O38-PREDICTION OF THERMODYNAMIC STABILITY OF …tofa2010/Apresentacoes...PREDICTION OF THERMODYNAMIC...

29
PREDICTION OF THERMODYNAMIC STABILITY OF METAL/OXIDE INTERFACE 14 Sept 2010 Hong Mei Jin Ping Wu [email protected] Institute of High Performance Computing Singapore

Transcript of O38-PREDICTION OF THERMODYNAMIC STABILITY OF …tofa2010/Apresentacoes...PREDICTION OF THERMODYNAMIC...

Page 1: O38-PREDICTION OF THERMODYNAMIC STABILITY OF …tofa2010/Apresentacoes...PREDICTION OF THERMODYNAMIC STABILITY OF METAL/OXIDE INTERFACE 14 Sept 2010 Hong Mei Jin Ping Wu wuping@ihpc.a-star.edu.sg

PREDICTION OF THERMODYNAMIC STABILITY OF METAL/OXIDE INTERFACE

14 Sept 2010

Hong Mei Jin Ping Wu

[email protected]

Institute of High

Performance

Computing

Singapore

Page 2: O38-PREDICTION OF THERMODYNAMIC STABILITY OF …tofa2010/Apresentacoes...PREDICTION OF THERMODYNAMIC STABILITY OF METAL/OXIDE INTERFACE 14 Sept 2010 Hong Mei Jin Ping Wu wuping@ihpc.a-star.edu.sg

Computational Materials Science Department

Michael SullivanDeputy Program Manager

Gan Chee KwanMTS Team Leader

Marco KlähnMM Team Leader

Daniel CheongCC Team Leader

Yu ZhigenEN Team Leader

Page 3: O38-PREDICTION OF THERMODYNAMIC STABILITY OF …tofa2010/Apresentacoes...PREDICTION OF THERMODYNAMIC STABILITY OF METAL/OXIDE INTERFACE 14 Sept 2010 Hong Mei Jin Ping Wu wuping@ihpc.a-star.edu.sg

Oct2008

Page 4: O38-PREDICTION OF THERMODYNAMIC STABILITY OF …tofa2010/Apresentacoes...PREDICTION OF THERMODYNAMIC STABILITY OF METAL/OXIDE INTERFACE 14 Sept 2010 Hong Mei Jin Ping Wu wuping@ihpc.a-star.edu.sg

Materials

Method

sProperti

esProducts

Approaches for materials research

Bulk

Interface

Hybrid

Nanostructures

Electronic

Classical

Continuum

Experiment

Chemical

Physical

Structural

Electronics

Energy

Bio-medical

interdisciplinary and multiscale nature ...

Page 5: O38-PREDICTION OF THERMODYNAMIC STABILITY OF …tofa2010/Apresentacoes...PREDICTION OF THERMODYNAMIC STABILITY OF METAL/OXIDE INTERFACE 14 Sept 2010 Hong Mei Jin Ping Wu wuping@ihpc.a-star.edu.sg

Leading research …..

Semiconductor

Physics

Solution

Chemistry

Materials

Informatics

Theory

ElectronicsEnergy Bio-medical

Devices

Zinc Alloys &

Zinc Oxides

Ti/Zr Alloys &

Ti/Zr Oxides

Delafossite

& Perovskite

Applications

Materials

Page 6: O38-PREDICTION OF THERMODYNAMIC STABILITY OF …tofa2010/Apresentacoes...PREDICTION OF THERMODYNAMIC STABILITY OF METAL/OXIDE INTERFACE 14 Sept 2010 Hong Mei Jin Ping Wu wuping@ihpc.a-star.edu.sg

ETPLCominco

IME, DSI, NTUNUS

Ontario-Singapore

Zinc alloy and Zinc oxideMetal-oxide

interface

Minor additives for Zn galvanizing

Materials ……

1998 20102005

ZnO based LED

P-type ZnO

Patent and licensing

IME, DSI, NTU

2001 2008

Page 7: O38-PREDICTION OF THERMODYNAMIC STABILITY OF …tofa2010/Apresentacoes...PREDICTION OF THERMODYNAMIC STABILITY OF METAL/OXIDE INTERFACE 14 Sept 2010 Hong Mei Jin Ping Wu wuping@ihpc.a-star.edu.sg

IMREIMENUS

Rolls RoyceNTUNYP

ICES NTU

Simtech

Ti/Zr alloy and Ti/Zr oxideMetal-oxide

interface

Bio-Ti alloys design

Materials ……

2004 20102006

SOFC

Bio-Zr alloys

Nuclear energy

Water splitting

High K ZrO2

NYPU of Montreal

2005 2008

Page 8: O38-PREDICTION OF THERMODYNAMIC STABILITY OF …tofa2010/Apresentacoes...PREDICTION OF THERMODYNAMIC STABILITY OF METAL/OXIDE INTERFACE 14 Sept 2010 Hong Mei Jin Ping Wu wuping@ihpc.a-star.edu.sg

• Introduction

• Density Functional Theory(DFT) calculation of Ni/ZrO2, Cu/ZrO2

• Empirical model for thermodynamic stability of Ni/ZrO2, Cu/ZrO2• Empirical model for thermodynamic stability of Ni/ZrO2, Cu/ZrO2

• Model prediction for Au/TiO2

• DFT verification of empirical prediction for Au/TiO2

• Summary

Page 9: O38-PREDICTION OF THERMODYNAMIC STABILITY OF …tofa2010/Apresentacoes...PREDICTION OF THERMODYNAMIC STABILITY OF METAL/OXIDE INTERFACE 14 Sept 2010 Hong Mei Jin Ping Wu wuping@ihpc.a-star.edu.sg

� Important in engineering applications:� microelectronics packaging, optoelectronics

� structure composites and coatings of nuclear reactors� heterogeneous catalysis, fuel cells

� A challenge to develop a fundamental understanding of theSchottky Barrier formation mechanism

� Well reported in TOFA2010: O1, O47, O53, O72, P31, P38

Page 10: O38-PREDICTION OF THERMODYNAMIC STABILITY OF …tofa2010/Apresentacoes...PREDICTION OF THERMODYNAMIC STABILITY OF METAL/OXIDE INTERFACE 14 Sept 2010 Hong Mei Jin Ping Wu wuping@ihpc.a-star.edu.sg

Crystal structure of Ni (Cu, Au) and c-ZrO2

Ni (Cu, Au) ZrO2

Fm-3mCubic

Fm-3mCubic

Page 11: O38-PREDICTION OF THERMODYNAMIC STABILITY OF …tofa2010/Apresentacoes...PREDICTION OF THERMODYNAMIC STABILITY OF METAL/OXIDE INTERFACE 14 Sept 2010 Hong Mei Jin Ping Wu wuping@ihpc.a-star.edu.sg

Calculation model (Calculation model (supercell approach))

dark blue color: Ni(Cu), light blue color is

Zr, red color is O atom, respectively

Page 12: O38-PREDICTION OF THERMODYNAMIC STABILITY OF …tofa2010/Apresentacoes...PREDICTION OF THERMODYNAMIC STABILITY OF METAL/OXIDE INTERFACE 14 Sept 2010 Hong Mei Jin Ping Wu wuping@ihpc.a-star.edu.sg

Calculation detailsCalculation details

DFT, planewave, pseudopotential method (vasp)Ultrasoft pseudopotential & GGACut off energy: 500 eVK points: 8x8x1Since metal is less rigid, the lattice mismatch induced Since metal is less rigid, the lattice mismatch induced small in-plane strain was assigned to the metalElectronic energy was minimized using a mixture of the blocked Davidson and RMM-DIIS algorithm. Conjugate gradient method for ionic relaxation.

Page 13: O38-PREDICTION OF THERMODYNAMIC STABILITY OF …tofa2010/Apresentacoes...PREDICTION OF THERMODYNAMIC STABILITY OF METAL/OXIDE INTERFACE 14 Sept 2010 Hong Mei Jin Ping Wu wuping@ihpc.a-star.edu.sg

Work of adhesion energyWork of adhesion energy

22

22

,

, 2/)(

ZrOmZrOm

ZrOmtottot

ZrOtotmad AEEEE

γσσ −+=

−+=

where σ is the surface energy, A is interface area, γ is interfacial energy, it can be obtained from Gibbs free energy of the system:

ATSPVNNNE OOZrZrmmtot

ZrOmZrOm 2/)(22 ,, −+−−−= µµµγ

where µ is the chemical potential, N is the number of the atoms in the interface where µ is the chemical potential, N is the number of the atoms in the interface system, V is volume and S is entropy. For typical working temperature and pressure, term PV and TS can be neglected. Further, µZrO2= µZr+2µo.

So the above equation becomes:

ANNENENE oZrobulkZrOZr

bulkmmZrOm

totZrOm 2/)2(( 2,, 22

µγ −−−−=

for stoichiometric interface, the coefficient of µo will be zero, however, for non-stoichiometric interface, it will be a function of oxygen potential.

Page 14: O38-PREDICTION OF THERMODYNAMIC STABILITY OF …tofa2010/Apresentacoes...PREDICTION OF THERMODYNAMIC STABILITY OF METAL/OXIDE INTERFACE 14 Sept 2010 Hong Mei Jin Ping Wu wuping@ihpc.a-star.edu.sg
Page 15: O38-PREDICTION OF THERMODYNAMIC STABILITY OF …tofa2010/Apresentacoes...PREDICTION OF THERMODYNAMIC STABILITY OF METAL/OXIDE INTERFACE 14 Sept 2010 Hong Mei Jin Ping Wu wuping@ihpc.a-star.edu.sg

Calculated interfacial energy, surface energy and work of adhesion for morerelatively stable stoichiometric interface of Ni(110)/ZrO2(110) andCu(110)/ZrO2(110)surface energy (eV) interfacial energy (eV) Work of adhesion (J/m2)

Ni(110) 0.159 Ni/ZrO2 0.185 1.057

Cu(110) 0.085 Cu/ZrO2 0.139 0.6087

ZrO2(110) 0.092

Ref: D. Sotiropoulou et al., Ref: J. Mater. Sci,28(1993)356, Ceramics International, 15(1989)201.

Experiment results [ref]

Page 16: O38-PREDICTION OF THERMODYNAMIC STABILITY OF …tofa2010/Apresentacoes...PREDICTION OF THERMODYNAMIC STABILITY OF METAL/OXIDE INTERFACE 14 Sept 2010 Hong Mei Jin Ping Wu wuping@ihpc.a-star.edu.sg

Summary:

1. In the intermediate range of oxygen partial pressures, (110)Ni/Cu-(110)ZrO2 is more stable

2. At extreme high or low oxygen partial pressure, non-stoichiometricinterface could be more stable

3. The calculated adhesion energies are in agreement with experimentresults

Challenges:to replace the computing intensive DFT calculations bysimple empirical equations!

Page 17: O38-PREDICTION OF THERMODYNAMIC STABILITY OF …tofa2010/Apresentacoes...PREDICTION OF THERMODYNAMIC STABILITY OF METAL/OXIDE INTERFACE 14 Sept 2010 Hong Mei Jin Ping Wu wuping@ihpc.a-star.edu.sg

Based on MacDonald and Eberhart [1], D.Chatain et al [2] and Miedema’s model[3], we define the interfacial energy and work of adhesion as following:

)1()( 211

,><><

>< ∆+

∆−=

M

MinM

o

MinoMOm A

H

A

Hx

γ

where∆Ho in <M1> and∆H M1 in M2 are the partial enthalpy of mixing. For∆Ho in <M1>,the following equation [4] was used:

[1] Trans.Metall.Soc. AIME, 233:512-517, 1965.[2] Revue Phys. Appl. 23, 1055-1064, 1988.[3] Cohesion in metals.[4] Phys. Rev. B, V62(2000):4707[5] J. Alloys. Comp., 236(1996):236-242[6] J. Alloys. Comp., 420(2006):175[7] Appl. Phys. Lett., 69(1996):1701

For ∆H M1 in M2 , we used the literature data from [3,5-7]. A is molar interface area which is defined at the next page.

)(1012.1 15 OJmolHH fMOMino x

−><

∞>< ×+∆≅∆

Page 18: O38-PREDICTION OF THERMODYNAMIC STABILITY OF …tofa2010/Apresentacoes...PREDICTION OF THERMODYNAMIC STABILITY OF METAL/OXIDE INTERFACE 14 Sept 2010 Hong Mei Jin Ping Wu wuping@ihpc.a-star.edu.sg

For molar interface area, it can be calculated as:

234

1:}111{ NaAface =

for fcc lattice: for tetragonal lattice TiO2:

ateterTiOaNcaAface

ateterOTiaNcaAface

−+×+=

−×+=

)min2(211

:}111{

)min/(22

1:}111{

22

22

2

2

2

1:}100{

22

1:}110{

4

NaAface

NaAface

=

=

cNaAface

ateterOcNaAface

ateterTiOcNaAface

ateterTiOaNcaAface

×=

−×=

−+×=

−+×+=

:}100{

)min(22

1:}110{

)min(24

1:}110{

)min2(22

1

3

1:}111{ 22

where N is Avogradro’s number, a ,c are lattice parameters

Page 19: O38-PREDICTION OF THERMODYNAMIC STABILITY OF …tofa2010/Apresentacoes...PREDICTION OF THERMODYNAMIC STABILITY OF METAL/OXIDE INTERFACE 14 Sept 2010 Hong Mei Jin Ping Wu wuping@ihpc.a-star.edu.sg

Apply equation (1) on Ni/ZrO2(110), Cu/ZrO2(110)

Ni/ZrO2(110)

E (J/m2) γNi,ZrO2 (J/m2) Work of adhesion Ead(J/m2)Ni-O Ni-Zr total

Ni(111) 1.205 1.451 2.65 0.54

Ni(110) 1.205 0.888 2.09 1.92

Ni(100) 1.207 1.310 2.46 1.17

Cu/ZrO2(110)

E (J/m2) γCu,Zro2(J/m2) Work of adhesionEad(J/m2)Cu-O Cu-Zr total

Cu(111) 1.107 0.6758 1.78 0.81

Cu(110) 1.107 0.4132 1.52 1.31

Cu(100) 1.107 1.691 1.69 1.04

γσσ −+=2ZrOmadE

* here work of adhesion was calculated by (where σ is surface energy of metal and oxide, respectively):

Page 20: O38-PREDICTION OF THERMODYNAMIC STABILITY OF …tofa2010/Apresentacoes...PREDICTION OF THERMODYNAMIC STABILITY OF METAL/OXIDE INTERFACE 14 Sept 2010 Hong Mei Jin Ping Wu wuping@ihpc.a-star.edu.sg

Predicted interfacial energy and work of adhesion of Au/TiO2 between different crystal orientation

Au/TiO2(110)O-terminate

E (J/m2) γAu,TiO2 (J/m2) Work of adhesion (J/m2)

Au-O Au-Ti total

Au(111) 0.333 0.5419 0.875 1.81

Au(110) 0.333 0.3318 0.664 2.34

Au(100) 0.333 0.4691 0.802 2.08

Au/TiO2(110)O+Ti-terminate

E (J/m2) γ Au/TiO2(J/m2) Work of adhesion (J/m2)

Au-O Au-Ti total

Au(111) 0.669 0.5419 1.209 1.48

Au(110) 0.669 0.3318 0.999 2.01

Au(100) 0.669 0.4691 1.136 1.75

Page 21: O38-PREDICTION OF THERMODYNAMIC STABILITY OF …tofa2010/Apresentacoes...PREDICTION OF THERMODYNAMIC STABILITY OF METAL/OXIDE INTERFACE 14 Sept 2010 Hong Mei Jin Ping Wu wuping@ihpc.a-star.edu.sg

Au/TiO2(111)O-terminate

E (J/m2) γAu/TiO2 (J/m2) Work of adhesion (J/m2)

Au-O Au-Ti total

Au(111) 0.112 0.5419 0.654 1.00

Au(110) 0.112 0.3318 0.443 1.52

Au(100) 0.112 0.4691 0.581 1.03

Au/TiO2(111) E (J/m2) γAu/TiO2 (J/m2) Work of Au/TiO2(111)O+Ti-terminate

E (J/m2) γAu/TiO2 (J/m2) Work of adhesion (J/m2)

Au-O Au-Ti total

Au(111) 0.336 0.5419 0.878 0.78

Au(110) 0.336 0.3318 0.668 1.29

Au(100) 0.336 0.4691 0.805 1.04

Page 22: O38-PREDICTION OF THERMODYNAMIC STABILITY OF …tofa2010/Apresentacoes...PREDICTION OF THERMODYNAMIC STABILITY OF METAL/OXIDE INTERFACE 14 Sept 2010 Hong Mei Jin Ping Wu wuping@ihpc.a-star.edu.sg

Au/TiO2(001)O-terminate

E (J/m2) γ Au/TiO2(J/m2) Work of adhesion (J/m2)

Au-O Au-Ti total

Au(111) 0.455 0.5419 0.9972 0.58

Au(110) 0.455 0.3318 0.7871 1.10

Au(100) 0.455 0.4691 0.8592 0.92

The order of work of adhesion:

110-Au-110-TiO2 (O-ter)

100-Au-110-TiO2(O-ter)

110-Au-110-TiO2 (O+Ti-ter)

111-Au-110-TiO2(O-ter)

100-Au-(O+Ti)-110-TiO2

Page 23: O38-PREDICTION OF THERMODYNAMIC STABILITY OF …tofa2010/Apresentacoes...PREDICTION OF THERMODYNAMIC STABILITY OF METAL/OXIDE INTERFACE 14 Sept 2010 Hong Mei Jin Ping Wu wuping@ihpc.a-star.edu.sg

Different termination of Rutile-TiO2(110) surface

(a) Stoichiometric slab

(b) non-Stoichiometric slab

O deficient Ti deficient

Page 24: O38-PREDICTION OF THERMODYNAMIC STABILITY OF …tofa2010/Apresentacoes...PREDICTION OF THERMODYNAMIC STABILITY OF METAL/OXIDE INTERFACE 14 Sept 2010 Hong Mei Jin Ping Wu wuping@ihpc.a-star.edu.sg

Interface structure

110-Au/110-TiO2 110-Au/110-TiO2 100-Au/110-TiO2

Page 25: O38-PREDICTION OF THERMODYNAMIC STABILITY OF …tofa2010/Apresentacoes...PREDICTION OF THERMODYNAMIC STABILITY OF METAL/OXIDE INTERFACE 14 Sept 2010 Hong Mei Jin Ping Wu wuping@ihpc.a-star.edu.sg
Page 26: O38-PREDICTION OF THERMODYNAMIC STABILITY OF …tofa2010/Apresentacoes...PREDICTION OF THERMODYNAMIC STABILITY OF METAL/OXIDE INTERFACE 14 Sept 2010 Hong Mei Jin Ping Wu wuping@ihpc.a-star.edu.sg

Calculated surface, interfacial energy and work of adhesion(J/m2)

Au on (O- terminate 110-TiO2 surface

σσσσm σσσσTiO2 γγγγAu/TiO2 Ead

Au(100) 0.572 2.319 1.64 1.24

Au(110) 0.690 2.319 1.62 1.27

Au(111) 0.383 2.319 1.67 1.03

Au on (O+Ti)- terminate 110-TiO2 surface

σσσσm σσσσTiO2 γγγγAu/TiO2 Ead

Au(100) 0.5719 2.319 2.717 0.17

Au(110) 0.690 2.319 2.67 0.33

ATSPVNNNE OOTiTiAuAutot

TiOAuTiOAu 2/)( 2,, 2−+−−−= µµµγ

22 ,

2,2 2/)(

TiOAuTiOAu

TiOAutottot

TiOtotmad AEEEE

γσσ −+=−+=

Page 27: O38-PREDICTION OF THERMODYNAMIC STABILITY OF …tofa2010/Apresentacoes...PREDICTION OF THERMODYNAMIC STABILITY OF METAL/OXIDE INTERFACE 14 Sept 2010 Hong Mei Jin Ping Wu wuping@ihpc.a-star.edu.sg
Page 28: O38-PREDICTION OF THERMODYNAMIC STABILITY OF …tofa2010/Apresentacoes...PREDICTION OF THERMODYNAMIC STABILITY OF METAL/OXIDE INTERFACE 14 Sept 2010 Hong Mei Jin Ping Wu wuping@ihpc.a-star.edu.sg

1. DFT calculations were carried out to investigate the interface stability andwork of adhesion between Ni(Cu)/ZrO2. The calculated work of adhesionare comparable with experiment.

2. An empirical equation was proposed to estimate the interfacial energybetween metal and oxide. It was applied on Ni(Cu)/ZrO2 and reasonableagreement with experiment were obtained by comparing to the work ofadhesion.adhesion.

3. The empirical equation was extended to Au/TiO2. The interfacial energyand the work of adhesion were estimated for different surface orientationbetween Au and TiO2.

4. DFT calculation were further performed on Au/TiO2 to verify theempirical estimation results. Good agreement were obtained in terms ofrelative interface stability. The predicted and calculated resultsare also inagreement with experimental observations.

Page 29: O38-PREDICTION OF THERMODYNAMIC STABILITY OF …tofa2010/Apresentacoes...PREDICTION OF THERMODYNAMIC STABILITY OF METAL/OXIDE INTERFACE 14 Sept 2010 Hong Mei Jin Ping Wu wuping@ihpc.a-star.edu.sg

Thank you

谢谢!