Oceanus Co. Tech. Report

18
Page 1 of 18 Table of contents Content Page Acknowledgements 3 Abstract 3 1.Design rationale 4 1.1.Frame 4 1.2.Thrusters 5 1.3.Propellers 5 1.4.Buoyancy 6 1.5.Manipulators 6 1.6.Lighting 6 1.7.Technology-insertion 7 1.8.Camera 7 1.9.Panning device 7 1.10.Isolation 7 2.Electronics 8 2.1.Driving station 8 2.2.ROV control can 8 2.2.1.Thrusters control 9 2.2.2. Sensors 9 2.2.2.1.Pressure 9 2.2.2.2.Temperature 9 2.2.2.3.Current 9 2.2.2.4.Voltage 9 2.2.2.5.Compass 10 2.2.2.6.Accelerometer 10 2.3.Tether 10 3.Payloads 10 4.Reflection 11 5.Lessons learned 11 6.Team work 12 8.Vehicle system 13 9 .Troubleshooting 13 10.Challenges 14 10.1 Technical problems 14 10.2 Non-technical problems 11.Future improvements 12.Bugdet 13.Appendices

Transcript of Oceanus Co. Tech. Report

Page 1: Oceanus Co. Tech. Report

Page 1 of 18

Table of contents

Content Page

Acknowledgements 3

Abstract 3

1.Design rationale 4

1.1.Frame 4

1.2.Thrusters 5

1.3.Propellers 5

1.4.Buoyancy 6

1.5.Manipulators 6

1.6.Lighting 6

1.7.Technology-insertion 7

1.8.Camera 7

1.9.Panning device 7

1.10.Isolation 7

2.Electronics 8

2.1.Driving station 8

2.2.ROV control can 8

2.2.1.Thrusters control 9

2.2.2. Sensors 9

2.2.2.1.Pressure 9

2.2.2.2.Temperature 9

2.2.2.3.Current 9

2.2.2.4.Voltage 9

2.2.2.5.Compass 10

2.2.2.6.Accelerometer 10

2.3.Tether 10

3.Payloads 10

4.Reflection 11

5.Lessons learned 11

6.Team work 12

8.Vehicle system 13

9 .Troubleshooting 13

10.Challenges 14

10.1 Technical problems 14

10.2 Non-technical problems

11.Future improvements

12.Bugdet

13.Appendices

Page 2: Oceanus Co. Tech. Report

Page 2 of 18

Acknowledgements:

Notions Oceanus had taken huge efforts to accomplish this ROV. However, it would not have been

possible without the support and help of many individuals and organizations. We would like to

extend our sincere gratefulness to all of them.

We desire to thank the Marine Advanced Technology Education (MATE) for organizing the

competition.

We are highly indebted to Notions Development Academy for the guidance and constant supervision

as well as for the technic and academic help. We are also indebted to Brilliance Language School for

sponsoring us.

Table of figures

Figure number

Page Figure1. Steps design process. 3

Figure2. Oceanus ROV “Medusa”. 3

Figure3. Oceanus ROV “Triton”. 3

Figure4. Triton thrusters’ arrangement. 3

Figure5. Triton motor setting. 4

Figure6. Propeller’s design. 4

Figure7. Propellers steering. 4

Figure8. Propellers steering. 4

Figure9. Manipulator sealing. 5

Figure10. Color absorption chart. 5

Figure11. Lightening housing. 5

Figure12. Insertion of electronics and camera tilting.

6

Figure13. Camera pan/tilt. 6

Figure14. End cap. 6

Figure15. Front cap, dome front cap and dome. 7

Figure16 Driving station. 7

Figure17 Control can 7

Figure18 Sabertooth 2x12. 8

Figure19 Pressure transducer. 8

Figure20 Temperature sensor LM35. 8

Figure21 Current sensor. 8

Figure22 LSM303DLH triple axis accelerometer combined with a triple axis magnetic sensor.

8

Figure23 Cable splitter. 9

Figure24 Cable splitter. 9

Figure25 Cable splitter drag. 9

Figure26 Cable splitter drag. 9

Figure27 Task 2: payload system. 10

Page 3: Oceanus Co. Tech. Report

Page 3 of 18

We would like to express our gratitude towards our parents and our special gratitude to Eng. Kareem

Youssri for giving us such attention and time, and teaching us electronics, mechanics and

programming, as well as our mentor Moamen Mohamed who helped us a lot.

Furthermore, we would like to thank Eng. Mamdouh Azmy and Eng. Galal Salama for helping us in

understanding the advanced options of Solid Works, AutoCAD and ANSIS.

Finally, special thanks to Notions’ last year rangers team for sharing their experience with us.

Abstract

Water occupies 71% of Earth surface, and it is considered the largest ecosystem, including

diversity of creatures needing suitable conditions to live just as the purity of water, food sources and

appropriate temperature. As we all know, the safety of ocean and its creatures is related to a variety

of human activities such as food, oil and transportation. Unfortunately, ocean is suffering from many

hazardous phenomena; for example, water pollution, which affects human activities negatively. In

addition to water pollution, ocean endures from over fishing, and a change in its circulation pattern.

As a result Oceanus Co. could not stand without taking serious actions in order to save the under-

water world. Therefore Oceanus Company designed and built a ROV with a wide range of special

features to enhance its performance under-water. Oceanus’ employees’ deep experience is harnessed

to build acrylic housings, efficient arms and hard frames, aiming to provide the customer the

sophisticated service he desires. Apart from high-quality and efficiency; Oceanus staff was aware

that the low cost is an influential factor that must be taken into consideration.

As the staff made the ROV step by step, starting from the frame ending with its programming in C

language, it has been capable of accomplishing all the missions successfully beginning with installing

a professional temperature sensor over the vent opening and ending with removing the biofouling

adequately. Oceanus’ well trained pilot can navigate smoothly under-water using the gamepad which

provides an easy control for the ROV’s body, arms and motors.

ROV: Remotely Operated Vehicle

PVC: Polyvinyl Chloride

1. Design Rationale

The innovation and construction of ROV Oceanus was

completed based on a very organized and technically designed

plan. Throughout the project a five step design process has been

followed by the company as shown in fig.1.

During the stages of developing the ROV, the company was

restricted to a strategically steps in order to reach the final

image. The crew determined what is exactly needed; researched

and developed ideas, and finally concluded to the required

Fig.1: Steps design process.

Page 4: Oceanus Co. Tech. Report

Page 4 of 18

methods. Beforehand the releasing of the ROV, it was tested and the results of the components were

analyzed using several designing software such as Solid Works and Ansys until we reached the ideal

design.

1.1. Frame

Oceanus ROV first design “Medusa” was a pentagon-shaped ROV

made of ½ of PVC was destined for the Egyptian local

competition as shown in fig.2; however, PVC was not ideal for the frame.

After testing and observing the PVC’s body, the company

concluded that the ROV’s water resistance was too high and it did not achieve the critical floating as a result of leakage, thus tubes were drilled causing the filling of PVC frame with water. Since the

robot must move not only its dry mass, but also the mass of the water in the frame, it caused a significant increase in mass which

dramatically slows down the ROV and the thrust power had to overcome the increased weight. As a result of the large number of PVC tubes present in Oceanus ROV, an incoherent in the main

frame has been unfortunately caused.

Oceanus’ second ROV generation was a Dry-Hull system “Triton”

as shown in fig.3. Triton was destined for the MATE ROV

challenge. A dome was put on the top of the ROV to decrease the

water resistance achieving a smooth movement of the ROV. The Acrylic body proved that it is

smaller, lighter, and more efficient than the PVC.

1.2. Thrusters

Triton is pushed by eight Johnson Pump thrust motors of 1250G/H power and high thrust. Several tests were carried out on different combinations of motors and

propellers in order to obtain the best thruster [Appendix A]. In fig.4, the motors arrangement can be identified.

Four thrusters are arranged horizontally and four vertically.

Fig.2: Oceanus ROV “Medusa”

Fig.3: Oceanus ROV “Triton”

Fig.4: Triton thrusters’ arrangements

Fig.5: Triton Motor setting

Page 5: Oceanus Co. Tech. Report

Page 5 of 18

Triton has movement about six degrees of freedom as shown in fig.5, four horizontal thrusters are

installed for three translations (surging, heaving and swaying along the longitudinal vertical, and transverse “lateral” axes respectively) and four vertical thrusters are installed for three rotations

(rolling, yawing, and pitching about these same respective axes).

1.3. Propellers

The propeller on any motor is the means by which the horsepower, developed

by the engine, is converted into thrust to propel of the ROV. Oceanus Company has cared in its selection to insure continuous service and satisfactory

performance. The selected propellers are harbor’s model 50 mm propellers, with three blades, which one of them is shown in fig.6 [You may see Appendix C for more details].

Propellers’ steering can be a real chore with a dual engine power setup. When

the propellers turn in the same direction, the ROV tends to list and steer as shown in fig.7. Keeping an even keel and true course requires constant attention, especially in choppy water and high winds. Much of that problem

can be solved by having two propellers turn in opposite directions [2] as shown in fig.8. In other words, it is a counter-rotation. The major advantage of counter-rotation is its ability to enhance performance by reducing steering

effort in all RPM ranges.

Most single engine setups normally operate in forward motion using clockwise rotation of the engine and gear case. Although counterclockwise rotation setups have been used since the creation of the outboard engine, the usage of counter-

rotation has become more prevalent in the last decade. This increase is largely due to the manufacturing increase of larger twin engine recreational and performance.

Clockwise rotation propellers, when turned in the same direction, will tend to list or walk to the right side of the direction they are moving forward in. In fig.8, two effects of clockwise propeller rotation

can be obviously seen. The listing of the propeller to the right, pulling the gear case in the same direction, and the effect of propeller torque, causes the ROV to roll over to the port side.

So the thrusters are distributed with left & right propellers to provide a stable movement to the ROV.

1.4. Buoyancy

High center of buoyancy and low center of gravity were a primary concern in building up Triton to give the camera platform maximum stability about the longitudinal and lateral axes and will balance

the body rapidly if any vibrations occur. The thrusters are mounted at the top of the vehicle lateral alternating with each other to center the gravity, rotation and buoyancy forces. In other words,

instead of having the center of buoyancy and gravity at the sides of the body, they are fixed at the center top of the ROV.

Fig.6: Propeller’s design

Fig.7: Propellers steering

Fig.8: Propellers steering

Page 6: Oceanus Co. Tech. Report

Page 6 of 18

1.5. Manipulators

The grippers’ manipulator is fixed at the front of the ROV after isolating it from water by a poly-

ethylene case from the front and ending with a hard-chrome which is also drilled to lengthen the axe in order to increase the suction force of the motor and closing it with an oil seal to prevent the exposure of water, as shown in Fig.9.

Powerful Pololu motors are fitted with a

75:1 metal gearbox which is made of steel. In addition, the output shaft in 4mm diameter, stall current of 3.3A,

8.8Kg/cm stalls torque and finally a RPM of 180. Manipulators are mounted

with the clamber-shaped grippers to accomplish the tasks.

1.6. Lighting

As shown in fig.10, with increasing the water depth, the ambient light decreases. The strength of the light

absorption also depends on the cleanliness of the water. Although the camera with IR light were used, with

decreasing brightness the image noise increases too. To provide adequate lighting, two radiators are mounted

on the ROV. In each radiator a Seoul P7 LED is placed. These emitters have the following data:

Lumen: 700.

Lumen max: 900.

Current: 300 mA.

Volt: 12.0 V.

Watt: 10.08 W.

Angle: 160 °.

Fig.11 shows the lamp housing with the included components. At the front, the housing is sealed with

acrylic 10mm. The disc has a thickness of 10mm and can easily withstand a higher pressure. The LED optic’s

the radiation angle is 35°.

1.7. Technology-insertion

Aiming to achieve perfection, several modifications and checking

were made on the electric board. Unsuccessfully, a difficulty was faced in pulling the board and un-drilling the wires. As a result of these difficulties, the interior of Triton was modified hence electronics and camera tilting device are

Fig.9: Manipulator sealing

Fig.12: Insertion

Fig.10: Color absorption chart

Fig.11: Lighting Housing

Page 7: Oceanus Co. Tech. Report

Page 7 of 18

combined into a slot shown in fig.12. Electronics and camera tilting can be completely pulled out of the tube technique. Therefore, the technique can be easily maintained as required.

1.8. Camera

Triton is equipped with two Super Circuits high resolution, low light (0.5 Lux) pinhole cameras. Each camera has a 0.85cm color CCD and provides a 90° horizontal field of view in water. One

camera is located in the center of each of the domes. The OPTICS (Onboard PlaneTary Illuminated Camera System) uses a set of spur gears, powered by a servo motor; to rotate the cameras .It is also

capable of providing a full 180° field of view in the vertical plane. Moreover, the ROV is equipped with an Inuktun crystal camera high resolution (400 TVL), low light (1.0 Lux), and it has 0.64cm color CCD camera. It is externally mounted on the chassis, opposite OBS, which provides an

unobstructed view of the tool during mission execution. Oceanus’ enhanced camera lens to a wide angle lens 164° to give us a fisheye view.

1.9. Panning device

To make the observation of the underwater world freer, a swivel

mechanism of the camera was opted. While navigating Triton with an analog stick, the camera rotation is performed with a second analog stick and with the other hand. This allows the navigation and a look

around together by one person. The camera can be rotated approximately 180 ° / 180 °. The more the analog stick is pushed to

the side, the more the camera turns. If the analog stick versa released the stick, thus the camera back to the original position 0 ° / 0 ° back. This has the advantage of being returned quickly for orientation. The

camera in the original position would inform the pilot about how Triton is oriented in the water. Fig.13 shows the camera navigation system.

For space reasons micro-servos were used. Unfortunately, this still

leads currently an occasional swing to the camera. However, it should

be to get to grips with damping.

1.10. Isolation

The electronics cans are composed of one optically clear acrylic tube.

The tube has an outside diameter of 12cm and is sealed by O-rings

incorporated into 1.5cm end cap; which is shown in fig.14, and 3.0cm

front cap which is shown in fig 15. The cans have been successfully

pressure tested to two bars in the pressure vessel.

Fig.13: Camera pan/tilt

Fig.14: End Cap

Page 8: Oceanus Co. Tech. Report

Page 8 of 18

2. Electronics

The electronics system has four key components: the topside control unit, the tether, the ROV control

can, and the ROV payload control can. [See Appendix A for the electrical schematics of these

components.]

2.1. Driving Station

The topside control unit is based on a laptop.

It allows the pilot and copilot to monitor all the

information needed for improving the driving

capabilities. The station is split into six main

operations, ROV navigation, thruster power control,

safety, lighting control and video feeds. The driving

station communicates with Triton, through two

microcontrollers in the ROV and a laptop in the driving

station, by sending and receiving a series of serialized

packets. Building on previous iterations of this

interface, the video feeds from Triton are directly

interfaced to the driving station's screen and the laptop’s screen.

2.2. ROV Electronic Can

The current control system used represents one of the greatest innovations since Oceanus began

producing ROVs. The first ROV, Medusa, utilized an on/off control system with switch. Although it

presented a certain degree of reliability that is difficult

to replicate with a reliable system, it offered only very

limited maneuverability.

Triton’s electronic can houses all electronics necessary

to the operation of the ROV platform, providing

communications to the surface, control of the thrusters

Fig.15: Front cap, dome front cap & Dome

Fig.16: Driving station

Fig.16: Driving Station

Fig.17: Control can

Page 9: Oceanus Co. Tech. Report

Page 9 of 18

and reading form sensors.

2.2.1. Thrusters Control

The control system drives the motors and tools. The control system is

adapted to include variable speed for better control of Triton by using

sabertooth 2x12. This variable speed propulsion system is controlled by

Serial communication (USART) signals generated by the motor driver

microcontroller. Motors and tools which do not require variable speed

are also switched on and off by the wet-side microcontroller.

2.2.2. Sensors

2.2.2.1. Pressure

Honeywell pressure sensor is used to measure both water depth and

temperature. It communicates using an ADC and has a measurement

opening that is threaded into a hole in one of the end caps. The transducer

can measure water depth up to 16m “200PSI”. In microcontroller, this

pressure reading is converted into depth, taking into account the

configurable water density and current atmospheric pressure. This

measurement will act as feedback to an auto-depth function featured in the

control system as a future work.

2.2.2.2. Temperature

An integrated circuit LM35 temperature sensor, which is showed in

fig.20 capable of recording temperatures from -40°C to +125°C,

monitors the internal temperature of the electronic can. This allows the

operator to monitor temperature and shutdown or reduce demand on the ROV in the event that

overheating occurs.

2.2.2.3. Current

Pololu current sensor which is indicated in fig.21 is used for over-current

protection and kill switch for emergency stoppage. In Triton’s design

every motor has a current sensor for safety and to be displayed on the

main driving station.

2.2.2.4. Voltages

Voltages are monitored to ensure the output from the onboard power supplies are within an

acceptable range. The voltage is connected to the sensors microcontroller ADC.

Fig.18: Sabertooth 2x12

Fig.20: LM35

Fig.19: Pressure

transducer

Fig.21: Current sensor

Page 10: Oceanus Co. Tech. Report

Page 10 of 18

2.2.2.5. Compass

For operator’s convenience magnetic compass is included in Triton. A

3-axis compass is combined with the orientation sensor; it is also

presented in fig.22. These decisions are made to ensure the reliability

of determining the orientation of Triton.

2.2.2.6. Accelerometer

A Sparckfun 3-axis accelerometer is used as an orientation

sensor for the positioning of the ROV. The accelerometer

sensor provides three separate angle measurements, angular

velocities and linear accelerations in all three axes. Measuring

accuracy is provided by built-in Kalman filter. The reading of

the pitch and roll will be displayed on the driving station and

as a future work an adjustment of the depth of Triton will be

done, by pressing a certain button in the driving station.

2.3. Tether

The ROV’s tether is used to transmit power and data between the ROV and the surface. Triton’s

tether is about 20.0m thus for easier transportation of the ROV, Oceanus has designed a tether splitter

as shown in fig.23.

The tether splitter consists of a 60mm diameter acrylic tube

and 2 end caps. The tether splitter will help to decrease the

drag force of the tether on the ROV as shown in fig.24 and

25.

Besides decreasing the drag force, the tether splitter is

really useful when needing to extend the tether; in order to

provide further depth for the ROV to navigate.

3. Payloads

One of the main tasks for this year’s MATE ROV

competition is installing temperature sensor over the

hydrothermal vents at the ASHES site and obtaining real-

time temperature data over an extended time period.

Likewise, reporting and graphing temperature readings

every 1.5 minutes over a 6-minute time frame. Accuracy of

the temperature reading is one of the important issues that

have been put into consideration. Researches for the

temperature sensors were carried out to finally find four types

of sensors which are: thermocouples, Resistance Temperature

Fig.22: LSM303DLH triple axis

accelerometer combined with a triple axis magnetic

sensor.

Fig.24: Cable splitter.

Fig.23: Cable splitter.

Fig.25: Cable splitter drag.

Fig.26: Cable splitter Drag.

Page 11: Oceanus Co. Tech. Report

Page 11 of 18

Detectors “RTD”, thermistors and integrated-circuit

temperature sensors.

RTD sensor is based on the fact that metals increase in

resistance as temperature rises. The most accurate

readings are RTD’s readings. Regrettably; we didn’t find

any RTD in Egypt. As for thermistors, they are made

from oxide-based semiconductor materials and are

manufactured in a variety of sizes and shapes.

Unfortunately, thermistors are nonlinear; therefore, they

are not usually used to get an accurate temperature

reading but to indicate temperature changes [3]. The

thermocouple is based on the Seebeck effect, a

phenomenon whereby a voltage that is proportional to

temperature can be produced from a circuit consisting of two dissimilar metal wires.

Correspondingly, it gives accurate reading although; we faced a problem of the compensation.

Integrated-circuit temperature sensors come in various configurations. A common example is the

LM34 and LM35 series. The LM35 produces an output that is proportional to Celsius temperature.

We used LM35 and isolated it in loafed shape, due to the narrow ¾ inch PVC pipe set inside a five

gallon bucket. In other words, we had to make the design loafed to quickly set the temperature probe

approximately 4 cm down inside the ¾-inch connector.

4. Reflections

Building a Triton from A to Z requires hard work and teamwork as we rewarded the challenges and

the obstacles we have faced as a team with creativity and thinking ‘outside the box’ towards a diverse

range of problems and tasks. We have had challenges with teamwork as we faced different opinions

but in the end we passed these differences and chose the best for our ROV as a unit to something

greatly higher and a greater purpose than individual self. This incredible experience had an effect in

our personality and our vision to the upcoming considering our purpose to the future; as some of us

decided to follow some careers depending on what they have most preferred during this experience

such as programming, electrical or mechanical engineering.

5. Lessons Learned

Throughout this amazing experience, lots of lessons have been learned which might be impossible to

list all of them. Beginning with the technical lessons and skills, the crew has learned how to use various art designs, electric and mechanic programs for instance Altium, Solid Works, ISIS, Code

Vision, Ansys plus Photoshop. Actually, before joining the company, the majority of the company members had never exposed to or trained on how to work with programs identical to these, however; now every member of the company can proudly say that he/she can deal with them excellently.

As well, many of the members gained the precious skill of being able to work safely around and

control all of the shop tools used during the manufacture of Triton. Moreover, the crew has learned how to write professionally technical reports, sketch flowcharts and illustrate a variety of vehicles with different programs.

Fig.27: Task 2, Payload system.

Page 12: Oceanus Co. Tech. Report

Page 12 of 18

Aside from the technical aspect of Triton, the communication skills between the company members

have greatly developed. Oceanus staff has not only learned how to communicate with public, throughout the presentations and the interviews with different companies in order to find sponsors,

but also how to communicate clearly with others in or out of the company.

The most important lesson learned is how to work together as a united team and how to organize time between the ROV training and diverse responsibilities in general. These qualities will surely help all

Oceanus staff progress more in their lives and enhancing their future.

6. Teamwork

A successful ROV cannot be done without the teamwork as it is one of the most important success

factors existing in Oceanus Company. Triton was built from the ground up manufacturing it by all

team members, with the supervision of mentors. In addition to the construction of the ROV, the

technical report was written by all the company’s members. In other words, both of the report and

the construction of the ROV were a company effort.

A detailed Gantt chart was developed, in order to ensure that all the work will be done in time. The

Gantt chart is also provided in fig.28 where it is clear that each member was selected for a specific

role and had the responsibility to accomplish a defined task. Thus, there was no overlap in the work

and every member was aware of his responsibility. Every week, a table was filled with the tasks

done consequently which facilitated enormously writing the technical report.

The company members were always in touch. They were communicating using Facebook; to

synchronize meeting times. Besides they were discussing their tasks together not only by e-mail but

also by text messages and phone calls. These communication methods built a strong sense and a

beautiful spirit of teamwork in the company which strengthened the cooperation together. As a

result of the enhancement of the team spirit, the rate of work was enhanced too.

Fig.28: Gantt chart.

Page 13: Oceanus Co. Tech. Report

Page 13 of 18

7. Safety:

Oceanus Co. cared for both of staff and ROV safety. To start with, the staff safety as they:

• Used eye goggles and safety gloves while working.

• Used insulated tools while working.

• Made sure that the circuits are not connected to the battery while repairing any damaged

circuits.

• Used a current tester to test if the electric current is still passing through the wires.

• Worked on wooden floor to avoid the electrical surge that may ground the person and the

whole electric current will pass through his body.

The factor of safety was put four times the range the crew could face, all components were tested to

two bars “20.3m” pressure.

Mechanical wise:

The end caps of the electronics can are isolated by a layer of rubber as the motors' wires pass through them.

O-rings are incorporated into the end caps; to maintain complete isolation at pressure two bars.

Smooth edges are in all parts of the ROV.

Kort nozzles are attached to the motors.

Electrical wise:

A 25A fuse is connected to the power line of the tether placed in the driving station. 5A

fuse is placed each motor. 1A fuse is connected to control module.

A current sensor is connected to each thruster; to give an alarm if high current occurred.

A temperature sensor is placed to detect overheating.

Water detection alarm is connected which operates if any leakage in the electronics can is

detected. A pressure sensor is connected to get the depth the ROV.

An emergency button is placed in the driving station to shut down the system in case of any

emergency.

8. Vehicle system:

Oceanus Co. crew was aware of the significance of the wide featured ROV in the

economical field and that is the reason the Oceanus ROV have been designed to match the

commercial taste as it is characterized by easily removable arms so as to give Triton the potency to

Page 14: Oceanus Co. Tech. Report

Page 14 of 18

be replaced by whatever the client desires. In other words, the client may change them to larger or

stronger grippers since the grippers are portable and can be replaced with another design which is

an advantage existing in the vehicle allowing the ROV to do different and more difficult missions

with more flexibility.

9. Troubleshooting:

Throughout the manufacture of Triton, Oceanus staff has faced some problems which they have

overcome as quickly as possible.

To begin with the mechanical part, a pressure chamber was made to test all pieces used, such as the

electronic can and the tether splitter. The aforementioned chamber simulates a depth of over 20.3m,

which is approximately four times the specified in the MATE ROV competition rangers’ class. In

addition, after testing the fail of the isolation of the electronic can, a layer of wax was put.

Unfortunately, a thick layer of rubber replaced the wax, as the wax wasn’t that efficient.

As for the electrical part, when ROV's gamepad control was used some of the motors have failed to

respond to the button press, and was hard to figure out if the problem was with the connection

between the pressed button and the relay or with the connection between the relay and the motor. In

order to overcome this problem, Oceanus company’s crew decided to place a LED and a current

sensor on each motor. If the button is pressed on and the LED is not emitting light and the current

sensor is working, then that shows that the problem is with the connection between the button and the

relay. And if the LED is emitting light and the current sensor is not working then that means that the

problem is with the connection between the relay and the motor.

After using the aforementioned technique, Oceanus crew has accomplished a great success in

overcoming technical problems.

Page 15: Oceanus Co. Tech. Report

Page 15 of 18

10. Challenges:

10.1 Technical challenges:

As a technical problem faced by the company, the crew wanted to put at least one board of

sixteen relays in a cylinder of diameter 11cm. The aforementioned board was of dimension

30cm* 10cm which would has cost scratches to the cylinder with only 1 cm difference between

the diameter and the length.

Accordingly, two boards were used instead carrying sixteen relays (thirty two in total)

with dimensions 8cm* 6.5cm.The previous change was greatly better with a roam of 4.5 cm

between the length and diameter without any risk of damaging the cylinder.

10.2 Non-technical challenges:

Since the beginning of the company’s meetings, there have been some non-technical issues to be

discussed. The first issue was the leak of organizing: each member wanted to be charged of a

specific position. Fortuitously, this problem was solved by elections and filtering the candidates

with by consulting our mentors.

The first disappointment experiment the crew had: the test of the first version of the ROV and it

took it more than an hour to complete the missions. As a result, the crew became grimed because

they worked hard before the trial day. Nevertheless, the crew soon had the imperturbability and

decided not to waste more time and energy on a useless matter. Oceanus company crew finally

realized that nothing would come easily and notified the disadvantages of the design back then,

and rearranged strategies until Oceanus determined that the exemplary design would be the dry-

hull.

11. Future improvements

Next time Oceanus desires to participate in the MATE ROV competition, the crew aims to use all

the Triton’s sensors, such as tilt, compass, accelerometer, and finally pressure sensor, in order to

calculate the depth of the ROV plus, the most important part, maintain its depth when a certain

button in the driving station is pressed.

Page 16: Oceanus Co. Tech. Report

Page 16 of 18

12. Budget:

All values are in EGP.

Items and quantity Donations Expenditures Re-Used Actual

Electronics (on ROV) 170 170

Electronics (topside) 500 500

Acrylic Tube 200 200

Acrylic ROV Body Sheets 800 800

Acrylic DOOM 50 50

End caps 300 300

Propellers * 8 600 600

Propeller coupling * 8 140 140

Thrusters * 8 2200 2200

Thrusters Housing & kort nozzles 320 320

Tether 200 200

Cameras 3 600 600

Servo Controller Board 150 150

Miscellaneous Electronics Parts 2000

H-Bridges 2000 2000

Pressure Sensor 750 750

Digital Compass tilt compensated 250 70 320

Current sensors * 8 600 600

Water Detection *2 50 50

Team Shirts 500 500

Total 10,450

Contributors

Brilliance Language School 1000 LE Notions Academy 2500 LE Total 3500LE

Page 17: Oceanus Co. Tech. Report

Page 17 of 18

Appendix A:

Page 18: Oceanus Co. Tech. Report

Page 18 of 18

ROV

DC Power Supply

Tether

Fuse/Circuit Breaker Driving Station

Scr

een

RemoteuC

Sensors UC

Safety UC

Temperature UC

LCD

LCD

LCD

LCD

ON/OFF Switch

RemoteuC

SensorsuC

Safety UC

Camera

Camera

Camera Filter

Camera Filter

Connector

UC Power Supply Filter & Regulator

Current Sensor

Current Sensor

Current Sensor

Current Sensor

Current Sensor

Current Sensor

Pressure

Tilt

Compass

Temperature

Water Detection

Temperature

Sensor LM35

Fuse

Fuse

Fuse

Fuse

Fuse

Fuse

12V

5V

GND

Camera Signal USART Signals Sensors Signals