Oct 2006 g.modestino1 Experimental results correlating GW detector data and Gamma Ray Bursts...

35
oct 2006 g.modestino 1 Experimental results correlating GW detector data and Gamma Ray Bursts Giuseppina Modestino LNF ROG Collaboration INFN – LN Frascati, LN Gran Sasso, Sez. Roma 1, Roma 2 and G Universities “La Sapienza” and “Tor Vergata” Rome, L’Aquila, CNR –IFN Roma INAF –IFSI Roma CERN - Geneve

Transcript of Oct 2006 g.modestino1 Experimental results correlating GW detector data and Gamma Ray Bursts...

Page 1: Oct 2006 g.modestino1 Experimental results correlating GW detector data and Gamma Ray Bursts Giuseppina Modestino LNF ROG Collaboration INFN – LN Frascati,

oct 2006 g.modestino 1

Experimental results correlating GW detector data and Gamma Ray

Bursts

Giuseppina ModestinoLNF

ROG CollaborationINFN – LN Frascati, LN Gran Sasso, Sez. Roma 1, Roma 2 and Genova Universities “La Sapienza” and “Tor Vergata” Rome, L’Aquila, Geneve

CNR –IFN RomaINAF –IFSI Roma CERN - Geneve

Page 2: Oct 2006 g.modestino1 Experimental results correlating GW detector data and Gamma Ray Bursts Giuseppina Modestino LNF ROG Collaboration INFN – LN Frascati,

oct 2006 g.modestino 2

Summary• Search for GW Burst Signals

and resonant cryogenic detectors.

• GW and GRB association EXPERIMENTAL IMPLICATIONS.

•Data analysis under two hypotheses•COSMIC RAYS DETECTION analogies and calibration

•Experimental results Previous and in progress

Page 3: Oct 2006 g.modestino1 Experimental results correlating GW detector data and Gamma Ray Bursts Giuseppina Modestino LNF ROG Collaboration INFN – LN Frascati,

oct 2006 g.modestino 3

GW Burst Sources

• Binary system coalescence• Supernovae

• ms pulsars

Search for GW Burst Signal

SNR ~ 103 (10kpc/d)2 (10-44 Hz-1/h2) (f /1Hz)

d = distance from earth h = detector spectral densityf = bandwidth of detection

Page 4: Oct 2006 g.modestino1 Experimental results correlating GW detector data and Gamma Ray Bursts Giuseppina Modestino LNF ROG Collaboration INFN – LN Frascati,

oct 2006 g.modestino 4

Cryogenic resonant detectors GW detection sensitivity

• ALLEGRO• AURIGA

• EXPLORER•NAUTILUS

Search for GW Burst Signal

SNR ≥ 10 for a galactic event

h = 10-21 ÷ 10-20 Hz -1/2

f = 1 ÷ 50 Hz

Page 5: Oct 2006 g.modestino1 Experimental results correlating GW detector data and Gamma Ray Bursts Giuseppina Modestino LNF ROG Collaboration INFN – LN Frascati,

oct 2006 g.modestino 5

Initial operation of the International Gravitational Event CollaborationG.A. Prodi et al. (IGEC Collaboration)Int. Jour. of Modern Physics D 9, 237 (2000)

Study of coincidences between resonant gravitational wave detectorsP. Astone et al. (ROG Collaboration)Class. Quantum Grav. 18, 243–251 (2001)

First search for gravitational wave bursts with a network of detectorsZ.A. Allen et al. (IGEC Collaboration)Phys. Rev. Lett. 85, 5046-5050 (2001)

Search for gravitational wave bursts by the network of resonant detectorsP. Astone et al. (IGEC Collaboration)Class. Quantum Grav. 19, 1367–1375 (2002)

Study of the coincidences between the gravitational wave detectors EXPLORER and NAUTILUS in 2001P. Astone et al. (ROG Collaboration)Class. Quantum Grav. 19, 5449–5463 (2002)

Methods and results of the IGEC search for burst gravitational waves in the years 1997–2000P. Astone et al. (IGEC Collaboration)Phys. Rev. D 68, 022001 2003

Search for GW Burst Signal

Page 6: Oct 2006 g.modestino1 Experimental results correlating GW detector data and Gamma Ray Bursts Giuseppina Modestino LNF ROG Collaboration INFN – LN Frascati,

oct 2006 g.modestino 6

Typical theoretical prediction for GW burst amplitude:l/l = h = 3 10-20 1kHz 1Mpc (MGW/10-2 Mo)1/2 (10-3s/GW)1/2

f(kHz) R(Mpc)

0.

1.

2.

[1055

erg/

s]

Gravitational wave luminosity

2 4 6 Time [ms]

Ruffert et al.,AA 311,532 (1996)

associated to a single GRB event: @ 1 kHz

GW = 1ms

10-22 (MGW)1/2

R(Gpc)h ~

Page 7: Oct 2006 g.modestino1 Experimental results correlating GW detector data and Gamma Ray Bursts Giuseppina Modestino LNF ROG Collaboration INFN – LN Frascati,

oct 2006 g.modestino 7

GW Burst Detection Strategy

• List of candidate events obtained selecting (with an adaptive threshold) data produced by filter matched to a delta

• Search for coincidences

Data Analysis

Experimental ToolsStatistical excessLocal mass distribution for the directional studies

+

time reference Statistical association

Link with GRBs(GRB=systematic phenomenon)

Page 8: Oct 2006 g.modestino1 Experimental results correlating GW detector data and Gamma Ray Bursts Giuseppina Modestino LNF ROG Collaboration INFN – LN Frascati,

oct 2006 g.modestino 8

ASSOCIATION WITH SUPERNOVAE

•Measurements with the resonant Gravitational Wave detector EXPLORER during the GRB 980425 No anomaly in the background of the GW data detector with the sensitivity of h>=10-18

(ROG Coll.) Astron. Astrophys. Suppl. Ser. 138 605-606 1999

•Search for GW associated with the GRB030329 using the LIGO detector.None candidate event detected in the signal time region of 180s [ -120s, + 60s ] around t (LIGO Coll.) Phys.Rev. D 72, 042002 (2005)

Page 9: Oct 2006 g.modestino1 Experimental results correlating GW detector data and Gamma Ray Bursts Giuseppina Modestino LNF ROG Collaboration INFN – LN Frascati,

oct 2006 g.modestino 9

Statistical association •Search for Time Correlation Between GRBs nd Data from the Gravitational Wave Antenna EXPLORER.Coincidence technique.No evidence in a time window of + 1 s , at several delays. (ROG Coll.) Astron. Astrophys. Suppl. Ser. 138, 603 –604 (1999)

•Correlation between GRBs AND GWs.Using 120 GRBs, in a 10s time window, an U.L. of 1.5 10-18 was obtained. (AURIGA Group) Phys.Rev. D 63, 082002 (2001)

• Search for Correlation between GRBs detected y BeppoSax and gravitational wave detectors EXPLORER AND NAUTILUSCross-correlation technique-Absence of signal of amplitude h>1.2 10-18 within + 400 s. (ROG Coll. )Phys. Rev. D 66, 102002 (2002) h>6.5 10-19 + 5 s.

• Cumulative analysis of the association between the data of the GW detectors NAUTILUS and EXPLORER and GRBs detected by BATSE and BeppoSAX.Analysis of the data relative to a large number of GRBs detected during the ‘90s, allows to exclude GW burst signal with h> 2.5 10-19

(ROG Coll. )Phys. Rev. D 71, 042001 (2005)

Experimental studies:

Page 10: Oct 2006 g.modestino1 Experimental results correlating GW detector data and Gamma Ray Bursts Giuseppina Modestino LNF ROG Collaboration INFN – LN Frascati,

oct 2006 g.modestino 10

Zero-threshold search:better sensitivity than the "event" method for the expected "small" signals.

1)Combine the GW detector data E(t) with the same relative time with respect to the N GRB arrival time t0

E1

E2

E3

En

t(s)ttGRB

2)Applying a cumulative

algorithm: = i N-1/2

For the single data stretches i = <Ei>

Page 11: Oct 2006 g.modestino1 Experimental results correlating GW detector data and Gamma Ray Bursts Giuseppina Modestino LNF ROG Collaboration INFN – LN Frascati,

oct 2006 g.modestino 11

EXPLORER is equipped with 3 layers of Plastic Scintillators2 above the cryostat - area 13m2 1 below -area 6 m2)

NAUTILUS is equipped with 7 layersof Streamer tubes 3 above the cryostat - area 36m2/each 4 below -area 16.5 m2/each)

Cosmic Ray detectors

Studing the effects of the showers on the crygenic bars

Page 12: Oct 2006 g.modestino1 Experimental results correlating GW detector data and Gamma Ray Bursts Giuseppina Modestino LNF ROG Collaboration INFN – LN Frascati,

oct 2006 g.modestino 12

Unfiltered signal (V2)

The signal after filtering (kelvin)

The effect of the Cosmic Ray Shower on NAUTILUSA true mechanical pulse

The cosmic ray effect on the bar is measured by an offline correlation, driven by the arrival time of the cosmic rays, between the observed multiplicity in the CR detector and the data of the antenna, processed by a filter matched to signals

Page 13: Oct 2006 g.modestino1 Experimental results correlating GW detector data and Gamma Ray Bursts Giuseppina Modestino LNF ROG Collaboration INFN – LN Frascati,

oct 2006 g.modestino 13

The effects of th CR on resonant GW detectors

Thermo-acoustic model

Page 14: Oct 2006 g.modestino1 Experimental results correlating GW detector data and Gamma Ray Bursts Giuseppina Modestino LNF ROG Collaboration INFN – LN Frascati,

oct 2006 g.modestino 14

kelvin

Time [s]

E ~ 3. 10-4 kelvin

Zero-threshold searchCosmic-ray showers interacting with NAUTILUS

Astone et al. (ROG Coll.)PRD, 84, 14, 2000.

Astone et al. (ROG Coll.)Phy. Lett. B 499 16 (2001)

Astone et al. (ROG Coll.)Phys. Lett. B 540 179 (2002)

2001

In agreement with the thermo-acoustic model

<E(t)>= 3 10-3K ~ 10-4 K

2000

Page 15: Oct 2006 g.modestino1 Experimental results correlating GW detector data and Gamma Ray Bursts Giuseppina Modestino LNF ROG Collaboration INFN – LN Frascati,

oct 2006 g.modestino 15

Time delay between the two emissions

The typical amplitude of a GW burst, on Earth, associated to a single GRB, is:

It implies an intrinsic difficulty relating the upper limit on the amplitude,in general, interpreting the measurement results.

10-22 M1/2 R(Gpc)

But there is no clear predictions about t=|tGRB-tGW|

h =R = distance M = amount of GW energy emitted (Mo)

By experiment, it is possible to solve the problem, correlating the data of 2 GW detectorsEssentially, two methodologies are possible:Coincidence analysisCross-correlation technique (advised in nonstationary noise conditions)

Page 16: Oct 2006 g.modestino1 Experimental results correlating GW detector data and Gamma Ray Bursts Giuseppina Modestino LNF ROG Collaboration INFN – LN Frascati,

oct 2006 g.modestino 16

Searching for GW signals under variable delay hypothesis

The basic idea of the analysis is the simultaneity of the signal on two GW detectors.

•Apply the usual data selection criteria evaluating the temperature noise in the time interval around the GRB time

•Select and cross-correlate data of the coincident intervals of the two GW detectors.

•Apply the usual cumulative algorithm to the cross-correlation function

Phys. Rev. D 65 022005 (2002)Phys. Rev. D 66 102002 (2002)

Page 17: Oct 2006 g.modestino1 Experimental results correlating GW detector data and Gamma Ray Bursts Giuseppina Modestino LNF ROG Collaboration INFN – LN Frascati,

oct 2006 g.modestino 17

EXPLORER(CERN) ON from March to

December T = 2.6 K Duty Cycle = 91% Average sensitivity

h=4.5 10-19

NAUTILUS (LNF) ON from January to

December T = 1.5 K Duty Cycle = 80% Average sensitivity

h=5. 7 10-19

Search for GW signal in a 800 s interval time Beppo-Sax Catalog 2001

Page 18: Oct 2006 g.modestino1 Experimental results correlating GW detector data and Gamma Ray Bursts Giuseppina Modestino LNF ROG Collaboration INFN – LN Frascati,

oct 2006 g.modestino 18

.

Cross-correlation analysis

.

The data with Teff < 20 mk are selected.

47 GRB are analyzed

Teff evaluated within a time window of + 400s, centered at tGRB

EXPLORER

NAUTILUS

Page 19: Oct 2006 g.modestino1 Experimental results correlating GW detector data and Gamma Ray Bursts Giuseppina Modestino LNF ROG Collaboration INFN – LN Frascati,

oct 2006 g.modestino 19(ROG Coll), Phys. Rev. D 66 102002 (2002).

Cross-correlation result EXPLORER x NAUTILUS 2001

R(t’) cross-correlation function (averaged on the 47 GRBs) relative to the energy of the two GW detectors.

-400s < t’ < +400s h <1.2 10-18 95%t’(s)

Page 20: Oct 2006 g.modestino1 Experimental results correlating GW detector data and Gamma Ray Bursts Giuseppina Modestino LNF ROG Collaboration INFN – LN Frascati,

oct 2006 g.modestino 20

Searching for simultaneous GW signal.

•1991-1999

•GRB list = BATSE + Beppo-Sax

•GW detectors = EXPLORER +NAUTILUS

•GWB arrival time = GRB Peak Time ± 5 s

•GW data background over 30 minute periods with temperature noise tn< 15 10-3 kelvin(Peak Time ± 15 min)

•Cumulative average and median algorithmROG Coll. PRD 71, 042001 (2005)

Zero-threshold search

Page 21: Oct 2006 g.modestino1 Experimental results correlating GW detector data and Gamma Ray Bursts Giuseppina Modestino LNF ROG Collaboration INFN – LN Frascati,

oct 2006 g.modestino 21

GRBs Database

0

100

200

300

400

500

1990 1992 1994 1996 1998 2000 2002 2004

B

BeppoSAX (~1000 )

BATSE (~2700)

Trigger GRBs

ROG Coll. PRD 71, 042001 (2005)

Searching for simultaneous GW signal.

Page 22: Oct 2006 g.modestino1 Experimental results correlating GW detector data and Gamma Ray Bursts Giuseppina Modestino LNF ROG Collaboration INFN – LN Frascati,

oct 2006 g.modestino 22ROG Coll. PRD 71, 042001 (2005)

Data selection

Effective temperature Te distribution computed in 1150 time intervals around each GRB peak time

N=387 data stretches with Te < 15 mK are selected

Page 23: Oct 2006 g.modestino1 Experimental results correlating GW detector data and Gamma Ray Bursts Giuseppina Modestino LNF ROG Collaboration INFN – LN Frascati,

oct 2006 g.modestino 23

E(0) = 6.33 mk

Searching for simultaneous GW signal.

<E> = 6.30 mK

= 0.13 mK

ROG Coll. PRD 71, 042001 (2005)

GW detector energy as a function of the GW-GRB delay

• Combine 387 30 min GW data stretches• For each time delay, the median value Em is extracted

h < 3 10-19

Page 24: Oct 2006 g.modestino1 Experimental results correlating GW detector data and Gamma Ray Bursts Giuseppina Modestino LNF ROG Collaboration INFN – LN Frascati,

oct 2006 g.modestino 24

sin4 correspondingly to the 387 selected GRB arrival times and theoretical isotropic distribution The 4 regions of increasing sin4 separated by vertical lines, correspond to the data subsets separately analyzed.

Searching for a correlation with sin4

ROG Coll. PRD 71, 042001 (2005)

~ sin2

Page 25: Oct 2006 g.modestino1 Experimental results correlating GW detector data and Gamma Ray Bursts Giuseppina Modestino LNF ROG Collaboration INFN – LN Frascati,

oct 2006 g.modestino 25

4/4

ROG Coll. PRD 71, 042001 (2005)

Looking for a correlation with sin4

SNR of the excess at zero delay of the median value

Page 26: Oct 2006 g.modestino1 Experimental results correlating GW detector data and Gamma Ray Bursts Giuseppina Modestino LNF ROG Collaboration INFN – LN Frascati,

oct 2006 g.modestino 26

GW resonant detectorsEXPLORER + NAUTILUS

And

SWIFT events

An example :

Measuring @ t = trigger time+0.5sYear 2005 events with z < 1Interval time for background evaluation :100s

In progress:Data Analysis

Page 27: Oct 2006 g.modestino1 Experimental results correlating GW detector data and Gamma Ray Bursts Giuseppina Modestino LNF ROG Collaboration INFN – LN Frascati,

oct 2006 g.modestino 27

Data TakingData Taking during 2005 during 2005

Page 28: Oct 2006 g.modestino1 Experimental results correlating GW detector data and Gamma Ray Bursts Giuseppina Modestino LNF ROG Collaboration INFN – LN Frascati,

oct 2006 g.modestino 28

EXPLORER and NAUTILUS -EXPLORER and NAUTILUS - 20052005

NAUTILUS

EXPLORER

10-21 Hz-1/2

~ 50 Hz

@10-20 Hz-1/2

EXPLORER

~ 50 Hz@10-20 Hz-1/2

~ 30 Hz@10-20 Hz-1/2

Page 29: Oct 2006 g.modestino1 Experimental results correlating GW detector data and Gamma Ray Bursts Giuseppina Modestino LNF ROG Collaboration INFN – LN Frascati,

oct 2006 g.modestino 29

Output of the cumulative algorithm applied to EX+NAj=1,23 N=23 SWIFT events (11 EX+12 NA)

K

S

trigger time

Ej(t) / N

Red -Sampling time 3.2 ms Black - Integrating on 0.5 s

In progress:

Page 30: Oct 2006 g.modestino1 Experimental results correlating GW detector data and Gamma Ray Bursts Giuseppina Modestino LNF ROG Collaboration INFN – LN Frascati,

oct 2006 g.modestino 30

GW resonant detectorsEXPLORER + NAUTILUS

And

Cosmic Rays

Analyze a similar (statistically) sample:

Measuring @ t = CR trigger time+0.5sYear 2005 26 CR events (with multiplicity>2000 part/m2)Interval time for background evaluation :100s

Testing with Cosmic Rays DetectionApply the same procedure:

In progress:

Page 31: Oct 2006 g.modestino1 Experimental results correlating GW detector data and Gamma Ray Bursts Giuseppina Modestino LNF ROG Collaboration INFN – LN Frascati,

oct 2006 g.modestino 31

Output of the cumulative analysis applied to EX+NAj=1,26 N=26 EAS events (13 EX+13 NA)

K

S

EAS trigger time

Red -Sampling time 3.2 ms Black - Integrating on 0.5 s

Ej(t) / N

Page 32: Oct 2006 g.modestino1 Experimental results correlating GW detector data and Gamma Ray Bursts Giuseppina Modestino LNF ROG Collaboration INFN – LN Frascati,

oct 2006 g.modestino 32

Search for GW Burst Signal

Sensitivity of bar detectors

Page 33: Oct 2006 g.modestino1 Experimental results correlating GW detector data and Gamma Ray Bursts Giuseppina Modestino LNF ROG Collaboration INFN – LN Frascati,

oct 2006 g.modestino 33

Sensitivity of the bar detectors

IGEC2

Page 34: Oct 2006 g.modestino1 Experimental results correlating GW detector data and Gamma Ray Bursts Giuseppina Modestino LNF ROG Collaboration INFN – LN Frascati,

oct 2006 g.modestino 34

Search for GW Burst Signal

Upper limit for GW burst detection Class. Quantum Grav. 23 S57-S62 (2006)

Page 35: Oct 2006 g.modestino1 Experimental results correlating GW detector data and Gamma Ray Bursts Giuseppina Modestino LNF ROG Collaboration INFN – LN Frascati,

oct 2006 g.modestino 35

NAUTILUS

EXPLORER

bar length L = 3mmass = 2300 Kgmaterial Al5056resonance ~1 KHztemperature = 0.1 K - 2 K

ROG - The two cryogenic detectors -

LNF-Frascati

CERN