( )G ξ

For center of Buoyancy is calculated by(1,0)3,4( )B ξ

in this example, is located in center of draft.(1,0)3,4( )B ξ

in this example, is located in center of draft.(1,0)3,4( )g ξ

(1,0) (1,0) (1,0), 3,4 , 3,4 , 3,4

(1,0) (1,0) (1,0)3,4 3,4 3,4

( ) ( ) ( )

( ) ( ) ( )( , , )V x V y V zM M M

V V Vξ ξ ξ

ξ ξ ξ

,V xM :1st moment of displacement volume V about x axis in y direction in waterplane fixed frame

For center of weght of cargo is calculated by(1,0)3,4( )g ξ

(1,0) (1,0) (1,0), 3,4 , 3,4 , 3,4

(1,0) (1,0) (1,0)3,4 3,4 3,4

( ) ( ) ( )

( ) ( ) ( )( , , )v x v y v zM M M

v v vξ ξ ξ

ξ ξ ξ

,v xM :1st moment of flooded cargo volume v about x axis in y direction in waterplane fixed frame

to calculate (1,0)3,4( )TM ξCalculate (1,0) (1,0) (1,0)

3,4 3,4 3,4( ) ( ), ( ),G B gξ ξ ξ0 step, Heel

(0) (1) (0)3 4( [0,0, , ,0,0] )Tξ ξ=r

(0) (1) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 0 step

ξ3 : immersionξ4 : heel

72/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

Example : Immersion and Heel in Static Equilibrium after Cargo Hold Being Flooded (12)

Given : (1) (0) (1,0)

3 4 , 3,4( ), , T ExtM ξξ ξ Find : *4ξ (1) (0) (0)

4 4 4( )ξ ξ ξ+ ∆=

(1,0) (1,0) (1,0) (1,0)3,4 3,4 3,4 3,4(1,0)

3,4 (1,0) (1,0) (1,0)3,4 3,4 3,4

* (0)3,4 4

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )G B T

T TExt Ext T

mg z g V z g IM M

F z g i

ξ ξ ξ ξξ ξ

ξ ξ ξ

ρ ρξ

ρ

⋅ − ⋅ ⋅ − ⋅= + ∆ − ⋅ + ⋅

Governing equation of transverse moment

*3,4( ) 0TM ξ =

1

(1,0) (1,0) (1,0) (1,0)3,4 3,4 3,4 , 3,4( ) ( ) ( ) ( )T TG TB T ExtM M M Mξ ξ ξ ξ= + +1

(1,0) (1,0) (1,0)3,4 3,4 3,4

5

( ) ( ) ( )

0[ ] ( 3.6 10 )[ ] 0 [ ]TG G GM y F

m kN kN

ξ ξ ξ=

= × − × =(1,0) (1,0) (1,0)3,4 3,4 3,4

5

( ) ( ) ( )

0[ ] (4.0 10 )[ ] 0[ ]TB B BM y F

m kN kN

ξ ξ ξ=

= × × =(1,0) (1,0) (1,0)

, 3,4 3,4 3,4

(1,0) (1,0)3,4 3,4

4 5

( ) ( ) ( )

( ) ( )

[ ] [ ] [ ]10 ( 4.0 10 ) 4.0 10

T Ext Ext Ext

g Ext

m kN kN m

M y F

y F

ξ ξ ξ

ξ ξ

=

=

= − × − × = ×

(1,0)3,4

5( ) 4.0 10 [kN]BF ξ = ×(1,0) 43,4( ) 4.0 10 [ ]ExtF kNξ = − ×

(1,0) 53,4( ) 3.6 10 [kN]GF ξ = − ×

5

5

0 0 4.0 10 [ ]4.0 10 [ ]

kN mkN m

= + + × ⋅

= × ⋅

0 step, Heel

G

v g

y

,z z′

LC

Section view

O

y′B

(0) (1) (0)3 4( [0,0, , ,0,0] )Tξ ξ=r

(0) (1) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 0 step

(1,0)3,4( ) (0,0,5)G ξ =

(1,0)3,4( ) (0, 10, 5)g ξ = − −

(1,0)3,4( ) (0,0, 5)B ξ = −

(1,0) (1,0) (1,0) (1,0)3,4 3,4 3,4 , 3,4( ) ( ) ( ) ( )T TG TB T ExtM M M Mξ ξ ξ ξ= + +

(1,0)3,4( )G G ξ=(1,0)3,4( )B B ξ=(1,0)3,4( )g g ξ=

O′

ξ3 : immersionξ4 : heel

73/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

Example : Immersion and Heel in Static Equilibrium after Cargo Hold Being Flooded (13)

Given : (1) (0) (1,0)

3 4 , 3,4( ), , T ExtM ξξ ξ Find : *4ξ (1) (0) (0)

4 4 4( )ξ ξ ξ+ ∆=

(1,0) (1,0) (1,0) (1,0)3,4 3,4 3,4 3,4(1,0)

3,4 (1,0) (1,0) (1,0)3,4 3,4 3,4

* (0)3,4 4

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )G B T

T TExt Ext T

mg z g V z g IM M

F z g i

ξ ξ ξ ξξ ξ

ξ ξ ξ

ρ ρξ

ρ

⋅ − ⋅ ⋅ − ⋅= + ∆ − ⋅ + ⋅

Governing equation of transverse moment

*3,4( ) 0TM ξ =

2

2

0 step, Heel

G

v g(1,0)3,4( )

10T

=

y

,z z′

LC

Section view

O

y′B

(0) (1) (0)3 4( [0,0, , ,0,0] )Tξ ξ=r

(0) (1) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 0 step

(1,0)3,4( )G G ξ=(1,0)3,4( )B B ξ=(1,0)3,4( )g g ξ=

O′

ξ3 : immersionξ4 : heel

Plan view

x

y

LC(1,0)3,4( )

20b

=

,O O′G

v

, x′

, y′

, B

(1,0)3,4( ) 100L mξ =

g(1,0)3,4( )

40sB

=

(1,0)3,4( )

20l

=m: Mass of the shipzG: Z coordinate of the center of mass of the ship

IT : 2nd moment of waterplane area of ship with respect to x axis of the waterplane fixed frame

V: Displacement volume

zB: Z coordinate of the center of buoyancyzExt: Z coordinate of the point acting the external force

iT : 2nd moment of waterplane area of flooded volume with respect to x axis of the waterplane fixed frame

(1,0)3,4

5( ) 4.0 10 [kN]BF ξ = ×(1,0)3,4

4( ) 4.0 10 [kN]ExtF ξ = − ×

(1,0)3,4

5( ) 3.6 10 [kN]GF ξ = − ×

(1,0)3,4( ) (0,0,5)G ξ =

(1,0)3,4( ) (0, 10, 5)g ξ = − −

(1,0)3,4( ) (0,0, 5)B ξ = −

(1, 0)3, 4

(1,0) (1,0) 33,4 3,4(1,0) 2

3,4( )

( ) ( )( )

12WP

sT

A

L BgI g y dx dy g

ξ

ξ ξξρ ρ ρ= =∫∫

(1, 0)3, 4

(1,0) (1,0) (1,0)3,4 3,4 3,4

( )

( ) ( ) ( )B BV

gV z g dV zξ

ξ ξ ξρ ρ⋅ = ⋅ ⋅∫∫∫(1,0) (1,0) (1,0) (1,0)3,4 3,4 3,4 3,4( ) ( ) ( ) ( )s Bg L B T zξ ξ ξ ξρ= ⋅ ⋅ ⋅ ⋅

310[ / ] 100[ ] 40[ ] 10[ ] ( 5[ ])kN m m m m m= × × × × −62.0 10 [ ]kN m= − × ⋅

(1,0) 53,4( ) 3.6 10 [ ] 5[ ]Gmg z kN mξ⋅ = × ×

61.8 10 [ ]kN m= × ⋅

33 6100[ ] 40[ ]10[ / ] 5.333 10 [ ]

12[ ]m mkN m kN m

= × = × ⋅

74/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

Example : Immersion and Heel in Static Equilibrium after Cargo Hold Being Flooded (14)

Given : (1) (0) (1,0)

3 4 , 3,4( ), , T ExtM ξξ ξ Find : *4ξ (1) (0) (0)

4 4 4( )ξ ξ ξ+ ∆=

(1,0) (1,0) (1,0) (1,0)3,4 3,4 3,4 3,4(1,0)

3,4 (1,0) (1,0) (1,0)3,4 3,4 3,4

* (0)3,4 4

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )G B T

T TExt Ext T

mg z g V z g IM M

F z g i

ξ ξ ξ ξξ ξ

ξ ξ ξ

ρ ρξ

ρ

⋅ − ⋅ ⋅ − ⋅= + ∆ − ⋅ + ⋅

Governing equation of transverse moment

*3,4( ) 0TM ξ =

2

2

0 step, Heel

G

v g(1,0)3,4( )

10T

=

y

,z z′

LC

Section view

O

y′B

(0) (1) (0)3 4( [0,0, , ,0,0] )Tξ ξ=r

(0) (1) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 0 step

(1,0)3,4( )G G ξ=(1,0)3,4( )B B ξ=(1,0)3,4( )g g ξ=

O′

ξ3 : immersionξ4 : heel

Plan view

x

y

LC(1,0)3,4( )

20b

=

,O O′G

v

, x′

, y′

, B

(1,0)3,4( ) 100L mξ =

g(1,0)3,4( )

40sB

=

(1,0)3,4( )

20l

=m: Mass of the shipzG: Z coordinate of the center of mass of the ship

IT : 2nd moment of waterplane area of ship with respect to x axis of the waterplane fixed frame

V: Displacement volume

zB: Z coordinate of the center of buoyancyzExt: Z coordinate of the point acting the external force

iT : 2nd moment of waterplane area of flooded volume with respect to x axis of the waterplane fixed frame

(1,0) (1,0)3,4 3,4( ) ( )Ext ExtF zξ ξ⋅

(1,0) (1,0)3,4 3,4( ) ( )Ext gF zξ ξ= ⋅

( )44.0 10 [ ] 5.0 [ ]kN m= − × × −

52.0 10 [ ]kN m= × ⋅(1,0) (1,0) 33,4 3,4(1,0)

3,4

( ) ( )( )

12T

l bgi g

ξ ξξρ ρ

⋅=

,(parallel axis theorem)3

3 20[ ] 20[ ]10[ / ]12

m mkN m ×= ×

2(1,0) (1,0) (1,0)3,4 3,4 3,4( ) ( ) ( )

12

g b l bξ ξ ξρ ⋅ + ⋅ × ⋅

55.333 10 [ ]kN m= × ⋅

23 110[ / ] 20[ ] 20[ ] 20[ ]

2kN m m m m + × × × ×

(1,0)3,4

5( ) 4.0 10 [kN]BF ξ = ×(1,0)3,4

4( ) 4.0 10 [kN]ExtF ξ = − ×

(1,0)3,4

5( ) 3.6 10 [kN]GF ξ = − ×

(1,0)3,4( ) (0,0,5)G ξ =(1,0)3,4( ) (0, 10, 5)g ξ = − −(1,0)3,4( ) (0,0, 5)B ξ = −

75/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

Example : Immersion and Heel in Static Equilibrium after Cargo Hold Being Flooded (15)

Given : (1) (0) (1,0)

3 4 , 3,4( ), , T ExtM ξξ ξ Find : *4ξ (1) (0) (0)

4 4 4( )ξ ξ ξ+ ∆=

(1,0) (1,0) (1,0) (1,0)3,4 3,4 3,4 3,4(1,0)

3,4 (1,0) (1,0) (1,0)3,4 3,4 3,4

* (0)3,4 4

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )G B T

T TExt Ext T

mg z g V z g IM M

F z g i

ξ ξ ξ ξξ ξ

ξ ξ ξ

ρ ρξ

ρ

⋅ − ⋅ ⋅ − ⋅= + ∆ − ⋅ + ⋅

Governing equation of transverse moment

*3,4( ) 0TM ξ =

2

2

0 step, Heel

G

v g(1,0)3,4( )

10T

=

y

,z z′

LC

Section view

O

y′B

(0) (1) (0)3 4( [0,0, , ,0,0] )Tξ ξ=r

(0) (1) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 0 step

(1,0)3,4( )G G ξ=(1,0)3,4( )B B ξ=(1,0)3,4( )g g ξ=

O′

ξ3 : immersionξ4 : heel

Plan view

x

y

LC(1,0)3,4( )

20b

=

,O O′G

v

, x′

, y′

, B

(1,0)3,4( ) 100L mξ =

g(1,0)3,4( )

40sB

=

(1,0)3,4( )

20l

=m: Mass of the shipzG: Z coordinate of the center of mass of the ship

IT : 2nd moment of waterplane area of ship with respect to x axis of the waterplane fixed frame

V: Displacement volume

zB: Z coordinate of the center of buoyancyzExt: Z coordinate of the point acting the external force

iT : 2nd moment of waterplane area of flooded volume with respect to x axis of the waterplane fixed frame

(1,0)3,4

(1,0) (1,0) (1,0) (1,0)3,4 3,4 3,4 3,4

(1,0) (1,0)3,4 3,4

( ) ( ) ( ) ( )

( ) ( ) ( )

G B T

Ext Ext T

mg z gV z g I

F z g i

ξ ξ ξ ξ

ξ ξ ξ

ρ ρ

ρ

⋅ − ⋅ − ⋅

− ⋅ + ⋅

6 6 6

5 5

1.8 10 [ ] 2.0 10 [ ] 5.333 10 [ ]2.0 10 [ ] 5.333 10 [ ]

kN m kN m kN mkN m kN m

= × ⋅ + × ⋅ − × ⋅

− × ⋅ + × ⋅

61.2 10 [ ]kN m= − × ⋅

(1,0)3,4

5( ) 4.0 10 [kN]BF ξ = ×(1,0)3,4

4( ) 4.0 10 [kN]ExtF ξ = − ×

(1,0)3,4

5( ) 3.6 10 [kN]GF ξ = − ×

(1,0)3,4( ) (0,0,5)G ξ =(1,0)3,4( ) (0, 10, 5)g ξ = − −(1,0)3,4( ) (0,0, 5)B ξ = −

76/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

Example : Immersion and Heel in Static Equilibrium after Cargo Hold Being Flooded (16)

Given : (1) (0) (1,0)

3 4 , 3,4( ), , T ExtM ξξ ξ Find : *4ξ (1) (0) (0)

4 4 4( )ξ ξ ξ+ ∆=

(1,0) (1,0) (1,0) (1,0)3,4 3,4 3,4 3,4(1,0)

3,4 (1,0) (1,0) (1,0)3,4 3,4 3,4

* (0)3,4 4

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )G B T

T TExt Ext T

mg z g V z g IM M

F z g i

ξ ξ ξ ξξ ξ

ξ ξ ξ

ρ ρξ

ρ

⋅ − ⋅ ⋅ − ⋅= + ∆ − ⋅ + ⋅

Governing equation of transverse moment

*3,4( ) 0TM ξ =

2

2

0 step, Heel

G

v g(1,0)3,4( )

10T

=

y

,z z′

LC

Section view

O

y′B

(0) (1) (0)3 4( [0,0, , ,0,0] )Tξ ξ=r

(0) (1) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 0 step

(1,0)3,4( )G G ξ=(1,0)3,4( )B B ξ=(1,0)3,4( )g g ξ=

O′

ξ3 : immersionξ4 : heel

Plan view (1,0)3,4

(1,0) (1,0) (1,0) (1,0)3,4 3,4 3,4 3,4

(1,0) (1,0)3,4 3,4

( ) ( ) ( ) ( )

( ) ( ) ( )

G B T

Ext Ext T

mg z gV z g I

F z g i

ξ ξ ξ ξ

ξ ξ ξ

ρ ρ

ρ

⋅ − ⋅ − ⋅

− ⋅ + ⋅

1 3

1 (1,0) 53,4( ) 4.0 10 [ ]TM kN mξ = × ⋅

* (1, 0)

3,4 3, 4

(1,0)3,4

(0)4 (1,0) (1,0) (1,0) (1,0)

3,4 3,4 3,4 3,4

(1,0) (1,0)3,4 3,4

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

T T

G B T

Ext Ext T

M M

mg z gV z g I

F z g i

ξ ξ

ξ ξ ξ ξ

ξ ξ ξ

ξρ ρ

ρ

−=

∆ ⋅ − ⋅ − ⋅ − ⋅ + ⋅

3

5

6

0[ ] 4.0 10 [ ] 0.33rad 19.11.2 10 [ ]

kN m kN mkN m

⋅ − × ⋅= = =

− × ⋅

If we assume that MT(ξ3,4*) =0

(1) (0) (0)4 4 4 0 19.1 19.1ξ ξ ξ= + ∆ = + ° = °

61.2 10 [ ]kN m= − × ⋅

Static equilibrium? Check!

We want to find *4ξ

( )1*4 4ξ ξ=

? (1,1)3,4( ) 0TM ξ =

?

y

z

LC

G y′

g B

(0)4ξ∆

v

O

z′

O′

(1,1)3,4( )G G ξ=(1,1)3,4( )B B ξ=(1,1)3,4( )g g ξ=

77/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

Example : Immersion and Heel in Static Equilibrium after Cargo Hold Being Flooded (17)

y

,z z′

LC

OO′

y′v g10m

immersion(0,0)3,4(0,0)3,4(0,0)3,4

( )

( )

( )

xyz

ξ

ξ

ξ

(1,0)3,4( ) (0,0,5)G ξ =

(1,0)3,4( ) (0, 10, 5.5)g ξ = − −

0 step, Immersion(1,0)3,4(1,0)3,4(1,0)3,4

( )

( )

( )

xyz

ξ

ξ

ξ

=

(0)3

00

ξ

+ ∆

(1,0)3,4

(0) (0) (1,0)4 4 3,4(0) (0) (1,0)4 4 3,4

( )( )( )

1 0 00 cos sin0 sin cos

G

G

G

xyz

ξ

ξ

ξ

ξ ξξ ξ

= ∆ − ∆ ∆ ∆

(1,1)3,4(1,1)3,4(1,1)3,4

( )( )( )

G

G

G

xyz

ξ

ξ

ξ

(1) (0) (0)3 3 3ξ ξ ξ= + ∆

01.64

4.72

= −

B

G

(1,0)3,4( ) (0,0, 5)B ξ = −

0 step, Heel

(0) (0)4 4(0) (0)4 4

1 0 00 cos sin0 sin cos

ξ ξξ ξ

= ∆ − ∆ ∆ ∆

(1,1)3,4(1,1)3,4(1,1)3,4

( )

( )

( )

xyz

ξ

ξ

ξ

(1,0)3,4(1,0)3,4(1,0)3,4

( )

( )

( )

xyz

ξ

ξ

ξ

Transformation G, gto waterplane fixed frame

(1) (0) (0)4 4 4ξ ξ ξ= + ∆

(0) (1) (0)3 4( [0,0, , ,0,0] )Tξ ξ=r

(0) (1) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 0 step

heel

(0) (0)4 4(0) (0)4 4

1 0 0 00 cos sin 00 sin cos 5

ξ ξξ ξ

= ∆ − ∆ ∆ ∆

(1,1)3,4( ) (0, 1.64,4.72)G ξ = −

(0)4, ( 19.1 )ξ∆ =

Next

y

z

G

z′

y′

gB

(0)4ξ∆

v

O

(1,0)3,4( )G G ξ=(1,0)3,4( )B B ξ=(1,0)3,4( )g g ξ=

(1,1)3,4( )G G ξ=(1,1)3,4( )B B ξ=(1,1)3,4( )g g ξ=

Transformation G, gto waterplane fixed frame

O′

For center of gravity of ship, (1,1)3,4( )G ξ

ξ3 : immersionξ4 : heel

(1,1) (1,1) (1,1), 3,4 , 3,4 , 3,4(1,1)

3,4 (1,1) (1,1) (1,1)3,4 3,4 3,4

( ) ( ) ( )( )

( ) ( ) ( )( , , )V x V y V zBM M M

V V Vξ ξ ξ

ξξ ξ ξ

=

,V xM :1st moment of volume about x axis in y direction in waterplane fixed frame

in this example, is simply calculated as next page(1,1)3,4( )B ξ

For center of Buoyancy , and center of weight of cargo hold is calculated by

(1,1)3,4( )B ξ

(1,1)3,4( )g ξ

(1,1) (1,1) (1,1), 3,4 , 3,4 , 3,4(1,1)

3,4 (1,1) (1,1) (1,1)3,4 3,4 3,4

( ) ( ) ( )( )

( ) ( ) ( )( , , )v x v y v zg

v v v

M M Mξ ξ ξξ

ξ ξ ξ=

,v xM :1st moment of flooded volume about x axis in y direction in waterplane fixed frame

to calculate (1,1)3,4( )TM ξCalculate (1,1) (1,1) (1,1)

3,4 3,4 3,4( ) ( ), ( ),G B gξ ξ ξ

78/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

y

z

G

z′

y′

gB

(0)4ξ∆

v

OO′

Section view

Given : (1) (0) (1,0)

3 4 , 3,4( ), , T ExtM ξξ ξ Find : *4ξ (1) (0) (0)

4 4 4( )ξ ξ ξ+ ∆=

(1,0) (1,0) (1,0) (1,0)3,4 3,4 3,4 3,4(1,0)

3,4 (1,0) (1,0) (1,0)3,4 3,4 3,4

* (0)3,4 4

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )G B T

T TExt Ext T

mg z g V z g IM M

F z g i

ξ ξ ξ ξξ ξ

ξ ξ ξ

ρ ρξ

ρ

⋅ − ⋅ ⋅ − ⋅= + ∆ − ⋅ + ⋅

Governing equation of transverse moment

*3,4( ) 0TM ξ =

Example : Immersion and Heel in Static Equilibrium after Cargo Hold Being Flooded (18)

0 step, Heel

Static equilibrium? Check!

( )1*4 4ξ ξ=

?

(1,1)3,4( ) 0TM ξ =

?

y

z,z z′ ′′

y′

(0)4 19.1ξ∆ =

(0)4ξ∆

A2

A3

A1

(1,1) (1,1) (1,1)3,4 3,4 3,4( ) ( ) ( )( , , )B B BB x y zξ ξ ξ

(1,1) (1,1)3,4 3,4( ) ( )( , )c cc y zξ ξCentroid of section area of displacement volume

=

Area of A1 in O''-x''y''z'' frame

1A sArea B T′′ ′′= ⋅ 240[ ] 10[ ] 400[ ]m m m= ⋅ =

10[ ]T m′′ =Draft in O''-x''y''z'' frame

(0)3ξ∆

T ′′

sB′′

2 3( )A AArea Area=

{ }0.5 (40 / 2[ ]) (40 / 2)[ ] tan(19.1)m m= ⋅ ⋅ ⋅269.25[ ]m=

Area of A3 (=A2)in O''-x''y''z'' frame

A3

/ 2sB′′

(0)4( / 2) tan( )sB ξ′′ ⋅ ∆

(0)4ξ∆

(0) (1) (0)3 4( [0,0, , ,0,0] )Tξ ξ=r

(0) (1) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 0 step

4

4

(1,1)3,4( )B ξ

{ }(0)40.5 ( / 2) ( / 2) tan( )s sB B ξ′′ ′′= ⋅ ⋅ ∆

(1,1)3,4( )B B ξ=(1,1)3,4( )g g ξ=

(1,1)3,4( )G G ξ=

Calculate centroid of section area in O''-x''y''z'' frame,then transformation centroid of section area to waterplane fixed frame.

ξ3 : immersionξ4 : heel

Define new frame O''-x''y''z''Section view

y′′

<Transverse moment of >(1,1)3,4( )ξ

,O O′′

O′

(1,1)3,4of ξ

Center of buoyancy

79/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

y

z

G

z′

y′

gB

(0)4ξ∆

v

OO′

Section view

Given : (1) (0) (1,0)

3 4 , 3,4( ), , T ExtM ξξ ξ Find : *4ξ (1) (0) (0)

4 4 4( )ξ ξ ξ+ ∆=

(1,0) (1,0) (1,0) (1,0)3,4 3,4 3,4 3,4(1,0)

3,4 (1,0) (1,0) (1,0)3,4 3,4 3,4

* (0)3,4 4

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )G B T

T TExt Ext T

mg z g V z g IM M

F z g i

ξ ξ ξ ξξ ξ

ξ ξ ξ

ρ ρξ

ρ

⋅ − ⋅ ⋅ − ⋅= + ∆ − ⋅ + ⋅

Governing equation of transverse moment

*3,4( ) 0TM ξ =

Example : Immersion and Heel in Static Equilibrium after Cargo Hold Being Flooded (19)

0 step, Heel

Static equilibrium? Check!

( )1*4 4ξ ξ=

?

(1,1)3,4( ) 0TM ξ =

?

y

z,z z′ ′′

y′

(0)4 19.1ξ∆ =

(0)4ξ∆

A2

A3

A1

(0)3ξ∆

T ′′

sB′′

(0) (1) (0)3 4( [0,0, , ,0,0] )Tξ ξ=r

(0) (1) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 0 step

4

4

(1,1)3,4( )B B ξ=(1,1)3,4( )g g ξ=

(1,1)3,4( )G G ξ=

Calculate centroid of section area in O''-x''y''z'' frame,then transformation centroid of section area to waterplane fixed frame.

ξ3 : immersionξ4 : heel

Define new frame O''-x''y''z''Section view

y′′,O O′′

O′

(1,1)3,4of ξ

3 3( , )A Ay z′′ ′′ (1)

42 1, tan( )

2 3 2 3s sB B ξ′′ ′′ = ⋅ − ∆ ⋅

( )(40 / 2) (2 / 3), (40 / 2) tan(19.1) (1/ 3)= ⋅ − ⋅ ⋅

Centroid of A3 in O''-x''y''z'' frame,

Centroid of A1 in O''-x''y''z'' frame,

1 1( , )A Ay z′′ ′′

( )13.33, 2.31= −Centroid of A2 in O''-x''y''z'' frame,

2 2( , )A Ay z′′ ′′in similar way ( )13.33,2.31= −

A3

/ 2sB′′

(0)4

( / 2)

tan( )sB

ξ

′′

⋅ ∆

(0)4ξ∆

3Ay′′ 3Az′′

10(0, ) (0, ) (0, 5)2 2

T ′′= − = − = −

(1,1) (1,1) (1,1)3,4 3,4 3,4( ) ( ) ( )( , , )B B BB x y zξ ξ ξ

(1,1) (1,1)3,4 3,4( ) ( )( , )c cc y zξ ξCentroid of section area of displacement volume

=(1,1)3,4( )B ξ

<Transverse moment of >(1,1)3,4( )ξ

Center of buoyancy

80/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

y

z

G

z′

y′

gB

(0)4ξ∆

v

OO′

Section view

Given : (1) (0) (1,0)

3 4 , 3,4( ), , T ExtM ξξ ξ Find : *4ξ (1) (0) (0)

4 4 4( )ξ ξ ξ+ ∆=

(1,0) (1,0) (1,0) (1,0)3,4 3,4 3,4 3,4(1,0)

3,4 (1,0) (1,0) (1,0)3,4 3,4 3,4

* (0)3,4 4

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )G B T

T TExt Ext T

mg z g V z g IM M

F z g i

ξ ξ ξ ξξ ξ

ξ ξ ξ

ρ ρξ

ρ

⋅ − ⋅ ⋅ − ⋅= + ∆ − ⋅ + ⋅

Governing equation of transverse moment

*3,4( ) 0TM ξ =

Example : Immersion and Heel in Static Equilibrium after Cargo Hold Being Flooded (20)

0 step, Heel

Static equilibrium? Check!

( )1*4 4ξ ξ=

?

(1,1)3,4( ) 0TM ξ =

?

y

z,z z′ ′′

y′

(0)4 19.1ξ∆ =

(0)4ξ∆

A2

A3

A1

(0)3ξ∆

T ′′

sB′′

(0) (1) (0)3 4( [0,0, , ,0,0] )Tξ ξ=r

(0) (1) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 0 step

4

4

(1,1)3,4( )B B ξ=(1,1)3,4( )g g ξ=

(1,1)3,4( )G G ξ=

Calculate centroid of section area in O''-x''y''z'' frame,then transformation centroid of section area to waterplane fixed frame.

ξ3 : immersionξ4 : heel

Define new frame O''-x''y''z''Section view

y′′,O O′′

O′

A1 400.00 0.00 -5.00 0.00 -2000.00

A2 69.25 -13.33 2.31 -923.34 159.86

A3 -69.25 13.33 -2.31 -923.34 159.86

Sum 400.00 -1,846.69 -1,680.29

3 3

, ,1 1

3 3

1 1

( , )

,Ai Ai

c c

A y A zi i

Ai Aii i

y z

M M

Area Area

′′ ′′= =

= =

′′ ′′ =

∑ ∑

∑ ∑

, AiA yM ′′ :1st moment of area Ai about x axis in y direction in O''-x''y''z'' frame

, AiA zM ′′ :1st moment of area Ai about y axis in z direction in O''-x''y''z'' frame

( )( , , ) 0, 4.62, 4.2c c cx y z′′ ′′ ′′∴ = − −

iAy′′

, ( 1, 2,3)i =

,( )

AiA yM

′′

iAi AArea y′′×,

( )AiA z

M′′

iAi AArea z′′×

1,846.69 1,680.29,400 400

− − =

AiArea

Centroid of section area in O''-x''y''z'' frame,

( )4.62, 4.2= − −

(1,1)3,4of ξ

iAz′′

(1,1) (1,1) (1,1)3,4 3,4 3,4( ) ( ) ( )( , , )B B BB x y zξ ξ ξ

(1,1) (1,1)3,4 3,4( ) ( )( , )c cc y zξ ξCentroid of section area of displacement volume

=(1,1)3,4( )B ξ

<Transverse moment of >(1,1)3,4( )ξ

Center of buoyancy

81/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

y

z

G

z′

y′

gB

(0)4ξ∆

v

OO′

Section view

Given : (1) (0) (1,0)

3 4 , 3,4( ), , T ExtM ξξ ξ Find : *4ξ (1) (0) (0)

4 4 4( )ξ ξ ξ+ ∆=

(1,0) (1,0) (1,0) (1,0)3,4 3,4 3,4 3,4(1,0)

3,4 (1,0) (1,0) (1,0)3,4 3,4 3,4

* (0)3,4 4

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )G B T

T TExt Ext T

mg z g V z g IM M

F z g i

ξ ξ ξ ξξ ξ

ξ ξ ξ

ρ ρξ

ρ

⋅ − ⋅ ⋅ − ⋅= + ∆ − ⋅ + ⋅

Governing equation of transverse moment

*3,4( ) 0TM ξ =

Example : Immersion and Heel in Static Equilibrium after Cargo Hold Being Flooded (21)

0 step, Heel

Static equilibrium? Check!

( )1*4 4ξ ξ=

?

(1,1)3,4( ) 0TM ξ =

?

(0) (1) (0)3 4( [0,0, , ,0,0] )Tξ ξ=r

(0) (1) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 0 step

4

4

(1,1)3,4( )B B ξ=(1,1)3,4( )g g ξ=

(1,1)3,4( )G G ξ=

ξ3 : immersionξ4 : heel

( )( , ) 3.09, 4.64c cy z′′ ′′∴ = − −

(1,1)3,4(1,1)3,4(1,1)3,4

( )( )( )

c

c

c

xyz

ξ

ξ

ξ

=

(1,1)3,4( ) (0, 2.99, 5.48)B ξ∴ = − −

(0) (0)4 4(0) (0)

4 4

1 0 0 00 cos sin 4.620 sin cos 4.2

ξ ξξ ξ

= ∆ − ∆ − ∆ ∆ −

(0)4, ( 19.1 )ξ∆ =

Calculate centroid of section area in O''-x''y''z'' frame,

then transformation centroid of section area to waterplane fixed frame.

(1,1) (1,1) (1,1)3,4 3,4 3,4( ) ( ) ( )( , , )c c cx y zξ ξ ξ

02.995.48

= − −

(0) (0)4 4(0) (0)

4 4

1 0 00 cos sin0 sin cos

c

c

c

xyz

ξ ξξ ξ

′′ ′′= ∆ − ∆

′′ ∆ ∆

(1,1) (1,1) (1,1)3,4 3,4 3,4( ) ( ) ( )( , , ) (0, 2.99, 5.48)c c cx y zξ ξ ξ∴ = − −

(1,1)3,4of ξ

y

z,z z′ ′′

y′

(0)4 19.1ξ∆ =

(0)4ξ∆

A2

A3

A1

(0)3ξ∆

T ′′

sB′′

Define new frame O''-x''y''z''Section view

y′′,O O′′

O′

(1,1) (1,1) (1,1)3,4 3,4 3,4( ) ( ) ( )( , , )B B BB x y zξ ξ ξ

(1,1) (1,1)3,4 3,4( ) ( )( , )c cc y zξ ξCentroid of section area of displacement volume

=(1,1)3,4( )B ξ

<Transverse moment of >(1,1)3,4( )ξ

Center of buoyancy

82/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

y

z

G

z′

y′

gB

(0)4ξ∆

v

OO′

Section view

Given : (1) (0) (1,0)

3 4 , 3,4( ), , T ExtM ξξ ξ Find : *4ξ (1) (0) (0)

4 4 4( )ξ ξ ξ+ ∆=

(1,0) (1,0) (1,0) (1,0)3,4 3,4 3,4 3,4(1,0)

3,4 (1,0) (1,0) (1,0)3,4 3,4 3,4

* (0)3,4 4

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )G B T

T TExt Ext T

mg z g V z g IM M

F z g i

ξ ξ ξ ξξ ξ

ξ ξ ξ

ρ ρξ

ρ

⋅ − ⋅ ⋅ − ⋅= + ∆ − ⋅ + ⋅

Governing equation of transverse moment

*3,4( ) 0TM ξ =

Example : Immersion and Heel in Static Equilibrium after Cargo Hold Being Flooded (22)

0 step, Heel

Static equilibrium? Check!

( )1*4 4ξ ξ=

?

(1,1)3,4( ) 0TM ξ =

?

(0) (1) (0)3 4( [0,0, , ,0,0] )Tξ ξ=r

(0) (1) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 0 step

4

4

(1,1)3,4( )B B ξ=(1,1)3,4( )g g ξ=

(1,1)3,4( )G G ξ=

ξ3 : immersionξ4 : heel

( ), ,( , ) 10.86, 3.12v c v cy z′′ ′′∴ = − −

(1,1)3,4(1,1)3,4(1,1)3,4

,

,

,

( )( )( )

v c

v c

v c

xyz

ξ

ξ

ξ

=

(1,1)3,4( ) (0, 9.24, 6.5)g ξ∴ = − −

(0) (0)4 4(0) (0)

4 4

1 0 0 00 cos sin 10.860 sin cos 3.12

ξ ξξ ξ

= ∆ − ∆ − ∆ ∆ −

(0)4, ( 15.28 )ξ∆ =

Calculate centroid of section area of flooded volume in O''-x''y''z'' frame,

then transformation centroid of section area to waterplane fixed frame.

(1,1) (1,1) (1,1)3,4 3,4 3,4, , ,( ) ( ) ( )( , , )v c v c v cx y zξ ξ ξ

09.246.5

= − −

,(0) (0)

4 4 ,(0) (0)

4 4 ,

1 0 00 cos sin0 sin cos

v c

v c

v c

xyz

ξ ξξ ξ

′′ ′′= ∆ − ∆ ′′ ∆ ∆

(1,1) (1,1) (1,1)3,4 3,4 3,4, , ,( ) ( ) ( )( , , ) (0, 9.24, 6.5)v c v c v cx y zξ ξ ξ∴ = − −

(1,1)3,4of ξ

y

z,z z′ ′′

y′

(0)4 19.1ξ∆ =

(0)4ξ∆

A2

A4

(0)3ξ∆

T ′′

sB′′

Define new frame O''-x''y''z''Section view

y′′,O O′′

O′

(1,1) (1,1) (1,1)3,4 3,4 3,4( ) ( ) ( )( , , )g g gg x y zξ ξ ξ

(1,1) (1,1)3,4 3,4, ,( ) ( )( , )v v c v cc y zξ ξCentroid of section area of flooded cargo volume

=(1,1)3,4( )g ξ

<Transverse moment of >(1,1)3,4( )ξ

Center of flooded volume

83/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

y

z

G

z′

y′

gB

(0)4ξ∆

v

OO′

Section view

Given : (1) (0) (1,0)

3 4 , 3,4( ), , T ExtM ξξ ξ Find : *4ξ (1) (0) (0)

4 4 4( )ξ ξ ξ+ ∆=

(1,0) (1,0) (1,0) (1,0)3,4 3,4 3,4 3,4(1,0)

3,4 (1,0) (1,0) (1,0)3,4 3,4 3,4

* (0)3,4 4

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )G B T

T TExt Ext T

mg z g V z g IM M

F z g i

ξ ξ ξ ξξ ξ

ξ ξ ξ

ρ ρξ

ρ

⋅ − ⋅ ⋅ − ⋅= + ∆ − ⋅ + ⋅

Governing equation of transverse moment

*3,4( ) 0TM ξ =

Example : Immersion and Heel in Static Equilibrium after Cargo Hold Being Flooded (23)

0 step, Heel

Static equilibrium? Check!

( )1*4 4ξ ξ=

?

(1,1)3,4( ) 0TM ξ =

?

(0) (1) (0)3 4( [0,0, , ,0,0] )Tξ ξ=r

(0) (1) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 0 step

4

4

(1,1)3,4( )B B ξ=(1,1)3,4( )g g ξ=

(1,1)3,4( )G G ξ=

ξ3 : immersionξ4 : heel

<Transverse moment of >(1,1)3,4( )ξ

(1,1)3,4( )BF ξ

(1,1)3,4( )GF ξ

(1,1)3,4( )ExtF ξ

45.39 10 [ ]kN= − ×

(0,0)3,4

5( ) 3.6 10 [ ]GF kNξ= = − ×3 4 310[ / ] 4.0 10 [ ]kN m m= × ×(1,1)

3,4( )g V ξρ= ⋅54.0 10 [ ]kN= ×

(1,1)3,4

(1,1)3,4

( )

( )V

V dVξ

ξ = ∫∫∫ (1,1)3,4( )section area L ξ= × 1

2[ ]400A mArea =

2

2[ ]69.25A mArea =

3

2[ ]69.25A mArea = −2

_ [ ]400A Total mArea =2 4 3400[ ] 100[ ] 4.0 10 [ ]m m m= × = ×

(1,1)3,4_ ( )Area LA Total ξ= ×

Calculate force (1,1) (1,1) (1,1)3,4 3,4 3,4( ), ( ), ( )G B ExtF F Fξ ξ ξ

(1,1)3,4

(1,1)3,4

( )

( )v

v dvξ

ξ = ∫∫∫ (1,1)3,4( )section area l ξ= ×

(1,1)3,4_ ( )Area a Total l ξ= ×

2 3 3269.25[ ] 20[ ] 5.39 10 [ ]m m m= × = ×

3 3 310[ / ] 5.39 10 [ ]kN m m= − × ×(1,1)3,4( )g v ξρ= − ⋅

1

2[ ]200a mArea =

2

2[ ]69.25a mArea =

2_ [ ]269.25a Total mArea =

84/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

y

z

G

z′

y′

gB

(0)4ξ∆

v

OO′

Section view

Given : (1) (0) (1,0)

3 4 , 3,4( ), , T ExtM ξξ ξ Find : *4ξ (1) (0) (0)

4 4 4( )ξ ξ ξ+ ∆=

(1,0) (1,0) (1,0) (1,0)3,4 3,4 3,4 3,4(1,0)

3,4 (1,0) (1,0) (1,0)3,4 3,4 3,4

* (0)3,4 4

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )G B T

T TExt Ext T

mg z g V z g IM M

F z g i

ξ ξ ξ ξξ ξ

ξ ξ ξ

ρ ρξ

ρ

⋅ − ⋅ ⋅ − ⋅= + ∆ − ⋅ + ⋅

Governing equation of transverse moment

*3,4( ) 0TM ξ =

Example : Immersion and Heel in Static Equilibrium after Cargo Hold Being Flooded (24)

0 step, Heel

Static equilibrium? Check!

( )1*4 4ξ ξ=

?

(1,1)3,4( ) 0TM ξ =

?

(0) (1) (0)3 4( [0,0, , ,0,0] )Tξ ξ=r

(0) (1) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 0 step

4

4

(1,1)3,4( )B B ξ=(1,1)3,4( )g g ξ=

(1,1)3,4( )G G ξ=

ξ3 : immersionξ4 : heel

<Transverse moment of (ξ3,4(1,1)) >

(1,1)3,4

(1,1) (1,1)3,4 3,4( ) () )(TB B BM y Fξ ξξ= ⋅

(1,1)3,4

(1,1) (1,1)3,4 3,4( ) () )(TG G GM y Fξ ξξ= ⋅

(1,1) (1,1) (1,1)3,4 3,4 3,4, ( ) ( ) ( )T Ext Ext ExtM y Fξ ξ ξ= ⋅

(1,1)3,4( )TM ξ

(1,1)3,4( ) (0, 1.64,4.72)G ξ = −(1,1)3,4( ) (0, 2.99, 5.48)B ξ = − −(1,1)3,4( ) (0, 9.24, 6.5)g ξ = − −

(1,1)3,4

5( ) 4.0 10 [ ]B kNF ξ = ×

(1,1)3,4

5( ) 3.6 10 [ ]G NF kξ = − ×

(1,1)3,4

4( ) 5.39 10 [ ]ExtF kNξ = − ×

(1,1)3,4

(1,1)3,4

(1,1)3,4 ,( () )( ) T ExBG tT TM M Mξ ξξ= ++

5( 1.64) ( 3.6 10 )= − ⋅ − ×55.8895 10 [ ]kN m= × ⋅

5( 2.99) (4.0 10 )− ⋅ ×=61.1953 10 [ ]kN m= − × ⋅

(1,1) (1,1)3,4 3,4( ) ( )g Exty Fξ ξ= ⋅

4( 9.24) ( 5.39 10 )= − ⋅ − ×54.9751 10 [ ]kN m= × ⋅

[ ]kN m⋅5 6 55.8895 10 [ ] 1.1953 10 [ ] 4.9751 10kN m kN m= × ⋅ − × ⋅ + ×51.088 10 [ ]kN m= − × ⋅

stImmersion 1 step

4

(1,1)3,4( ) 0TM ξ ≠ ( )1*

4 4ξ ξ≠

85/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

Example : Immersion and Heel in Static Equilibrium after Cargo Hold Being Flooded (25)

0 step

(0) (0) (0)3 4( [0,0, , ,0,0])ξ ξ=r

(0) (1) (0)3 4( [0,0, , ,0,0])ξ ξ=r

Immersion

Heel

-36,000 -360,000 360,000 -36,000

-400,000 0 0 -400,000

[ ]ZF kN [ ]GF kN [ ]BF kN [ ]ExtF kN

[ ]TM kN m⋅ [ ]TGM kN m⋅ [ ]TBM kN m⋅ , [ ]T ExtM kN m⋅

0 -360,000 400,000 -40,000

-400,000 0 0 -400,000

[ ]ZF kN [ ]GF kN [ ]BF kN [ ]ExtF kN

[ ]TM kN m⋅ [ ]TGM kN m⋅ [ ]TBM kN m⋅ , [ ]T ExtM kN m⋅

(1) (1) (1)3 4( [0,0, , ,0,0])ξ ξ=r

-13,850 -360,000 400,000 -53,850

-108,798 588,950 -1,195,257 497,508

[ ]ZF kN [ ]GF kN [ ]BF kN [ ]ExtF kN

[ ]TM kN m⋅ [ ]TGM kN m⋅ [ ]TBM kN m⋅ , [ ]T ExtM kN m⋅

Start Immersion 1st step.End of Heel 0 step.

Immersion

(0) (1) (0)3 4( [0,0, , ,0,0] )Tξ ξ=r

(0) (1) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 0 step

1st step

* * * *3,4 3,4 3,4 , 3,4( ) ( ) ( ) ( ), T TG TB T Extwhere M M M Mξ ξ ξ ξ= + +

Governing equationof transverse moment

*3,4( ) 0TM ξ =

* * * *3,4 3,4 3,4 3,4( ) ( ) ( ) ( ), z G B Extwh ere F F F Fξ ξ ξ ξ= + +

Governing equationof force

*3,4( ) 0zF ξ =

LC

O′

(0,0)3,4( )G ξ

v

,z z′

,y y′(0,0)3,4( )g ξ

(0,0)3,4( )B ξ

O

(1,0)3,4( )G ξ

v(1,0)3,4( )g ξ

y

,z z′

LC

O

y′(1,0)3,4( )B ξ

(0)3ξ∆

O′

ξ3 : immersionξ4 : heel

y

z

G

z′

y′

g B

( )04ξ∆

v

OO′

86/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

y

z

G

z′

y′

gB

v

OO′

Section view

( )* (1,1) (1,1) (1,1) (1)3,4 3,4 3,4 3,4 3( ) ( ) ( ) ( )z z WP WPF F g A g aξ ξ ξ ξρ ρ ξ= + − + ∆

* * * *3,4 3,4 3,4 3,4( ) ( ) ( ) ( ), z G B Extwh ere F F F Fξ ξ ξ ξ= + +

Given : Find :

Governing equation of force

(1) (1) (1,1)3 4 3,4, , ( )ExtFξ ξ ξ

*3,4( ) 0,zF ξ =

(2) (1) (1)3 3 3( )ξ ξ ξ+ ∆=

Example : Immersion and Heel in Static Equilibrium after Cargo Hold Being Flooded (26)

1st step, Immersion

(1,1)3,4( )BF ξ

(1,1)3,4( )GF ξ

(1,1) (1,1) (1,1) (1,1)3,4 3,4 3,4 3,4( ) ( ) ( ) ( )z G B ExtF F F Fξ ξ ξ ξ= + +

(1,1)3,4( )ExtF ξ 45.39 10 [ ]kN= − ×

53.6 10 [ ]kN= − ×

54.0 10 [ ]kN= ×

(1,1) (1,1) (1,1) (1,1)3,4 3,4 3,4 3,4( ) ( ) ( ) ( )z G B ExtF F F Fξ ξ ξ ξ= + +

5 5 43.6 10 [ ] 4.0 10 [ ] 5.39 10 [ ]kN kN kN= − × + × − ×

41.39 10 [ ]kN= − ×

Total force is changed during heel !

1

1

(1) (1) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

(1) (2) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

Immersion(0)3ξ∆ 1 step

*3ξ

(1,1)3,4( )B B ξ=(1,1)3,4( )g g ξ=

(1,1)3,4( )G G ξ=

ξ3 : immersionξ4 : heel

: Total force

(0)4ξ∆

87/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

(1,1) (1,1)3,4 3,4( ) ( )WP WPg A g aξ ξρ ρ+−

(1,1) (1,1)3,4 3,4( ) ( )WP WPg A g aξ ξρ ρ+−y

z

G

z′

y′

g B

v

OO′

Section view

( )* (1,1) (1,1) (1,1) (1)3,4 3,4 3,4 3,4 3( ) ( ) ( ) ( )z z WP WPF F g A g aξ ξ ξ ξρ ρ ξ= + − + ∆

* * * *3,4 3,4 3,4 3,4( ) ( ) ( ) ( ), z G B Extwh ere F F F Fξ ξ ξ ξ= + +

Given : Find :

Governing equation of force

(1) (1) (1,1)3 4 3,4, , ( )ExtFξ ξ ξ

*3,4( ) 0,zF ξ =

(2) (1) (1)3 3 3( )ξ ξ ξ+ ∆=

Example : Immersion and Heel in Static Equilibrium after Cargo Hold Being Flooded (27)

1st step, Immersion

(1) (1) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

(1) (2) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

Immersion(0)3ξ∆ 1 step

*3ξ

(1,1)3,4( )B B ξ=(1,1)3,4( )g g ξ=

(1,1)3,4( )G G ξ=

ξ3 : immersionξ4 : heel

1 2

Plan view

x

y

LC(1,0)3,4( )

20b

=

,O O′G

v

, x′

, y′

, B

(1,0)3,4( ) 100L mξ =

g

(1,0)3,4( )

40sB

=(1,0)3,4( )

20l

=

2

(1,1)3,4( )WPgA ξρ−

(1,1)3,4( )WPA

g dx dyξ

ρ= − ⋅ ∫∫(1,1) (1,1)3,4 3,4( ) ( )sg B Lξ ξρ= − ⋅ ⋅

3 40[ ]10[ / ] 100[ ]cos19.1

mkN m m= − ⋅ ⋅°

44.23 10 [ / ]kN m= − ×

(1,1)3,4( )WPg a ξρ

(1,1)3,4( )WPa

g dx dyξ

ρ= ⋅ ∫∫(1,1) (1,1)3,4 3,4( ) ( )g b lξ ξρ= ⋅ ⋅

3 20[ ]10[ / ] 20[ ]cos19.1

mkN m m= ⋅ ⋅°

34.23 10 [ / ]kN m= ×

(0)4ξ∆

(1,0)3,4 (1,0)

3,4(0)4

( )( )

cossB

g Lξ

ξρξ

= − ⋅ ⋅∆

(1,0)3,4 (1,0)

3,4(0)4

( )( )

cosb

g lξ

ξρξ

= ⋅ ⋅∆

43.81 10 [ / ]kN m= − ×

4 34.23 10 [ / ] 4.23 10 [ / ]kN m kN m= − × + ×

88/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

( )* (1,1) (1,1) (1,1) (1)3,4 3,4 3,4 3,4 3( ) ( ) ( ) ( )z z WP WPF F g A g aξ ξ ξ ξρ ρ ξ= + − + ∆

z′

y′

O′

(1,1) (1,1)3,4 3,4( ) ( )WP WPg A g aξ ξρ ρ−

y

z

G

z′

y′

g B

v

OO′

Section view

* * * *3,4 3,4 3,4 3,4( ) ( ) ( ) ( ), z G B Extwh ere F F F Fξ ξ ξ ξ= + +

Given : Find :

Governing equation of force

(1) (1) (1,1)3 4 3,4, , ( )ExtFξ ξ ξ

*3,4( ) 0,zF ξ =

(2) (1) (1)3 3 3( )ξ ξ ξ+ ∆=

Example : Immersion and Heel in Static Equilibrium after Cargo Hold Being Flooded (28)

1st step, Immersion

(1) (1) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

(1) (2) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

Immersion(0)3ξ∆ 1 step

*3ξ

(1,1)3,4( )B B ξ=(1,1)3,4( )g g ξ=

(1,1)3,4( )G G ξ=

ξ3 : immersionξ4 : heel

1 2

2

(0)4ξ∆

1(1,1)3,4

4( ) 1.39 10 [ ]zF kNξ = − ×

43.81 10 [ / ]kN m= − ×3 : change of immersion(1)

3ξ∆

* (1,1)3,4 3,4(1)

3 (1,1) (1,1)3,4 3,4

( ) ( )

( ) ( )z z

WP WP

F Fg A g a

ξ ξ

ξ ξξ

ρ ρ−

∆ =− +

If we assume that Fz(ξ3,4*) =0

4

4

0 (1.39 10 [ ]) 0.363.81 10 [ / ]

kNkN m

− ×= = −

− ×( ) ( ) ( )2 1 1

3 3 3 1 0.36 1.36 [ ]mξ ξ ξ= + ∆ = − − = −

We want to find *3ξ

Static equilibrium? Check!

( )2*3 3ξ ξ=

? (2,1)3,4( ) 0zF ξ =

?

y

z

gB

v

OG

Section view

(1)3ξ∆

(2,1)3,4( )B B ξ=(2,1)3,4( )g g ξ=

(2,1)3,4( )G G ξ=

3

89/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

z′

y′

O′

( )* (1,1) (1,1) (1,1) (1)3,4 3,4 3,4 3,4 3( ) ( ) ( ) ( )z z WP WPF F g A g aξ ξ ξ ξρ ρ ξ= + − + ∆

* * * *3,4 3,4 3,4 3,4( ) ( ) ( ) ( ), z G B Extwh ere F F F Fξ ξ ξ ξ= + +

Given : Find :

Governing equation of force

(1) (1) (1,1)3 4 3,4, , ( )ExtFξ ξ ξ

*3,4( ) 0,zF ξ =

(2) (1) (1)3 3 3( )ξ ξ ξ+ ∆=

Example : Immersion and Heel in Static Equilibrium after Cargo Hold Being Flooded (29)

(1) (1) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

(1) (2) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

Immersion(0)3ξ∆ 1 step

*3ξ

ξ3 : immersionξ4 : heel

4

y

z

gB

v

OG

Section view

(1)3ξ∆

(2,1)3,4( )B B ξ=(2,1)3,4( )g g ξ=

(2,1)3,4( )G G ξ=

1st step, Immersion

(2,1)3,4( ) 0zF ξ = Static equilibrium?

Check!

( )2*3 3ξ ξ=

?

?

,z z′ ′′

y′O′ y

z

g B

v

OG

Define new frame O''-x''y''z''

(1)3ξ∆

G

OO′′y

z,z z′ ′′

y′′

y′O′z′′

Section view

4

new frame O''-x''y''z''

GOO′′

y

z,z z′ ′′

y′′

y′O′

(0)3ξ∆1[ ]m= −

(1)4ξ19.1= °

(1)4ξ

(1)3ξ∆

0.36[ ]m−Oz′ Oy′

4 (2,13,4

?)( ) 0zF ξ = (2,1) (2,1) (2,1) (2,1)

3,4 3,4 3,4 3 4

?

,( ) ( ) ( ) ( ) 0z G B ExtF F F Fξ ξ ξ ξ= + + =

( Because O'' is located in Centerline.O'' : intersection point between y axis of waterplane fixed frame, ans z' axis of body fixed frame)

If we know O'' Get (2,1)3,4( )V ξ

easier

(2,1)3,4( )BF ξGet

easier

A : Calculate O in body fixed frame

B : Calculate O'' in body fixed frame

C(2,1)3,4( )V ξ: Calculate

by equation of line OO′′

D(2,1)3,4( )BF ξ: Calculate

( is calculated in similar way)(2,1)3,4( )ExtF ξ

90/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

z′

y′

O′

( )* (1,1) (1,1) (1,1) (1)3,4 3,4 3,4 3,4 3( ) ( ) ( ) ( )z z WP WPF F g A g aξ ξ ξ ξρ ρ ξ= + − + ∆

* * * *3,4 3,4 3,4 3,4( ) ( ) ( ) ( ), z G B Extwh ere F F F Fξ ξ ξ ξ= + +

Given : Find :

Governing equation of force

(1) (1) (1,1)3 4 3,4, , ( )ExtFξ ξ ξ

*3,4( ) 0,zF ξ =

(2) (1) (1)3 3 3( )ξ ξ ξ+ ∆=

Example : Immersion and Heel in Static Equilibrium after Cargo Hold Being Flooded (30)

(1) (1) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

(1) (2) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

Immersion(0)3ξ∆ 1 step

*3ξ

ξ3 : immersionξ4 : heel

4

y

z

gB

v

OG

Section view

(1)3ξ∆

(2,1)3,4( )B B ξ=(2,1)3,4( )g g ξ=

(2,1)3,4( )G G ξ=

1st step, Immersion

(2,1)3,4( ) 0zF ξ = Static equilibrium?

Check!

( )2*3 3ξ ξ=

?

?

,z z′ ′′

y′O′ y

z

g B

v

OG

Define new frame O''-x''y''z''

(1)3ξ∆

G

OO′′y

z,z z′ ′′

y′′

y′O′z′′

Section view

4

Define new frame O''-x''y''z''

(1) (1)3 4( ) sinOy ξ ξ′ = − −∆ ⋅

( 0.36) sin19.1= − − ⋅

0.12[ ]m=

(0) (1) (1)3 3 4( ) ( ) sinOz ξ ξ ξ′ = − ∆ − ∆ ⋅

( 1) (0.36) sin19.1= − − − ⋅

1.34[ ]m=

( , , )O O Ox y z′ ′ ′ (0,0.12,1.34)=

GO

y

z,z z′ ′′

y′O′

(0)3ξ∆1[ ]m= −

(1)4ξ19.1= °

(1)4ξ

(1)3ξ∆

0.36[ ]m−Oz′ Oy′

A

4 (2,13,4

?)( ) 0zF ξ = (2,1) (2,1) (2,1) (2,1)

3,4 3,4 3,4 3 4

?

,( ) ( ) ( ) ( ) 0z G B ExtF F F Fξ ξ ξ ξ= + + =

: O B : O'' C (2,1)3,4( ): V ξ D (2,1)

3,4( ): BF ξ

Calculate Origin of waterplane fixed frame in body fixed frame ( , , )O O Ox y z′ ′ ′

91/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

z′

y′

O′

( )* (1,1) (1,1) (1,1) (1)3,4 3,4 3,4 3,4 3( ) ( ) ( ) ( )z z WP WPF F g A g aξ ξ ξ ξρ ρ ξ= + − + ∆

* * * *3,4 3,4 3,4 3,4( ) ( ) ( ) ( ), z G B Extwh ere F F F Fξ ξ ξ ξ= + +

Given : Find :

Governing equation of force

(1) (1) (1,1)3 4 3,4, , ( )ExtFξ ξ ξ

*3,4( ) 0,zF ξ =

(2) (1) (1)3 3 3( )ξ ξ ξ+ ∆=

Example : Immersion and Heel in Static Equilibrium after Cargo Hold Being Flooded (31)

(1) (1) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

(1) (2) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

Immersion(0)3ξ∆ 1 step

*3ξ

ξ3 : immersionξ4 : heel

4

y

z

gB

v

OG

Section view

(1)3ξ∆

(2,1)3,4( )B B ξ=(2,1)3,4( )g g ξ=

(2,1)3,4( )G G ξ=

1st step, Immersion

(2,1)3,4( ) 0zF ξ = Static equilibrium?

Check!

( )2*3 3ξ ξ=

?

?

,z z′ ′′

y′O′ y

z

g B

v

OG

Define new frame O''-x''y''z''

(1)3ξ∆

G

OO′′y

z,z z′ ′′

y′′

y′O′ z′′

Section view

4

Define new frame O''-x''y''z''

1.38

9

10.38T ′′ =

So, Origin of O''-x''y''z'' frame in body fixed frame

Develop equation of line OO′′by point O, and line slop tan(-ξ4

(1)).

(1)4tan( ) ( )O Oz z y yξ′ ′ ′ ′− = − ⋅ −

( , , )O O Ox y z′ ′ ′ (0,0.12,1.34)=

1.34 tan( 19.1) ( 0.12)z y′ ′− = − ⋅ −

GOO′′

y

z,z z′ ′′

y′′

y′O′

(0)3ξ∆1[ ]m= −

(1)4ξ19.1= °

(1)4ξ

(1)4ξ

(1)3ξ∆

0.36[ ]m= −0.35 1.38z y′ ′∴ = − ⋅ +

( , , )O O Ox y z′′ ′′ ′′′ ′ ′ (0,0,1.38)=

Oz′ Oy′

A

4 (2,13,4

?)( ) 0zF ξ = (2,1) (2,1) (2,1) (2,1)

3,4 3,4 3,4 3 4

?

,( ) ( ) ( ) ( ) 0z G B ExtF F F Fξ ξ ξ ξ= + + =

: O B : O'' C (2,1)3,4( ): V ξ D (2,1)

3,4( ): BF ξ

92/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

z′

y′

O′

( )* (1,1) (1,1) (1,1) (1)3,4 3,4 3,4 3,4 3( ) ( ) ( ) ( )z z WP WPF F g A g aξ ξ ξ ξρ ρ ξ= + − + ∆

* * * *3,4 3,4 3,4 3,4( ) ( ) ( ) ( ), z G B Extwh ere F F F Fξ ξ ξ ξ= + +

Given : Find :

Governing equation of force

(1) (1) (1,1)3 4 3,4, , ( )ExtFξ ξ ξ

*3,4( ) 0,zF ξ =

(2) (1) (1)3 3 3( )ξ ξ ξ+ ∆=

Example : Immersion and Heel in Static Equilibrium after Cargo Hold Being Flooded (32)

(1) (1) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

(1) (2) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

Immersion(0)3ξ∆ 1 step

*3ξ

ξ3 : immersionξ4 : heel

4

y

z

gB

v

OG

Section view

(1)3ξ∆

(2,1)3,4( )B B ξ=(2,1)3,4( )g g ξ=

(2,1)3,4( )G G ξ=

1st step, Immersion

(2,1)3,4( ) 0zF ξ = Static equilibrium?

Check!

( )2*3 3ξ ξ=

?

?

,z z′ ′′

y′O′ y

z

g B

v

OG

Define new frame O''-x''y''z''

(1)3ξ∆

G

OO′′y

z,z z′ ′′

y′′

y′O′ z′′

Section view

4

A2

A3

A1

Area of A1 in O''-x''y''z'' frame

1A sArea B T′′ ′′= ⋅ 240[ ] 10.38[ ] 415.39[ ]m m m= ⋅ =

10.38[ ]T m′′ =Draft in O''-x''y''z'' frame

2 3( )A AArea Area=

{ }0.5 (40 / 2[ ]) (40 / 2)[ ] tan(19.1)m m= ⋅ ⋅ ⋅269.25[ ]m=

Area of A3 (=A2)in O''-x''y''z'' frame

A3

/ 2sB′′

(0)4( / 2) tan( )sB ξ′′ ⋅ ∆

(0)4ξ∆

{ }(0)40.5 ( / 2) ( / 2) tan( )s sB B ξ′′ ′′= ⋅ ⋅ ∆

10.38T ′′ =

A

4 (2,13,4

?)( ) 0zF ξ = (2,1) (2,1) (2,1) (2,1)

3,4 3,4 3,4 3 4

?

,( ) ( ) ( ) ( ) 0z G B ExtF F F Fξ ξ ξ ξ= + + =

: O B : O'' C (2,1)3,4( ): V ξ D (2,1)

3,4( ): BF ξ

93/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

z′

y′

O′

( )* (1,1) (1,1) (1,1) (1)3,4 3,4 3,4 3,4 3( ) ( ) ( ) ( )z z WP WPF F g A g aξ ξ ξ ξρ ρ ξ= + − + ∆

* * * *3,4 3,4 3,4 3,4( ) ( ) ( ) ( ), z G B Extwh ere F F F Fξ ξ ξ ξ= + +

Given : Find :

Governing equation of force

(1) (1) (1,1)3 4 3,4, , ( )ExtFξ ξ ξ

*3,4( ) 0,zF ξ =

(2) (1) (1)3 3 3( )ξ ξ ξ+ ∆=

Example : Immersion and Heel in Static Equilibrium after Cargo Hold Being Flooded (33)

(1) (1) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

(1) (2) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

Immersion(0)3ξ∆ 1 step

*3ξ

ξ3 : immersionξ4 : heel

4

y

z

gB

v

OG

Section view

(1)3ξ∆

(2,1)3,4( )B B ξ=(2,1)3,4( )g g ξ=

(2,1)3,4( )G G ξ=

1st step, Immersion

(2,1)3,4( ) 0zF ξ = Static equilibrium?

Check!

( )2*3 3ξ ξ=

?

?

,z z′ ′′

y′O′ y

z

g B

v

OG

Define new frame O''-x''y''z''

(1)3ξ∆

G

OO′′y

z,z z′ ′′

y′′

y′O′z′′

Section view

4

A1 415.39

A2 69.25

A3 -69.25

Sum 415.39

iAArea

Calculate section area of in O''-x''y''z'' frame(2,1)3,4( )V ξ

A2

A3

A4

2_ [ ]415.39A Total mArea =

A

4 (2,13,4

?)( ) 0zF ξ = (2,1) (2,1) (2,1) (2,1)

3,4 3,4 3,4 3 4

?

,( ) ( ) ( ) ( ) 0z G B ExtF F F Fξ ξ ξ ξ= + + =

: O B : O'' C (2,1)3,4( ): V ξ D (2,1)

3,4( ): BF ξ

( 2,1)3, 4

(2,1)3,4

( )

( )V

V dVξ

ξ = ∫∫∫

2[ ]415.39 100[ ]m m= ⋅

(2,1) (2,1)3,4 3,4( ( )) ( )section area V Lξ ξ= ⋅

In this example

4 34.15 10 [ ]m= ×

(2,1)3,4( )BF ξ

(2,1)3,4( )g V ξρ= ⋅3 4 310[ / ] 4.15 10 [ ]kN m m= × ×54.15 10 [ ]kN= ×

C

D

94/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

z′

y′

O′

( )* (1,1) (1,1) (1,1) (1)3,4 3,4 3,4 3,4 3( ) ( ) ( ) ( )z z WP WPF F g A g aξ ξ ξ ξρ ρ ξ= + − + ∆

* * * *3,4 3,4 3,4 3,4( ) ( ) ( ) ( ), z G B Extwh ere F F F Fξ ξ ξ ξ= + +

Given : Find :

Governing equation of force

(1) (1) (1,1)3 4 3,4, , ( )ExtFξ ξ ξ

*3,4( ) 0,zF ξ =

(2) (1) (1)3 3 3( )ξ ξ ξ+ ∆=

Example : Immersion and Heel in Static Equilibrium after Cargo Hold Being Flooded (34)

(1) (1) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

(1) (2) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

Immersion(0)3ξ∆ 1 step

*3ξ

ξ3 : immersionξ4 : heel

4

y

z

gB

v

OG

Section view

(1)3ξ∆

(2,1)3,4( )B B ξ=(2,1)3,4( )g g ξ=

(2,1)3,4( )G G ξ=

1st step, Immersion

(2,1)3,4( ) 0zF ξ = Static equilibrium?

Check!

( )2*3 3ξ ξ=

?

?

,z z′ ′′

y′O′ y

z

g B

v

OG

Define new frame O''-x''y''z''

(1)3ξ∆

G

OO′′y

z,z z′ ′′

y′′

y′O′z′′

Section view

4

A2

A3

A4

Calculate section area of flooded volume in O''-x''y''z'' frame of(2,1)3,4ξ

1_ 4 2 22

AA flooded A A A

AreaArea Area Area Area= + = +

22[ ]

[ ]415.39 69.25

2m

m= +

2[ ]276.95 m=

4 (2,13,4

?)( ) 0zF ξ = (2,1) (2,1) (2,1) (2,1)

3,4 3,4 3,4 3 4

?

,( ) ( ) ( ) ( ) 0z G B ExtF F F Fξ ξ ξ ξ= + + =

A : O B : O'' C (2,1)3,4( ): v ξ D (2,1)

3,4( ): ExtF ξ

(in previous calculation)

( 2,1)3, 4

(2,1)3,4

( )

( )v

v dvξ

ξ = ∫∫∫

2[ ]276.95 20[ ]m m= ⋅

(2,1) (2,1)3,4 3,4( ( )) ( )section area v lξ ξ= ⋅

In this example

3 35.54 10 [ ]m= ×

(2,1)3,4( )ExtF ξ

(2,1)3,4( )g v ξρ= − ⋅3 4 310[ / ] 5.54 10 [ ]kN m m= − × ×45.54 10 [ ]kN= − ×

C

D

95/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

z′

y′

O′

( )* (1,1) (1,1) (1,1) (1)3,4 3,4 3,4 3,4 3( ) ( ) ( ) ( )z z WP WPF F g A g aξ ξ ξ ξρ ρ ξ= + − + ∆

* * * *3,4 3,4 3,4 3,4( ) ( ) ( ) ( ), z G B Extwh ere F F F Fξ ξ ξ ξ= + +

Given : Find :

Governing equation of force

(1) (1) (1,1)3 4 3,4, , ( )ExtFξ ξ ξ

*3,4( ) 0,zF ξ =

(2) (1) (1)3 3 3( )ξ ξ ξ+ ∆=

Example : Immersion and Heel in Static Equilibrium after Cargo Hold Being Flooded (35)

(1) (1) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

(1) (2) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

Immersion(0)3ξ∆ 1 step

*3ξ

ξ3 : immersionξ4 : heel

4

y

z

gB

v

OG

Section view

(1)3ξ∆

(2,1)3,4( )B B ξ=(2,1)3,4( )g g ξ=

(2,1)3,4( )G G ξ=

1st step, Immersion

(2,1)3,4( ) 0zF ξ = Static equilibrium?

Check!

( )2*3 3ξ ξ=

?

?

4

(2,1)3,4( )BF ξ

(2,1)3,4( )GF ξ

(2,1) (2,1) (2,1) (2,1)3,4 3,4 3,4 3,4( ) ( ) ( ) ( )z G B ExtF F F Fξ ξ ξ ξ= ++

(2,1)3,4( )ExtF ξ (2,1)

3,4( )g v ξρ= − ⋅

(0,0) 53,4( ) 3.6 10 [ ]GF kNξ= = − ×

(2,1)3,4( )g V ξρ= ⋅54.15 10 [ ]kN= ×

(2,1)3,4( )zF ξ (2,1) (2,1) (2,1)

3,4 3,4 3,4( ) ( ) ( )G B ExtF F Fξ ξ ξ= ++5 5 43.6 10 [ ] 4.15 10 [ ] 5.54 10 [ ]kN kN kN= − × + × − ×

0[ ]kN=

45.54 10 [ ]kN= − ×4(2,1)3,4( ) 0zF ξ = ( )2*

3 3ξ ξ=

If ξ4(1) is also ξ4

*, then the iteration ends.

Check ξ4(1)

96/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

-13,850 -360,000 400,000 -53,850

-108,798 588,950 -1,195,257 497,508

Example : Immersion and Heel in Static Equilibrium after Cargo Hold Being Flooded (36)

1st step

2nd step

(1) (1) (1)3 4( [0,0, , ,0,0])ξ ξ=r

(1) (2) (1)3 4( [0,0, , ,0,0])ξ ξ=r

(2) (2) (2)3 4( [0,0, , ,0,0])ξ ξ=r

Immersion

Heel

[ ]ZF kN [ ]GF kN [ ]BF kN [ ]ExtF kN

[ ]TM kN m⋅ [ ]TGM kN m⋅ [ ]TBM kN m⋅ , [ ]T ExtM kN m⋅

0 -360,000 415,389 -55,389

[ ]ZF kN [ ]GF kN [ ]BF kN [ ]ExtF kN

[ ]TM kN m⋅ [ ]TGM kN m⋅ [ ]TBM kN m⋅ , [ ]T ExtM kN m⋅

End of Immersion 1st step.

Start Heel 1st step.

(1) (1) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

(1) (2) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

Immersion(0)3ξ∆ 1 step

* * * *3,4 3,4 3,4 , 3,4( ) ( ) ( ) ( ), T TG TB T Extwhere M M M Mξ ξ ξ ξ= + +

Governing equationof transverse moment

*3,4( ) 0TM ξ =

* * * *3,4 3,4 3,4 3,4( ) ( ) ( ) ( ), z G B Extwh ere F F F Fξ ξ ξ ξ= + +

Governing equationof force

*3,4( ) 0zF ξ =

ξ3 : immersionξ4 : heel

y

z

G

z′

y′

g B

v

OO′

Section view

(0)4ξ∆

z′

y′

O′

y

z

gB

v

OG

Section view

(1)3ξ∆

97/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

y

z

G

z′

y′

g B

v

OO′

Section view

(0)4ξ∆

z′

y′

O′

y

z

gB

v

OG

Section view

(1)3ξ∆

Example : Immersion and Heel in Static Equilibrium after Cargo Hold Being Flooded (37)

(2,1)3,4( ) (0, 1.64,4.36)G ξ = −

(2,1)3,4( )B ξ =(2,1)3,4( )g ξ =

0 step, Heel

1st step, Immersion

(1,1)3,4(1,1)3,4(1,1) (1)3,4 3

( ) 0( ) 0( )

G

G

G

xyz

ξξξ ξ

= + ∆

(2,1)3,4(2,1)3,4(2,1)3,4

( )( )( )

G

G

G

xyz

ξξξ

01.64

4.36

= −

For center of gravity of ship G

0 01.64 0

4.72 0.36

= − + −

(1)4, ( 0.90 )ξ∆ =

Next

(1,1)3,4( )G G ξ=(1,1)3,4( )B B ξ=(1,1)3,4( )g g ξ=

(2,1)3,4( )G G ξ=(2,1)3,4( )B B ξ=(2,1)3,4( )g g ξ=

(2,1) (2,1) (2,1), 3,4 , 3,4 , 3,4(2,1)

3,4 (2,1) (2,1) (2,1)3,4 3,4 3,4

( ) ( ) ( )( )

( ) ( ) ( )( , , )V x V y V zBM M M

V V Vξ ξ ξ

ξξ ξ ξ

=

,V xM :1st moment of volume about x axis in y direction in waterplane fixed frame

For center of Buoyancy , and center of weight of cargo hold is calculated by

(2,1)3,4( )B ξ

(2,1)3,4( )g ξ

(2,1) (2,1) (2,1), 3,4 , 3,4 , 3,4(2,1)

3,4 (2,1) (2,1) (2,1)3,4 3,4 3,4

( ) ( ) ( )( )

( ) ( ) ( )( , , )v x v y v zg

v v v

M M Mξ ξ ξξ

ξ ξ ξ=

,v xM :1st moment of flooded volume about x axis in y direction in waterplane fixed frame

(1,1)3,4(1,1)3,4(1,1)3,4

( )

( )

( )

xyz

ξ

ξ

ξ

Transformation G, gto waterplane fixed frame

(2,1)3,4(2,1)3,4(2,1)3,4

( )

( )

( )

xyz

ξ

ξ

ξ

=

(1)3

00ξ

+ ∆ (2) (1) (1)

3 3 3ξ ξ ξ= + ∆

immersion

in this example, is simply calculated as next page(2,1) (2,1)3,4 3,4( ), ( )B gξ ξ

(1,1)3,4( ) (0, 1.64,4.72)G ξ = −(1,1)3,4( ) (0, 2.99, 5.48)B ξ = − −(1,1)3,4( ) (0, 9.24, 6.5)g ξ = − −

to calculate (2,1)3,4( )TM ξCalculate (2,1) (2,1) (2,1)

3,4 3,4 3,4( ) ( ), ( ),G B gξ ξ ξ

(1) (2) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

(1) (2) (2)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 1 step

ξ3 : immersionξ4 : heel

98/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

Example : Immersion and Heel in Static Equilibrium after Cargo Hold Being Flooded (38)

,z z′ ′′

y′O′ y

z

g B

v

OG

(1)3ξ∆

G

OO′′y

z,z z′ ′′

y′′

y′O′ z′′

Section view

Frame O''-x''y''z''

1.38

9

1st step, Heel

new frame O''-x''y''z''

z′

y′

O′

y

z

gB

v

OG

Section view

(1)3ξ∆

(2,1)3,4( )B B ξ=(2,1)3,4( )g g ξ=

(2,1)3,4( )G G ξ=

G

OO′′

y

z,z z′ ′′

y′′

y′O′

(0)3ξ∆ (1)

(1)4ξ

(1)3ξ∆

To get (2,1) (2,1)3,4 3,4( ), ( )B gξ ξ

(2,1) (2,1) (2,1)3,4 3,4 3,4( ) ( ) ( )( , , )B B BB x y zξ ξ ξ

(2,1) (2,1)3,4 3,4( ) ( )( , )c cc y zξ ξCentroid of section area of displacement volume

=(2,1)3,4( )B ξCenter of buoyancy

Calculate centroid of section area of displacement volume in waterplane fixed frame first

a : Calculate O in body fixed frame

b : Calculate O'' in body fixed frame

c

by equation of line OO′′

d

: Calculatein O''-x''y''z'' frame

(2,1) (2,1)3,4 3,4( ) ( )( , )c cy zc ξ ξ′′′′ ′′

c

b

a

G

OO′′

y

z,z z′ ′′

y′′

y′O′

(0)3ξ∆ (1)

(1)4ξ

(1)3ξ∆

y′′′z′′′

d

e

: Translateto O'''-x'''y'''z''' frame

(2,1) (2,1)3,4 3,4( ) ( )( , )c cc y zξ ξ′′ ′′ ′′

(2,1) (2,1)3,4 3,4( ) ( ), ( , )c cy zc ξ ξ′′′ ′′′ ′′′

G

OO′′

y

z,z z′ ′′

y′′

y′O′

(0)3ξ∆ (1)

(1)4ξ

(1)3ξ∆

e

(2,1) (2,1)3,4 3,4( ) ( )( , )c cc y zξ ξ

: Rotateto waterplane fixed frame

(2,1) (2,1)3,4 3,4( ) ( )( , )c cc y zξ ξ′′′ ′′′ ′′′

(2,1) (2,1)3,4 3,4( ) ( ), ( , )c cy zc ξ ξ

(2,1)3,4( )B ξ=

a : O

b : O''

c : c''

d : c'''e : c (2,1)

3,4( )B ξ=

(1) (2) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

(1) (2) (2)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 1 step

ξ3 : immersionξ4 : heel

99/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

Example : Immersion and Heel in Static Equilibrium after Cargo Hold Being Flooded (39)

,z z′ ′′

y′O′ y

z

g B

v

OG

(1)3ξ∆

G

OO′′y

z,z z′ ′′

y′′

y′O′ z′′

Section view G

OO′′

y

z,z z′ ′′

y′′

y′O′

(0)3ξ∆1[ ]m= −

(1)4ξ19.1= °

(1)4ξ

Frame O''-x''y''z''

1.38

9

(1)3ξ∆

0.36[ ]m−

1st step, Heel

(2,1) (2,1) (2,1)3,4 3,4 3,4( ) ( ) ( )( , , )B B BB x y zξ ξ ξ

(2,1) (2,1)3,4 3,4( ) ( )( , )c cc y zξ ξCentroid of section area of displacement volume

=(2,1)3,4( )B ξ

<Transverse moment of >(2,1)3,4( )ξ

Center of buoyancy

Given : (2) (1) (2,1)

3 4 , 3,4, , ( )T ExtMξ ξ ξ Find : *4ξ (2) (1) (1)

4 4 4( )ξ ξ ξ+ ∆=

(2,1) (2,1) (2,1) (2,1)3,4 3,4 3,4 3,4(2,1)

3,4 (2,1) (2,1) (2,1)3,4 3,4 3,4

* (1)3,4 4

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )G B T

T TExt Ext T

mg z g V z gIM M

F z g i

ξ ξ ξ ξξ ξ

ξ ξ ξ

ρ ρξ

ρ

⋅ − ⋅ ⋅ −= + ∆ − ⋅ + ⋅

Governing equation of transverse moment

*3,4( ) 0TM ξ =

1

new frame O''-x''y''z''

z′

y′

O′

y

z

gB

v

OG

Section view

(1)3ξ∆

(2,1)3,4( )B B ξ=(2,1)3,4( )g g ξ=

(2,1)3,4( )G G ξ=

Oy′Oz′

( , , )O O OO x y z′ ′ ′ (0,0.12,1.34)=

a : O b : O'' c : c'' d : c''' e : c (2,1)3,4( )B ξ=

a

Same in 1st Step, Immersion

Origin of O''-x''y''z'' frame in body fixed frame

( , , )O O Ox y z′′ ′′ ′′′ ′ ′ (0,0,1.38)=

Origin of O-xyz frame in body fixed frame

b

Same in 1st Step, Immersion

(1) (2) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

(1) (2) (2)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 1 step

ξ3 : immersionξ4 : heel

100/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

z′

y′

O′

y

z

gB

v

OG

Section view

(1)3ξ∆ Given :

(2) (1) (2,1)3 4 , 3,4, , ( )T ExtMξ ξ ξ Find : *

4ξ (2) (1) (1)4 4 4( )ξ ξ ξ+ ∆=

(2,1) (2,1) (2,1) (2,1)3,4 3,4 3,4 3,4(2,1)

3,4 (2,1) (2,1) (2,1)3,4 3,4 3,4

* (1)3,4 4

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )G B T

T TExt Ext T

mg z g V z gIM M

F z g i

ξ ξ ξ ξξ ξ

ξ ξ ξ

ρ ρξ

ρ

⋅ − ⋅ ⋅ −= + ∆ − ⋅ + ⋅

Governing equation of transverse moment

*3,4( ) 0TM ξ =

Example : Immersion and Heel in Static Equilibrium after Cargo Hold Being Flooded (40)

1st step, Heel

(1) (2) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

(1) (2) (2)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 1 step

1

(2,1)3,4( )B B ξ=(2,1)3,4( )g g ξ=

(2,1)3,4( )G G ξ=

ξ3 : immersionξ4 : heel

Calculate centroid of section area in O''-x''y''z'' frame,

A1 415.39 0.00 -5.19 0.00 -2,156.85

A2 69.25 -13.33 2.31 -923.34 159.86

A3 -69.25 13.33 -2.31 -923.34 159.86

Sum 415.39 -1,846.69 -1,837.14

3 3

, ,1 1

3 3

1 1

( , )

,Ai Ai

c c

A y A zi i

Ai Aii i

c y z

M M

Area Area

′′ ′′= =

= =

′′ ′′ ′′ =

∑ ∑

∑ ∑

, AiA yM ′′ :1st moment of area Ai about x axis in y direction in O''-x''y''z'' frame

, AiA zM ′′ :1st moment of area Ai about y axis in z direction in O''-x''y''z'' frame

( )( , , ) 0, 4.45, 4.42c c cc x y z′′ ′′ ′′ ′′∴ = − −

iAy′′

, ( 1, 2,3)i =

,( )

AiA yM

′′

iAi AArea y′′×,

( )AiA z

M′′

iAi AArea z′′×

1,846.69 1,837.14,415.39 415.39

− − =

AiArea

Centroid of section area in O''-x''y''z'' frame,

( )4.45, 4.42= − −

iAz′′

(2,1) (2,1) (2,1)3,4 3,4 3,4( ) ( ) ( )( , , )B B BB x y zξ ξ ξ

(2,1) (2,1)3,4 3,4( ) ( )( , )c cc y zξ ξCentroid of section area of displacement volume

=(2,1)3,4( )B ξ

<Transverse moment of >(2,1)3,4( )ξ

Center of buoyancy

,z z′ ′′

y′O′ y

z

gB

OG

new frame O''-x''y''z''G

OO′′y

z,z z′ ′′

y′′

y′O′z′′

Section view

A2

A3

A1(0)

4 19.1ξ∆ =

(0)4ξ∆O′′ (1)

3ξ∆

a : O b : O'' c : c'' d : c''' e : c (2,1)3,4( )B ξ=

101/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

Example : Immersion and Heel in Static Equilibrium after Cargo Hold Being Flooded (41)

,z z′ ′′

y′O′ y

z

g B

v

OG

(1)3ξ∆

G

OO′′y

z,z z′ ′′

y′′

y′O′ z′′

Section view G

OO′′

y

z,z z′ ′′

y′′

y′O′

(0)3ξ∆1[ ]m= −

(1)4ξ19.1= °

(1)4ξ

,O′′′

New frame O'''-x'''y'''z'''

1.38

9O Oy y′′′′′ ′=

0.12=

(1)3ξ∆

0.36[ ]m−

1.38O Oz z′′′′′ ′= − 1.34 1.38= − 0.04= −

O O′′ ′′′ 2 2( ) ( )O Ox y′′′ ′′′′′ ′′= + 2 2(0.12) ( 0.04)= + − 0.13=

1st step, Heel

(2,1) (2,1) (2,1)3,4 3,4 3,4( ) ( ) ( )( , , )B B BB x y zξ ξ ξ

(2,1) (2,1)3,4 3,4( ) ( )( , )c cc y zξ ξCentroid of section area of displacement volume

=(2,1)3,4( )B ξ

<Transverse moment of >(2,1)3,4( )ξ

Center of buoyancy

Given : (2) (1) (2,1)

3 4 , 3,4, , ( )T ExtMξ ξ ξ Find : *4ξ (2) (1) (1)

4 4 4( )ξ ξ ξ+ ∆=

(2,1) (2,1) (2,1) (2,1)3,4 3,4 3,4 3,4(2,1)

3,4 (2,1) (2,1) (2,1)3,4 3,4 3,4

* (1)3,4 4

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )G B T

T TExt Ext T

mg z g V z gIM M

F z g i

ξ ξ ξ ξξ ξ

ξ ξ ξ

ρ ρξ

ρ

⋅ − ⋅ ⋅ −= + ∆ − ⋅ + ⋅

Governing equation of transverse moment

*3,4( ) 0TM ξ =

1

new frame O''-x''y''z''

z′

y′

O′

y

z

gB

v

OG

Section view

(1)3ξ∆

(2,1)3,4( )B B ξ=(2,1)3,4( )g g ξ=

(2,1)3,4( )G G ξ=

,O O′′′O′′

Oy ′′′′′

(1)4ξ

Oz ′′′′′

(1)3ξ∆0.36[ ]m= −

0.38Oy′

Oz′

( , , )O O OO x y z′ ′ ′ (0,0.12,1.34)=

a : O b : O'' c : c'' d : c''' e : c (2,1)3,4( )B ξ=

a

Same in 1st Step, Immersion

b

y′′′z′′′

(1) (2) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

(1) (2) (2)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 1 step

ξ3 : immersionξ4 : heel

102/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

G

OO′′ y

z,z z′ ′′

y′′

y′O′

(0)3ξ∆1[ ]m= −

(1)4ξ19.1= °

(1)4ξ

,O′′′

z′

y′

O′

y

z

gB

v

OG

Section view

(1)3ξ∆ Given :

(2) (1) (2,1)3 4 , 3,4, , ( )T ExtMξ ξ ξ Find : *

4ξ (2) (1) (1)4 4 4( )ξ ξ ξ+ ∆=

(2,1) (2,1) (2,1) (2,1)3,4 3,4 3,4 3,4(2,1)

3,4 (2,1) (2,1) (2,1)3,4 3,4 3,4

* (1)3,4 4

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )G B T

T TExt Ext T

mg z g V z gIM M

F z g i

ξ ξ ξ ξξ ξ

ξ ξ ξ

ρ ρξ

ρ

⋅ − ⋅ ⋅ −= + ∆ − ⋅ + ⋅

Governing equation of transverse moment

*3,4( ) 0TM ξ =

Example : Immersion and Heel in Static Equilibrium after Cargo Hold Being Flooded (42)

1st step, Heel

(1) (2) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

(1) (2) (2)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 1 step

1

(2,1)3,4( )B B ξ=(2,1)3,4( )g g ξ=

(2,1)3,4( )G G ξ=

ξ3 : immersionξ4 : heel

(2,1) (2,1) (2,1)3,4 3,4 3,4( ) ( ) ( )( , , )B B BB x y zξ ξ ξ

(2,1) (2,1)3,4 3,4( ) ( )( , )c cc y zξ ξCentroid of section area of displacement volume

=(2,1)3,4( )B ξ

<Transverse moment of >(2,1)3,4( )ξ

Center of buoyancy

,z z′ ′′

y′O′ y

z

gB

OG

new frame O''-x''y''z''G

OO′′y

z,z z′ ′′

y′′

y′O′ z′′

Section view

A2

A3

A1(0)

4 19.1ξ∆ =

(0)4ξ∆O′′ (1)

3ξ∆1.38

9

0.38(1)

3ξ∆0.36[ ]m−

New frame O'''-x'''y'''z'''

Calculate centroid of section area in O''-x''y''z'' frame,then transformation centroid of section area to O'''-x'''y'''z''' frame,

( )( , , ) 0, 4.45, 4.42c c cc x y z′′ ′′ ′′ ′′ = − −

Centroid of section area in O''-x''y''z'' frame,

transformation centroid of section area to waterplane in O'''-x'''y'''z''' frame,

( , , )c c cc x y z′′′ ′′′ ′′′ ′′′

( )0, 4.45 0.12, 4.42 ( 0.04)= − − − − −

( , , )c c O c Ox y y z z′′′ ′′′′′ ′′ ′′ ′′ ′′= − −

( )0, 4.56, 4.38= − −

y′′′z′′′

a : O b : O'' c : c'' d : c''' e : c (2,1)3,4( )B ξ=

103/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

z′

y′

O′

y

z

gB

v

OG

Section view

(1)3ξ∆ Given :

(2) (1) (2,1)3 4 , 3,4, , ( )T ExtMξ ξ ξ Find : *

4ξ (2) (1) (1)4 4 4( )ξ ξ ξ+ ∆=

(2,1) (2,1) (2,1) (2,1)3,4 3,4 3,4 3,4(2,1)

3,4 (2,1) (2,1) (2,1)3,4 3,4 3,4

* (1)3,4 4

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )G B T

T TExt Ext T

mg z g V z gIM M

F z g i

ξ ξ ξ ξξ ξ

ξ ξ ξ

ρ ρξ

ρ

⋅ − ⋅ ⋅ −= + ∆ − ⋅ + ⋅

Governing equation of transverse moment

*3,4( ) 0TM ξ =

Example : Immersion and Heel in Static Equilibrium after Cargo Hold Being Flooded (43)

1st step, Heel

(1) (2) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

(1) (2) (2)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 1 step

1

(2,1)3,4( )B B ξ=(2,1)3,4( )g g ξ=

(2,1)3,4( )G G ξ=

ξ3 : immersionξ4 : heel

(2,1) (2,1) (2,1)3,4 3,4 3,4( ) ( ) ( )( , , )B B BB x y zξ ξ ξ

(2,1) (2,1)3,4 3,4( ) ( )( , )c cc y zξ ξCentroid of section area of displacement volume

=(2,1)3,4( )B ξ

<Transverse moment of >(2,1)3,4( )ξ

Center of buoyancy

,z z′ ′′

y′O′ y

z

gB

OG

Define new frame O''-x''y''z''G

OO′′y

z,z z′ ′′

y′′

y′O′z′′

Section view

A2

A3

A1(0)

4 19.1ξ∆ =

(0)4ξ∆O′′ (1)

3ξ∆

( )( , , ) 0, 4.56, 4.38c c cc x y z′′′ ′′′ ′′′ ′′′∴ = − −

(2,1)3,4(2,1)3,4(2,1)3,4

( )( )( )

c

c

c

xyz

ξ

ξ

ξ

=

(2,1)3 4( ) (0, 2.88, 5.63)B ξ∴ = − −

(0) (0)4 4(0) (0)

4 4

1 0 0 00 cos sin 4.560 sin cos 4.38

ξ ξξ ξ

= ∆ − ∆ − ∆ ∆ −

(0)4, ( 19.1 )ξ∆ =

Calculate centroid of section area in O'''-x'''y'''z''' frame,

then transformation centroid of section area to waterplane fixed frame.

(2 ,1) (2,1) (2,1)3,4 3,4 3,4( ) ( ) ( )( , , )c c cc x y zξ ξ ξ

02.885.63

= − −

(0) (0)4 4(0) (0)

4 4

1 0 00 cos sin0 sin cos

c

c

c

xyz

ξ ξξ ξ

′′′ ′′′= ∆ − ∆

′′′ ∆ ∆

(2,1) (2,1) (2,1)3,4 3,4 3,4( ) ( ) ( )( , , ) (0, 2.88, 5.63)c c cc x y zξ ξ ξ∴ = − −

(1,1)3,4of ξ

a : O b : O'' c : c'' d : c''' e : c (2,1)3,4( )B ξ=

104/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

z′

y′

O′

y

z

gB

v

OG

Section view

(1)3ξ∆ Given :

(2) (1) (2,1)3 4 , 3,4, , ( )T ExtMξ ξ ξ Find : *

4ξ (2) (1) (1)4 4 4( )ξ ξ ξ+ ∆=

(2,1) (2,1) (2,1) (2,1)3,4 3,4 3,4 3,4(2,1)

3,4 (2,1) (2,1) (2,1)3,4 3,4 3,4

* (1)3,4 4

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )G B T

T TExt Ext T

mg z g V z gIM M

F z g i

ξ ξ ξ ξξ ξ

ξ ξ ξ

ρ ρξ

ρ

⋅ − ⋅ ⋅ −= + ∆ − ⋅ + ⋅

Governing equation of transverse moment

*3,4( ) 0TM ξ =

Example : Immersion and Heel in Static Equilibrium after Cargo Hold Being Flooded (44)

1st step, Heel

(1) (2) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

(1) (2) (2)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 1 step

1

(2,1)3,4( )B B ξ=(2,1)3,4( )g g ξ=

(2,1)3,4( )G G ξ=

ξ3 : immersionξ4 : heel

(2,1) (2,1) (2,1)3,4 3,4 3,4( ) ( ) ( )( , , )g g gg x y zξ ξ ξ

(2,1) (2,1)3,4 3,4, ,( ) ( )( , )v v c v cc y zξ ξCentroid of section area of flooded cargo volume

=(2,1)3,4( )g ξ

<Transverse moment of >(2,1)3,4( )ξ

Center of flooded volume

,z z′ ′′

y′O′ y

z

gB

OG

Define new frame O''-x''y''z''G

OO′′y

z,z z′ ′′

y′′

y′O′z′′

Section view

A2

A4(0)

4 19.1ξ∆ =

(0)4ξ∆O′′ (1)

3ξ∆

(2 ,1) (2,1) (2,1)3,4 3,4 3,4, , ,( ) ( ) ( )( , , )v c v c v cx y zξ ξ ξ

09.286.68

= − −

,(0) (0)

4 4 ,(0) (0)

4 4 ,

1 0 00 cos sin0 sin cos

v c

v c

v c

xyz

ξ ξξ ξ

′′′ ′′′= ∆ − ∆ ′′′ ∆ ∆

(2,1) (2,1) (2,1)3,4 3,4 3,4( ) ( ) ( )( , , ) (0, 9.28, 6.68)c c cc x y zξ ξ ξ∴ = − −

(1,1)3,4of ξ

( )_ _ _( , , ) 0, 10.95, 3.28v v c v c v cc x y z′′′ ′′′ ′′′ ′′′∴ = − −

(2,1)3,4(2,1)3,4(2,1)3,4

,

,

,

( )( )( )

v c

v c

v c

xyz

ξ

ξ

ξ

=

(2,1)3 4( ) (0, 9.28, 6.68)B ξ∴ = − −

(0) (0)4 4(0) (0)

4 4

1 0 0 00 cos sin 10.950 sin cos 3.28

ξ ξξ ξ

= ∆ − ∆ − ∆ ∆ −

(0)4, ( 19.1 )ξ∆ =

By similar way, calculate centroid of section area of flooded volume

then transformation centroid of section area to waterplane fixed frame.

a : O b : O'' c : cv'' e : cv(2,1)3,4( )g ξ=d : cv'''

in O'''-x'''y'''z''' frame,

105/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

z′

y′

O′

y

z

gB

v

OG

Section view

(1)3ξ∆ Given :

(2) (1) (2,1)3 4 , 3,4, , ( )T ExtMξ ξ ξ Find : *

4ξ (2) (1) (1)4 4 4( )ξ ξ ξ+ ∆=

(2,1) (2,1) (2,1) (2,1)3,4 3,4 3,4 3,4(2,1)

3,4 (2,1) (2,1) (2,1)3,4 3,4 3,4

* (1)3,4 4

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )G B T

T TExt Ext T

mg z g V z gIM M

F z g i

ξ ξ ξ ξξ ξ

ξ ξ ξ

ρ ρξ

ρ

⋅ − ⋅ ⋅ −= + ∆ − ⋅ + ⋅

Governing equation of transverse moment

*3,4( ) 0TM ξ =

Example : Immersion and Heel in Static Equilibrium after Cargo Hold Being Flooded (45)

1st step, Heel

-Total transverse moment

(2,1)3,

(2,1) (2,1)3,4 3

(2,1)3 ,4,44 ,( ) (( )( ) )TT T ExBTG tM MMMξ ξξ ξ+= +1

(1) (2) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

(1) (2) (2)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 1 step

1

(2,1)3,4( ), (0, 1.64,4.36)G ξ = −(2,1)3,4( ) (0, 2.88, 5.63), B ξ − −=(2,1)3,4( ) (0, 9.28, 6.68), g ξ − −=

(2,1)3,4

5( ) 3.6 10 [ ]G NF kξ = − ×(2,1)3,4

5( ) 4.15 10 [ ]B kNF ξ = ×(2,1)3,4

4( ) 5.54 10 [ ]ExtF kNξ = − ×

(2,1)3,4( )TM ξ

(2,1)3,4( )B B ξ=(2,1)3,4( )g g ξ=

(2,1)3,4( )G G ξ=

ξ3 : immersionξ4 : heel

<Transverse moment of (ξ3(1),ξ4

(1)) >

(2,1)3,4

(2,1) (2,1)3,4 3,4( ) () )(TB B BM y Fξ ξξ= ⋅

(2,1)3,4

(2,1) (2,1)3,4 3,4( ) () )(TG G GM y Fξ ξξ= ⋅

(2,1) (2,1) (2,1)3,4 3,4 3,4, ( ) ( ) ( )T Ext Ext ExtM y Fξ ξ ξ= ⋅

5( 1.64) ( 3.6 10 )= − ⋅ − ×55.8895 10 [ ]kN m= × ⋅

5( 2.88) (5.63 10 )= − ⋅ × 61.1962 10 [ ]kN m= − × ⋅(2,1) (2,1)3,4 3,4( ) ( )g Exty Fξ ξ= ⋅

4( 9.28) ( 5.54 10 )= − ⋅ − ×55.1389 10 [ ]kN m= × ⋅

(2,1)3,4( )TM ξ (2,1)

3,4(2,1)3,4

(2,1)3,4 ,( () )( ) T ExBG tT TM M Mξ ξξ= ++

[ ]kN m⋅5 6 55.8895 10 [ ] 1.1962 10 [ ] 5.1389 10kN m kN m= × ⋅ − × ⋅ + ×49.3384 10 [ ]kN m= × ⋅

106/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

z′

y′

O′

y

z

gB

v

OG

Section view

(1)3ξ∆

Example : Immersion and Heel in Static Equilibrium after Cargo Hold Being Flooded (46)

1st step, Heel

(1) (2) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

(1) (2) (2)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 1 step

(2,1)3,4( )B B ξ=(2,1)3,4( )g g ξ=

(2,1)3,4( )G G ξ=

ξ3 : immersionξ4 : heel

Plan view

x

y

LC(2,1)3,4( )b ξ

O G

v

, x′

, y′

, B

(2,1)3,4( ) 100L mξ =

g

(2,1)3,4( )sB ξ

(2,1)3,4( ) 20l mξ =

2

(2,1) (2,1)3,4 3,4(2,1)

3,4

3( ) ( )( )

12s

T

L BgI g

ξ ξξρ ρ=

( )( )(1,0) (1,0)3,4 3,4

304( ) ( ) / cos

12sL B

gξ ξ ξ

ρ∆

=

( )33 100[ ] 40[ ] / cos19.1

10[ / ]12

m mkN m

× °= ×

66.3213 10 [ ]kN m= × ⋅

Given : (2) (1) (2,1)

3 4 , 3,4, , ( )T ExtMξ ξ ξ Find : *4ξ (2) (1) (1)

4 4 4( )ξ ξ ξ+ ∆=

(2,1) (2,1) (2,1) (2,1)3,4 3,4 3,4 3,4(2,1)

3,4 (2,1) (2,1) (2,1)3,4 3,4 3,4

* (1)3,4 4

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )G B T

T TExt Ext T

mg z g V z gIM M

F z g i

ξ ξ ξ ξξ ξ

ξ ξ ξ

ρ ρξ

ρ

⋅ − ⋅ ⋅ −= + ∆ − ⋅ + ⋅

Governing equation of transverse moment

*3,4( ) 0TM ξ =

2

(2,1) (2,1)3,4 3,4

2

( ) ( )12

Bg OO L ξ ξρ ⋅ ′′+ ⋅ × ⋅

( )

(1,0)3,4(1,0)

3,4

2

04

( )( )

12 cos

sBg OO L

ξξρ

ξ⋅ ′′+ ⋅ × ⋅ ∆

21 40[ ]0.13 100[ ]2 cos19.1

mg mρ ⋅ + ⋅ × ⋅

(2,1)3,4

5( ) 3.6 10 [ ]G NF kξ = − ×(2,1)3,4

5( ) 4.15 10 [ ]B kNF ξ = ×(2,1)3,4

4( ) 5.54 10 [ ]ExtF kNξ = − ×

(2,1)3,4( ), (0, 1.64,4.36)G ξ = −(2,1)3,4( ) (0, 2.88, 5.63), B ξ − −=(2,1)3,4( ) (0, 9.28, 6.68), g ξ − −=

O′′ (2,1)3,4( )Gmg z ξ⋅ 5

6

3.6 10 [ ] 4.36[ ]1.5701 10 [ ]

kN mkN m

= × ×

= × ⋅

, ( )OO O O′′ ′′ ′′′=107

/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

z′

y′

O′

y

z

gB

v

G

Section view

(1)3ξ∆

Example : Immersion and Heel in Static Equilibrium after Cargo Hold Being Flooded (47)

1st step, Heel

(1) (2) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

(1) (2) (2)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 1 step

(2,1)3,4( )B B ξ=(2,1)3,4( )g g ξ=

(2,1)3,4( )G G ξ=

ξ3 : immersionξ4 : heel

Plan view

x

y

LC(2,1)3,4( )b ξ

,O O′G

v

, x′

, y′

, B

(2,1)3,4( ) 100L mξ =

g

(2,1)3,4( )sB ξ

(2,1)3,4( ) 20l mξ =

2 (2,1) (2,1)3,4 3,4( ) ( )BgV zξ ξρ ⋅

54.15 10 [ ] 5.63[ ]kN m= − × × −

62.3402 10 [ ]kN m= − × ⋅

Given : (2) (1) (2,1)

3 4 , 3,4, , ( )T ExtMξ ξ ξ Find : *4ξ (2) (1) (1)

4 4 4( )ξ ξ ξ+ ∆=

(2,1) (2,1) (2,1) (2,1)3,4 3,4 3,4 3,4(2,1)

3,4 (2,1) (2,1) (2,1)3,4 3,4 3,4

* (1)3,4 4

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )G B T

T TExt Ext T

mg z g V z gIM M

F z g i

ξ ξ ξ ξξ ξ

ξ ξ ξ

ρ ρξ

ρ

⋅ − ⋅ ⋅ −= + ∆ − ⋅ + ⋅

Governing equation of transverse moment

*3,4( ) 0TM ξ =

2

(2,1)3,4

5( ) 3.6 10 [ ]G NF kξ = − ×(2,1)3,4

5( ) 4.15 10 [ ]B kNF ξ = ×(2,1)3,4

4( ) 5.54 10 [ ]ExtF kNξ = − ×

(2,1)3,4( ), (0, 1.64,4.36)G ξ = −(2,1)3,4( ) (0, 2.88, 5.63), B ξ − −=(2,1)3,4( ) (0, 9.28, 6.68), g ξ − −=

OO′′

(2,1) (2,1)3,4 3,4( ) ( )Ext ExtF zξ ξ⋅

( )45.54 10 [ ] 6.68 [ ]kN m= − × × −

53.6994 10 [ ]kN m= × ⋅

108/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

z′

y′

O′

y

z

gB

v

G

Section view

(1)3ξ∆O

O′′

Given : (2) (1) (2,1)

3 4 , 3,4, , ( )T ExtMξ ξ ξ Find : *4ξ (2) (1) (1)

4 4 4( )ξ ξ ξ+ ∆=

(2,1) (2,1) (2,1) (2,1)3,4 3,4 3,4 3,4(2,1)

3,4 (2,1) (2,1) (2,1)3,4 3,4 3,4

* (1)3,4 4

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )G B T

T TExt Ext T

mg z g V z gIM M

F z g i

ξ ξ ξ ξξ ξ

ξ ξ ξ

ρ ρξ

ρ

⋅ − ⋅ ⋅ −= + ∆ − ⋅ + ⋅

Governing equation of transverse moment

*3,4( ) 0TM ξ =

Example : Immersion and Heel in Static Equilibrium after Cargo Hold Being Flooded (48)

1st step, Heel

(1) (2) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

(1) (2) (2)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 1 step

2

(2,1)3,4( )B B ξ=(2,1)3,4( )g g ξ=

(2,1)3,4( )G G ξ=

ξ3 : immersionξ4 : heel

Plan view

x

y

LC(2,1)3,4( )b ξ

,O O′G

v

, x′

, y′

, B

(2,1)3,4( ) 100L mξ =

g

(2,1)3,4( )sB ξ

(2,1)3,4( ) 20l mξ =

2(2,1) (2,1) 33,4 3,4(2,1)

3,4

( ) ( )( )

12T

l bgi g

ξ ξξρ ρ

⋅=

,(parallel axis theorem)

{ }33 20[ ] 20[ ] / cos19.1

10[ / ]12

m mkN m

× °= ×

2(2,1) (2,1) (2,1)3,4 3,4 3,4( ) ( ) ( )

12

g OO b l bξ ξ ξρ ⋅ ′′+ ⋅ + × ⋅

56.4341 10 [ ]kN m= × ⋅

23 1 20[ ] 20[ ]10[ / ] 0.13 20[ ]

2 cos19.1 cos19.1m mkN m m + × + × × × ° °

{ }3(2,1) (1,0) (0)3,4 3,4 4( ) ( ) / cos( )

12

l bg

ξ ξ ξρ

⋅ ∆=

2(1,0) (1,0)3,4 3,4(2,1)

3,4(0) (0)4 4

( ) ( )( )

cos( cos(12 ) )

b bg OO l

ξ ξξ

ξ ξρ ⋅

∆ ∆

′′+ ⋅ + × ⋅

(2,1)3,4

5( ) 3.6 10 [ ]G NF kξ = − ×(2,1)3,4

5( ) 4.15 10 [ ]B kNF ξ = ×(2,1)3,4

4( ) 5.54 10 [ ]ExtF kNξ = − ×

(2,1)3,4( ), (0, 1.64,4.36)G ξ = −(2,1)3,4( ) (0, 2.88, 5.63), B ξ − −=(2,1)3,4( ) (0, 9.28, 6.68), g ξ − −=

, ( )OO O O′′ ′′ ′′′=109

/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

z′

y′

O′

y

z

gB

v

G

Section view

(1)3ξ∆O

O′′

Given : (2) (1) (2,1)

3 4 , 3,4, , ( )T ExtMξ ξ ξ Find : *4ξ (2) (1) (1)

4 4 4( )ξ ξ ξ+ ∆=

(2,1) (2,1) (2,1) (2,1)3,4 3,4 3,4 3,4(2,1)

3,4 (2,1) (2,1) (2,1)3,4 3,4 3,4

* (1)3,4 4

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )G B T

T TExt Ext T

mg z g V z gIM M

F z g i

ξ ξ ξ ξξ ξ

ξ ξ ξ

ρ ρξ

ρ

⋅ − ⋅ ⋅ −= + ∆ − ⋅ + ⋅

Governing equation of transverse moment

*3,4( ) 0TM ξ =

Example : Immersion and Heel in Static Equilibrium after Cargo Hold Being Flooded (49)

1st step, Heel

(1) (2) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

(1) (2) (2)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 1 step

2

(2,1)3,4( )B B ξ=(2,1)3,4( )g g ξ=

(2,1)3,4( )G G ξ=

ξ3 : immersionξ4 : heel

2

(2,1) (2,1) (2,1) (2,1)3,4 3,4 3,4 3,4

(2,1) (2,1) (2,1)3,4 3,4 3,4

( ) ( ) ( ) ( )

( ) ( ) ( )G B T

Ext Ext T

mg z g V z gI

F z g i

ξ ξ ξ ξ

ξ ξ ξ

ρ ρ

ρ

⋅ − ⋅ ⋅ −

− ⋅ + ⋅

6 6

6 5

5

6.3213 10 [ ] 2.3402 10 [ ]1.5701 10 [ ] 3.6994 10 [ ]6.4341 10 [ ]

kN m kN mkN m kN mkN m

= − × ⋅ + × ⋅

+ × ⋅ − × ⋅

+ × ⋅

62.1375 10 [ ]kN m= − × ⋅

110/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

z′

y′

O′

y

z

gB

v

G

Section view

(1)3ξ∆O

O′′

Given : (2) (1) (2,1)

3 4 , 3,4, , ( )T ExtMξ ξ ξ Find : *4ξ (2) (1) (1)

4 4 4( )ξ ξ ξ+ ∆=

(2,1) (2,1) (2,1) (2,1)3,4 3,4 3,4 3,4(2,1)

3,4 (2,1) (2,1) (2,1)3,4 3,4 3,4

* (1)3,4 4

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )G B T

T TExt Ext T

mg z g V z gIM M

F z g i

ξ ξ ξ ξξ ξ

ξ ξ ξ

ρ ρξ

ρ

⋅ − ⋅ ⋅ −= + ∆ − ⋅ + ⋅

Governing equation of transverse moment

*3,4( ) 0TM ξ =

Example : Immersion and Heel in Static Equilibrium after Cargo Hold Being Flooded (50)

1st step, Heel

(1) (2) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

(1) (2) (2)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 1 step

(2,1)3,4( )B B ξ=(2,1)3,4( )g g ξ=

(2,1)3,4( )G G ξ=

ξ3 : immersionξ4 : heel

2(2,1) (2,1) (2,1) (2,1)3,4 3,4 3,4 3,4

(2,1) (2,1) (2,1)3,4 3,4 3,4

( ) ( ) ( ) ( )

( ) ( ) ( )G B T

Ext Ext T

mg z g V z gI

F z g i

ξ ξ ξ ξ

ξ ξ ξ

ρ ρ

ρ

⋅ − ⋅ ⋅ −

− ⋅ + ⋅

1 (2,1) 43,4( ) 9.3384 10 [ ]TM kN mξ = × ⋅

62.1375 10 [ ]kN m= − × ⋅

21 3

* ( 2,1)

3,4 3, 4

(2,1) (2,1) (2,1) (2,1)3,4 3,4 3,4 3,4

(2,1) (2,1) (2,1)3,4 3,4 3,4

(1)4

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

T T

G B T

Ext Ext T

M M

mg z g V z gI

F z g i

ξ ξ

ξ ξ ξ ξ

ξ ξ ξ

ξρ ρ

ρ

−=

∆ ⋅ − ⋅ ⋅ − − ⋅ + ⋅

3

4

6

0[ ] 9.3384 10 [ ] 0.0437 rad 2.52.1375 10 [ ]

kN m kN mkN m

⋅ − × ⋅= = − = −

− × ⋅

If we assume that MT(ξ3,4*) =0

(2) (1) (1)4 4 4 19.1 2.5 16.6ξ ξ ξ= + ∆ = ° − ° = °

Static equilibrium? Check!

We want to find *4ξ

( )2*4 4ξ ξ=

? (2,2)3,4( ) 0TM ξ =

?

111/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

z′

y′

O′

y

z

gB

v

OG

Section view

(1)3ξ∆

Example : Immersion and Heel in Static Equilibrium after Cargo Hold Being Flooded (51)

(2,2)3,4( ) (0, 1.44,4.43)G ξ = −

(2,2)3,4( )g ξ =

(2,2)3,4( )B ξ =

1st step, Immersion

1st step, Heel

(1) (1)4 4(1) (1)4 4

1 0 00 cos sin0 sin cos

ξ ξξ ξ

= ∆ − ∆ ∆ ∆

(2,2)3,4(2,2)3,4(2,2)3,4

( )

( )

( )

xyz

ξ

ξ

ξ

(2,1)3,4(2,1)3,4(2,1)3,4

( )

( )

( )

xyz

ξ

ξ

ξ

Transformation G, gto waterplane fixed frame

(2) (1) (1)4 4 4ξ ξ ξ= + ∆

heel

(2,1)3,4

(1) (1) (2,1)4 4 3,4(1) (1) (2,1)4 4 3,4

1 0 0 ( )0 cos sin ( )0 sin cos ( )

G

G

G

xyz

ξξ ξ ξξ ξ ξ

= ∆ − ∆ ∆ ∆

(2,2)3,4(2,2)3,4(2,2)3,4

( )( )( )

G

G

G

xyz

ξξξ

01.44

4.43

= −

For center of gravity of ship G

(1) (1)4 4(1) (1)4 4

1 0 0 00 cos sin 1.640 sin cos 4.36

ξ ξξ ξ

= ∆ − ∆ − ∆ ∆

(1)4, ( 2.5 )ξ∆ = −

(2,1)3,4( )G G ξ=(2,1)3,4( )B B ξ=(2,1)3,4( )g g ξ=

z′

y′

O′

y

z

g B

v

OG

Section view

(1)4ξ∆

(2,2)3,4( )G G ξ=(2,2)3,4( )B B ξ=(2,2)3,4( )g g ξ=

(2,2) (2,2) (2,2), 3,4 , 3,4 , 3,4(2,2)

3,4 (2,2) (2,2) (2,2)3,4 3,4 3,4

( ) ( ) ( )( )

( ) ( ) ( )( , , )V x V y V zBM M M

V V Vξ ξ ξ

ξξ ξ ξ

=

,V xM :1st moment of volume about x axis in y direction in waterplane fixed frame

For center of Buoyancy , and center of weight of cargo hold is calculated by

(2,2)3,4( )B ξ

(2,2)3,4( )g ξ

(2,2) (2,2) (2,2), 3,4 , 3,4 , 3,4(2,2)

3,4 (2,2) (2,2) (2,2)3,4 3,4 3,4

( ) ( ) ( )( )

( ) ( ) ( )( , , )v x v y v zg

v v v

M M Mξ ξ ξξ

ξ ξ ξ=

,v xM :1st moment of flooded volume about x axis in y direction in waterplane fixed frame

(0, 2.47, 5.52)= − −

(0, 9.40, 6.5)= − −(2,1)3,4( ) (0, 1.64,4.36)G ξ = −(2,1)3,4( ) (0, 2.88, 5.63)B ξ − −=(2,1)3,4( ) (0, 9.28, 6.68)g ξ − −=

Next

in this example, is simply calculated as next page(2,1) (2,1)3,4 3,4( ), ( )B gξ ξ

to calculate (2,2)3,4( )TM ξCalculate (2,2) (2,2) (2,2)

3,4 3,4 3,4( ) ( ), ( ),G B gξ ξ ξ

(1) (2) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

(1) (2) (2)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 1 step

ξ3 : immersionξ4 : heel

112/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

z′

y′

O′

y

z

g B

v

OG

Section view

(1)4ξ∆

Example : Immersion and Heel in Static Equilibrium after Cargo Hold Being Flooded (52)

1st step, Heel

(1) (2) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

(1) (2) (2)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 1 step

Static equilibrium? Check!

( )2*4 4ξ ξ=

?

(2,2)3,4( ) 0TM ξ =

?

Given : (2) (1) (2,1)

3 4 , 3,4, , ( )T ExtMξ ξ ξ Find : *4ξ (2) (1) (1)

4 4 4( )ξ ξ ξ+ ∆=

(2,1) (2,1) (2,1) (2,1)3,4 3,4 3,4 3,4(2,1)

3,4 (2,1) (2,1) (2,1)3,4 3,4 3,4

* (1)3,4 4

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )G B T

T TExt Ext T

mg z g V z gIM M

F z g i

ξ ξ ξ ξξ ξ

ξ ξ ξ

ρ ρξ

ρ

⋅ − ⋅ ⋅ −= + ∆ − ⋅ + ⋅

Governing equation of transverse moment

*3,4( ) 0TM ξ =

4

ξ3 : immersionξ4 : heel

(2,2)3,4( )G G ξ=(2,2)3,4( )B B ξ=(2,2)3,4( )g g ξ=

O(1)

4ξ (1)3ξ∆0.36[ ]m= −

(1)4ξ

(1)4ξ∆

yO′′

B

(2)4ξ

,z z′ ′′

y′O′

y

z

g B

v

OG

Section viewnew frame O''-x''y''z''

G

OO′′

y

z, zz′ ′′

y′′

y′O′

(0)3ξ∆1[ ]m= −

(1)4ξ19.1= °

(2)4ξ

New frame O''-x''y''z''

(1)3ξ∆

0.36[ ]m−

,z z′ ′′ z

y′′

( , , )O O Ox y z′ ′ ′ (0,0.12,1.34)=,(in previous calculation)

So, Origin of O''-x''y''z'' frame in body fixed frame

Develop equation of line OO′′by point O, and slop .

(2)4tan ( )O Oz z y yξ′ ′ ′ ′− = − ⋅ −

1.34 0.3 ( 0.12)z y′ ′− = − ⋅ −0.3 1.38z y′ ′∴ = − ⋅ +

( , , )O O Ox y z′′ ′′ ′′′ ′ ′ (0,0,1.38)=

(2)4tanξ

(2)4, ( 16.6 )ξ = °

Oz′ Oy′

1.38

9

a : O b : O'' c : c'' d : c''' e : c (2,2)3,4( )B ξ=

a

b

(2)4ξ

113/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

z′

y′

O′

y

z

g B

v

OG

Section view

(1)4ξ∆

Example : Immersion and Heel in Static Equilibrium after Cargo Hold Being Flooded (53)

1st step, Heel

(1) (2) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

(1) (2) (2)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 1 step

Static equilibrium? Check!

( )2*4 4ξ ξ=

?

(2,2)3,4( ) 0TM ξ =

?

ξ3 : immersionξ4 : heel

(2,2)3,4( )G G ξ=(2,2)3,4( )B B ξ=(2,2)3,4( )g g ξ=

,z z′ ′′

y′O′

y

z

g B

v

OG

Section view

9

0.37

Calculate centroid of section area in O''-x''y''z'' frame,

A1 414.80 0.00 -5.19 0.00 -2,150.74

A2 59.61 -13.33 1.99 -794.74 118.43

A3 -59.61 13.33 -1.99 -794.74 118.43

Sum 414.80 -1,589.48 -1,913.88

3 3

, ,1 1

3 3

1 1

( , )

,Ai Ai

c c

A y A zi i

Ai Aii i

y z

M M

Area Area

′′ ′′= =

= =

′′ ′′ =

∑ ∑

∑ ∑

, AiA yM ′′ :1st moment of area Ai about x axis in y direction in O''-x''y''z'' frame

, AiA zM ′′ :1st moment of area Ai about y axis in z direction in O''-x''y''z'' frame

( )( , , ) 0, 3.83, 4.61c c cx y z′′ ′′ ′′∴ = − −

iAy′′

, ( 1, 2,3)i =

,( )

AiA yM

′′

iAi AArea y′′×,

( )AiA z

M′′

iAi AArea z′′×

1,589.48 1,913.88,414.8 414.8

− − =

AiArea

Centroid of section area in O''-x''y''z'' frame,

( )3.83, 4.61= − −

iAz′′

A2 A3

A1

(2,2) (2,2) (2,2)3,4 3,4 3,4( ) ( ) ( )( , , )B B BB x y zξ ξ ξ

(2,2) (2,2)3,4 3,4( ) ( )( , )c cc y zξ ξCentroid of section area of displacement volume

=(2,2)3,4( )B ξ

<Transverse moment of >(2,2)3,4( )ξ

Center of buoyancy

y′′

Given : (2) (1) (2,1)

3 4 , 3,4, , ( )T ExtMξ ξ ξ Find : *4ξ (2) (1) (1)

4 4 4( )ξ ξ ξ+ ∆=

(2,1) (2,1) (2,1) (2,1)3,4 3,4 3,4 3,4(2,1)

3,4 (2,1) (2,1) (2,1)3,4 3,4 3,4

* (1)3,4 4

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )G B T

T TExt Ext T

mg z g V z gIM M

F z g i

ξ ξ ξ ξξ ξ

ξ ξ ξ

ρ ρξ

ρ

⋅ − ⋅ ⋅ −= + ∆ − ⋅ + ⋅

Governing equation of transverse moment

*3,4( ) 0TM ξ =

4

a : O b : O'' c : c'' d : c''' e : c (2,2)3,4( )B ξ=

114/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

z′

y′

O′

y

z

g B

v

OG

Section view

(1)4ξ∆

Example : Immersion and Heel in Static Equilibrium after Cargo Hold Being Flooded (54)

1st step, Heel

(1) (2) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

(1) (2) (2)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 1 step

Static equilibrium? Check!

( )2*4 4ξ ξ=

?

(2,2)3,4( ) 0TM ξ =

?

Given : (2) (1) (2,1)

3 4 , 3,4, , ( )T ExtMξ ξ ξ Find : *4ξ (2) (1) (1)

4 4 4( )ξ ξ ξ+ ∆=

(2,1) (2,1) (2,1) (2,1)3,4 3,4 3,4 3,4(2,1)

3,4 (2,1) (2,1) (2,1)3,4 3,4 3,4

* (1)3,4 4

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )G B T

T TExt Ext T

mg z g V z gIM M

F z g i

ξ ξ ξ ξξ ξ

ξ ξ ξ

ρ ρξ

ρ

⋅ − ⋅ ⋅ −= + ∆ − ⋅ + ⋅

Governing equation of transverse moment

*3,4( ) 0TM ξ =

4

ξ3 : immersionξ4 : heel

(2,2)3,4( )G G ξ=(2,2)3,4( )B B ξ=(2,2)3,4( )g g ξ=

O(1)

4ξ (1)3ξ∆0.36[ ]m= −

(1)4ξ

(1)4ξ∆

yO′′

B

(1)4ξ

(1)4ξ∆

(2)4ξ =

(0) (1)4 4ξ ξ∆ + ∆

,z z′ ′′

y′O′

y

z

g B

v

OG

Section viewnew frame O''-x''y''z''

,z z′ ′′ z

O′′

O

Oy ′′′′′

O Oy y′′′′′ ′=0.12[ ]m=

Oz ′′′′′

Define new frame O'''-x'''y'''z'''

y′′′z′′′

O′′′

y′′

1.38O Oz z′′′′′ ′= −1.34 1.38= − 0.04= −

O O′′ ′′′ 2 2( ) ( )O Ox y′′′ ′′′′′ ′′= +2 2(0.12) ( 0.04)= + − 0.13=

( , , )O O Ox y z′ ′ ′(0,0.12,1.34)=

1.38

9

(2)4ξ

a : O b : O'' c : c'' d : c''' e : c (2,2)3,4( )B ξ=

(2)4ξ

G

OO′′

z, zz′ ′′

y′′

y′O′

(0)3ξ∆1[ ]m= −

(1)4ξ19.1= °

(2)4ξ

Oz′ Oy′(1)

3ξ∆0.36[ ]m−

115/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

z′

y′

O′

y

z

g B

v

OG

Section view

(1)4ξ∆

Example : Immersion and Heel in Static Equilibrium after Cargo Hold Being Flooded (55)

1st step, Heel

(1) (2) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

(1) (2) (2)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 1 step

Static equilibrium? Check!

( )2*4 4ξ ξ=

?

(2,2)3,4( ) 0TM ξ =

?

ξ3 : immersionξ4 : heel

(2,2)3,4( )G G ξ=(2,2)3,4( )B B ξ=(2,2)3,4( )g g ξ=

,z z′ ′′

y′O′

y

z

g B

v

OG

Section view

9

0.37

A2 A3

A1

Calculate centroid of section area in O''-x''y''z'' frame,then transformation centroid of section area to O'''-x'''y'''z''' frame,

( )( , , ) 0, 3.83, 4.61c c cx y z′′ ′′ ′′ = − −

Calculate centroid of section areain O''-x''y''z'' frame,

transformation centroid of section area to waterplane in O'''-x'''y'''z''' frame,

( , , )c c cx y z′′′ ′′′ ′′′

( )0, 3.83 0.12, 4.61 ( 0.04)= − − − − −

( , , )c c O c Ox y y z z′′′ ′′′′′ ′′ ′′ ′′ ′′= − −

( )0, 3.95, 4.57= − −

G

OO′′ y

z,z z′ ′′

y′′

y′O′

(0)3ξ∆1[ ]m= −

(0)4ξ∆

19.1= °

(0)4ξ∆

(1)3ξ∆

0.36[ ]m−B

y′′′z′′′

(2,2) (2,2) (2,2)3,4 3,4 3,4( ) ( ) ( )( , , )B B BB x y zξ ξ ξ

(2,2) (2,2)3,4 3,4( ) ( )( , )c cc y zξ ξCentroid of section area of displacement volume

=(2,2)3,4( )B ξ

<Transverse moment of >(2,2)3,4( )ξ

Center of buoyancy

y′′

Given : (2) (1) (2,1)

3 4 , 3,4, , ( )T ExtMξ ξ ξ Find : *4ξ (2) (1) (1)

4 4 4( )ξ ξ ξ+ ∆=

(2,1) (2,1) (2,1) (2,1)3,4 3,4 3,4 3,4(2,1)

3,4 (2,1) (2,1) (2,1)3,4 3,4 3,4

* (1)3,4 4

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )G B T

T TExt Ext T

mg z g V z gIM M

F z g i

ξ ξ ξ ξξ ξ

ξ ξ ξ

ρ ρξ

ρ

⋅ − ⋅ ⋅ −= + ∆ − ⋅ + ⋅

Governing equation of transverse moment

*3,4( ) 0TM ξ =

4

a : O b : O'' c : c'' d : c''' e : c (2,2)3,4( )B ξ=

116/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

z′

y′

O′

y

z

g B

v

OG

Section view

(1)4ξ∆

Example : Immersion and Heel in Static Equilibrium after Cargo Hold Being Flooded (56)

1st step, Heel

(1) (2) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

(1) (2) (2)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 1 step

Static equilibrium? Check!

( )2*4 4ξ ξ=

?

(2,2)3,4( ) 0TM ξ =

?

ξ3 : immersionξ4 : heel

(2,2)3,4( )G G ξ=(2,2)3,4( )B B ξ=(2,2)3,4( )g g ξ=

,z z′ ′′

y′O′

y

z

g B

v

OG

y′′

Section view

9

0.37

A2 A3

A1

( )( , , ) 0, 3.95, 4.57c c cx y z′′′ ′′′ ′′′∴ = − −

(2,2)3,4(2,2)3,4(2,2)3,4

( )( )( )

c

c

c

xyz

ξ

ξ

ξ

=

(2,2)3,4( ) (0, 2.48, 5.52)B ξ∴ = − −

(2) (2)4 4(2) (2)

4 4

1 0 0 00 cos sin 3.950 sin cos 4.57

ξ ξξ ξ

= − − −

(2) (0) (1)4 4 4, ( 16.6 )ξ ξ ξ= ∆ + ∆ =

Calculate centroid of section area in O'''-x'''y'''z''' frame,

then transformation centroid of section area to waterplane fixed frame.

(2 ,2) (2,2) (2,2)3,4 3,4 3,4( ) ( ) ( )( , , )c c cx y zξ ξ ξ

02.485.52

= − −

(2) (2)4 4(2) (2)

4 4

1 0 00 cos sin0 sin cos

c

c

c

xyz

ξ ξξ ξ

′′′ ′′′= −

′′′

(2,2) (2,2) (2,2)3,4 3,4 3,4( ) ( ) ( )( , , ) (0, 2.48, 5.52)c c cx y zξ ξ ξ∴ = − −

(2,2)3,4of ξ

(2,2) (2,2) (2,2)3,4 3,4 3,4( ) ( ) ( )( , , )B B BB x y zξ ξ ξ

(2,2) (2,2)3,4 3,4( ) ( )( , )c cc y zξ ξCentroid of section area of displacement volume

=(2,2)3,4( )B ξ

<Transverse moment of >(2,2)3,4( )ξ

Center of buoyancy

(2)4ξ

Given : (2) (1) (2,1)

3 4 , 3,4, , ( )T ExtMξ ξ ξ Find : *4ξ (2) (1) (1)

4 4 4( )ξ ξ ξ+ ∆=

(2,1) (2,1) (2,1) (2,1)3,4 3,4 3,4 3,4(2,1)

3,4 (2,1) (2,1) (2,1)3,4 3,4 3,4

* (1)3,4 4

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )G B T

T TExt Ext T

mg z g V z gIM M

F z g i

ξ ξ ξ ξξ ξ

ξ ξ ξ

ρ ρξ

ρ

⋅ − ⋅ ⋅ −= + ∆ − ⋅ + ⋅

Governing equation of transverse moment

*3,4( ) 0TM ξ =

4

a : O b : O'' c : c'' d : c''' e : c (2,2)3,4( )B ξ=

117/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

z′

y′

O′

y

z

g B

v

OG

Section view

(1)4ξ∆

Example : Immersion and Heel in Static Equilibrium after Cargo Hold Being Flooded (57)

1st step, Heel

(1) (2) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

(1) (2) (2)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 1 step

Static equilibrium? Check!

( )2*4 4ξ ξ=

?

(2,2)3,4( ) 0TM ξ =

?

ξ3 : immersionξ4 : heel

(2,2)3,4( )G G ξ=(2,2)3,4( )B B ξ=(2,2)3,4( )g g ξ=

,z z′ ′′

y′O′

y

z

g B

v

OG

y′′

Section view

9

0.37

A2 A3

A1

(2)4ξ

(2,2) (2,2) (2,2)3,4 3,4 3,4( ) ( ) ( )( , , )g g gg x y zξ ξ ξ

(2,2) (2,2)3,4 3,4, ,( ) ( )( , )v v c v cc y zξ ξCentroid of section area of flooded cargo volume

=(2,2)3,4( )g ξ

<Transverse moment of >(2,2)3,4( )ξ

Center of flooded volume

( )_ _ _( , , ) 0, 10.86, 3.55v c v c v cx y z′′′ ′′′ ′′′∴ = − −

(2,2)3,4(2,2)3,4(2,2)3,4

,

,

,

( )( )( )

v c

v c

v c

xyz

ξ

ξ

ξ

=

(2) (2)4 4(2) (2)

4 4

1 0 0 00 cos sin 10.860 sin cos 3.55

ξ ξξ ξ

= − − −

(0)4, ( 16.6 )ξ∆ =

Calculate centroid of section area of flooded volume in O'''-x'''y'''z''' frame,

then transformation centroid of section area to waterplane fixed frame.

(2 ,2) (2,2) (2,2)3,4 3,4 3,4, , ,( ) ( ) ( )( , , )v c v c v cx y zξ ξ ξ

09.46.5

= − −

,(2) (2)

4 4 ,(2) (2)

4 4 ,

1 0 00 cos sin0 sin cos

v c

v c

v c

xyz

ξ ξξ ξ

′′′ ′′′= − ′′′

(2,1) (2,1) (2,1)3,4 3,4 3,4( ) ( ) ( )( , , ) (0, 9.4, 6.5)c c cx y zξ ξ ξ∴ = − −

(2,2)3,4of ξ

Given : (2) (1) (2,1)

3 4 , 3,4, , ( )T ExtMξ ξ ξ Find : *4ξ (2) (1) (1)

4 4 4( )ξ ξ ξ+ ∆=

(2,1) (2,1) (2,1) (2,1)3,4 3,4 3,4 3,4(2,1)

3,4 (2,1) (2,1) (2,1)3,4 3,4 3,4

* (1)3,4 4

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )G B T

T TExt Ext T

mg z g V z gIM M

F z g i

ξ ξ ξ ξξ ξ

ξ ξ ξ

ρ ρξ

ρ

⋅ − ⋅ ⋅ −= + ∆ − ⋅ + ⋅

Governing equation of transverse moment

*3,4( ) 0TM ξ =

4

a : O b : O'' c : cv'' d : cv''' e : cv(2,2)3,4( )B ξ=

118/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

z′

y′

O′

y

z

g B

v

OG

Section view

(1)4ξ∆

Example : Immersion and Heel in Static Equilibrium after Cargo Hold Being Flooded (58)

1st step, Heel

(1) (2) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

(1) (2) (2)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 1 step

Static equilibrium? Check!

( )2*4 4ξ ξ=

?

(2,2)3,4( ) 0TM ξ =

?

(2,2)3,4( ) (0, 1.32,4.53)G ξ = −

(2,2)3,4 (0, 2.41, 5.47)( )B ξ − −=

(2,2)3,4 (0, 9.39, 6.44)( )g ξ = − −

ξ3 : immersionξ4 : heel

(2,2)3,4( )G G ξ=(2,2)3,4( )B B ξ=(2,2)3,4( )g g ξ=

<Transverse moment of >(2,2)3,4( )ξ

(2,2)3,4( )BF ξ

(2,2)3,4( )GF ξ

(2,2)3,4( )ExtF ξ

45.35 10 [ ]kN= − ×

(0,0)3,4

5( ) 3.6 10 [ ]GF kNξ= = − ×3 4 310[ / ] 4.11 10 [ ]kN m m= × ×(2,2)

3,4( )gV ξρ=54.15 10 [ ]kN= ×

( 2,2)3,4

(2,2)3,4

( )

( )V

V dVξ

ξ = ∫∫∫ (2,2)3,4( )section area L ξ= × 1

2[ ]414.8A mArea =

2

2[ ]59.61A mArea =

3

2[ ]59.61A mArea = −2

_ [ ]414.8A Total mArea =2 4 3414.8[ ] 100[ ] 4.15 10 [ ]m m m= × = ×

(2,2)3,4_ ( )Area LA Total ξ= ×

Calculate force (2,2) (2,2) (2,2)3,4 3,4 3,4( ), ( ), ( )G B ExtF F Fξ ξ ξ

( 2,2)3,4

(2,2)3,4

( )

( )v

v dvξ

ξ = ∫∫∫ (2,2)3,4( )section area l ξ= ×

(2,2)3,4_ ( )Area a Total l ξ= ×

2 3 3267.01[ ] 20[ ] 5.34 10 [ ]m m m= × = ×

3 3 310[ / ] 5.35 10 [ ]kN m m= × ×(2,2)3,4( )gv ξρ=

1

2[ ]207.4a mArea =

2

2[ ]59.61a mArea =

2_ [ ]267.01a Total mArea =

Given : (2) (1) (2,1)

3 4 , 3,4, , ( )T ExtMξ ξ ξ Find : *4ξ (2) (1) (1)

4 4 4( )ξ ξ ξ+ ∆=

(2,1) (2,1) (2,1) (2,1)3,4 3,4 3,4 3,4(2,1)

3,4 (2,1) (2,1) (2,1)3,4 3,4 3,4

* (1)3,4 4

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )G B T

T TExt Ext T

mg z g V z gIM M

F z g i

ξ ξ ξ ξξ ξ

ξ ξ ξ

ρ ρξ

ρ

⋅ − ⋅ ⋅ −= + ∆ − ⋅ + ⋅

Governing equation of transverse moment

*3,4( ) 0TM ξ =

4

119/120

SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr

Seoul NationalUniv.

2009 Fall, Ship Stability

z′

y′

O′

y

z

g B

v

OG

Section view

(1)4ξ∆

Example : Immersion and Heel in Static Equilibrium after Cargo Hold Being Flooded (59)

1st step, Heel

(1) (2) (1)3 4( [0,0, , ,0,0] )Tξ ξ=r

(1) (2) (2)3 4( [0,0, , ,0,0] )Tξ ξ=r

Heel(0)4ξ∆ 1 step

Static equilibrium? Check!

( )2*4 4ξ ξ=

?

(2,2)3,4( ) 0TM ξ =

?

ξ3 : immersionξ4 : heel

(2,2)3,4( )G G ξ=(2,2)3,4( )B B ξ=(2,2)3,4( )g g ξ=

<Transverse moment of (ξ3(1),ξ4

(1)) >

(2,2)3,4

(2,2) (2,2)3,4 3,4( ) () )(TB B BM y Fξ ξξ= ⋅

(2,2)3,4

(2,2) (2,2)3,4 3,4( ) () )(TG G GM y Fξ ξξ= ⋅

(2,2) (2,2) (2,2)3,4 3,4 3,4, ( ) ( ) ( )T Ext Ext ExtM y Fξ ξ ξ= ⋅

(2,2)3,4( )TM ξ

(2,2)3,4

5( ) 4.15 10 [ ]B kNF ξ = ×

(2,2)3,4

5( ) 3.6 10 [ ]G NF kξ = − ×

(2,2)3,4

4( ) 5.35 10 [ ]ExtF kNξ = − ×

(2,2)3,4

(2,2)3,4

(2,2)3,4 ,( () )( ) T ExBG tT TM M Mξ ξξ= ++

5( 1.32) ( 3.6 10 )= − ⋅ − ×55.1982 10 [ ]kN m= × ⋅

5( 2.48) (4.15 10 )= − ⋅ ×61.0281 10 [ ]kN m= − × ⋅

(2,2) (2,2)3,4 3,4( ) ( )g Exty Fξ ξ= ⋅

4( 9.4) ( 5.35 10 )= − ⋅ − ×55.0181 10 [ ]kN m= × ⋅

[ ]kN m⋅5 6 55.1982 10 [ ] 1.0281 10 [ ] 5.0181 10kN m kN m= × ⋅ − × ⋅ + ×36.439 10 [ ]kN m= − × ⋅

(2,2)3,4( )TM ξ ε< , 8,000ε ≡

( )2*4 4ξ ξ=

End of iteration

ε : Tolerance

attitude in static equilibrium

( )2*4 4ξ ξ= ( )2*

3 3,ξ ξ=

4

(2,2)3,4( ) (0, 1.32,4.53)G ξ = −

(2,2)3,4 (0, 9.4, 6.5)( )g ξ = − −

(2,2)3,4 (0, 2.48, 5.52)( )B ξ = − −

Given : (2) (1) (2,1)

3 4 , 3,4, , ( )T ExtMξ ξ ξ Find : *4ξ (2) (1) (1)

4 4 4( )ξ ξ ξ+ ∆=

(2,1) (2,1) (2,1) (2,1)3,4 3,4 3,4 3,4(2,1)

3,4 (2,1) (2,1) (2,1)3,4 3,4 3,4

* (1)3,4 4

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )G B T

T TExt Ext T

mg z g V z gIM M

F z g i

ξ ξ ξ ξξ ξ

ξ ξ ξ

ρ ρξ

ρ

⋅ − ⋅ ⋅ −= + ∆ − ⋅ + ⋅

Governing equation of transverse moment

*3,4( ) 0TM ξ =

4

120/120