Objectives Describe early models of our solar system. Overview of Our Solar System Examine the...

95
Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity to the motions of celestial bodies. retrograde motion astronomical unit – perihelion Vocabulary – aphelion – eccentricity

Transcript of Objectives Describe early models of our solar system. Overview of Our Solar System Examine the...

Page 1: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Objectives• Describe early models of our solar system.

Overview of Our Solar System

• Examine the modern heliocentric model of our solar system.

• Relate gravity to the motions of celestial bodies.

– retrograde motion

– astronomical unit

– perihelion

Vocabulary– aphelion

– eccentricity

Page 2: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

• All the planets, as well as most of their moons, also called satellites, orbit the Sun in the same direction, and all their orbits, except Pluto’s, lie near the same plane.

• The planets of our solar system have various sizes, surface conditions, and internal structures.

Overview of Our Solar System• Earth is one of nine planets revolving around, or

orbiting, the Sun.

Overview of Our Solar System

Page 3: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Early Ideas• When viewed from Earth, the planets slowly

change position each night relative to the position of the stars.

Overview of Our Solar System

• Ancient astronomers assumed that the Sun, planets, and stars orbited a stationary Earth in what is now known as a geocentric model, meaning “Earth centered.”

Page 4: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Early Ideas• Some aspects of planetary motion were difficult to

explain with a geocentric model.

Overview of Our Solar System

– The normal direction of motion for all planets, as observed from Earth, is toward the east.

– Retrograde motion is when a planet occasionally will move toward the west across the sky.

Page 5: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Early Ideas• In 1543, Polish scientist Nicolaus Copernicus

suggested that the Sun was the center of the solar system.

Overview of Our Solar System

– In a Sun-centered, or heliocentric, model, the inner planets move faster in their orbits than the outer planets do.

– As Earth bypasses a slower-moving outer planet, it appears that the outer planet temporarily moves backward in the sky.

Page 6: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Early Ideas

Overview of Our Solar System

Mars appears to move from east to west (positions 3 and 4) for a short time during its retrograde motion. Retrograde motion is similar to passing a slower car in the freeway. It appears that the slower car is moving backward relative to the background. (not to scale)

Page 7: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Early Ideas

Kepler’s First Law

Overview of Our Solar System

– From 1576–1601, Danish astronomer Tycho Brahe made accurate observations of planetary positions.

– Using Brahe’s data, Johannes Kepler demonstrated his first law which states that each planet orbits the Sun in a shape called an ellipse.

– An ellipse is an oval shape that is centered on two points called the foci instead of a single point, as in a circle.

Page 8: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Early Ideas

Kepler’s First Law

Overview of Our Solar System

– The major axis, the maximum diameter of the ellipse, is the line that runs through both foci, one of which is always the Sun.

– Half of the length of the major axis is called the semimajor axis and is equal to the average distance between the Sun and the planet.

Page 9: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Early Ideas

Kepler’s First Law

Overview of Our Solar System

– An astronomical unit (AU), 1.496 × 108 km, is the average distance between the Sun and Earth.

– The average distances between the Sun and each planet are measured in astronomical units.

Page 10: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Early Ideas

Eccentricity

Overview of Our Solar System

– A planet in an elliptical orbit is not at a constant distance from the Sun.

• Perihelion is when a planet is at the closest point to the Sun in its orbit.

• Aphelion is when a planet is farthest point from from the Sun during its orbit.

Page 11: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Early Ideas

Eccentricity

Overview of Our Solar System

– Eccentricity, which is the ratio of the distance between the foci to the length of the major axis, defines the shape of a planet’s elliptical orbit.

– The orbital period is the length of time it takes for a planet or other body to travel a complete elliptical orbit around the Sun.

Page 12: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Early Ideas

Kepler’s Second and Third Laws

Overview of Our Solar System

– Kepler’s second law states that because a planet moves fastest when close to the Sun and slowest when far from the Sun, equal areas are swept out in equal amount of time.

Page 13: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Early Ideas

Kepler’s Second and Third Laws

Overview of Our Solar System

– Kepler also found that the square of the orbital period (P) equals the cube of the semimajor axis of the orbital ellipse (a).

– Kepler’s third law states P 2 = a

3, where P is a unit of time measured in Earth years, and a is a unit of length measured in astronomical units.

– Italian scientist Galileo Galilei proved, by discovering four moons orbiting the planet Jupiter, that not all celestial bodies orbit Earth, and therefore, Earth is not necessarily the center of the solar system.

Page 14: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Early Ideas

Kepler’s Second and Third Laws

Overview of Our Solar System

– In 1684, English scientist Isaac Newton published a mathematical and physical explanation of the motions of celestial bodies.

– Newton’s concepts included the law of universal gravitation, which provided an explanation of how the Sun governs the motions of the planets.

Page 15: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Gravity and Orbits• Through observations, Newton realized that any

two bodies attract each other with a force that depends on their masses and the distance between the two bodies.

Overview of Our Solar System

• The force grows stronger in proportion to the product of the two masses, but diminishes as the square of the distance between them increases.

Page 16: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Gravity and Orbits

Gravity

Overview of Our Solar System

– Newton’s law of universal gravitation states that every pair of bodies in the universe attract each other with a force that is proportional to the product of their masses and inversely proportional to the square of the distance between them.

Page 17: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Gravity and Orbits

Center of Mass

Overview of Our Solar System

– Newton also determined that each planet orbits a point between it and the Sun called the center of mass.

– The center of mass is the balance point between two orbiting bodies.

– If one of two bodies orbiting each other is more massive than the other, the center of mass is closer to the more massive body.

Page 18: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Section Assessment

1. Match the following terms with their definitions.

___ retrograde motion

___ astronomical unit

___ perihelion

___ aphelion

Overview of Our Solar System

A. the closest point to the center of mass in an elliptical orbit

B. a distance equal to the average distance between Earth and the Sun

C. the farthest point from the center of mass in an elliptical orbit

D. when a plant moves east to west across the sky

Page 19: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Section Assessment

2. What is eccentricity?

Overview of Our Solar System

Page 20: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

______ If the distance between the Moon and Earth was greater, the gravitational force would be greater as well.

______ The center of mass between a plant and the Sun can be within the Sun.

______ Planets move faster when they near the perihelion of their orbit.

______ Galileo proved that not all celestial bodies orbit Earth.

Section Assessment

3. Identify whether the following statements are true or false.

Overview of Our Solar System

Page 21: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.
Page 22: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Objectives• Describe the properties of the terrestrial planets.

• Compare Earth with the other terrestrial planets.

– terrestrial planet

– gas giant planet

– precession

Vocabulary

The Terrestrial Planets

Page 23: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

The Terrestrial Planets• The nine planets of our solar system can be

grouped into two main categories according to their basic properties.

The Terrestrial Planets

– The terrestrial planets are the inner four planets of Mercury, Venus, Earth, and Mars that are close to the size of Earth and have solid, rocky surfaces.

– The gas giant planets are the outer planets of Jupiter, Saturn, Uranus, and Neptune which are much larger, more gaseous, and lack solid surfaces.

– Pluto, the ninth planet from the Sun, has a solid surface, but it does not fit into either category.

Page 24: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Mercury• Mercury is the closest planet to the Sun and has

no moons.

The Terrestrial Planets

• Mercury is about one-third the size of Earth and has a smaller mass and radius.

• Mercury has a slow spin of 1407.6 hours; in two of Mercury’s years, three of Mercury’s days have passed.

Page 25: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Mercury

Atmosphere

The Terrestrial Planets

– Mercury has essentially no atmosphere, and what little does exist is composed primarily of oxygen and sodium.

– The daytime surface temperature on Mercury is 700 K (427ºC), while temperatures at night fall to 100 K (–173ºC).

Page 26: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Mercury

Surface

The Terrestrial Planets

– Most of what we know about Mercury is based on radio observations and images from a United States space probe mission, called Mariner 10.

– Mercury’s surface is covered with craters and plains.

– The plains of Mercury’s surface are smooth and relatively crater free.

– Mercury has a planetwide system of cliffs, called scarps, that may have developed as Mercury’s crust shrank and fractured early in the planet’s geological history.

Page 27: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Mercury

Interior

The Terrestrial Planets

– The high density of Mercury suggests that it has an extensive nickel-iron core, filling about 42 percent of Mercury’s volume.

– The detectable magnetic field suggests that Mercury has a molten zone in its interior.

– Mercury’s small size, high density, and probable molten interior zone resemble what Earth might be like if its crust and mantle were removed.

Page 28: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Venus• Venus, the second planet

from the Sun, has no moons.

The Terrestrial Planets

• Venus’s high albedo and its proximity to Earth make it the brightest planet in Earth’s nighttime sky.

• The surface of Venus is very hot, and it rotates slowly counterclockwise with one day equaling 243 Earth days.

• Venus has been explored by radar and spacecraft.

Page 29: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Venus

Atmosphere

The Terrestrial Planets

– Venus is the hottest planet in the solar system with an average surface temperature of about 737 K (464°C).

– The atmospheric pressure on Venus is equivalent to 92 Earth atmospheres.

– An efficient greenhouse effect is achieved with an atmosphere that is primarily carbon dioxide and nitrogen with clouds of sulfuric acid.

Page 30: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Venus

Surface

The Terrestrial Planets

– The 1989 Magellan missions of the United States used radar reflection measurements to map the surface of Venus in detail.

– The surface has been smoothed by volcanic lava flows, and it has only a few impact craters.

– The most recent global episode of volcanic activity took place about 500 million years ago.

– There is little evidence of current tectonic activity on Venus, and there is no well-defined system of crustal plates.

Page 31: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Venus

Interior

The Terrestrial Planets

– The size and density of Venus are similar to Earth, so the internal structure is most likely similar.

– It is theorized that Venus has a liquid metal core that extends halfway to the surface.

– There is no measurable magnetic field despite this liquid core, which is probably due to Venus’s slow rotation rate.

Page 32: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Earth• Earth, the third planet from the Sun, has many

unique properties.

The Terrestrial Planets

– Its distance from the Sun and its nearly circular orbit allow liquid water to exist on its surface in all three states: solid, liquid, and gas.

– Liquid water is required for life.

– Earth’s moderately dense atmosphere (78 percent nitrogen and 21 percent oxygen) and a mild greenhouse effect support conditions suitable for life.

Page 33: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Earth

Precession

The Terrestrial Planets

– Earth’s axis is tilted and has a wobble.

– Precession is the wobble in Earth’s rotational axis.

– It takes Earth’s rotational axis about 26 000 years to go through one cycle of precession.

– The sideways pull that causes precession comes from the Moon’s gravitational force on Earth, as well as to a lesser extent, the Sun’s gravitational force.

Page 34: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Earth

Precession

The Terrestrial Planets

Page 35: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Mars• Mars is the fourth planet

from the Sun and the outermost of the terrestrial planets.

The Terrestrial Planets

• Mars is smaller and less dense than Earth and has two irregularly-shaped moons, Phobos and Deimos.

• Mars has been explored by telescopes on Earth and with probes beginning in the 1960s that have flown by, orbited, &/or landed.

Page 36: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Mars

Atmosphere

The Terrestrial Planets

– The composition of Mars’s atmosphere is similar to Venus’s atmosphere, but with much lower density and pressure.

– The thin atmosphere is turbulent, which creates a constant wind on Mars.

– Martian dust storms may last for weeks at a time.

Page 37: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Mars

Surface

The Terrestrial Planets

– The southern hemisphere of Mars is a heavily cratered, highland region, while the northern hemisphere is dominated by plains that are sparsely cratered.

– Four gigantic shield volcanoes including Olympus Mons, the largest mountain in the solar system, are located in the northern hemisphere near a region called the Tharsis Plateau.

– An enormous canyon, Valles Marineris lies on the Martian equator and splits the Tharsis Plateau.

Page 38: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Mars

Surface

The Terrestrial Planets

– The Martian surface contains erosional features that suggest that liquid water once existed on the surface of Mars.

– Mars has polar ice caps of frozen carbon dioxide covering both poles that grow and shrink with the seasons on Mars.

– Water ice lies beneath the carbon dioxide ice in the northern cap.

Page 39: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Mars

Interior

The Terrestrial Planets

– Astronomers are unsure about the internal structure of Mars.

– It is thought to have a core of iron and nickel, and possibly sulfur which is covered by a mantle.

– Because Mars has no magnetic field, the core is probably solid.

– There is no evidence of current tectonic activity or tectonic plates on the surface of the crust.

Page 40: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Section Assessment

1. Which planet is physically the most similar to Earth? In what ways?

The Terrestrial Planets

Page 41: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Section Assessment

The Terrestrial Planets

2. Why doesn’t Mars have an efficient greenhouse effect even though its atmosphere is similar in composition to Venus?

Page 42: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Section Assessment

3. Identify whether the following statements are true or false.

The Terrestrial Planets

______ The largest volcano in the solar system is located on Mars.

______ Mercury has one small moon.

______ The surface of Venus is hot enough to melt lead.

______ In 26 000 years, the Earth’s axis will point toward the star Vega.

______ Earth is the only known tectonically active planet among the terrestrial planets.

Page 43: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.
Page 44: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

– liquid metallic hydrogen

– belt

– zone

Objectives• Describe the properties of the gas giant planets.

• Identify the unique nature of the planet Pluto.

Vocabulary

The Gas Giant Planets

Page 45: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

The Gas Giant Planets • The interiors of the gas giant planets are

composed of fluids, either gaseous or liquid, and possibly small, solid cores.

The Gas Giant Planets

• They are composed primarily of lightweight elements such as hydrogen, helium, carbon, nitrogen, and oxygen, and they are very cold at their surfaces.

• The gas giants have many satellites as well as ring systems, and they are all very large.

Page 46: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Jupiter• Jupiter is the largest planet, making

up 70 percent of all planetary matter in our solar system, and the fifth planet from the Sun.

The Gas Giant Planets

• Jupiter has a banded appearance as a result of flow patterns in its atmosphere.

• Jupiter has four major satellites in addition to at least 12 smaller ones.

• Jupiter has been explored by several United States space probes which detected volcanic activity on Jupiter’s closest major moon, Io.

Page 47: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Jupiter

Atmosphere

The Gas Giant Planets

– Jupiter has a low density, 1326 kg/m3, for its huge size because it is composed of lightweight elements.

– Hydrogen and helium make up the majority of Jupiter’s atmospheric gas.

– Below the liquid hydrogen, there is a layer of liquid metallic hydrogen.

– Liquid metallic hydrogen is a form of hydrogen that has properties of both a liquid and a metal, which can exist only under conditions of very high pressure.

Page 48: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Jupiter

Atmosphere

The Gas Giant Planets

– Electric currents flow within the layer of liquid metallic hydrogen and generate Jupiter’s magnetic field.

– At less than 10 hours, Jupiter has the shortest day in the solar system.

– Jupiter’s rapid rotation causes its clouds to flow rapidly in alternating cloud types called belts and zones.

– Belts are low, warm, dark-colored clouds that sink.

– Zones are high, cool, light-colored clouds that rise.

– Jupiter’s Great Red Spot is a storm that has been rotating around Jupiter for more than 300 years.

Page 49: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Jupiter

Moons and Rings

The Gas Giant Planets

– Jupiter’s four largest moons, Io, Europa, Ganymede, and Callisto, are called Galilean satellites.

– Io has been heated by Jupiter’s gravitational force to the point of becoming almost completely molten inside and undergoes constant volcanic eruptions.

– Astronomers hypothesize that Europa has a subsurface ocean of liquid water.

– Jupiter, like the other three gas giant planets, has rings.

Page 50: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Saturn• Saturn is the sixth planet

from the Sun and the second-largest planet in the solar system.

The Gas Giant Planets

• In 2004, the United States Cassini mission, launched in 1997, become the fifth probe to visit the planet.

• It will also release a probe into the atmosphere of Titan, Saturn’s largest moon, to explore surface conditions there.

Page 51: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Saturn

Atmosphere

The Gas Giant Planets

– Saturn is not quite as large as Jupiter and has an average density that is lower than that of water.

– Saturn rotates rapidly for its size and has flowing belts and zones.

– Saturn’s atmosphere is dominated by hydrogen and helium but it also includes ammonia ice.

Page 52: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Saturn

Atmosphere

The Gas Giant Planets

– The internal structure of Saturn is most likely fluid throughout with a small, solid core.

– Saturn’s strong magnetic field is aligned with its rotational axis, which is unusual among the planets.

Page 53: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Saturn

Moons and Rings

The Gas Giant Planets

– Saturn’s ring system has much broader and brighter rings than those of the other gas giant planets.

– There are seven major rings composed of narrower rings, called ringlets, and many open gaps.

– The rings are less than 200 m thick, and are aligned with Saturn’s equatorial plane.

– The ring particles are probably debris left over when a moon was destroyed either by a collision or Saturn’s gravity.

Page 54: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Saturn

Moons and Rings

The Gas Giant Planets

– The 18 known satellites of Saturn include the giant Titan, seven intermediate-sized moons, and a number of small moons.

– Titan is larger than Earth’s moon, and its atmosphere is made of nitrogen and methane.

Page 55: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Uranus• The seventh planet from the

Sun, Uranus, was discovered accidentally in 1781.

The Gas Giant Planets

• Two of Uranus’s larger moons, Titania and Oberon, were discovered in 1787.

• Uranus has at least 18 moons and 10 rings.

• In 1986, the United States Voyager 2 mission visited Uranus.

Page 56: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Uranus

Atmosphere

The Gas Giant Planets

– Uranus is 4 times as large and 15 times as massive as Earth and has a blue, velvety appearance.

– Uranus’s atmosphere is composed of helium and hydrogen and methane gas and has no distinct belts or zones.

– Its internal structure is completely fluid except for a small, solid core and it has a strong magnetic field.

Page 57: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Uranus

Atmosphere

The Gas Giant Planets

– The rotational axis of Uranus is tipped over so far that the north pole almost lies in its orbital plane.

– Uranus’s atmosphere keeps the planet at a temperature of 58 K (–215°C).

Page 58: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Uranus

Moons and Rings

The Gas Giant Planets

– The known moons and rings of Uranus orbit in the planet’s equatorial plane.

– New moons are frequently being discovered causing frequent changes in the count.

– Uranus’s rings are very dark—almost black.

Page 59: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Neptune• The existence of Neptune

was predicted, based on small deviations in the motion of Uranus, before it was discovered.

The Gas Giant Planets

• In 1846, Neptune was discovered where astronomers had predicted it.

• The Voyager 2 probe flew past Neptune in 1989.

Page 60: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Neptune

Atmosphere

The Gas Giant Planets

– Neptune is slightly smaller and denser than Uranus, but it is still about four times as large as Earth.

– Other similarities between Neptune and Uranus include their bluish color, atmospheric compositions, temperatures, magnetic fields, interiors, and particle belts.

– Neptune does have distinctive clouds and atmospheric belts and zones similar to those of Jupiter and Saturn.

Page 61: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Neptune

Moons and Rings

The Gas Giant Planets

– Neptune has many moons, the largest being Triton.

– Triton has a retrograde orbit, which means that it orbits backward, unlike virtually every other large satellite in the solar system.

– Triton also has a thin atmosphere and nitrogen geysers.

– Neptune has six rings that are composed of microscopic-sized dust particles.

Page 62: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Pluto• Pluto, the ninth planet in our solar system, was

discovered in 1930.

The Gas Giant Planets

• Pluto is very different from the other eight planets of our solar system and does not fit into either the terrestrial group or gas giant group.

• The density of Pluto indicates that it is made of half ice and half rock, and it is smaller than Earth’s moon.

• The atmosphere is composed of methane and nitrogen, but in unknown quantities.

Page 63: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Pluto• The orbit of Pluto is so eccentric that at aphelion,

it is 50 AU from the Sun, and at perihelion, it is almost 30 AU from the Sun.

The Gas Giant Planets

• Pluto’s rotational axis is tipped so far over that its north pole actually points south of its orbital plane.

• Pluto’s satellite, Charon, orbits in synchronous rotation at Pluto’s equatorial plane.

• Many of Pluto’s properties are more similar to those of the gas giants’ large moons than they are to those of any other planet.

Page 64: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Section Assessment

1. What is liquid metallic hydrogen?

The Gas Giant Planets

Page 65: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Section Assessment

2. Number the *nine traditional planets, starting with the closest to the Sun.

___ Uranus ___ Saturn

___ Mars ___ Pluto (*dwarf planet)

___ Mercury ___ Neptune

___ Jupiter ___ Venus

___ Earth

The Gas Giant Planets

Page 66: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Section Assessment

The Gas Giant Planets

3. Identify whether the following statements are true or false.

______ Saturn’s rings are about 200 km thick.

______ Earth’s Moon is largest satellite in our solar system.

______ Jupiter’s Great Red Spot is a storm that has been ongoing for more than 300 years.

______ Jupiter makes up about 40 percent of all planetary matter in our solar system.

Page 67: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.
Page 68: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

– planetesimal

– asteroid

– meteoroid

Objectives• Summarize the properties of the solar system that

support the theory of the solar system’s formation.

• Describe how the planets formed from a disk surrounding the young Sun.

• Explore remnants of solar system formation.

Vocabulary

Formation of Our Solar System

– meteor

– meteorite

– comet

– coma

– nucleus

– meteor shower

Page 69: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Formation of Our Solar System• Astronomers use Earth-based observations and

data from probes to derive theories about how our solar system formed.

Formation of Our Solar System

• The significant observations related to our solar system’s formation include the shape of our solar system, the differences among the planets, and the oldest planetary surfaces, asteroids, meteorites, and comets.

Page 70: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

A Collapsing Interstellar Cloud• Stars and planets form from clouds of gas and

dust, called interstellar clouds, which exist in space between the stars.

Formation of Our Solar System

• The interstellar clouds consist mostly of gas, especially hydrogen and helium that often appear as blotches of light and dark.

• Many interstellar clouds can be observed along the Milky Way in regions that have relatively high concentrations of interstellar gas and dust.

Page 71: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

A Collapsing Interstellar Cloud• Our solar system may have begun when

interstellar gas started to condense as a result of gravity and became concentrated enough to form the Sun and planets.

Formation of Our Solar System

– The collapse is initially slow, but it accelerates and the cloud soon becomes much denser at its center.

– Rotation slows the collapse in the equatorial plane, and the cloud becomes flattened.

– The cloud eventually becomes a rotating disk with a dense concentration at the center.

Page 72: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Sun and Planet Formation• The disk of dust and gas that formed the Sun and

planets is known as the solar nebula.

Formation of Our Solar System

• The dense concentration of gas at the center of this rotating disk eventually became the Sun.

• In the disk surrounding the Sun, the temperature varied greatly with location.

• As the disk began to cool, different elements and compounds were able to condense depending on their distance from the Sun which impacted the compositions of the forming planets.

Page 73: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Sun and Planet FormationElements and compounds that were able to condense close to the Sun, where it was warm, are called refractory elements, and far from the Sun, where it was cool, volatile elements could condense. Refractory elements, such as iron, comprise the terrestrial planets, which are close to the Sun. Volatile elements, such as ices and gases like hydrogen, comprise the planets further from the Sun, where it is cool.

Formation of Our Solar System

Page 74: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Sun and Planet Formation

The Growth of Objects

Formation of Our Solar System

– Once the condensing slowed, the tiny grains of condensed material started to accumulate and merge together to form larger bodies.

– Planetesimals are the solid bodies, reaching hundreds of kilometers in diameter, that formed as smaller particles collided and stuck together.

– Further growth continued through collisions and mergers of planetesimals resulting in a smaller number of larger bodies: the planets.

Page 75: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Sun and Planet Formation

Merging into Planets

Formation of Our Solar System

– Jupiter was the first large planet to develop in the outer solar system.

– As its size increased, its gravity began to attract additional gas, dust, and planetesimals.

– As each gas giant acquired material from its surroundings, a disk formed in its equatorial plane, much like the disk of the early solar system.

– In the disk, matter coalesced to form satellites.

Page 76: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Sun and Planet Formation

Merging into Planets

Formation of Our Solar System

– The inner planets also formed by the merging of planetesimals.

– These planetesimals were composed primarily of refractory elements, so the inner planets are rocky and dense.

– The Sun’s gravitational force is theorized to have swept up much of the gas in the area of the inner planets, preventing them from acquiring much additional material.

– The inner planets initially ended up with no satellites.

Page 77: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Sun and Planet Formation

Debris

Formation of Our Solar System

– The amount of interplanetary debris thinned out as it crashed into planets or was diverted out of the solar system.

– The planetesimals in the area between Jupiter and Mars, known as the asteroid belt, remained there because Jupiter’s gravitational force prevented them from merging to form a planet.

Page 78: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Asteroids

Asteroids comprise the thousands and thousands of bodies that orbit the Sun within the planetary orbits that are leftovers from the formation of the solar system.

Formation of Our Solar System

• Asteroids range from a few kilometers to about 1000 km in diameter and have pitted, irregular surfaces.

• Most asteroids are located between the orbits of Mars and Jupiter within the asteroid belt.

Page 79: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Asteroids

Pieces of Asteroids

Formation of Our Solar System

– As the asteroids orbit, they occasionally collide and break into fragments.

• A meteoroid is a asteroid fragment or any other interplanetary material that falls toward Earth and enters Earth’s atmosphere.

• A meteor is the streak of light produced when a meteoroid burns up in Earth’s atmosphere.

• A meteorite is part of a meteoroid, that does not completely burn up, that collides with the ground.

Page 80: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Comets

Comets are small, icy bodies that have highly eccentric orbits around the Sun and are remnants from solar system formation.

Formation of Our Solar System

• Comets are made of ice and rock, and they range from 1 to 10 km in diameter.

• There are two clusters, or clouds, of comets: the Kuiper belt and the Oort cloud.

• Occasionally, a comet is disturbed by the gravity of another object and is thrown into the inner solar system from one of these clusters.

Page 81: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Comets

The Orbits of Comets

Formation of Our Solar System

– When a comet nears the sun in its highly eccentric orbit, it begins to evaporate and form a head and one or more tails.

– The coma is an extended volume of glowing gas flowing from a comet’s head.

– The nucleus of a comet is the small solid core that releases gases and dust particles that form the coma and tails when it is heated.

Page 82: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Comets

Periodic Comets

Formation of Our Solar System

– Comets that repeatedly orbit into the inner solar system are known as periodic comets.

– Meteor showers occur when Earth intersects a cometary orbit and numerous particles from the comet burn up upon entering Earth’s upper atmosphere.

– Most meteors are caused by dust particles from comets, while most meteorites, the solid chunks of rock or metal that reach Earth’s surface, are fragments of asteroids.

Page 83: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Section Assessment

1. Match the following terms with their definitions.

___ asteroid

___ comet

___ meteor

___ meteorite

Formation of Our Solar System

A. small rocky bodies orbiting the Sun that are most likely leftover planetesimals.

B. the streak of light produced when interplanetary material burns up upon entering Earth’s atmosphere

C. small, icy bodies that have highly eccentric orbits around the Sun

D. interplanetary material that impacts Earth’s surface

Page 84: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Section Assessment

2. What are planetesimals and what is their role in forming planets?

Formation of Our Solar System

Page 85: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Section Assessment

Formation of Our Solar System

3. Identify whether the following statements are true or false.

______ Temperature variation in the solar nebula determined the primary elements in the planets.

______ All comet tails point toward the Sun.

______ The gravitational pull of Saturn has prevented the material in the asteroid belt from forming another planet.

______ The inner planets initially had no satellites.

Page 86: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.
Page 87: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Section 29.1 Main Ideas• Early astronomers explained the motions of the planets

with geocentric models, including epicycles.

• Copernicus, Brahe, Kepler, and Galileo developed evidence supporting a heliocentric solar system model.

• Newton developed a law of gravitation that was used to demonstrate the validity of the heliocentric model.

Section 29.1 Study Guide

Page 88: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Section 29.2 Main Ideas• The terrestrial planets include the four planets closest to

the Sun. They are relatively small and dense, and they have rocky surfaces.

• Mercury has a surface similar to the Moon’s, but a very different interior.

• Venus has an extremely hot surface as a result of greenhouse heating, but is similar to Earth in other properties.

• Earth is suitable for life because of its unique orbital position that allows water to exist in all three phases on the surface.

• Mars shows signs of having once had tectonic activity.

Section 29.2 Study Guide

Page 89: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Section 29.3 Main Ideas• The gas giant planets are very large and have low

densities, no solid surfaces, ring systems, and many moons.

• Jupiter is the largest of the planets. It has a fluid interior, except for a small rocky core, and several moons. Saturn is slightly smaller than Jupiter and has a more extensive ring system.

• Uranus and Neptune are very similar in size and composition.

• Pluto is not classified as a gas giant or a terrestrial planet.

Section 29.3 Study Guide

Page 90: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Section 29.4 Main Ideas• The solar system formed from a collapsing interstellar

cloud that flattened into a disk from which the planets formed.

• Terrestrial planets formed from refractory materials in the hot inner disk, and gas giants formed from volatile elements in the cold outer disk.

• Asteroids are rocky remnants of the early solar system. Most of them orbit the Sun between Mars and Jupiter.

• Comets have highly eccentric orbits and are made of rock and ice. When they are close to the Sun, they glow brightly and have a head and tails of gas and dust.

Section 29.4 Study Guide

Page 91: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Image Bank

Chapter 29 Images

Page 92: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Image Bank

Chapter 29 Images

Page 93: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Image Bank

Chapter 29 Images

Page 94: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

Image Bank

Chapter 29 Images

Page 95: Objectives Describe early models of our solar system. Overview of Our Solar System Examine the modern heliocentric model of our solar system. Relate gravity.

End of Custom ShowsThis slide is intentionally blank.