NXP Semiconductors | Automotive, Security, IoT · MC33215 4 MOTOROLA ANALOG IC DEVICE DATA...

20
Device Operating Temperature Range Package ORDERING INFORMATION MC33215FB MC33215B T A = –20° to +70°C TQFP–52 SDIP–42 B SUFFIX PLASTIC PACKAGE CASE 858 (SDIP–42) Order this document by MC33215/D FB SUFFIX PLASTIC PACKAGE CASE 848B (TQFP–52) 52 1 42 1 1 MOTOROLA ANALOG IC DEVICE DATA The MC33215 is developed for use in fully electronic telephone sets with speakerphone functions. The circuit performs the ac and dc line termination, 2–4 wire conversion, line length AGC and DTMF transmission. The speakerphone part includes a half duplex controller with signal and noise monitoring, base microphone and loudspeaker amplifiers and an efficient supply. The circuit is designed to operate at low line currents down to 4.0 mA enabling parallel operation with a classical telephone set. Highly Integrated Cost Effective Solution Straightforward AC and DC Parameter Adjustments Efficient Supply for Loudspeaker Amplifier and Peripherals Stabilized Supply Point for Handset Microphone Stabilized Supply Point for Base Microphone Loudspeaker Amplifier can be Powered and Used Separately Smooth Switch–Over from Handset to Speakerphone Operation Adjustable Switching Depth for Handsfree Operation Simplified Application This device contains 2782 active transistors. Attenuator DTMF Attenuator Duplex Controller Line Driver Current Splitter 1:10 Handset Microphone Base Microphone V CC or External Supply Base Loudspeaker Auxiliary Input Handset Earpiece Receive Signal Telephone Line V CC Supply DC Slope Line Current DC Offset AC Impedance R x LS BM HM MF This document contains information on a new product. Specifications and information herein are subject to change without notice. Motorola, Inc. 1997 Rev 0 Freescale Semiconductor, I Freescale Semiconductor, Inc. For More Information On This Product, Go to: www.freescale.com nc...

Transcript of NXP Semiconductors | Automotive, Security, IoT · MC33215 4 MOTOROLA ANALOG IC DEVICE DATA...

  • DeviceOperating

    Temperature Range Package

    ������

    ORDERING INFORMATION

    MC33215FB

    MC33215BTA = –20° to +70°C

    TQFP–52

    SDIP–42

    B SUFFIXPLASTIC PACKAGE

    CASE 858(SDIP–42)

    Order this document by MC33215/D

    FB SUFFIXPLASTIC PACKAGE

    CASE 848B(TQFP–52)

    52 1

    42

    1

    1MOTOROLA ANALOG IC DEVICE DATA

    ������� ��������

    ��������� ���� �������� ���

    ����������� ������

    The MC33215 is developed for use in fully electronic telephone sets withspeakerphone functions. The circuit performs the ac and dc line termination,2–4 wire conversion, line length AGC and DTMF transmission. Thespeakerphone part includes a half duplex controller with signal and noisemonitoring, base microphone and loudspeaker amplifiers and an efficientsupply. The circuit is designed to operate at low line currents down to 4.0 mAenabling parallel operation with a classical telephone set.

    • Highly Integrated Cost Effective Solution• Straightforward AC and DC Parameter Adjustments• Efficient Supply for Loudspeaker Amplifier and Peripherals• Stabilized Supply Point for Handset Microphone• Stabilized Supply Point for Base Microphone• Loudspeaker Amplifier can be Powered and Used Separately• Smooth Switch–Over from Handset to Speakerphone Operation• Adjustable Switching Depth for Handsfree Operation

    Simplified Application

    This device contains 2782 active transistors.

    Attenuator

    DTMF

    Attenuator

    DuplexController

    LineDriver

    CurrentSplitter

    1:10

    HandsetMicrophone

    BaseMicrophone

    VCC or External Supply

    Base Loudspeaker

    Auxiliary Input

    Handset Earpiece

    Receive Signal

    TelephoneLine

    VCC Supply

    DC Slope

    Line CurrentDC Offset

    ACImpedance

    RxLS

    BM

    HM

    MF

    This document contains information on a new product. Specifications and information hereinare subject to change without notice.

    Motorola, Inc. 1997 Rev 0

    Fre

    esc

    ale

    Se

    mic

    on

    du

    cto

    r, I

    Freescale Semiconductor, Inc.

    For More Information On This Product, Go to: www.freescale.com

    nc

    ...

  • MC33215

    2 MOTOROLA ANALOG IC DEVICE DATA

    FEATURES

    Line Driver and Supply• AC and DC Termination of Telephone Line• Adjustable Set Impedance for Real and Complex

    Termination• Efficient Supply Point for Loudspeaker Amplifier and

    Peripherals• Two Stabilized Supply Points for Handset and Base

    Microphones• Separate Supply Arrangement for Handset and

    Speakerphone Operation

    Handset Operation• Transmit and Receive Amplifiers• Differential Microphone Inputs• Sidetone Cancellation Network• Line Length AGC• Microphone and Earpiece Mute

    • Separate Input for DTMF and Auxiliary Signals• Parallel Operation Down to 4.0 mA of Line Current

    Speakerphone Operation• Handsfree Operation via Loudspeaker and Base

    Microphone• Integrated Microphone and Loudspeaker Amplifiers• Differential Microphone Inputs• Loudspeaker Amplifier can be Powered and Used

    Separately from the Rest of the Circuit• Integrated Switches for Smooth Switch–Over from

    Handset to Speakerphone Operation• Signal and Background Noise Monitoring in Both

    Channels• Adjustable Switching Depth for Handsfree Operation• �������� Switch–Over ��� �� ��� �����

    • Dial Tone Detector in the Receive Channel

    TQFP–52

    Figure 1. Pin Connections

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    16

    17

    18

    19

    20

    21

    42

    41

    40

    39

    38

    37

    36

    35

    34

    33

    32

    31

    30

    29

    28

    27

    26

    25

    24

    23

    22

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14 15 16 17 18 19 20 21 22 23 24 25 26

    39

    38

    37

    36

    35

    34

    33

    32

    31

    30

    29

    28

    27

    52 51 50 49 48 47 46 45 44 43 42 41 40

    SLB

    REG

    SLP

    MFI

    HM1

    HM2

    BM2

    BM1

    VDD

    TSA

    TSE

    TBN

    MUT

    LSF

    BVO

    PPL

    LSI

    VOL

    SWD

    REF

    AGC

    Gnd

    RLS

    RSA

    RSE

    RBN

    SLB

    REG

    SLP

    MFI

    HM1

    HM2

    BM2

    BM1

    VDD

    TSA

    TSE

    TBN

    MUT

    VCC

    VLN

    VHF

    VMC

    SPS

    PRS

    SWT

    LSM

    LSF

    BVO

    PPL

    LSI

    VOL

    SWD

    REF

    AGC

    Gnd

    RLS

    RSA

    RSE

    RBN

    RXI

    GRX

    RXO

    RXS

    PGD

    LSO

    VLS

    LSB

    (Top View)

    (Top View)

    N/C

    N/C

    N/C

    N/C

    SPS

    PRS

    SWT

    LSM

    N/C

    RXS

    RXO

    GR

    X

    RXI

    N/C

    N/C

    N/C

    N/C

    VMC

    VHF

    VLN

    CC

    N/C

    PGD

    LSO

    VLS

    LSB

    V

    SDIP–42

    Fre

    esc

    ale

    Se

    mic

    on

    du

    cto

    r, I

    Freescale Semiconductor, Inc.

    For More Information On This Product, Go to: www.freescale.com

    nc

    ...

  • MC33215

    3MOTOROLA ANALOG IC DEVICE DATA

    MAXIMUM RATINGS

    Rating Min Max Unit

    Peak Voltage at VLN –0.5 12 V

    Maximum Loop Current – 160 mA

    Voltage at VLS (if Powered Separately) –0.5 12 V

    Voltage at VHF (if Externally Applied) –0.5 5.5 V

    Voltage at SPS, MUT, PRS, LSM –0.5 7.5 V

    Maximum Junction Temperature – 150 °C

    Storage Temperature Range –65 150 °C

    NOTE: ESD data available upon request.

    RECOMMENDED OPERATING CONDITIONS

    Characteristic Min Max Unit

    Biasing Voltage at VLN 2.4 10 V

    Loop Current 4.0 130 mA

    Voltage at VLS 2.4 8.0 V

    Voltage at VHF (if Externally Applied) 2.4 5.0 V

    Voltage at SPS, MUT, PRS, LSM 0 5.0 V

    Operating Ambient Temperature Range –20 70 °C

    ELECTRICAL CHARACTERISTICS (All parameters are specified at T = 25°C, Iline = 18 mA, VLS = 2.9 V, f = 1000 Hz,PRS = high, MUT = high, SPS = low, LSM = high, test figure in Figure 17 with S1 in position 1, unless otherwise stated.)

    Characteristic Min Typ Max UnitÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    DC LINE VOLTAGEÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Line Voltage Vline ÁÁÁÁÁÁÁÁÁÁ

    ÁÁÁÁÁÁÁÁ

    ÁÁÁÁÁÁÁÁ

    ÁÁÁÁÁÁÁÁ

    VParallel Operation, Iline = 4.0 mA – 2.4 –

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁIline = 20 mA ÁÁÁÁÁ3.9 ÁÁÁÁ4.2 ÁÁÁÁ4.5 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Iline = 70 mAÁÁÁÁÁÁÁÁÁÁ

    4.8 ÁÁÁÁÁÁÁÁ

    5.2 ÁÁÁÁÁÁÁÁ

    5.6 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁSUPPLY POINT VDD

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Internal Current Consumption from VDD ÁÁÁÁÁÁÁÁÁÁ

    – ÁÁÁÁÁÁÁÁ

    1.2 ÁÁÁÁÁÁÁÁ

    1.5 ÁÁÁÁÁÁÁÁ

    mAVDD = 2.5 VÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁSUPPLY POINT VMCÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁDC Voltage at VMC (= VMC0)

    ÁÁÁÁÁÁÁÁÁÁ1.6

    ÁÁÁÁÁÁÁÁ1.75

    ÁÁÁÁÁÁÁÁ1.9

    ÁÁÁÁÁÁÁÁVÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁCurrent Available from VMCÁÁÁÁÁÁÁÁÁÁ1.0

    ÁÁÁÁÁÁÁÁ–

    ÁÁÁÁÁÁÁÁ–

    ÁÁÁÁÁÁÁÁmAVMC = VMC0 – 200 mV

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    SUPPLY POINT VHF

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    DC Voltage at VHF (= VHF0) ÁÁÁÁÁÁÁÁÁÁ

    2.6 ÁÁÁÁÁÁÁÁ

    2.8 ÁÁÁÁÁÁÁÁ

    3.0 ÁÁÁÁÁÁÁÁ

    V

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Internal Current Consumption from VHF ÁÁÁÁÁÁÁÁÁÁ

    – ÁÁÁÁÁÁÁÁ

    1.4 ÁÁÁÁÁÁÁÁ

    2.0 ÁÁÁÁÁÁÁÁ

    mAVHF = VHF0 + 100 mVÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁCurrent Available from VHFÁÁÁÁÁÁÁÁÁÁ2.0

    ÁÁÁÁÁÁÁÁ–

    ÁÁÁÁÁÁÁÁ–

    ÁÁÁÁÁÁÁÁmAVHF = VHF0 – 300 mV

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    SUPPLY POINT VCCÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Current Available from VCC ÁÁÁÁÁÁÁÁÁÁ

    13 ÁÁÁÁÁÁÁÁ

    15 ÁÁÁÁÁÁÁÁ

    – ÁÁÁÁÁÁÁÁ

    mA

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    VCC = 2.4 V, Iline = 20 mA ÁÁÁÁÁÁÁÁÁÁ

    ÁÁÁÁÁÁÁÁ

    ÁÁÁÁÁÁÁÁ

    ÁÁÁÁÁÁÁÁ

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁDC Voltage Drop Between VLN and VCC

    ÁÁÁÁÁÁÁÁÁÁ–

    ÁÁÁÁÁÁÁÁ1.0

    ÁÁÁÁÁÁÁÁ1.5

    ÁÁÁÁÁÁÁÁVÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁIline = 20 mA

    ÁÁÁÁÁÁÁÁÁÁ

    ÁÁÁÁÁÁÁÁ

    ÁÁÁÁÁÁÁÁ

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁSUPPLY INPUT VLS

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Internal Current Consumption from VLS ÁÁÁÁÁÁÁÁÁÁ

    – ÁÁÁÁÁÁÁÁ

    1.0 ÁÁÁÁÁÁÁÁ

    1.5 ÁÁÁÁÁÁÁÁ

    mA

    Fre

    esc

    ale

    Se

    mic

    on

    du

    cto

    r, I

    Freescale Semiconductor, Inc.

    For More Information On This Product, Go to: www.freescale.com

    nc

    ...

  • MC33215

    4 MOTOROLA ANALOG IC DEVICE DATA

    ELECTRICAL CHARACTERISTICS (continued) (All parameters are specified at T = 25°C, Iline = 18 mA, VLS = 2.9 V, f = 1000 Hz,PRS = high, MUT = high, SPS = low, LSM = high, test figure in Figure 17 with S1 in position 1, unless otherwise stated.)

    Characteristic UnitMaxTypMin

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    LOGIC INPUTS

    Logic Low Level Pins PRS, MUT, SPS, LSM – – 0.4 V

    Logic High Level Pins PRS, MUT, SPS, LSM 2.0 – 5.0 V

    Internal Pull Up Pins PRS, MUT, LSM – 100 – kΩ

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Internal Pull Down Pin SPS ÁÁÁÁÁÁÁÁÁÁ

    – ÁÁÁÁÁÁÁÁ

    100 ÁÁÁÁÁÁÁÁ

    – ÁÁÁÁÁÁÁÁ

    kΩ

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Tx CHANNEL, HANDSET MICROPHONE AMPLIFIER

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Voltage Gain from VHM to Vline ÁÁÁÁÁÁÁÁÁÁ

    46 ÁÁÁÁÁÁÁÁ

    47 ÁÁÁÁÁÁÁÁ

    48 ÁÁÁÁÁÁÁÁ

    dBVHM = 1.5 mVrmsÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁGain Reduction in Mute Condition

    ÁÁÁÁÁÁÁÁÁÁ

    60ÁÁÁÁÁÁÁÁ

    –ÁÁÁÁÁÁÁÁ

    –ÁÁÁÁÁÁÁÁ

    dBMUT = Low or PRS = Low or SPS = High

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Input Impedance at HM1 and HM2 ÁÁÁÁÁÁÁÁÁÁ

    14 ÁÁÁÁÁÁÁÁ

    18 ÁÁÁÁÁÁÁÁ

    22 ÁÁÁÁÁÁÁÁ

    kΩ

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Common Mode Rejection Ratio ÁÁÁÁÁÁÁÁÁÁ

    – ÁÁÁÁÁÁÁÁ

    50 ÁÁÁÁÁÁÁÁ

    – ÁÁÁÁÁÁÁÁ

    dB

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Total Harmonic Distortion at VLN ÁÁÁÁÁÁÁÁÁÁ

    – ÁÁÁÁÁÁÁÁ

    – ÁÁÁÁÁÁÁÁ

    2.0 ÁÁÁÁÁÁÁÁ

    %VHM = 4.5 mVrmsÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁPsophometrically Weighted Noise Level at VlineÁÁÁÁÁÁÁÁÁÁ–

    ÁÁÁÁÁÁÁÁ–72

    ÁÁÁÁÁÁÁÁ–

    ÁÁÁÁÁÁÁÁdBmpHM1 and HM2 Shorted with 200 Ω

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Tx CHANNEL, BASE MICROPHONE AMPLIFIER (SPS = HIGH, T x MODE FORCED)

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Voltage Gain from VBM to Vline ÁÁÁÁÁÁÁÁÁÁ

    53 ÁÁÁÁÁÁÁÁ

    55.5 ÁÁÁÁÁÁÁÁ

    58 ÁÁÁÁÁÁÁÁ

    dBVBM = 0.5 mVrmsÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁInput Impedance at BM1 and BM2ÁÁÁÁÁÁÁÁÁÁ14

    ÁÁÁÁÁÁÁÁ18

    ÁÁÁÁÁÁÁÁ22

    ÁÁÁÁÁÁÁÁkΩÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁCommon Mode Rejection RatioÁÁÁÁÁÁÁÁÁÁ–

    ÁÁÁÁÁÁÁÁ50

    ÁÁÁÁÁÁÁÁ–

    ÁÁÁÁÁÁÁÁdBÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁTotal Harmonic Distortion at VLNÁÁÁÁÁÁÁÁÁÁ–

    ÁÁÁÁÁÁÁÁ–

    ÁÁÁÁÁÁÁÁ2.0

    ÁÁÁÁÁÁÁÁ%VBM = 1.5 mV

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Psophometrically Weighted Noise Level at Vline ÁÁÁÁÁÁÁÁÁÁ

    – ÁÁÁÁÁÁÁÁ

    –62 ÁÁÁÁÁÁÁÁ

    – ÁÁÁÁÁÁÁÁ

    dBmpBM1 and BM2 Shorted with 200 Ω

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁGain Reduction in Mute Condition ÁÁÁÁÁ60 ÁÁÁÁ– ÁÁÁÁ– ÁÁÁÁdBMUT = Low or PRS = Low or SPS = Low

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Tx CHANNEL, DTMF AMPLIFIER (MUT = LOW OR PRS = LOW)ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Voltage Gain from VMF to VlineÁÁÁÁÁÁÁÁÁÁ

    34 ÁÁÁÁÁÁÁÁ

    35 ÁÁÁÁÁÁÁÁ

    36 ÁÁÁÁÁÁÁÁ

    dBVMF = 7.5 mVrms

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Input Impedance at MFI ÁÁÁÁÁÁÁÁÁÁ

    14 ÁÁÁÁÁÁÁÁ

    18 ÁÁÁÁÁÁÁÁ

    22 ÁÁÁÁÁÁÁÁ

    kΩ

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Gain Reduction in Mute Condition ÁÁÁÁÁÁÁÁÁÁ

    60 ÁÁÁÁÁÁÁÁ

    – ÁÁÁÁÁÁÁÁ

    – ÁÁÁÁÁÁÁÁ

    dBMUT = High or PRS = Low

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Rx CHANNEL, EARPIECE AMPLIFIERÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Voltage Gain from VRXI to VEAR (Note 1)ÁÁÁÁÁÁÁÁÁÁ

    23 ÁÁÁÁÁÁÁÁ

    24 ÁÁÁÁÁÁÁÁ

    25 ÁÁÁÁÁÁÁÁ

    dBVline = 20 mVrms

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Gain Reduction in Mute Condition ÁÁÁÁÁÁÁÁÁÁ

    60 ÁÁÁÁÁÁÁÁ

    – ÁÁÁÁÁÁÁÁ

    – ÁÁÁÁÁÁÁÁ

    dBMUT = Low or SPS = LowÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁInput Impedance at RXI

    ÁÁÁÁÁÁÁÁÁÁ

    24ÁÁÁÁÁÁÁÁ

    30ÁÁÁÁÁÁÁÁ

    36ÁÁÁÁÁÁÁÁ

    kΩÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Psophometrically Weighted Noise Level at VEARÁÁÁÁÁÁÁÁÁÁ

    –ÁÁÁÁÁÁÁÁ

    130ÁÁÁÁÁÁÁÁ

    –ÁÁÁÁÁÁÁÁ

    µVrmsRXI Shorted to Gnd via 10 µF

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Confidence Level During DTMF Dialing ÁÁÁÁÁÁÁÁÁÁ

    10 ÁÁÁÁÁÁÁÁ

    15 ÁÁÁÁÁÁÁÁ

    20 ÁÁÁÁÁÁÁÁ

    mVrmsVMF = 7.5 mVrms, MUT = LowÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOutput Swing Capability into 150 ΩÁÁÁÁÁÁÁÁÁÁ680

    ÁÁÁÁÁÁÁÁ–

    ÁÁÁÁÁÁÁÁ–

    ÁÁÁÁÁÁÁÁmVppTHD ≤2%

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Output Swing Capability into 450 Ω ÁÁÁÁÁÁÁÁÁÁ

    1800 ÁÁÁÁÁÁÁÁ

    – ÁÁÁÁÁÁÁÁ

    – ÁÁÁÁÁÁÁÁ

    mVppTHD ≤2%, RRXO = 360 kΩ

    NOTE: 1. Corresponding to –0.6 dB gain from the line to output RXO in the typical application.

    Fre

    esc

    ale

    Se

    mic

    on

    du

    cto

    r, I

    Freescale Semiconductor, Inc.

    For More Information On This Product, Go to: www.freescale.com

    nc

    ...

  • MC33215

    5MOTOROLA ANALOG IC DEVICE DATA

    ELECTRICAL CHARACTERISTICS (continued) (All parameters are specified at T = 25°C, Iline = 18 mA, VLS = 2.9 V, f = 1000 Hz,PRS = high, MUT = high, SPS = low, LSM = high, test figure in Figure 17 with S1 in position 1, unless otherwise stated.)

    Characteristic UnitMaxTypMin

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Rx CHANNEL, LOUDSPEAKER PRE–AMPLIFIER (SPS = HIGH, R x MODE FORCED)

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Voltage Gain from VRXI to VRLS (Note 2) ÁÁÁÁÁÁÁÁÁÁ

    21 ÁÁÁÁÁÁÁÁ

    24 ÁÁÁÁÁÁÁÁ

    27 ÁÁÁÁÁÁÁÁ

    dBVline = 20 mVrmsÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁGain Reduction in Mute ConditionÁÁÁÁÁÁÁÁÁÁ60

    ÁÁÁÁÁÁÁÁ–

    ÁÁÁÁÁÁÁÁ–

    ÁÁÁÁÁÁÁÁdBSPS = Low or MUT = Low

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Rx CHANNEL, LOUDSPEAKER AMPLIFIER

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Voltage Gain from VLSI to VLSP ÁÁÁÁÁÁÁÁÁÁ

    25 ÁÁÁÁÁÁÁÁ

    26 ÁÁÁÁÁÁÁÁ

    27 ÁÁÁÁÁÁÁÁ

    dBVLSI = 10 mVrmsÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁAttenuation at Delta RVOL = 47 kΩÁÁÁÁÁÁÁÁÁÁ–

    ÁÁÁÁÁÁÁÁ32

    ÁÁÁÁÁÁÁÁ–

    ÁÁÁÁÁÁÁÁdBÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁPsophometrically Weighted Noise Level at VLSPÁÁÁÁÁÁÁÁÁÁ–

    ÁÁÁÁÁÁÁÁ1.2

    ÁÁÁÁÁÁÁÁ–

    ÁÁÁÁÁÁÁÁmVrmsRXI Shorted to Gnd via 10 µF

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Confidence Level During DTMF Dialing ÁÁÁÁÁÁÁÁÁÁ

    150 ÁÁÁÁÁÁÁÁ

    200 ÁÁÁÁÁÁÁÁ

    250 ÁÁÁÁÁÁÁÁ

    mVrmsVMF = 7.5 mVrms MUT = Low

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Available Peak Current from LSO ÁÁÁÁÁÁÁÁÁÁ

    110 ÁÁÁÁÁÁÁÁ

    – ÁÁÁÁÁÁÁÁ

    – ÁÁÁÁÁÁÁÁ

    mApeak

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOutput Capability into 25 Ω ÁÁÁÁÁ1.8 ÁÁÁÁ– ÁÁÁÁ– ÁÁÁÁVppTHD ≤2%, VLSI = 55 mVrmsÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOutput Capability into 25 Ω ÁÁÁÁÁ

    ÁÁÁÁÁ2.7ÁÁÁÁÁÁÁÁ

    –ÁÁÁÁÁÁÁÁ

    –ÁÁÁÁÁÁÁÁ

    VppTHD ≤2%, VLS = 5.0 V, VLSI = 90 mVrms

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Gain Reduction in Mute Condition ÁÁÁÁÁÁÁÁÁÁ

    60 ÁÁÁÁÁÁÁÁ

    – ÁÁÁÁÁÁÁÁ

    – ÁÁÁÁÁÁÁÁ

    dBLSM = LowÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁRx CHANNEL PEAK–TO–PEAK LIMITERÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁPeak–to–Peak Limiter Attack Time

    ÁÁÁÁÁÁÁÁÁÁ

    –ÁÁÁÁÁÁÁÁ

    –ÁÁÁÁÁÁÁÁ

    5.0ÁÁÁÁÁÁÁÁ

    msVLSI Jumps from 40 mVrms to 120 mVrms

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Peak–to–Peak Limiter Release Time ÁÁÁÁÁÁÁÁÁÁ

    – ÁÁÁÁÁÁÁÁ

    300 ÁÁÁÁÁÁÁÁ

    – ÁÁÁÁÁÁÁÁ

    msVLSI Jumps from 120 mVrms to 40 mVrmsÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁTHD at 10 dB OverdriveÁÁÁÁÁÁÁÁÁÁ–

    ÁÁÁÁÁÁÁÁ–

    ÁÁÁÁÁÁÁÁ7.0

    ÁÁÁÁÁÁÁÁ%VLSI = 120 mVrms

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Peak–to–Peak Limiter Disable Threshold at PPL ÁÁÁÁÁÁÁÁÁÁ

    – ÁÁÁÁÁÁÁÁ

    – ÁÁÁÁÁÁÁÁ

    0.1 ÁÁÁÁÁÁÁÁ

    V

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    AUTOMATIC GAIN CONTROL

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Gain Reduction in Transmit and Receive Channel with Respect to Iline = 18 mA ÁÁÁÁÁÁÁÁÁÁ

    4.5 ÁÁÁÁÁÁÁÁ

    6.0 ÁÁÁÁÁÁÁÁ

    7.5 ÁÁÁÁÁÁÁÁ

    dBIline = 70 mAÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Gain Variation in Transmit and Receive Channel with Respect to Iline =18 mA withAGC Disabled (AGC to VDD)

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    –ÁÁÁÁÁÁÁÁÁÁÁÁ

    –ÁÁÁÁÁÁÁÁÁÁÁÁ

    1.5ÁÁÁÁÁÁÁÁÁÁÁÁ

    dB

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Highest Line Current for Maximum Gain ÁÁÁÁÁÁÁÁÁÁ

    – ÁÁÁÁÁÁÁÁ

    20 ÁÁÁÁÁÁÁÁ

    – ÁÁÁÁÁÁÁÁ

    mAÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Lowest Line Current for Minimum Gain ÁÁÁÁÁÁÁÁÁÁ

    – ÁÁÁÁÁÁÁÁ

    50 ÁÁÁÁÁÁÁÁ

    – ÁÁÁÁÁÁÁÁ

    mAÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    BALANCE RETURN LOSSÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Balance Return Loss with Respect to 600 Ω ÁÁÁÁÁÁÁÁÁÁ

    20 ÁÁÁÁÁÁÁÁ

    – ÁÁÁÁÁÁÁÁ

    – ÁÁÁÁÁÁÁÁ

    dB

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    SIDETONE

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Voltage Gain from VHM to VEAR ÁÁÁÁÁÁÁÁÁÁ

    – ÁÁÁÁÁÁÁÁ

    – ÁÁÁÁÁÁÁÁ

    28 ÁÁÁÁÁÁÁÁ

    dBS1 in Position 2ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁLOGARITHMIC AMPLIFIERS AND ENVELOPE DETECTORSÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁVoltage Gain from RXI to RSA

    ÁÁÁÁÁÁÁÁÁÁ18

    ÁÁÁÁÁÁÁÁ20

    ÁÁÁÁÁÁÁÁ22

    ÁÁÁÁÁÁÁÁdBVRXI = 15 mVrms

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Voltage Gain from BMI to TSA ÁÁÁÁÁÁÁÁÁÁ

    17.5 ÁÁÁÁÁÁÁÁ

    18.5 ÁÁÁÁÁÁÁÁ

    19.5 ÁÁÁÁÁÁÁÁ

    dBVBM = 0.5 mVrmsÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁDynamic Range of Logarithmic Compression from TSA to TSE and RSA to RSEÁÁÁÁÁÁÁÁÁÁ40

    ÁÁÁÁÁÁÁÁ–

    ÁÁÁÁÁÁÁÁ–

    ÁÁÁÁÁÁÁÁdB

    ITSA and IRSA from 2.5 µA to 250 µAÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Envelope Tracking Between TSE and RSE and Between TBN and RBN ÁÁÁÁÁÁÁÁÁÁ

    – ÁÁÁÁÁÁÁÁ

    ±3.0 ÁÁÁÁÁÁÁÁ

    – ÁÁÁÁÁÁÁÁ

    dBÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Maximum Source Current from TSE or RSE ÁÁÁÁÁÁÁÁÁÁ

    0.3 ÁÁÁÁÁÁÁÁ

    0.4 ÁÁÁÁÁÁÁÁ

    0.5 ÁÁÁÁÁÁÁÁ

    µA

    NOTE: 2. Corresponding to –0.6 dB gain from the line to output RLS in the typical application.

    Fre

    esc

    ale

    Se

    mic

    on

    du

    cto

    r, I

    Freescale Semiconductor, Inc.

    For More Information On This Product, Go to: www.freescale.com

    nc

    ...

  • MC33215

    6 MOTOROLA ANALOG IC DEVICE DATA

    ELECTRICAL CHARACTERISTICS (continued) (All parameters are specified at T = 25°C, Iline = 18 mA, VLS = 2.9 V, f = 1000 Hz,PRS = high, MUT = high, SPS = low, LSM = high, test figure in Figure 17 with S1 in position 1, unless otherwise stated.)

    Characteristic UnitMaxTypMin

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    LOGARITHMIC AMPLIFIERS AND ENVELOPE DETECTORS

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Maximum Sink Current into TSE or RSE ÁÁÁÁÁÁÁÁÁÁ

    100 ÁÁÁÁÁÁÁÁ

    – ÁÁÁÁÁÁÁÁ

    – ÁÁÁÁÁÁÁÁ

    µA

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Maximum Sink Current into TBN and RBN ÁÁÁÁÁÁÁÁÁÁ

    0.7 ÁÁÁÁÁÁÁÁ

    1.0 ÁÁÁÁÁÁÁÁ

    1.3 ÁÁÁÁÁÁÁÁ

    µA

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Maximum Source Current from TBN or RBN ÁÁÁÁÁÁÁÁÁÁ

    100 ÁÁÁÁÁÁÁÁ

    – ÁÁÁÁÁÁÁÁ

    – ÁÁÁÁÁÁÁÁ

    µA

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Dial Tone Detector Threshold at Vline ÁÁÁÁÁÁÁÁÁÁ

    – ÁÁÁÁÁÁÁÁ

    20 ÁÁÁÁÁÁÁÁ

    – ÁÁÁÁÁÁÁÁ

    mVrms

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Speech Noise Threshold Both Channels ÁÁÁÁÁÁÁÁÁÁ

    – ÁÁÁÁÁÁÁÁ

    4.5 ÁÁÁÁÁÁÁÁ

    – ÁÁÁÁÁÁÁÁ

    dB

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    ATTENUATOR CONTROL

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Switching Depth ÁÁÁÁÁÁÁÁÁÁ

    46 ÁÁÁÁÁÁÁÁ

    50 ÁÁÁÁÁÁÁÁ

    54 ÁÁÁÁÁÁÁÁ

    dB

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Adjustable Range for Switching Depth ÁÁÁÁÁÁÁÁÁÁ

    24 ÁÁÁÁÁÁÁÁ

    – ÁÁÁÁÁÁÁÁ

    60 ÁÁÁÁÁÁÁÁ

    dB

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Gain Variation in Idle Mode for Both Channels ÁÁÁÁÁÁÁÁÁÁ

    – ÁÁÁÁÁÁÁÁ

    25 ÁÁÁÁÁÁÁÁ

    – ÁÁÁÁÁÁÁÁ

    dB

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Current Sourced from SWT ÁÁÁÁÁÁÁÁÁÁ

    7.0 ÁÁÁÁÁÁÁÁ

    10 ÁÁÁÁÁÁÁÁ

    13 ÁÁÁÁÁÁÁÁ

    µATx ModeÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁCurrent Sunk into SWT

    ÁÁÁÁÁÁÁÁÁÁ

    7.0ÁÁÁÁÁÁÁÁ

    10ÁÁÁÁÁÁÁÁ

    13ÁÁÁÁÁÁÁÁ

    µARx Mode

    PIN FUNCTION DESCRIPTION

    Pin

    N D i iSDIP–42 TQFP–52 Name Description

    ÁÁÁÁÁÁÁÁ

    1 ÁÁÁÁÁÁÁÁ

    47 ÁÁÁÁÁÁÁÁÁÁ

    VCC ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Supply Output for Loudspeaker Amplifier and Peripherals

    ÁÁÁÁÁÁÁÁ

    2 ÁÁÁÁÁÁÁÁ

    48 ÁÁÁÁÁÁÁÁÁÁ

    VLN ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Line Connection Input

    ÁÁÁÁÁÁÁÁ

    3 ÁÁÁÁÁÁÁÁ

    49 ÁÁÁÁÁÁÁÁÁÁ

    VHF ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Supply Output for Speakerphone Section and Base Microphone

    ÁÁÁÁÁÁÁÁ

    4 ÁÁÁÁÁÁÁÁ

    50 ÁÁÁÁÁÁÁÁÁÁ

    VMC ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Supply Output for Handset Microphone

    ÁÁÁÁÁÁÁÁ

    – ÁÁÁÁÁÁÁÁ

    51 ÁÁÁÁÁÁÁÁÁÁ

    N/C ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Not Connected

    ÁÁÁÁÁÁÁÁ

    – ÁÁÁÁÁÁÁÁ

    52 ÁÁÁÁÁÁÁÁÁÁ

    N/C ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Not Connected

    ÁÁÁÁÁÁÁÁ

    5 ÁÁÁÁÁÁÁÁ

    1 ÁÁÁÁÁÁÁÁÁÁ

    SLB ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    SLP Buffered Output

    ÁÁÁÁÁÁÁÁ

    6 ÁÁÁÁÁÁÁÁ

    2 ÁÁÁÁÁÁÁÁÁÁ

    REG ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Regulation of Line Voltage Adjustment

    ÁÁÁÁÁÁÁÁ

    7 ÁÁÁÁÁÁÁÁ

    3 ÁÁÁÁÁÁÁÁÁÁ

    SLP ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    DC Slope Adjustment

    ÁÁÁÁÁÁÁÁ

    8 ÁÁÁÁÁÁÁÁ

    4 ÁÁÁÁÁÁÁÁÁÁ

    MFI ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    DTMF Input

    ÁÁÁÁÁÁÁÁ

    9 ÁÁÁÁÁÁÁÁ

    5 ÁÁÁÁÁÁÁÁÁÁ

    HM1 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Handset Microphone Input 1

    ÁÁÁÁÁÁÁÁ

    10 ÁÁÁÁÁÁÁÁ

    6 ÁÁÁÁÁÁÁÁÁÁ

    HM2 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Handset Microphone Input 2

    ÁÁÁÁÁÁÁÁ

    11 ÁÁÁÁÁÁÁÁ

    7 ÁÁÁÁÁÁÁÁÁÁ

    BM2 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Base Microphone Input 2

    ÁÁÁÁÁÁÁÁ

    12 ÁÁÁÁÁÁÁÁ

    8 ÁÁÁÁÁÁÁÁÁÁ

    BM1 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Base Microphone Input 1

    ÁÁÁÁÁÁÁÁ

    13 ÁÁÁÁÁÁÁÁ

    9 ÁÁÁÁÁÁÁÁÁÁ

    VDD ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Supply Input for Speech Part

    ÁÁÁÁÁÁÁÁ

    14 ÁÁÁÁÁÁÁÁ

    10 ÁÁÁÁÁÁÁÁÁÁ

    TSA ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Transmit Sensitivity Adjustment

    ÁÁÁÁÁÁÁÁ

    15 ÁÁÁÁÁÁÁÁ

    11 ÁÁÁÁÁÁÁÁÁÁ

    TSE ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Transmit Signal Envelope Timing Adjustment

    ÁÁÁÁÁÁÁÁ

    16 ÁÁÁÁÁÁÁÁ

    12 ÁÁÁÁÁÁÁÁÁÁ

    TBN ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Transmit Background Noise Envelope Timing Adjustment

    17 13 MUT Transmit and Receive Mute Input

    ÁÁÁÁÁÁÁÁ

    – ÁÁÁÁÁÁÁÁ

    14 ÁÁÁÁÁÁÁÁÁÁ

    N/C ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Not Connected

    ÁÁÁÁÁÁÁÁ

    – ÁÁÁÁÁÁÁÁ

    15 ÁÁÁÁÁÁÁÁÁÁ

    N/C ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Not Connected

    ÁÁÁÁÁÁÁÁ

    18 ÁÁÁÁÁÁÁÁ

    16 ÁÁÁÁÁÁÁÁÁÁ

    SPS ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Speakerphone Select Input

    19 17 PRS Privacy Switch Input

    ÁÁÁÁÁÁÁÁ

    20 ÁÁÁÁÁÁÁÁ

    18 ÁÁÁÁÁÁÁÁÁÁ

    SWT ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Switch–Over Timing Adjustment

    21 19 LSM Loudspeaker Mute Input

    Fre

    esc

    ale

    Se

    mic

    on

    du

    cto

    r, I

    Freescale Semiconductor, Inc.

    For More Information On This Product, Go to: www.freescale.com

    nc

    ...

  • MC33215

    7MOTOROLA ANALOG IC DEVICE DATA

    PIN FUNCTION DESCRIPTION (continued)

    Pin

    DescriptionNameSDIP–42 DescriptionNameTQFP–52ÁÁÁÁÁÁÁÁ

    –ÁÁÁÁÁÁÁÁ

    20ÁÁÁÁÁÁÁÁÁÁ

    N/CÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Not ConnectedÁÁÁÁÁÁÁÁ

    22ÁÁÁÁÁÁÁÁ

    21ÁÁÁÁÁÁÁÁÁÁ

    RXSÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Receive Amplifier StabilityÁÁÁÁÁÁÁÁ

    23ÁÁÁÁÁÁÁÁ

    22ÁÁÁÁÁÁÁÁÁÁ

    RXOÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Receive Amplifier OutputÁÁÁÁÁÁÁÁ

    24ÁÁÁÁÁÁÁÁ

    23ÁÁÁÁÁÁÁÁÁÁ

    GRXÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Earpiece Amplifier Feedback InputÁÁÁÁÁÁÁÁ

    25ÁÁÁÁÁÁÁÁ

    24ÁÁÁÁÁÁÁÁÁÁ

    RXIÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Receive Amplifier InputÁÁÁÁÁÁÁÁ

    –ÁÁÁÁÁÁÁÁ

    25ÁÁÁÁÁÁÁÁÁÁ

    N/CÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Not ConnectedÁÁÁÁÁÁÁÁ

    –ÁÁÁÁÁÁÁÁ

    26ÁÁÁÁÁÁÁÁÁÁ

    N/CÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Not ConnectedÁÁÁÁÁÁÁÁ

    26ÁÁÁÁÁÁÁÁ

    27ÁÁÁÁÁÁÁÁÁÁ

    RBNÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Receive Background Noise Envelope Timing AdjustmentÁÁÁÁÁÁÁÁ

    27ÁÁÁÁÁÁÁÁ

    28ÁÁÁÁÁÁÁÁÁÁ

    RSEÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Receive Signal Envelope Timing AdjustmentÁÁÁÁÁÁÁÁ

    28ÁÁÁÁÁÁÁÁ

    29ÁÁÁÁÁÁÁÁÁÁ

    RSAÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Receive Sensitivity AdjustmentÁÁÁÁÁÁÁÁ

    29ÁÁÁÁÁÁÁÁ

    30ÁÁÁÁÁÁÁÁÁÁ

    RLSÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Receive Output for Loudspeaker AmplifierÁÁÁÁÁÁÁÁ

    30ÁÁÁÁÁÁÁÁ

    31ÁÁÁÁÁÁÁÁÁÁ

    GndÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Small Signal GroundÁÁÁÁÁÁÁÁ

    31ÁÁÁÁÁÁÁÁ

    32ÁÁÁÁÁÁÁÁÁÁ

    AGCÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Line Length AGC AdjustmentÁÁÁÁÁÁÁÁ

    32ÁÁÁÁÁÁÁÁ

    33ÁÁÁÁÁÁÁÁÁÁ

    REFÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Reference Current SetÁÁÁÁÁÁÁÁ

    33ÁÁÁÁÁÁÁÁ

    34ÁÁÁÁÁÁÁÁÁÁ

    SWDÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Switching Depth Adjustment for HandsfreeÁÁÁÁÁÁÁÁ

    34ÁÁÁÁÁÁÁÁ

    35ÁÁÁÁÁÁÁÁÁÁ

    VOLÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Volume Control AdjustmentÁÁÁÁÁÁÁÁ

    35ÁÁÁÁÁÁÁÁ

    36ÁÁÁÁÁÁÁÁÁÁ

    LSIÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Loudspeaker Amplifier InputÁÁÁÁÁÁÁÁ

    36ÁÁÁÁÁÁÁÁ

    37ÁÁÁÁÁÁÁÁÁÁ

    PPLÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Peak–to–Peak Limiter Timing AdjustmentÁÁÁÁÁÁÁÁ

    37ÁÁÁÁÁÁÁÁ

    38ÁÁÁÁÁÁÁÁÁÁ

    BVOÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Bias Voltage for Loudspeaker Amplifier OutputÁÁÁÁÁÁÁÁ

    38ÁÁÁÁÁÁÁÁ

    39ÁÁÁÁÁÁÁÁÁÁ

    LSFÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Loudspeaker Amplifier Feedback InputÁÁÁÁÁÁÁÁ

    –ÁÁÁÁÁÁÁÁ

    40ÁÁÁÁÁÁÁÁÁÁ

    N/CÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Not ConnectedÁÁÁÁÁÁÁÁ

    –ÁÁÁÁÁÁÁÁ

    41ÁÁÁÁÁÁÁÁÁÁ

    N/CÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Not ConnectedÁÁÁÁÁÁÁÁ

    39ÁÁÁÁÁÁÁÁ

    42ÁÁÁÁÁÁÁÁÁÁ

    LSBÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Loudspeaker Amplifier Bootstrap OutputÁÁÁÁÁÁÁÁ

    40ÁÁÁÁÁÁÁÁ

    43ÁÁÁÁÁÁÁÁÁÁ

    VLSÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Supply Input for Loudspeaker AmplifierÁÁÁÁÁÁÁÁ

    41ÁÁÁÁÁÁÁÁ

    44ÁÁÁÁÁÁÁÁÁÁ

    LSOÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Loudspeaker Amplifier OutputÁÁÁÁÁÁÁÁ

    42ÁÁÁÁÁÁÁÁ

    45ÁÁÁÁÁÁÁÁÁÁ

    PGDÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Power GroundÁÁÁÁÁÁÁÁ

    –ÁÁÁÁÁÁÁÁ

    46ÁÁÁÁÁÁÁÁÁÁ

    N/CÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Not Connected

    Fre

    esc

    ale

    Se

    mic

    on

    du

    cto

    r, I

    Freescale Semiconductor, Inc.

    For More Information On This Product, Go to: www.freescale.com

    nc

    ...

  • MC33215

    8 MOTOROLA ANALOG IC DEVICE DATA

    DESCRIPTION OF THE CIRCUIT

    Based on the typical application circuit as given inFigure 18, the MC33215 will be described in three parts: linedriver and supplies, handset operation, and handsfreeoperation. The data used refer to typical data of thecharacteristics.

    LINE DRIVER AND SUPPLIESThe line driver and supply part performs the ac and dc

    telephone line termination and provides the necessarysupply points.

    AC Set ImpedanceThe ac set impedance of the telephone as created by the

    line driver and its external components can be approximatedwith the equivalent circuit shown in Figure 2.

    Figure 2. Equivalent of the AC impedance

    Inductor � RREG1 x CREG xRSLP

    11

    Slope �RSLP

    11x �1� RREG1

    RREG2�

    CVLN10 n

    CVDD100 µ

    ZVDD620 Zbal

    RSLB2.2 k

    RREG∞

    RREG1360 k

    CREG220 n Slope

    Inductor

    With the component values of the typical application, theinductor calculates as 1.6 H. Therefore, in the audio range of300 Hz to 3400 Hz, the set impedance is mainly determinedby ZVDD. As a demonstration, the impedance matching orBalance Return Loss BRL is shown in Figure 3.

    100

    40

    BRL

    (dB)

    f, FREQUENCY (Hz)

    Figure 3. Balance Return Loss

    35

    30

    25

    20

    15

    10

    5.0

    01000 10000

    The influence of the frequency dependent parasiticcomponents is seen for the lower frequencies (Inductor) andthe higher frequencies (CVLN) by a decreasing BRL value.

    DC Set ImpedanceThe line current flowing towards the MC33215 application

    is partly consumed by the circuitry connected to VDD whilethe rest flows into Pin VLN. At Pin VLN, the current is split up

    into a small part for biasing the internal line drive transistorand into a large part for supplying the speakerphone. Theratio between these two currents is fixed to 1:10. The dc setimpedance or dc setting of the telephone as created by theline driver and its external components can be approximatedwith the equivalent of a zener voltage plus a series resistoraccording to:

    Vzener � 0.2 x �1� RREG1RREG2�� �10 µA x RREG1�ILN � Iline – IVDD

    Rslope �RSLP

    11x �1� RREG1

    RREG2�

    With:

    VLN � Vzener��ILN x Rslope�

    If RREG2 is not mounted, the term between the bracketsbecomes equal to 1.

    With the values shown in the typical application and underthe assumption that IVDD = 1.0 mA, the above formulas canbe simplified to:

    VLN � 3.8 V���Iline – 1.0 mA� x 20�� 3.8 V� �Iline x 20�

    In the typical application this leads to a line voltage of 4.2 Vat 20 mA of line current with a slope of 20 Ω. Adding a 1.5 Vvoltage drop for the diode bridge and the interruptor, the dcvoltage at tip–ring will equal 5.7 V.

    If the dc mask is to be adapted to a country specificrequirement, this can be done by adjusting the resistorsRREG1 and RREG2, as a result, the zener voltage and theslope are varied. It is not advised to change the resistor RSLPsince this changes many parameters. The influence of RREG1and RREG2 is shown in Figure 4.

    Figure 4. Influence of R REG1 and RREG2 on the DC Mask

    0

    12

    VLN

    (V)

    Iline (mA)

    10

    8.0

    6.0

    4.0

    2.0

    020 40 60 80 100

    .

    RREG1 = 470 kRREG2 = 220 k

    RREG1 = 365 kRREG2 = 220 k

    RREG1 = 470 kRREG2 = Infinite

    RREG1 = 365 kRREG2 = Infinite

    As can be seen in Figure 4, for low line currents below10 mA, the given dc mask relations are no longer valid. Thisis the result of an automatic decrease of the current drawn

    Fre

    esc

    ale

    Se

    mic

    on

    du

    cto

    r, I

    Freescale Semiconductor, Inc.

    For More Information On This Product, Go to: www.freescale.com

    nc

    ...

  • MC33215

    9MOTOROLA ANALOG IC DEVICE DATA

    from Pin REG by the internal circuit (the 10 µA term in theformulas). This built–in feature drops the line voltage andtherefore enables parallel operation.

    The voltage over the line driver has to be limited to 12 V toprotect the device. A zener of 11 V at VLN is therefore themaximum advised.

    VDD SupplyThe internal circuitry for the line driver and handset

    interface is powered via VDD. This pin may also be used topower peripherals like a dialer or microcontroller. The voltageat VDD is not internally regulated and is a direct result of theline voltage setting and the current consumption at VDDinternally (IVDD) and externally (IPER). It follows that:

    VDD � VLN –�IVDD� IPER� x Rset

    For correct operation, it must be ensured that VDD isbiased at 1.8 V higher than SLP. This translates to amaximum allowable voltage drop across ZVDD ofVzener – 1.8 V. In the typical application, this results in amaximum allowable current consumption by the peripheralsof 2.0 mA.

    VMC SupplyAt VMC, a stabilized voltage of 1.75 V is available for

    powering the handset microphone. Due to this stabilizedsupply, microphones with a low supply rejection can be usedwhich reduces system costs. In order to support the paralleloperation of the telephone set, the voltage at VMC will bemaintained even at very low line currents down to 4.0 mA.

    Under normal supply conditions of line currents of 20 mAand above, the supply VMC is able to deliver a guaranteedminimum of 1.0 mA. However, for lower line currents, thesupply capability of VMC will decrease.

    Figure 5. VMC Under Different Microphone Loads

    0

    1.8

    VMC

    (V)

    IVMC (mA)

    1.7

    1.6

    1.5

    1.4

    1.3

    1.2

    1.1

    1.00.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

    Iline = 4.0 mA2.7 k VMC–VHF

    Iline = 20 mA

    Iline = 4.0 mA

    If, during parallel operation, a high current is required fromVMC, a 2.7 k resistor between VMC and VHF can be applied.In Figure 5, the VMC voltage under different microphonecurrents, is shown.

    VHF SupplyVHF is a stabilized supply which powers the internal

    duplex controller part of the MC33215, and which is alsomeant to power the base microphone or other peripherals.The base microphone however, can also be connected toVMC, which is preferred in case of microphones with a poorsupply rejection. Another possibility is to create an additionalfilter at VHF, like is shown in the typical application. Thesupply capability of VHF is guaranteed as 2.0 mA for linecurrents of 20 mA and greater.

    Since in parallel operation not enough line current isavailable to power a loudspeaker and thus having aspeakerphone working, the current internally supplied to VHFis cut around 10 mA of line current to save current for thehandset operated part. A small hysteresis is built in to avoidsystem oscillations.

    When the current to VHF is cut, the voltage at VHF willdrop rapidly due to the internal consumption of 1.4 mA andthe consumption of the peripherals. When VHF drops below2.0 V, the device internally switches to the handset mode,neglecting the state of the speakerphone select Pin SPS.

    In case an application contains a battery pack or if it ismains supplied, speakerphone operation becomes possibleunder all line current conditions. In order to avoid switch–overto handset operation below the 10 mA, VHF has to besupplied by this additional power source and preferably keptabove 2.4 V.

    VCC SupplyAt VCC the major part of the line current is available for

    powering the loudspeaker amplifier and peripheral circuitry.This supply pin should be looked at as a current source sincethe voltage on VCC is not stabilized and depends on theinstantaneous line voltage and the current to and consumedfrom VCC.

    The maximum portion of the line current which is availableat VCC is given by the following relation:

    IVCC ��1011

    x �Iline – IVDD�� – IVMC – IVHF This formula is valid when the voltage drop from VLN to

    VCC is sufficient for the current splitter to conduct all thiscurrent to VCC. When the drop is not sufficient, the currentsource saturates and the surplus of current is conducted tothe power ground PGD to avoid distortion in the line driver. Infact, when no current is drawn from VCC, the voltage at VCCwill increase until the current splitter is in balance. In Figure 6this behavior is depicted.

    Fre

    esc

    ale

    Se

    mic

    on

    du

    cto

    r, I

    Freescale Semiconductor, Inc.

    For More Information On This Product, Go to: www.freescale.com

    nc

    ...

  • MC33215

    10 MOTOROLA ANALOG IC DEVICE DATA

    A. Maximum Available Current at V CC

    Figure 6. Available Current at V CC

    0

    100

    Iline (mA)

    0

    3.5

    CC

    VLN

    –V

    (V

    )

    Iline (mA)

    90

    80

    70

    60

    50

    40

    30

    20

    10

    020 40 60 80 100

    3.0

    2.5

    2.0

    1.5

    1.0

    0.5

    020 40 60 80 100

    B. Voltage Drop to V CC

    IVCC/lline (%)

    IVCC(max) (mA)

    VCC to VLS

    IVCC at 98% ofIVCC(max) IVCC at 50% of

    IVCC(max)

    VCC Open

    mA

    AND

    %

    For instance, at a line current of 20 mA a maximum of15 mA of current is available at VCC. If all this current istaken, VCC will be 1.7 V below VLN. When not all this currentis drawn from VCC, but for instance only 1.0 mA for biasing ofthe loudspeaker amplifier, the voltage at VCC will be 1.2 Vbelow VLN. Although the measurements for Figure 6 aredone with RREG1 = 365 k, the results are also globally validfor other dc settings.

    As can be seen from Figure 6, the voltage at VCC is limitedby the voltage at VLN minus 1.0 V. This means that thevoltage at VCC is limited by the external zener at VLN. If it isnecessary to limit the voltage at VCC in order to protectperipheral circuits, a zener from VCC to Gnd can be added. Ifthe supply of the loudspeaker VLS is also connected to VCC,it is advisable that VCC does not exceed 8.0 V.

    The high efficiency of the VCC power supply contributesto a high loudspeaker output power at moderate linecurrents. More details on this can be found in the handsfreeoperation paragraph.

    HANDSET OPERATIONDuring handset operation, the MC33215 performs the

    basic telephone functions for the handset microphone andearpiece. It also enables DTMF transmission.

    Handset Microphone AmplifierThe handset microphone is to be capacitively connected

    to the circuit via the differential input HM1 and HM2. Themicrophone signal is amplified by the HMIC amplifier andmodulates the line current by the injection of the signal intothe line driver. This transfer from the microphone inputs to theline current is given as 15/(RSLP/11), which makes a totaltransmit voltage gain AHM from the handset microphoneinputs to the line of:

    AHM �VlineVHM

    � 15RSLP�11

    xZline x ZsetZline � Zset

    With the typical application and Zline = 600 Ω the transmitgain calculates as 47 dB.

    In case an electret microphone is used, it can be suppliedfrom the stabilized microphone supply point VMC of 1.75 Vproperly biased with resistors RHM1 and RHM2. This allowsthe setmaker to use an electret microphone with poor supplyrejection to reduce total system costs. Since the transmit gainAHM is fixed by the advised RSLP = 220 Ω and the constraintsof set impedance and line impedance, the transmit gain is set

    by adjusting the sensitivity of the handset microphone byadjusting the resistors RHM1 and RHM2. It is not advised toadjust the gain by including series resistors towards the PinsHM1 and HM2.

    A high pass filter is introduced by the coupling capacitorsCHM1 and CHM2 in combination with the input impedance. Alow pass filter can be created by putting capacitors in parallelwith the resistors RHM1 and RHM2.

    The transmit noise is measured as –72 dBmp with thehandset microphone inputs loaded with a capacitivelycoupled 200 Ω. In a real life application, the inputs will beloaded with a microphone powered by VMC. Although VMCis a stablized supply voltage, it will contain some noise whichcan be coupled to the handset microphone inputs, especiallywhen a microphone with a poor supply rejection is used. Anadditional RC filter on VMC can improve the noise figure, seealso the base microphone section.

    Handset Earpiece AmplifierThe handset earpiece is to be capacitively connected to

    the RXO output. Here, the receive signal is available which isamplified from the line via the sidetone network and the Rxand EAR amplifiers. The sidetone network attenuates thereceive signal from the line via the resistor divider composedof RSLB and Zbal, see also the sidetone section. Theattenuation in the typical application by this network equals24.6 dB. Then the signal from the sidetone network ispre–amplified by the amplifier Rx with a typical gain of 6.0 dB.This amplifier also performs the AGC and MUTE functions,see the related paragraphs. Finally, the signal is amplified bythe noninverting voltage amplifier EAR. The overall receivegain ARX from the line to the earpiece output then follows as:

    ARX �VRXOVline

    � AST x ARXI x �1� RRXORGRX� With: AST = Attenuation of the Sidetone Network

    ARXI = Gain of the Pre–Amplifier RxFor the typical application an overall gain from the line to

    the earpiece is close to 0 dB.The receive gain can be adjusted by adjusting the resistor

    ratio RRXO over RGRX. However, RRXO also sets theconfidence tone level during dialing which leaves RGRX to bechosen freely. A high pass filter is introduced by the couplingcapacitor CRXI together with the input impedance of the input

    Fre

    esc

    ale

    Se

    mic

    on

    du

    cto

    r, I

    Freescale Semiconductor, Inc.

    For More Information On This Product, Go to: www.freescale.com

    nc

    ...

  • MC33215

    11MOTOROLA ANALOG IC DEVICE DATA

    RXI. A second high pass filtering is introduced by thecombination of CGRX and RGRX. A low pass filter is createdby CRXO and RRXO. The coupling capacitor at the outputRXO is not used for setting a high pass filter but merely for dcdecoupling.

    In combination with dynamic ear capsules, the EARamplifier can become unstable due to the highly inductivecharacteristic of some of the capsules. To regain stability, a100 nF capacitor can be connected from RXS to Gnd inthose cases. An additional 10 nF at the RXI input, as shownin the typical application, improves the noise figure of thereceiver stage.

    Sidetone CancellationThe line driver and the receiver amplifier of the MC33215

    are tied up in a bridge configuration as depicted in Figure 7.This bridge configuration performs the so–called hybridfunction which, in the ideal case, prevents transmitted signalsfrom entering the receive channel.

    Figure 7. Sidetone Bridge

    VHM x 15

    RSLP�11

    VLN

    Zline//Zset

    SLP

    RSLP/11

    Gnd

    Zbal

    RSLB Gnd

    RXIReceive

    Transmit

    As can be seen from Figure 7 by inspection, the receiverwill not pick up any transmit signal when the bridge is inbalance, that is to say when:

    ZbalRSLB

    Zline��ZsetRSLP�11

    The sidetone suppression is normally measured in anacoustic way. The signal at the earpiece when applying asignal on the microphone is compared with the signal at theearpiece when applying a signal on the line. The suppressiontakes into account the transmit and receive gains set. In factthe sidetone suppression can be given as a purely electricalparameter given by the properties of the sidetone bridgeitself. For the MC33215, this so–called electrical sidetonesuppression ASTE can be given as:

    ASTE � 1 –Zbal

    RSLBx

    RSLP�11

    Zline��Zset

    Values of –12 dB or better, thus ASTE < 0.25, can easily bereached in this way.

    Automatic Gain ControlTo obtain more or less constant signal levels for transmit

    and receive regardless of the telephone line length, both thetransmit and receive gain can be varied as a function of linecurrent when the AGC feature is used. The gain reduction asa function of line current, and thus line length, is depicted inFigure 8.

    0

    0

    AGC

    (dB)

    Iline (mA)

    Figure 8. Automatic Gain Control

    –1.0

    –2.0

    –3.0

    –4.0

    –5.0

    –6.010 20 30 40 50 60 70

    RAGC = 20 k

    RAGC = 30 k

    For small line currents, and thus long lines, no gainreduction is applied and thus the transmit and receive gainsare at their maximum. For line currents higher than Istart, thegain is gradually reduced until a line current Istop is reached.This should be the equivalent of a very short line, and thegain reduction equals 6.0 dB. For higher line currents thegain is not reduced further. For the start and stop currents thefollowing relations are valid:

    Istop �1

    RSLP�11

    Istart �1

    RSLP�11–

    20 µ x RAGCRSLP�11

    For the typical application, where RAGC = 30 kΩ, the gainwill start to be reduced at Istart = 20 mA while reaching 6.0 dBof gain reduction at Istop = 50 mA. When AGC is connected toVDD, the AGC function is disabled leading to no gainreduction for any line current. This is also sometimes calledPABX mode.

    The automatic gain control takes effect in the HMIC and Rxamplifiers as well as in the BMIC amplifier. In this way theAGC is also active in speakerphone mode, see the handsfreeoperation paragraph.

    Privacy and DTMF ModeDuring handset operation a privacy and a DTMF mode can

    be entered according the logic Table 1.

    Table 1. Logic Table for Handset Mode

    Logic Inputs

    M d

    Amplifiers

    SPS MUT PRS Mode HMIC BMIC DTMF Rx RXatt EARÁÁÁÁÁÁÁÁ0

    ÁÁÁÁÁÁ1ÁÁÁÁÁÁÁÁ1

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁHandset Normal

    ÁÁÁÁÁÁÁÁOn

    ÁÁÁÁÁÁOffÁÁÁÁÁÁÁÁOff

    ÁÁÁÁÁÁOnÁÁÁÁÁÁÁÁOff

    ÁÁÁÁÁÁOnÁÁÁÁ

    ÁÁÁÁ0ÁÁÁÁÁÁ1ÁÁÁÁÁÁÁÁ0

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁHandset Privacy

    ÁÁÁÁÁÁÁÁOff

    ÁÁÁÁÁÁOffÁÁÁÁÁÁÁÁOn

    ÁÁÁÁÁÁOnÁÁÁÁÁÁÁÁOff

    ÁÁÁÁÁÁOnÁÁÁÁ

    ÁÁÁÁ0ÁÁÁÁÁÁ0ÁÁÁÁÁÁÁÁX

    ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁHandset DTMF

    ÁÁÁÁÁÁÁÁOff

    ÁÁÁÁÁÁOffÁÁÁÁÁÁÁÁOn

    ÁÁÁÁÁÁOffÁÁÁÁÁÁÁÁOff

    ÁÁÁÁÁÁOn

    Fre

    esc

    ale

    Se

    mic

    on

    du

    cto

    r, I

    Freescale Semiconductor, Inc.

    For More Information On This Product, Go to: www.freescale.com

    nc

    ...

  • MC33215

    12 MOTOROLA ANALOG IC DEVICE DATA

    Table 2. Logic Table for Handsfree Mode

    Logic Inputs

    M d

    Amplifiers

    SPS MUT PRS Mode HMIC BMIC DTMF Rx RXatt EARÁÁÁÁÁÁÁÁ

    1ÁÁÁÁÁÁ

    1ÁÁÁÁÁÁÁÁ

    1ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Handsfree NormalÁÁÁÁÁÁÁÁ

    OffÁÁÁÁÁÁ

    OnÁÁÁÁÁÁÁÁ

    OffÁÁÁÁÁÁ

    OnÁÁÁÁÁÁÁÁ

    OnÁÁÁÁÁÁ

    OffÁÁÁÁÁÁÁÁ

    1ÁÁÁÁÁÁ

    1ÁÁÁÁÁÁÁÁ

    0ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Handsfree PrivacyÁÁÁÁÁÁÁÁ

    OffÁÁÁÁÁÁ

    OffÁÁÁÁÁÁÁÁ

    OnÁÁÁÁÁÁ

    OnÁÁÁÁÁÁÁÁ

    OnÁÁÁÁÁÁ

    OffÁÁÁÁÁÁÁÁ

    1ÁÁÁÁÁÁ

    0ÁÁÁÁÁÁÁÁ

    XÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Handsfree DTMFÁÁÁÁÁÁÁÁ

    OffÁÁÁÁÁÁ

    OffÁÁÁÁÁÁÁÁ

    OnÁÁÁÁÁÁ

    OffÁÁÁÁÁÁÁÁ

    OnÁÁÁÁÁÁ

    Off

    By applying a logic 0 to Pin MUT, the DTMF mode isentered where the DTMF amplifier is enabled and where theRx amplifier is muted. A DTMF signal can be sent to the linevia the MFI input for which the gain ADTMF is given as:

    ADTMF �VlineVMFI

    �3.75

    RSLP�11x

    Zline x ZsetZline� Zset

    In the typical application, the gain equals 35 dB. TheDTMF gain can be controlled by a resistor divider at the inputMFI as shown in the typical application. The signal has to becapacitively coupled to the input via CMFI which creates ahigh pass filter with the input impedance. The line lengthAGC has no effect on the DTMF gains.

    The signal applied to the MFI input is made audible at theearpiece output for confidence tone. The signal is internallyapplied to the GRX pin where it is amplified via the EARamplifier which is used as a current to voltage amplifier. Thegain is therefore proportional to the feedback resistor RRXO.For RRXO = 180 kΩ the gain equals 6.0 dB. The confidencetone is also audible at the loudspeaker output when theloudspeaker amplifier is activated, see speakerphoneoperation.

    By applying a logic 0 to Pin PRS, the MC33215 entersprivacy mode. In this mode, both handset and handsfreemicrophone amplifiers are muted while the DTMF amplifier isenabled. Through the MFI input, a signal, for example musicon hold, can be sent to the line. In the same way, the MFIinput can also be used to couple in signals from, for instance,an answering machine.

    HANDSFREE OPERATIONHandsfree operation, including DTMF and Privacy modes,

    can be performed by making Pin SPS high according Table 2.The handset amplifiers will be switched off while the baseamplifiers will be activated. The MC33215 performs all thenecessary functions, such as signal monitoring andswitch–over, under supervision of the duplex controller.

    With the MC33215 also a group listening–in applicationcan be built. For more information on this subject please referto application note AN1574.

    Base Microphone AmplifierThe base microphone can be capacitively connected to

    the circuit via the differential input BM1 and BM2. The setupis identical to the one for the handset microphone amplifier.The total transmit voltage gain ABM from the basemicrophone inputs to the line is:

    ABM�VlineVBM

    �37.5

    RSLP�11x

    Zline x ZsetZline� Zset

    With the typical application and Zline = 600 Ω the transmitgain calculates as 55 dB.

    The electret base microphone can be supplied directlyfrom VHF but it is advised to use an additional RC filter toobtain a stable supply point, as shown in the typicalapplication. The microphone can also be supplied by VMC.The transmit gain is set by adjusting the sensitivity of thebase microphone by adjusting the resistors RBM1 and RBM2.It is not advised to adjust the gain by including seriesresistors towards the Pins BM1 and BM2.

    A high pass filter is introduced by the coupling capacitorsCBM1 and CBM2 in combination with the input impedance. Alow pass filter can be created by putting capacitors in parallelwith the resistors RBM1 and RBM2.

    Loudspeaker AmplifierThe loudspeaker amplifier of the MC33215 has three major

    benefits over most of the existing speakerphone loudspeakeramplifiers: it can be supplied and used in a telephone linepowered application but also stand alone, it has an all NPNbootstrap output stage which provides maximum outputswing under any supply condition, and it includes apeak–to–peak limiter to limit the distortion at the output.

    The loudspeaker amplifier is powered at Pin VLS. Intelephone line powered applications, this pin should beconnected to VCC where most of the line current is available,see the VCC supply paragraph. In an application where anexternal power supply is used, VLS and thus the loudspeakeramplifier can be powered separately from the rest of thecircuit. The amplifier is grounded to PGD, which is the circuitspower ground shared by both the loudspeaker amplifier andthe current splitter of the VCC supply. Half the supply voltageof VLS is at BVO, filtered with a capacitor to VLS. Thisvoltage is used as the reference for the output amplifier.

    The receive signal present at RLS can be capacitivelycoupled to LSI via the resistor RLSI. The overall gain fromRLS to LSO follows as:

    ALS �VLSOVRLS

    � –RLSFRLSI

    x 4.0

    In the typical application this leads to a loudspeaker gainALS of 26 dB. The above formula follows from the fact that theoverall amplifier architecture from RLS to LSO can be lookedat as an inverting voltage amplifier with an internal currentgain from LSI to LSF of 4. The input LSI is a signal currentsumming node which allows other signals to be applied here.

    Fre

    esc

    ale

    Se

    mic

    on

    du

    cto

    r, I

    Freescale Semiconductor, Inc.

    For More Information On This Product, Go to: www.freescale.com

    nc

    ...

  • MC33215

    13MOTOROLA ANALOG IC DEVICE DATA

    Figure 9. Loudspeaker Output Stage

    VLS

    Loudspeaker

    CLSO

    LSB

    LSO

    PGD

    T2

    T1

    1.5 VLS

    VLS

    0.5 VLS

    VLS

    0.5 VLS

    0

    0.5 VLS

    0

    –0.5 VLS

    VLS

    Figure 10. Loudspeaker Amplifier Output Power with External Supply

    2.0

    140

    PLS

    P (m

    W)

    VLS (V)

    2.0

    300

    RLSP = 25 Ω

    RLSP = 50 Ω

    RLSP = 25 Ω

    RLSP = 50 ΩPLS

    P (m

    W)

    VLS (V)

    120 250

    100200

    80150

    60

    100

    20 50

    0 03.0 4.0 3.05.0 4.06.0 5.07.0 6.08.0 7.0 8.0

    40

    A. Peak–to–Peak Limiter Active B. Peak–to–Peak Limiter Disabled

    The total gain from the telephone line to the loudspeakeroutput includes, besides the loudspeaker amplifier gain, alsothe attenuation of the sidetone network and the internal gainfrom RXI to RLS. When in receive mode, see under duplexcontroller, the gain from RXI to RLS is maximum and equals24 dB at maximum volume setting. The attenuation of thesidetone network in the typical application equals 24.6 dBwhich makes an overall gain from line to loudspeaker of25.4 dB. Due to the influence of the line length AGC on the Rxamplifier, the gain will be reduced for higher line currents.

    The output stage of the MC33215 is a modified all NPNbootstrap stage which ensures maximum output swing underall supply conditions. The major advantage of this type ofoutput stage over a standard rail–to–rail output is the higherstability. The principle of the bootstrap output stage isexplained with the aid of Figure 9.

    The output LSO is biased at half the supply VLS while thefiltering of the loudspeaker with the big capacitor CLSOrequires that LSB is biased at VLS. In fact, because of thefiltering, LSB is kept at VLS/2 above the LSO output even ifLSO contains an ac signal. This allows the output transistor

    T2 to be supplied for output signals with positive excursionsup to VLS without distorting the output signal. The resultingac signal over the loudspeaker will equal the signal at LSO.As an indication of the high performance of this type ofamplifier, in Figure 10, the output power of the loudspeakeramplifier as a function of supply voltage is depicted for 25 Ωand 50 Ω loads with both the peak–to–peak limiter active anddisabled. As can be seen, in case the peak–to–peak limiter isdisabled, the output power is roughly increased with 6.0 dB,this at the cost of increased distortion levels up to 30%.

    In a telephone line powered application, the loudspeakeramplifier output power is limited not only by the supplyvoltage but also by the telephone line current. This meansthat in telephones the use of 25 Ω or 50 Ω speakers ispreferred over the use of the cheaper 8.0 Ω types. Figure 11gives the output power into the loudspeaker for a linepowered application and two different dc settings with thepeak–to–peak limiter active. In case the peak–to–peak limiteris disabled the output power will be increased for the higherline currents up to 6.0 dB.

    Fre

    esc

    ale

    Se

    mic

    on

    du

    cto

    r, I

    Freescale Semiconductor, Inc.

    For More Information On This Product, Go to: www.freescale.com

    nc

    ...

  • MC33215

    14 MOTOROLA ANALOG IC DEVICE DATA

    0

    100P L

    SP (m

    W)

    Iline (mA)

    RREG1 = 365 kRREG2 = 220 kRLSP = 25 Ω

    Figure 11. Loudspeaker Amplifier OutputPower when Line Powered

    RREG1 = 365 kRREG2 = 220 kRLSP = 50 Ω

    RREG1 = 365 kRREG2 = InfiniteRLSP = 50 Ω

    RREG1 = 365 kRREG2 = InfiniteRLSP = 25 Ω

    20 40 60 80 100

    90

    80

    70

    60

    50

    40

    30

    20

    10

    0

    The quality of the audio output of the loudspeaker amplifieris mainly determined by the distortion level. To keep highquality under difficult supply conditions, the MC33215incorporates a peak–to–peak limiter. The peak–to–peaklimiter will detect when the output stage gets close to itsmaximum output swing and will then reduce the gain from LSIto LSF. The attack and release of the limiter is regulated bythe CPPL capacitor. Figure 12 depicts the limiter’s attackbehavior with CPPL = 100 nF. The release time is given as3 x CPPL x RPPL. In the typical application this leads to arelease time of 300 ms.

    Figure 12. Peak–to–Peak Limiter Dynamic Behavior

    0

    0.5

    V/D

    IV

    t, TIME (ms)

    VLSO

    VPPL

    Vin

    1.0 2.0 3.0 4.0 5.0 6.0

    Figure 12 clearly shows that due to the action of thepeak–to–peak limiter, the output swing and thus the outputpower is reduced with respect to the maximum possible asalready indicated in Figure 10. The peak–to–peak limiter canbe disabled by connecting the PPL pin to ground.

    On top of the peak–to–peak limiter, the MC33215incorporates a supply limiter, which reduces the gain rapidlywhen the supply voltage VLS drops too much. This willavoid malfunctioning of the amplifier and unwantedoscillations. The voltage drop is detected via the BVO inputand for that reason the CBVO has to be connected to VLSand not to Gnd.

    The amplifier can be activated by making Pin LSM high. Inthe typical application this pin is connected to SPS, whichactivates the loudspeaker amplifier automatically when thespeakerphone mode is entered. When LSM is made low, the

    loudspeaker amplifier is muted which is needed for correcthandset operation.

    The volume of the loudspeaker signal can be varied via apotentiometer at VOL. A fixed current of 10 µA is runningthrough the potentiometer and the resulting voltage at VOLis a measure for the gain reduction. The relation betweenthe voltage at VOL and the obtained gain reduction is givenin Figure 13.

    0

    0

    dALS

    P (d

    B)

    VVOL (mV), dALSP (dB)

    Figure 13. Volume Reduction

    100 200 300 400 500

    –5.0

    –10

    –15

    –20

    –25

    –35

    –30

    –40

    It can be seen from Figure 13 that a linear variation ofRVOL will give a logarithmic gain reduction which adaptsbetter to the human ear than a linear gain reduction.

    During DTMF dialing, see Table 2, a confidence tone isaudible at the loudspeaker of which the level is proportionalto the feedback resistor RLSF only. At RLSF = 180 kΩ the gainfrom MFI to LSO equals 28.5 dB.

    Half Duplex ControllerTo avoid howling during speakerphone operation, a half

    duplex controller is incorporated. By monitoring the signals inboth the transmit and receive channel the duplex controllerwill reduce the gain in the channel containing the smallestsignal. A typical gain reduction will be between 40 dB and52 dB depending on the setting, see below. In case of equalsignal levels or by detection of noise only, the circuit goes intoidle mode. In this mode the gain reduction in both channels ishalfway, leading to 20 dB to 26 dB of reduction.

    In a speakerphone built around the MC33215, followingthe signal path from base microphone to the line and viasidetone, loudspeaker and acoustic coupling back to themicrophone, the loop gain can be expressed as a sum of thegains of the different stages. However, since the transmit andreceive gains are dependent on AGC and the sidetonesuppression is dependent on matching with the different lineswe are mostly interested by the maximum possible loop gainALOOP(max). It follows:

    ALOOP(max) = ABMRX(max) + ARXBM(max) – ASWD (dB)

    With: ABMRX(max) = Maximum gain from BM1 and BM2 toRXI as a function of line length AGC and lineimpedance matching

    ARXBM(max) = Maximum gain from RXI to BM1 andBM2 as a function of line length AGC and acousticcoupling

    Fre

    esc

    ale

    Se

    mic

    on

    du

    cto

    r, I

    Freescale Semiconductor, Inc.

    For More Information On This Product, Go to: www.freescale.com

    nc

    ...

  • MC33215

    15MOTOROLA ANALOG IC DEVICE DATA

    ASWD = Switching depth as performed in theattenuators

    To avoid howling, the maximum possible loop gain shouldbe below 0 dB and preferably below –10 dB for comfort. In apractical telephone design, both the ABMRX(max) and theARXBM(max) will be less than 20 dB thus a switching depth of50 dB will give a loop gain of less than –10 dB. An optimizedsidetone network is of high importance for handsfreeoperation. The better the network matches with thetelephone line the less local feedback and the smaller theswitching range can be.

    The amount of gain reduction ASWD obtained by theduplex controller is set via resistor RSWD according:

    ASWD � 20 log�3.6 x RSWD

    RREF�

    2

    (dB)

    In the typical application the gain reduction will be 50 dB.

    To compare the transmit and receive signals with eachother, they have to be monitored. This is done by making asignal envelope and a background noise envelope via theCTSE, CTBN capacitors for the transmit channel and via theCRSE, CRBN capacitors for the receive channel. In Figure 14,a schematic behavior of the envelopes is depicted which isequal for both transmit and receive.

    The voltage signal at the input is first transferred to acurrent via the sensitivity adjust network. Then this current isled through a diode which gives a logarithmic compression involtage. It is this voltage from which the signal envelope iscreated by means of asymmetric charge and discharge of thesignal envelope capacitor. The noise envelope voltage thenfollows in a similar way. Based on the envelope levels, theMC33215 will switch to transmit, receive or idle modefollowing Table 3. The fact that in receive mode the signal onthe base microphone is greater than it is in case of transmit

    mode, due to the coupling of the high loudspeaker signal, isautomatically taken into account.

    In the table, two particulars can be found. At first, the setwill go to idle mode if the signals are not at least 4.5 dBgreater then the noise floor, which calculates as a 13 mVvoltage difference in envelopes. This avoids continuousswitching over between the modes under slight variations ofthe background noise due to, for instance, typing on akeyboard. Second, a dial tone detector threshold isimplemented to avoid that the set goes to idle mode inpresence of a continuous strong receive signal like a dialtone. The dial tone detector threshold is proportional to theRRSA resistor. In the typical application with RRSA = 3.3 kΩ,the threshold is at 1.26 mVrms at the input RXI or 20 mVrmsat the line. Line length AGC is of influence on the dial tonedetector threshold, increasing the level depending on the linecurrent with a maximum of 6.0 dB.

    In order to perform a correct comparison between thesignal strengths, the sensitivity of the envelope detectors canbe adjusted via the resistors connected to TSA and RSA.Based on the above, and on the fact that there is an effectivegain of 20 dB in the transmit monitor, it can be derived that forstable operation the following two relations are valid:

    20 log�RTSA� � 20 log�RRSA� – ABMRX(max)� 20 (dB)

    20 log�RTSA� � 20 log�RRSA� – ARXBM(max)– ASW� 20 (dB)

    By measuring the gains and choosing the RRSA, the limitsfor RTSA follow. The choice for the sensitivity resistors is notcompletely free. The logarithmic compressors and theamplifier stages have a certain range of operation and, on thereceive side, the choice for RRSA is given by the desired dialtone detector threshold. Figure 15 indicates the availabledynamic range for the selected value of the sensitivityresistors.

    Figure 14. Signal and Noise Envelopes

    MicrophoneInput Signal

    1.8 VInternal

    TSA

    RTSA

    CTSA

    TSECTSE CTBN

    TBN

    VHF VHF

    Fre

    esc

    ale

    Se

    mic

    on

    du

    cto

    r, I

    Freescale Semiconductor, Inc.

    For More Information On This Product, Go to: www.freescale.com

    nc

    ...

  • MC33215

    16 MOTOROLA ANALOG IC DEVICE DATA

    Table 3. Logic Table for Switch–Over

    TSE > RSE TSE > TBN + 13 mV RSE > VDDT RSE > RBN + 13 mV ModeÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    1ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    1ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    XÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    XÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    TransmitÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    1ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    0ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    XÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    XÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    IdleÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    0ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    XÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    1ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    XÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    ReceiveÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    0ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    XÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    0ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    1ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    ReceiveÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    0ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    XÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    0ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    0ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

    Idle

    The resistors for the sensitivity setting have to be coupledcapacitively to the pins for dc decoupling, and also to createa high pass filter to suppress low frequent background noiseslike footsteps and 50 Hz.

    The switch–over timing is performed by charging anddischarging the CSWT capacitor. The switch–over fromtransmit to receive or vice versa is fast, on the order ofmilliseconds, and is proportional to the value of CSWT. Theswitch–over to idle mode is slow, in the order of a fewseconds, and is proportional to the product of the values ofRSWT and CSWT. Figure 16 depicts a typical switch–overbehavior when applying transmit and receive stimuli.

    The electrical characteristics and the behavior of theMC33215 are not the only factor in designing a handsfreespeakerphone. During the design the acoustics have to betaken into account from the beginning. The choice of thetransducers and the design of the cabinet are of greatinfluence on the speakerphone performance. Also, toachieve a proper handsfree operation, the fine tuning of thecomponents around the duplex controller have to be donewith the final choice of the cabinet and the transducers.

    Figure 15. Compression Range of the Signal Monitors

    100

    100.0E–3

    V RXI

    (Vrm

    s)

    RRSA (Ω)

    100

    100.0E–3

    RTSA (Ω)

    A. Receive Monitor B. Transmit Monitor

    Upper Limit ofCompression

    Lower Limit ofCompression

    Upper Limit ofCompression

    Lower Limit ofCompression V B

    M1(

    Vrm

    s)

    1000 100010000 10000100000 100000

    10.0E–310.0E–3

    1.0E–3

    1.0E–3100.0E–6

    10.0E–6 100.0E–6

    Dial ToneThreshold

    Figure 16. Switch–Over Behavior

    Receive

    Transmit

    SWT

    VMC – 0.5

    VMC + 0.5

    Fre

    esc

    ale

    Se

    mic

    on

    du

    cto

    r, I

    Freescale Semiconductor, Inc.

    For More Information On This Product, Go to: www.freescale.com

    nc

    ...

  • MC33215

    17MOTOROLA ANALOG IC DEVICE DATA

    VLSP

    Figure 17. Test Circuit

    Supply Supply1:10

    VDD

    VHM

    VBM

    VHF

    VLS V

    V

    V

    V

    HM1

    HM2

    BM1

    BM2

    TSA

    TSE

    TBN

    AGC

    REF

    SWD

    VOL

    RLS

    BVO

    VLS

    LSB

    LSO

    PGD

    LSF

    Tx Log–Ampand

    EnvelopeDetectors

    AnalogControlBlock

    PeakLimiter

    AttenuatorControl

    Tx Attenuator

    Rx Attenuator Rx

    EARLSP

    BMIC

    HMIC

    VDD VLN

    VRLS

    GndVMC

    VHF

    VCC

    SLB

    SLP

    MFI

    SPS

    MUT

    PRS

    LSM

    SWT

    RBN

    RSE

    RSA

    RXI

    RXO

    GRX

    RXSLSIPPL

    Rx Log–Ampand Envelope

    Detectors

    LogicControlBlock

    DTMF

    Driver1x

    MHM

    MBM

    MDF

    MRX

    MRA

    MEAR

    AGC

    AGC

    AGC

    MRA

    MHM

    MBM MDF

    MEAR

    AGC

    REG

    MRX

    RREG360 k

    IlineVac

    Vline

    Zbal33 k

    RSLB2.2 k

    ZVDD620 600

    0.2 V

    CREG220 n

    CVDD100 µ

    CHM133 n

    CHM233 nCBM133 n

    CBM233 n

    CTSA470 n

    CTSE330 n

    CTBN4.7 µ

    RTSA2.2 k

    RAGC30 kRREF20 k

    RSWD100 k

    RVOL47 k

    CBVO220 n

    CLSO47 µRLSO180 k

    25

    CLSI47 n

    RLSI36 k

    VLSI

    RGRX24 k

    RRXO180 k

    CGRX47 n

    VEAR

    VRXI

    CEAR10 µ

    VHF

    CRXS100 n

    VMF

    VSPS

    VMUT

    VPRS

    VLSM

    VSWT

    CRXI47 n

    RRSA3.3 k

    CRSA470 n

    CRSE330 n

    CRBN4.7 µ

    CMF147 n

    RSLP220

    CVCC470 µ

    CVHF47 µ

    CVMC10 µ

    RPPL1.0 M

    CPPL100 n

    MC33215

    S12

    1

    Fre

    esc

    ale

    Se

    mic

    on

    du

    cto

    r, I

    Freescale Semiconductor, Inc.

    For More Information On This Product, Go to: www.freescale.com

    nc

    ...

  • MC33215

    18 MOTOROLA ANALOG IC DEVICE DATA

    Figure 18. Typical Application

    Supply Supply1:10

    VDD

    VHF

    HM1

    HM2

    BM1

    BM2

    TSA

    TSE

    TBN

    AGC

    REF

    SWD

    VOL

    RLS

    BVO

    VLS

    LSB

    LSO

    PGD

    LSF

    Tx Log–Ampand Envelope

    Detectors

    AnalogControlBlock

    Peak Limiter

    AttenuatorControl

    Rx Attenuator Rx

    EARLSP

    BMIC

    HMIC

    VDD VLNGnd

    VMC

    VHF

    VCC

    SLB

    SLP

    MFI

    SPS

    MUT

    PRS

    LSM

    SWT

    RBN

    RSE

    RSA

    RXI

    RXO

    GRX

    RXSLSIPPL

    Rx Log–Ampand Envelope

    Detectors

    Logic ControlBlock

    DTMF

    Driver1x

    MHM

    MBM

    MDF

    MRX

    MRA

    MEAR

    AGC

    AGC

    AGC

    MRA

    MHM

    MBM MDF

    MEAR

    AGC

    REG

    MRX

    RREG1365 k Zbal

    33 k

    RSLB2.2 k

    ZVDD620

    0.2 V

    CREG220 n

    CVDD100 µ

    CHM133 n

    CHM233 n

    CBM133 n

    CBM233 n

    CTSA1.0 µF

    CTSE330 n

    CTBN4.7 µ

    RTSA470

    RAGC30 k

    RREF20 k

    RSWD100 k

    RVOL50 k

    CBVO220 n

    CLSO47 µ

    RLSO180 k

    RGRX24 k

    RRXO180 k

    CGRX47 n

    150 Ω

    CEAR10 µ

    VHF

    CRXS100 n

    CRXI33 n

    RRSA3.3 k

    CRSA470 n

    CRSE330 n

    CRBN4.7 µ

    CMF147 n

    RSLP220

    CVCC470 µ

    CVHF47 µ

    CVMC10 µ

    RPPL1.0 M

    CPPL100 n

    MC33215VMC

    VHF

    VCC

    25 Ω

    CRLS33 n

    RHM11.0 k

    RBM21.0 k

    RHM21.0 k

    Dialer orMicrocontroller

    Tx Attenuator

    SpeakerphoneButton

    PrivacyButton

    Ring

    Tip

    T2

    T1

    Z110 V

    VDD

    HookSwitch

    1

    4

    7

    *

    2

    5

    8

    0

    3

    6

    9

    #

    RBM11.0 k

    CSWT100 n

    1.0 k

    10 µF

    RSWT2.2 M

    VMC

    0.01

    RLSI36 k

    RREG2

    10 n

    Fre

    esc

    ale

    Se

    mic

    on

    du

    cto

    r, I

    Freescale Semiconductor, Inc.

    For More Information On This Product, Go to: www.freescale.com

    nc

    ...

  • MC33215

    19MOTOROLA ANALOG IC DEVICE DATA

    FB SUFFIXPLASTIC PACKAGE

    CASE 848B–04(TQFP–52)ISSUE C

    OUTLINE DIMENSIONS

    NOTES:1. DIMENSIONING AND TOLERANCING PER ANSI

    Y14.5M, 1982.2. CONTROLLING DIMENSION: MILLIMETER.3. DATUM PLANE –H– IS LOCATED AT BOTTOM OF

    LEAD AND IS COINCIDENT WITH THE LEAD WHERETHE LEAD EXITS THE PLASTIC BODY AT THEBOTTOM OF THE PARTING LINE.

    4. DATUMS –A–, –B– AND –D– TO BE DETERMINED ATDATUM PLANE –H–.

    5. DIMENSIONS S AND V TO BE DETERMINED ATSEATING PLANE –C–.

    6. DIMENSIONS A AND B DO NOT INCLUDE MOLDPROTRUSION. ALLOWABLE PROTRUSION IS 0.25(0.010) PER SIDE. DIMENSIONS A AND B DOINCLUDE MOLD MISMATCH AND ARE DETERMINEDAT DATUM PLANE –H–.

    7. DIMENSION D DOES NOT INCLUDE DAMBARPROTRUSION. ALLOWABLE DAMBAR PROTRUSIONSHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE DDIMENSION AT MAXIMUM MATERIAL CONDITION.DAMBAR CANNOT BE LOCATED ON THE LOWERRADIUS OR THE FOOT.

    DETAIL A

    L

    39

    40 26

    27

    1

    52 14

    13

    L

    –A–

    B

    V

    SA–BM0.20 (0.008) D SH

    A–B0.05 (0.002)

    SA–BM0.20 (0.008) D SC

    –D–B V

    –B–

    SA–

    BM

    0.20

    (0.0

    08)

    DS

    H

    A–B

    0.05

    (0.0

    02)

    SA–

    BM

    0.20

    (0.0

    08)

    DS

    C

    –H–

    0.10 (0.004)–C– SEATING

    PLANE

    DATUMPLANE

    MGH

    EC M

    DETAIL C

    U�

    Q�

    XW

    KT

    R

    DETAIL C

    DIM MIN MAX MIN MAXINCHESMILLIMETERS

    A 9.90 10.10 0.390 0.398B 9.90 10.10 0.390 0.398C 2.10 2.45 0.083 0.096D 0.22 0.38 0.009 0.015E 2.00 2.10 0.079 0.083F 0.22 0.33 0.009 0.013G 0.65 BSC 0.026 BSCH ––– 0.25 ––– 0.010J 0.13 0.23 0.005 0.009K 0.65 0.95 0.026 0.037L 7.80 REF 0.307 REFM 5 10 5 10 N 0.13 0.17 0.005 0.007Q 0 7 0 7 R 0.13 0.30 0.005 0.012S 12.95 13.45 0.510 0.530T 0.13 ––– 0.005 –––U 0 ––– 0 –––V 12.95 13.45 0.510 0.530W 0.35 0.45 0.014 0.018X 1.6 REF 0.063 REF

    � � � �

    � � � �

    � �

    B

    B

    DETAIL A

    –A–, –B–, –D–

    J N

    D

    F

    BASE METAL

    SECTION B–B

    SA–BM0.02 (0.008) D SC

    Fre

    esc

    ale

    Se

    mic

    on

    du

    cto

    r, I

    Freescale Semiconductor, Inc.

    For More Information On This Product, Go to: www.freescale.com

    nc

    ...

  • MC33215

    20 MOTOROLA ANALOG IC DEVICE DATA

    B SUFFIXPLASTIC PACKAGE

    CASE 858–01(SDIP–42)ISSUE O

    OUTLINE DIMENSIONS

    –A–

    1 21

    42 22

    –B–

    SEATINGPLANE

    –T–

    SAM0.25 (0.010) T SBM0.25 (0.010) T

    L

    H

    MJ 42 PLD 42 PL

    F GN

    K

    C

    NOTES:1. DIMENSIONING AND TOLERANCING PER ANSI

    Y14.5M, 1982.2. CONTROLLING DIMENSION: INCH.3. DIMENSION L TO CENTER OF LEAD WHEN

    FORMED PARALLEL.4. DIMENSIONS A AND B DO NOT INCLUDE MOLD

    FLASH. MAXIMUM MOLD FLASH 0.25 (0.010).

    DIM MIN MAX MIN MAXMILLIMETERSINCHES

    A 1.435 1.465 36.45 37.21B 0.540 0.560 13.72 14.22C 0.155 0.200 3.94 5.08D 0.014 0.022 0.36 0.56F 0.032 0.046 0.81 1.17G 0.070 BSC 1.778 BSCH 0.300 BSC 7.62 BSCJ 0.0